يعرض 1 - 10 نتائج من 76 نتيجة بحث عن '"Akademik M.A. Lavrentyev"', وقت الاستعلام: 0.79s تنقيح النتائج
  1. 1

    الوقت: 145-883, 145-887, 202-1240, 64-480

    وصف الملف: text/tab-separated-values, 14 data points

    العلاقة: Rafter, Patrick A; Gray, William Robert; Hines, Sophia K V; Burke, Andrea; Costa, Kassandra M; Gottschalk, Julia; Hain, Mathis P; Rae, James W B; Southon, John R; Walczak, Maureen H; Yu, Jimin; Adkins, Jess F; DeVries, Tim (2022): Global reorganization of deep-sea circulation and carbon storage after the last ice age. Science Advances, 8(46), https://doi.org/10.1126/sciadv.abq5434Test; Adkins, Jess F; Cheng, Hai; Boyle, Edward A; Druffel, Ellen R M; Edwards, R Lawrence (1998): Deep-Sea Coral Evidence for Rapid Change in Ventilation of the Deep North Atlantic 15,400 Years Ago. Science, 280(5364), 725-728, https://doi.org/10.1126/science.280.5364.725Test; Andrée, M; Beer, Jürg; Oeschger, Hans; Broecker, Wallace S; Mix, Alan C; Ragano, Beavan N; O'Hara, P; Bonani, G; Hofmann, Hans J; Morenzoni, Elvezio; Nessi, Marzio; Suter, M; Wolfli, Willy (1984): 14C measurements on foraminifera of deep sea core V28-238 and their preliminary interpretation. Nuclear Instruments and Methods in Physics Research. Section B: Beam Interactions with Materials and Atoms, 5(2), 340-345, https://doi.org/10.1016/0168-583XTest(84)90539-1; Ausín, Blanca; Sarnthein, Michael; Haghipour, Negar (2021): Glacial-to-deglacial reservoir and ventilation ages on the southwest Iberian continental margin. Quaternary Science Reviews, 255, 106818, https://doi.org/10.1016/j.quascirev.2021.106818Test; Balmer, Sven; Sarnthein, Michael (2018): Glacial-to-deglacial changes in North Atlantic meltwater advection and deep-water formation – Centennial-to-millennial-scale 14C records from the Azores plateau. Geochimica et Cosmochimica Acta, 236, 399-415, https://doi.org/10.1016/j.gca.2018.03.001Test; Barker, Stephen; Knorr, Gregor; Vautravers, Maryline J; Diz, Paula; Skinner, Luke C (2010): Extreme deepening of the Atlantic overturning circulation during deglaciation. Nature Geoscience, 3(8), 567-571, https://doi.org/10.1038/NGEO921Test; Barron, John A; Heusser, Linda E; Herbert, Timothy D; Lyle, Mitchell W (2003): High resolution climatic evolution of coastal Northern California during the past 16,000 Years. Paleoceanography, 18(1), 1020, https://doi.org/10.1029/2002PA000768Test; Bova, Samantha C; Herbert, Timothy D; Altabet, Mark A (2018): Ventilation of Northern and Southern Sources of Aged Carbon in the Eastern Equatorial Pacific During the Younger Dryas Rise in Atmospheric CO2. Paleoceanography and Paleoclimatology, 33(11), 1151-1168, https://doi.org/10.1029/2018PA003386Test; Broecker, Wallace S; Andree, Michael; Bonani, Georges; Wolfli, Willy; Oeschger, Hans; Klas, Mieczyslawa; Mix, Alan C; Curry, William B (1988): Preliminary estimates for the radiocarbon age of deepwater in the glacial ocean. Paleoceanography, 3(6), 659-669, https://doi.org/10.1029/PA003i006p00659Test; Broecker, Wallace S; Barker, Stephen; Clark, Elizabeth; Bonani, Georges; Hajdas, Irka (2004): Ventilation of the Glacial Deep Pacific Ocean. Science, 306(5699), 1169-1172, https://doi.org/10.1126/science.1102293Test; Broecker, Wallace S; Clark, Elizabeth (2010): Search for a glacial-age 14C-depleted ocean reservoir. Geophysical Research Letters, 37(13), https://doi.org/10.1029/2010GL043969Test; Broecker, Wallace S; Clark, Elizabeth; Barker, Stephen (2008): Near constancy of the Pacific Ocean surface to mid-depth radiocarbon-age difference over the last 20 kyr. Earth and Planetary Science Letters, 274(3-4), 322-326, https://doi.org/10.1016/j.epsl.2008.07.035Test; Broecker, Wallace S; Klas, Mieczyslawa; Clark, Elizabeth; Trumbore, S; Bonani, Georges; Wolfli, Willy; Ivy, Susan (1990): AMS Radiocarbon Measurements on Foraminifera Shells from Deep-Sea. Radiocarbon, 32(2), 119-133, https://doi.org/10.1017/S0033822200007542Test; Broecker, Wallace S; Klas, Mieczyslawa; Ragano, Beavan N; Mathieu, Guy; Mix, Alan C; Andree, Michael; Oeschger, Hans; Woelfli, Willy; Suter, Martin; Bonani, Georges; Hofmann, Hans J; Nessi, Marzio; Morenzoni, Elvezio (1988): Accelerator mass spectrometry radiocarbon measurements on marine carbonate samples from deep sea cores and sediment traps. Radiocarbon, 30(3), 261-295, https://hdl.handle.net/10150/652917Test; Broecker, Wallace S; Peng, Tsung-Hung; Trumbore, S; Bonani, Georges; Wolfli, Willy (1990): The distribution of radiocarbon in the glacial ocean. Global Biogeochemical Cycles, 4(1), 103-117, https://doi.org/10.1029/GB004i001p00103Test; Bryan, Sean P; Marchitto, Thomas M; Lehman, Scott J (2010): The release of 14C-depleted carbon from the deep ocean during the last deglaciation: Evidence from the Arabian Sea. Earth and Planetary Science Letters, 298(1-2), 244-254, https://doi.org/10.1016/j.epsl.2010.08.025Test; Burke, Andrea; Robinson, Laura F (2012): The Southern Ocean's role in carbon exchange during the last deglaciation. Science, 335(6068), 557-561, https://doi.org/10.1126/science.1208163Test; Cao, Li; Fairbanks, Richard G; Mortlock, Richard A; Risk, Michael J (2007): Radiocarbon reservoir age of high latitude North Atlantic surface water during the last deglacial. Quaternary Science Reviews, 26(5-6), 732-742, https://doi.org/10.1016/j.quascirev.2006.10.001Test; Chen, Tianyu; Robinson, Laura F; Burke, Andrea; Claxton, Louis M; Hain, Mathis P; Li, Tao; Rae, James W B; Stewart, Joseph A; Knowles, Timothy; Fornari, Daniel J; Harpp, Karen S (2020): Persistently well-ventilated intermediate-depth ocean through the last deglaciation. Nature Geoscience, 13(11), 733-738, https://doi.org/10.1038/s41561-020-0638-6Test; Chen, Tianyu; Robinson, Laura F; Burke, Andrea; Southon, John; Spooner, Peter T; Morris, Paul J; Ng, Hong Chin (2015): Synchronous centennial abrupt events in the ocean and atmosphere during the last deglaciation. Science, 349(6255), 1537-1541, https://doi.org/10.1126/science.aac6159Test; Cléroux, Caroline; deMenocal, Peter B; Guilderson, Thomas P (2011): Deglacial radiocarbon history of tropical Atlantic thermocline waters: absence of CO2 reservoir purging signal. Quaternary Science Reviews, 30(15-16), 1875-1882, https://doi.org/10.1016/j.quascirev.2011.04.015Test; Cook, Mea S; Keigwin, Lloyd D (2015): Radiocarbon profiles of the NW Pacific from the LGM and deglaciation: Evaluating ventilation metrics and the effect of uncertain surface reservoir ages. Paleoceanography, 30(3), 174-195, https://doi.org/10.1002/2014PA002649Test; Dai, Yuhao; Yu, Jimin; Rafter, Patrick A (2021): Deglacial Ventilation Changes in the Deep Southwest Pacific. Paleoceanography and Paleoclimatology, 36(2), https://doi.org/10.1029/2020PA004172Test; Davies-Walczak, Maureen H; Mix, Alan C; Stoner, Joseph S; Southon, John R; Cheseby, Maziet; Xuan, Chuang (2014): Late Glacial to Holocene radiocarbon constraints on North Pacific Intermediate Water ventilation and deglacial atmospheric CO2 sources. Earth and Planetary Science Letters, 397, 57-66, https://doi.org/10.1016/j.epsl.2014.04.004Test; de la Fuente, Maria; Skinner, Luke C; Calvo, Eva; Pelejero, Carles; Cacho, Isabel (accepted): Increased reservoir ages and poorly ventilated deep waters inferred in the glacial Eastern Equatorial Pacific. Nature Communications, 6(1), https://doi.org/10.1038/ncomms8420Test; De Pol-Holz, Ricardo; Keigwin, Lloyd D; Southon, John R; Hebbeln, Dierk; Mohtadi, Mahyar (2010): No signature of abyssal carbon in intermediate waters off Chile during deglaciaition. Nature Geoscience, 3(3), 192-195, https://doi.org/10.1038/ngeo745Test; Duplessy, Jean-Claude; Arnold, Maurice; Bard, Edouard; Juillet-Leclerc, A; Kallel, Nejib; Labeyrie, Laurent D (1989): AMS 14C Study of Transient Events and of the Ventilation Rate of the Pacific Intermediate Water During the Last Deglaciation. Radiocarbon, 31(03), 493-502, https://doi.org/10.1017/S003382220001208XTest; Eltgroth, Selene F; Adkins, Jess F; Robinson, Laura F; Southon, John; Kashgarian, Michaele (2006): A deep-sea coral record of North Atlantic radiocarbon through the Younger Dryas: Evidence for intermediate water/deepwater reorganization. Paleoceanography, 21(4), PA4207, https://doi.org/10.1029/2005PA001192Test; Ezat, Mohamed M; Rasmussen, Tine L; Skinner, Luke C; Zamelczyk, Katarzyna (2019): Deep ocean 14C ventilation age reconstructions from the Arctic Mediterranean reassessed. Earth and Planetary Science Letters, 518, 67-75, https://doi.org/10.1016/j.epsl.2019.04.027Test; Ezat, Mohamed M; Rasmussen, Tine Lander; Thornalley, David J R; Olsen, Jesper; Skinner, Luke C; Hönisch, Bärbel; Groeneveld, Jeroen (2017): Ventilation history of Nordic Seas overflows during the last (de)glacial period revealed by species-specific benthic foraminiferal 14C dates. Paleoceanography, 32(2), 172-181, https://doi.org/10.1002/2016PA003053Test; Freeman, Emma; Skinner, Luke C; Tisserand, Amandine; Dokken, Trond; Timmermann, Axel; Menviel, Laurie; Friedrich, Torsten (2015): An Atlantic–Pacific ventilation seesaw across the last deglaciation. Earth and Planetary Science Letters, 424, 237-244, https://doi.org/10.1016/j.epsl.2015.05.032Test; Freeman, Emma; Skinner, Luke C; Waelbroeck, Claire; Hodell, David A (2016): Radiocarbon evidence for enhanced respired carbon storage in the Atlantic at the Last Glacial Maximum. Nature Communications, 7(1), https://doi.org/10.1038/ncomms11998Test; Galbraith, Eric Douglas; Jaccard, Samuel L; Pedersen, Thomas F; Sigman, Daniel M; Haug, Gerald H; Cook, Mea S; Southon, John R; Francois, Roger (2007): Carbon dioxide release from the North Pacific abyss during the last deglaciation. Nature, 449(7164), 890-894, https://doi.org/10.1038/nature06227Test; Gebhardt, Holger; Sarnthein, Michael; Grootes, Pieter Meiert; Kiefer, Thorsten; Kühn, Hartmut; Schmieder, Frank; Röhl, Ursula (2008): Paleonutrient and productivity records from the subarctic North Pacific for Pleistocene glacial terminations I to V. Paleoceanography, 23(4), PA4212, https://doi.org/10.1029/2007PA001513Test; Goldstein, S J; Lea, David W; Chakraborty, Supriyo; Kashgarian, Michaele; Murrell, Michael T (2001): Uranium-series and radiocarbon geochronology of deep-sea corals: implications for Southern Ocean ventilation rates and the oceanic carbon cycle. Earth and Planetary Science Letters, 193(1-2), 167-182, https://doi.org/10.1016/S0012-821XTest(01)00494-0; Gorbarenko, Sergey A; Tsoy, Ira B; Astakhov, Anatolii S; Artemova, Antonina V; Gvozdeva, I G; Annin, V K (2007): Paleoenvironmental changes in the northern shelf of the Sea of Okhotsk during the Holocene. Stratigraphy and Geological Correlation, 15(6), 656-671, https://doi.org/10.1134/S0869593807060044Test; Gottschalk, Julia; Michel, Elisabeth; Thöle, Lena M; Studer, Anja S; Hasenfratz, Adam P; Schmid, Nicole; Butzin, Martin; Mazaud, Alain; Martínez-García, Alfredo; Szidat, Sönke; Jaccard, Samuel L (2020): Glacial heterogeneity in Southern Ocean carbon storage abated by fast South Indian deglacial carbon release. Nature Communications, 11(1), 6192, https://doi.org/10.1038/s41467-020-20034-1Test; Gottschalk, Julia; Skinner, Luke C; Lippold, Jörg; Vogel, Hendrik; Frank, Norbert; Jaccard, Samuel L; Waelbroeck, Claire (2016): Biological and physical controls in the Southern Ocean on past millennial-scale atmospheric CO2 changes. Nature Communications, 7(11539), https://doi.org/10.1038/ncomms11539Test; Hines, Sophia K V; Eiler, J M; Southon, John R; Adkins, Jess F (2019): Dynamic Intermediate Waters Across the Late Glacial Revealed by Paired Radiocarbon and Clumped Isotope Temperature Records. Paleoceanography and Paleoclimatology, 34(7), 1074-1091, https://doi.org/10.1029/2019PA003568Test; Hines, Sophia K V; Southon, John R; Adkins, Jess F (2015): A high-resolution record of Southern Ocean intermediate water radiocarbon over the past 30,000 years. Earth and Planetary Science Letters, 432, 46-58, https://doi.org/10.1016/j.epsl.2015.09.038Test; Ikehara, Ken; Danhara, Tohru; Yamashita, Tohru; Tanahashi, Manabu; Morita, S; Ohkushi, Ken´ichi (2011): Paleoceanographic control on a large marine reservoir effect offshore of Tokai, south of Japan, NW Pacific, during the last glacial maximum-deglaciation. Quaternary International, 246(1-2), 213-221, https://doi.org/10.1016/j.quaint.2011.07.005Test; Ikehara, Ken; Ohkushi, Ken´ichi; Shibahara, Akihiko; Hoshiba, Mayumi (2006): Change of bottom water conditions at intermediate depths of the Oyashio region, NW Pacific over the past 20,000 yrs. Global and Planetary Change, 53(1-2), 78-91, https://doi.org/10.1016/j.gloplacha.2006.01.011Test; Keigwin, Lloyd D (2002): Late Pleistocene-Holocene paleoceanography and ventilation of the Gulf of California. Journal of Oceanography, 58(2), 421-432, https://doi.org/10.1023/A:1015830313175Test; Keigwin, Lloyd D (2004): Radiocarbon and stable isotope constraints on Last Glacial Maximum and Younger Dryas ventilation in the western North Atlantic. Paleoceanography, 19(4), PA4012, https://doi.org/10.1029/2004PA001029Test; Keigwin, Lloyd D; Boyle, Edward A (2008): Did North Atlantic overturning halt 17,000 years ago? Paleoceanography, 23(1), PA1101, https://doi.org/10.1029/2007PA001500Test; Keigwin, Lloyd D; Lehman, Scott J (2015): Radiocarbon evidence for a possible abyssal front near 3.1 km in the glacial equatorial Pacific Ocean. Earth and Planetary Science Letters, 425, 93-104, https://doi.org/10.1016/j.epsl.2015.05.025Test; Keigwin, Lloyd D; Schlegel, M A (2002): Ocean ventilation and sedimentation since the glacial maximum at 3 km in the western North Atlantic. Geochemistry, Geophysics, Geosystems, 3(6), 1034, https://doi.org/10.1029/2001GC000283Test; Keigwin, Lloyd D; Swift, Stephen A (2017): Carbon isotope evidence for a northern source of deep water in the glacial western North Atlantic. Proceedings of the National Academy of Sciences, 114(11), 2831-2835, https://doi.org/10.1073/pnas.1614693114Test; Kennett, James P; Ingram, B Lynn (1995): A 20,000-year record of ocean circulation and climate change from the Santa Barbara basin. Nature, 377(6549), 510-514, https://doi.org/10.1038/377510a0Test; Li, Tao; Robinson, Laura F; Chen, Tianyu; Wang, Xingchen; Burke, Andrea; Rae, James W B; Pegrum-Haram, Albertine; Knowles, Oliver H; Li, Gaojun; Chen, Jun; Ng, Hong Chin; Prokopenko, Maria G; Rowland, George Henry; Samperiz, Ana; Stewart, Joseph A; Southon, John; Spooner, Peter T (2020): Rapid shifts in circulation and biogeochemistry of the Southern Ocean during deglacial carbon cycle events. Science Advances, 6(42), eabb3807, https://doi.org/10.1126/sciadv.abb3807Test; Lindsay, Colin M; Lehman, Scott J; Marchitto, Thomas M; Carriquiry, José D; Ortiz, Joseph D (2016): New constraints on deglacial marine radiocarbon anomalies from a depth transect near Baja California. Paleoceanography, 31(8), 1103-1116, https://doi.org/10.1002/2015PA002878Test; Lund, David C; Mix, Alan C; Southon, John (2011): Increased ventilation age of the deep northeast Pacific Ocean during the last deglaciation. Nature Geoscience, 4(11), 771-774, https://doi.org/10.1038/ngeo1272Test; Lund, David C; Tessin, Allyson; Hoffman, JL; Schmittner, Andreas (2015): Southwest Atlantic water mass evolution during the last deglaciation. Paleoceanography, 30(5), 477-494, https://doi.org/10.1002/2014PA002657Test; Ma, Ruifang; Sépulcre, Sophie; Licari, Laetitia; Bassinot, Franck; Liu, Zhifei; Tisnérat-Laborde, Nadine; Kallel, Nejib; Yu, Zhaojie; Colin, Christophe (2019): Changes in Intermediate Circulation in the Bay of Bengal Since the Last Glacial Maximum as Inferred From Benthic Foraminifera Assemblages and Geochemical Proxies. Geochemistry, Geophysics, Geosystems, 20(3), 1592-1608, https://doi.org/10.1029/2018GC008179Test; Magana, Alexandra L; Southon, John R; Kennett, James P; Roark, E Brendan; Sarnthein, Michael; Stott, Lowell D (2010): Resolving the cause of large differences between deglacial benthic foraminifera radiocarbon measurements in Santa Barbara Basin. Paleoceanography, 115(4), PA4102, https://doi.org/10.1029/2010PA002011Test; Mangini, Augusto; Godoy, Jose M; Godoy, M L; Kowsmonn, R; Santos, G M; Ruckelshausen, Mario; Schröder-Ritzrau, Andrea; Wacker, L (2010): Deep sea corals off Brazil verify a poorly ventilated Southern Pacific Ocean during H2, H1 and the Younger Dryas. Earth and Planetary Science Letters, 293(3-4), 269-276, https://doi.org/10.1016/j.epsl.2010.02.041Test; Marchitto, Thomas M; Lehman, Scott J; Ortiz, Joseph D; Flückiger, Jacqueline; van Geen, Alexander (2007): Marine Radiocarbon Evidence for the Mechanism of Deglacial Atmospheric CO2 Rise. Science, 316(5830), 1456-1459, https://doi.org/10.1126/science.1138679Test; Martínez Fontaine, Consuelo; De Pol-Holz, Ricardo; Michel, Elisabeth; Siani, Giuseppe; Reyes-Macaya, Dharma; Martínez Méndez, Gema; DeVries, Tim; Stott, Lowell D; Southon, John; Mohtadi, Mahyar; Hebbeln, Dierk (2019): Ventilation of the deep ocean carbon reservoir during the last deglaciation: results from the southeast pacific. Paleoceanography and Paleoclimatology, 34(12), 2080-2097, https://doi.org/10.1029/2019PA003613Test; Max, Lars; Lembke-Jene, Lester; Riethdorf, Jan-Rainer; Tiedemann, Ralf; Nürnberg, Dirk; Kühn, Hartmut; Mackensen, Andreas (2014): Pulses of enhanced North Pacific Intermediate Water ventilation from the Okhotsk Sea and Bering Sea during the last deglaciation. Climate of the Past, 10(2), 419-605, https://doi.org/10.5194/cp-10-591-2014Test; McKay, Jennifer L; Pedersen, Thomas F; Southon, John (2005): Intensification of the oxygen minimum zone in the northeast Pacific off Vancouver Island during the last deglaciation: Ventilation and/or export production? Paleoceanography, 20(4), PA4002, https://doi.org/10.1029/2003PA000979Test; Minoshima, Kayo; Kawahata, Hodaka; Irino, Tomohisa; Ikehara, Ken; Aoki, Kaori; Uchida, Masao; Yoneda, Minoru; Shibata, Yasuyuki (2007): Deep water ventilation in the northwestern North Pacific during the last deglaciation and the early Holocene (15-5cal.kyrB.P.) based on AMS 14C dating. Nuclear Instruments and Methods in Physics Research. Section B: Beam Interactions with Materials and Atoms, 259(1), 448-452, https://doi.org/10.1016/j.nimb.2007.01.225Test; Missiaen, Lise; Wacker, L; Lougheed, Bryan C; Skinner, Luke C; Hajdas, I; Nouet, Julius; Pichat, Sylvain; Waelbroeck, Claire (2020): Radiocarbon dating of small sized foraminifer samples: insights into marine sediment mixing. Radiocarbon, 1-21, https://doi.org/10.1017/RDC.2020.13Test; Mix, Alan C; Lund, David C; Pisias, Nicklas G; Bodén, Per; Bornmalm, Lennart; Pike, Jennifer (1999): Rapid climate oscillations in the northeast Pacific during the last glaciation reflect northern and southern hemispheric sources. In: Clark, Peter U; Webb, Robert S; Keigwin, Lloyd D (eds.), Mechanisms of Millennial-scale Global Climate Change, American Geophysical Union Monography, 112, 127-148, https://doi.org/10.1029/GM112p0127Test; Okazaki, Yusuke; Kimoto, Katsunori; Asahi, Hirofumi; Sato, Miyako; Nakamura, Yuriko; Harada, Naomi (2014): Glacial to deglacial ventilation and productivity changes in the southern Okhotsk Sea. Palaeogeography, Palaeoclimatology, Palaeoecology, 395, 53-66, https://doi.org/10.1016/j.palaeo.2013.12.013Test; Okazaki, Yusuke; Sagawa, Takuya; Asahi, Hirofumi; Horikawa, Keiji; Onodera, Jonaotaro (2012): Ventilation changes in the western North Pacific since the last glacial period. Climate of the Past, 8(1), 17-24, https://doi.org/10.5194/cp-8-17-2012Test; Okazaki, Yusuke; Timmermann, Axel; Menviel, Laurie; Harada, Naomi; Abe-Ouchi, Ayako; Chikamoto, Megumi; Mouchet, A; Asahi, H (2010): Deepwater Formation in the North Pacific During the Last Glacial Termination. Science, 329(5988), 200-204, https://doi.org/10.1126/science.1190612Test; Praetorius, Summer K; Condron, Alan; Mix, Alan C; Walczak, Maureen H; McKay, Jennifer L; Du, Jianghui (accepted): The role of Northeast Pacific meltwater events in deglacial climate change. Science Advances, 6(9), https://doi.org/10.1126/sciadv.aay2915Test; Rae, James W B; Sarnthein, Michael; Foster, Gavin L; Ridgwell, Andy; Grootes, Pieter Meiert; Elliott, Tim (2014): Deep water formation in the North Pacific and deglacial CO2 rise. Paleoceanography, 29(6), 645-667, https://doi.org/10.1002/2013PA002570Test; Rafter, Patrick A; Herguera, Juan-Carlos; Southon, John R (2018): Extreme lowering of deglacial seawater radiocarbon recorded by both epifaunal and infaunal benthic foraminifera in a wood-dated sediment core. Climate of the Past, 14(12), 1977-1989, https://doi.org/10.5194/cp-14-1977-2018Test; Robinson, Laura F; Adkins, Jess F; Keigwin, Lloyd D; Southon, John; Fernández, Diego; Wang, S-L; Scheirer, Daniel S (2005): Radiocarbon Variability in the Western North Atlantic During the Last Deglaciation. Science, 310(5753), 1469-1473, https://doi.org/10.1126/science.1114832Test; Robinson, Laura F; van de Flierdt, Tina (2009): Southern Ocean evidence for reduced export of North Atlantic Deep Water during Heinrich event 1. Geology, 37(3), 195-198, https://doi.org/10.1130/G25363A.1Test; Ronge, Thomas A; Prange, Matthias; Mollenhauer, Gesine; Ellinghausen, Maret; Kuhn, Gerhard; Tiedemann, Ralph (accepted): Radiocarbon Evidence for the Contribution of the Southern Indian Ocean to the Evolution of Atmospheric CO2 over the last 32,000 years. Paleoceanography and Paleoclimatology, https://doi.org/10.1029/2019PA003733Test; Ronge, Thomas A; Tiedemann, Ralf; Lamy, Frank; Köhler, Peter; Alloway, Brent V; De Pol-Holz, Ricardo; Pahnke, Katharina; Southon, John; Wacker, Lukas (2016): Radiocarbon constraints on the extent and evolution of the South Pacific carbon pool. Nature Communications, 7, 12 pp, https://doi.org/10.1038/ncomms11487Test; Rose, Kathryn A; Sikes, Elisabeth L; Guilderson, Thomas P; Shane, Philip A R; Hill, Tessa M; Zahn, Rainer; Spero, Howard J (2010): Upper-ocean-to-atmosphere radiocarbon offsets imply fast deglacial carbon dioxide release. Nature, 466(7310), 1093-1097, https://doi.org/10.1038/nature09288Test; Sarnthein, Michael; Balmer, Sven; Grootes, Pieter Meiert; Mudelsee, Manfred (2015): Planktic and benthic 14C reservoir ages for three ocean basins, calibrated by a suite of 14C plateaus in the glacial-to-deglacial Suigetsu atmospheric 14C record. Radiocarbon, 57(1), 129-151, https://doi.org/10.2458/azu_rc.57.17916Test; Sarnthein, Michael; Grootes, Pieter Meiert; Holbourn, Ann E; Kuhnt, Wolfgang; Kühn, Hartmut (2011): Tropical warming in the Timor Sea led deglacial Antarctic warming and atmospheric CO2 rise by more than 500 yr. Earth and Planetary Science Letters, 302, 337-348, https://doi.org/10.1016/j.epsl.2010.12.021Test; Sarnthein, Michael; Grootes, Pieter Meiert; Kennett, James P; Nadeau, Marie-Josée (2007): 14C reservoir ages show deglacial changes in ocean currents and carbon cycle. In: Andreas Schmittner, John Chiang & Sidney Hemmings (eds.) Ocean Circulation: Mechanisms and Impacts. Geophysical Monograph Series, American Geophysical Union, 392 pages, ISBN: 978-0-87590-438-2, 173, 175-196, https://doi.org/10.1029/173GM13Test; Sarnthein, Michael; Kiefer, Thorsten; Grootes, Pieter Meiert; Elderfield, Henry; Erlenkeuser, Helmut (2006): Warmings in the far northwestern Pacific promoted pre-Clovis immigration to America during Heinrich event 1. Geology, 34(3), 141-144, https://doi.org/10.1130/G22200.1Test; Schröder-Ritzrau, Andrea; Mangini, Augusto; Lomitschka, Michael (2003): Deep-sea corals evidence periodic reduced ventilation in the North Atlantic during the LGM/Holocene transition. Earth and Planetary Science Letters, 216(3), 399-410, https://doi.org/10.1016/S0012-821XTest(03)00511-9; Shackleton, Nicholas J; Duplessy, Jean-Claude; Arnold, Maurice; Maurice, Pierre; Hall, Michael A; Cartlidge, Julie E (1988): Radiocarbon age of last glacial Pacific deep water. Nature, 335, 708-711, https://doi.org/10.1038/335708a0Test; Siani, Giuseppe; Michel, Elisabeth; De Pol-Holz, Ricardo; DeVries, Tim; Lamy, Frank; Carel, Mélanie; Isguder, Gulay; Dewilde, Fabien; Lourantou, Anna (2013): Carbon isotope records reveal precise timing of enhanced Southern Ocean upwelling during the last deglaciation. Nature Communications, 4, 1-9, https://doi.org/10.1038/ncomms3758Test; Sikes, Elisabeth L; Guilderson, Thomas P (2016): Southwest Pacific Ocean surface reservoir ages since the last glaciation: Circulation insights from multiple‐core studies. Paleoceanography, 31(2), 298-310, https://doi.org/10.1002/2015PA002855Test; Sikes, Elisabeth L; Samson, Catherine R; Guilderson, Thomas P; Howard, William R (2000): Old radiocarbon ages in the southwest Pacific Ocean during the last glacial period and deglaciation. Nature, 405(6786), 555-559, https://doi.org/10.1038/35014581Test; Skinner, Luke C; Freeman, Emma; Hodell, David A; Waelbroeck, Claire; Vázquez Riveiros, Natalia; Scrivner, Adam E (2020): Atlantic Ocean ventilation changes across the last deglaciation and their carbon cycle implications. Paleoceanography and Paleoclimatology, https://doi.org/10.1029/2020PA004074Test; Skinner, Luke C; Primeau, Francois; Freeman, Emma; de la Fuente, Maria; Goodwin, Philip; Gottschalk, Julia; Huang, Enqing; McCave, I Nick; Noble, Taryn L; Scrivner, Adam E (2017): Radiocarbon constraints on the glacial ocean circulation and its impact on atmospheric CO2. Nature Communications, 8(1), https://doi.org/10.1038/ncomms16010Test; Skinner, Luke C; Shackleton, Nicholas J (2004): Rapid transient changes in northeast Atlantic deep water ventilation age across Termination I. Paleoceanography, 19(2), PA2005, https://doi.org/10.1029/2003PA000983Test; Skinner, Luke C; Waelbroeck, Claire; Scrivner, Adam E; Fallon, Stewart J (2014): Radiocarbon evidence for alternating northern and southern sources of ventilation of the deep Atlantic carbon pool during the last deglaciation. Proceedings of the National Academy of Sciences, 111(15), 5480-5484, https://doi.org/10.1073/pnas.1400668111Test; Sortor, Rachel N; Lund, David C (2011): No evidence for a deglacial intermediate water D14C anomaly in the SW Atlantic. Earth and Planetary Science Letters, 310(1-2), 65-72, https://doi.org/10.1016/j.epsl.2011.07.017Test; Stott, Lowell D; Harazin, Kathleen M; Quintana Krupinski, Nadine B (2019): Hydrothermal carbon release to the ocean and atmosphere from the eastern equatorial Pacific during the last glacial termination. Environmental Research Letters, 14(2), 025007, https://doi.org/10.1088/1748-9326/aafe28Test; Stott, Lowell D; Southon, John; Timmermann, Axel; Koutavas, Athanasios (2009): Radiocarbon age anomaly at intermediate water depth in the Pacific Ocean during the last deglaciation. Paleoceanography, 24(2), PA2223, https://doi.org/10.1029/2008PA001690Test; Thiagarajan, Nivedita; Subhas, Adam V; Southon, John R; Eiler, J M; Adkins, Jess F (2014): Abrupt pre-Bølling–Allerød warming and circulation changes in the deep ocean. Nature, 511(7507), 75-78, https://doi.org/10.1038/nature13472Test; Thornalley, David J R; Barker, Stephen; Broecker, Wallace S; Elderfield, Henry; McCave, I Nick (2011): The Deglacial Evolution of North Atlantic Deep Convection. Science, 331(6014), 202-205, https://doi.org/10.1126/science.1196812Test; Thornalley, David J R; Bauch, Henning A; Gebbie, Geoffrey; Guo, W; Ziegler, Maren; Bernasconi, M; Barker, S; Skinner, Luke C; Yu, J (2015): A warm and poorly ventilated deep Arctic Mediterranean during the last glacial period. Science, 349(6249), 706-710, https://doi.org/10.1126/science.aaa9554Test; Thunell, Robert C; Kepple, Alisa B (2004): Glacial-Holocene δ15N record from the Gulf of Tehuantepec, Mexico: Implications for denitrification in the eastern equatorial Pacific and changes in atmospheric N2O. Global Biogeochemical Cycles, 18(1), n/a-n/a, https://doi.org/10.1029/2002GB002028Test; Umling, Natalie E; Thunell, Robert C (2017): Synchronous deglacial thermocline and deep-water ventilation in the eastern equatorial Pacific. Nature Communications, 8(1), https://doi.org/10.1038/ncomms14203Test; van Geen, Alexander; Fairbanks, Richard G; Dartnell, Peter; McGann, Mary L; Gardner, James V; Kashgarian, Michaele (1996): Ventilation changes in the northeast Pacific during the last deglaciation. Paleoceanography, 11(5), 519-528, https://doi.org/10.1029/96PA01860Test; van Geen, Alexander; Zheng, Y; Bernhard, Joan M; Cannariato, Kevin G; Carriquiry, José D; Dean, Walter E; Eakins, B W; Ortiz, Joseph D; Pike, Jennifer (2003): On the preservation of laminated sediments along the western margin of North America. Paleoceanography, 18(4), 1098, https://doi.org/10.1029/2003PA000911Test; Voelker, Antje H L; Sarnthein, Michael; Grootes, Pieter Meiert; Erlenkeuser, Helmut; Laj, Carlo E; Mazaud, Alain; Nadeau, Marie-Josée; Schleicher, M (1998): Correlation of marine 14C-ages from the Nordic Seas with the GISP2 isotope record: Implications for radiocarbon calibration beyond 25ka BP. Radiocarbon, 40(1), 517-534, https://doi.org/10.1017/S0033822200030368Test; Walczak, Maureen H; Mix, Alan C; Cowan, Ellen A; Fallon, Stewart J; Fifield, L Keith; Alder, Jay R; Du, Jianghui; Haley, Brian A; Hobern, Tim; Padman, June; Praetorius, Summer K; Schmittner, Andreas; Stoner, Joseph S; Zellers, Sarah D (2020): Phasing of millennial-scale climate variability in the Pacific and Atlantic Oceans. Science, 370(6517), 716-720, https://doi.org/10.1126/science.aba7096Test; Wan, Sui; Jian, Zhimin (2014): Deep water exchanges between the South China Sea and the Pacific since the last glacial period. Paleoceanography, 29(12), 1162-1178, https://doi.org/10.1002/2013PA002578Test; Weldeab, Syee; Friedrich, Tobias; Timmermann, Axel; Schneider, Ralph R (2016): Strong middepth warming and weak radiocarbon imprints in the equatorial Atlantic during Heinrich 1 and Younger Dryas. Paleoceanography, 31(8), 1070-1082, https://doi.org/10.1002/2016PA002957Test; Zhao, Ning; Keigwin, Lloyd D (2018): An atmospheric chronology for the glacial-deglacial Eastern Equatorial Pacific. Nature Communications, 9(1), https://doi.org/10.1038/s41467-018-05574-xTest; Zhao, Ning; Marchal, Olivier; Keigwin, Lloyd D; Amrhein, Daniel; Gebbie, Geoffrey (2018): A Synthesis of Deglacial Deep-Sea Radiocarbon Records and Their (In)Consistency With Modern Ocean Ventilation. Paleoceanography and Paleoclimatology, 33(2), 128-151, https://doi.org/10.1002/2017PA003174Test; ReadMe - Marine fossil radiocarbon (14C) compilation up to 2021 (URI: https://download.pangaea.de/reference/116159/attachments/ReadMe.txtTest); https://doi.pangaea.de/10.1594/PANGAEA.967583Test; https://doi.org/10.1594/PANGAEA.967583Test

    الإتاحة: https://doi.org/10.1594/PANGAEA.96758310.1126/sciadv.abq543410.1126/science.280.5364.72510.1016/0168-583XTest(84)90539-110.1016/j.quascirev.2021.10681810.1016/j.gca.2018.03.00110.1038/NGEO92110.1029/2002PA00076810.1029/2018PA00338610.1029/PA003i006p0065910.1126/science.110229310.1029/2010GL04396910.1016/j.epsl.2008.07.03510.1017/S003382220000754210.1029/GB004i001p0010310.1016/j.epsl.2010.08.02510.1126/science.120816310.1016/j.quascirev.2006.10.00110.1038/s41561-020-0638-610.1126/science.aac615910.1016/j.quascirev.2011.04.01510.1002/2014PA00264910.1029/2020PA00417210.1016/j.epsl.2014.04.00410.1038/ncomms842010.1038/ngeo74510.1017/S003382220001208X10.1029/2005PA00119210.1016/j.epsl.2019.04.02710.1002/2016PA00305310.1016/j.epsl.2015.05.03210.1038/ncomms1199810.1038/nature0622710.1029/2007PA00151310.1016/S0012-821X(01)00494-010.1134/S086959380706004410.1038/s41467-020-20034-110.1038/ncomms1153910.1029/2019PA00356810.1016/j.epsl.2015.09.03810.1016/j.quaint.2011.07.00510.1016/j.gloplacha.2006.01.01110.1023/A:101583031317510.1029/2004PA00102910.1016/j.epsl.2015.05.02510.1029/2001GC00028310.1073/pnas.161469311410.1038/377510a010.1126/sciadv.abb380710.1002/2015PA00287810.1038/ngeo127210.1002/2014PA00265710.1029/2018GC00817910.1029/2010PA00201110.1016/j.epsl.2010.02.04110.1126/science.113867910.1029/2019PA00361310.5194/cp-10-591-201410.1016/j.nimb.2007.01.22510.1017/RDC.2020.1310.1029/GM112p012710.1016/j.palaeo.2013.12.01310.5194/cp-8-17-201210.1126/science.119061210.1126/sciadv.aay291510.1002/2013PA00257010.5194/cp-14-1977-201810.1126/science.111483210.1130/G25363A.110.1029/2019PA00373310.1038/ncomms1148710.1038/nature0928810.2458/azu_rc.57.1791610.1016/j.epsl.2010.12.02110.1130/G22200.110.1016/S0012-821X(03)00511-910.1038/335708a010.1038/ncomms375810.1002/2015PA00285510.1038/3501458110.1029/2020PA00407410.1038/ncomms1601010.1029/2003PA00098310.1073/pnas.140066811110.1016/j.epsl.2011.07.01710.1088/1748-9326/aafe2810.1029/2008PA00169010.1038/nature1347210.1126/science.119681210.1126/science.aaa955410.1029/2002GB00202810.1038/ncomms1420310.1029/96PA0186010.1029/2003PA00091110.1017/S003382220003036810.1126/science.aba709610.1002/2013PA00257810.1002/2016PA00295710.1038/s41467-018-05574-x10.1002/2017PA003174

  2. 2

    وصف الملف: text/tab-separated-values, 6 data points

    العلاقة: https://doi.org/10.1594/PANGAEA.949225Test; Lee, An-Sheng; Chao, Weng-si; Liou, Sofia Ya Hsuan; Tiedemann, Ralf; Zolitschka, Bernd; Lembke-Jene, Lester (2022): Quantifying calcium carbonate and organic carbon content in marine sediments from XRF-scanning spectra with a machine learning approach. Scientific Reports, 12(1), 20860, https://doi.org/10.1038/s41598-022-25377-xTest; https://doi.pangaea.de/10.1594/PANGAEA.949220Test; https://doi.org/10.1594/PANGAEA.949220Test

  3. 3

    وصف الملف: text/tab-separated-values, 299140 data points

    العلاقة: https://doi.org/10.1594/PANGAEA.949225Test; Lee, An-Sheng; Chao, Weng-si; Liou, Sofia Ya Hsuan; Tiedemann, Ralf; Zolitschka, Bernd; Lembke-Jene, Lester (2022): Quantifying calcium carbonate and organic carbon content in marine sediments from XRF-scanning spectra with a machine learning approach. Scientific Reports, 12(1), 20860, https://doi.org/10.1038/s41598-022-25377-xTest; https://doi.pangaea.de/10.1594/PANGAEA.949195Test; https://doi.org/10.1594/PANGAEA.949195Test

  4. 4

    وصف الملف: text/tab-separated-values, 10720 data points

    العلاقة: https://doi.org/10.1594/PANGAEA.949225Test; Lee, An-Sheng; Chao, Weng-si; Liou, Sofia Ya Hsuan; Tiedemann, Ralf; Zolitschka, Bernd; Lembke-Jene, Lester (2022): Quantifying calcium carbonate and organic carbon content in marine sediments from XRF-scanning spectra with a machine learning approach. Scientific Reports, 12(1), 20860, https://doi.org/10.1038/s41598-022-25377-xTest; https://doi.pangaea.de/10.1594/PANGAEA.949174Test; https://doi.org/10.1594/PANGAEA.949174Test

  5. 5
  6. 6
  7. 7

    وصف الملف: text/tab-separated-values, 420 data points

  8. 8

    الوقت: 184-1146, 26-255

    وصف الملف: text/tab-separated-values, 3634 data points

    العلاقة: https://doi.org/10.1594/PANGAEA.923059Test; Hernández-Almeida, Iván; Boltovskoy, Demetrio; Kruglikova, Svetlana B; Cortese, Giuseppe (2020): A new radiolarian transfer function for the Pacific Ocean and application to fossil records: Assessing potential and limitations for the last glacial-interglacial cycle. Global and Planetary Change, 190, 103186, https://doi.org/10.1016/j.gloplacha.2020.103186Test; Chang, Fengming; Li, Tiegang; Zhuang, Lihua; Yan, Jun (2008): A Holocene paleotemperature record based on radiolaria from the northern Okinawa Trough (East China Sea). Quaternary International, 183(1), 115-122, https://doi.org/10.1016/j.quaint.2006.12.007Test; Itaki, Takuya; Kim, Sunghan; Rella, Stephan F; Uchida, Masao; Tada, Ryuji; Khim, Boo-Keun (2012): Millennial-scale variations of late Pleistocene radiolarian assemblages in the Bering Sea related to environments in shallow and deep waters. Deep Sea Research Part II: Topical Studies in Oceanography, 61-64, 127-144, https://doi.org/10.1016/j.dsr2.2011.03.002Test; Lüer, Vanessa; Cortese, Giuseppe; Neil, Helen L; Hollis, Christopher J; Willems, Helmut (2009): Radiolarian-based sea surface temperatures and paleoceanographic changes during the Late Pleistocene-Holocene in the subantarctic southwest Pacific. Marine Micropaleontology, 70(3-4), 151-165, https://doi.org/10.1016/j.marmicro.2008.12.002Test; Matsuzaki, Kenji M; Nishi, Hiroshi; Suzuki, Noritoshi; Cortese, Giuseppe; Eynaud, Frédérique; Takashima, Reishi; Kawate, Yumiko; Sakai, Toyusaburo (2014): Paleoceanographic history of the Northwest Pacific Ocean over the past 740kyr, discerned from radiolarian fauna. Palaeogeography, Palaeoclimatology, Palaeoecology, 396, 26-40, https://doi.org/10.1016/j.palaeo.2013.12.036Test; Matsuzaki, Kenji M; Suzuki, Noritoshi; Nishi, Hiroshi; Hayashi, Hiroki; Gyawali, Babu Ram; Takashima, Reishi; Ikehara, Minoru (2015): Early to Middle Pleistocene paleoceanographic history of southern Japan based on radiolarian data from IODP Exp. 314/315 Sites C0001 and C0002. Marine Micropaleontology, 118, 17-33, https://doi.org/10.1016/j.marmicro.2015.05.001Test; Matul, Alexander G (2018): Distribution of the polycystine radiolarian species in the Quaternary sediment cores of the subarctic North Atlantic and Sea of Okhotsk. Data in Brief, 17, 438-441, https://doi.org/10.1016/j.dib.2018.01.041Test; Okazaki, Yusuke; Takahashi, Kozo; Onodera, Jonaotaro; Honda, Makio C (2005): Temporal and spatial flux changes of radiolarians in the northwestern Pacific Ocean during 1997–2000. Deep Sea Research Part II: Topical Studies in Oceanography, 52(16-18), 2240-2274, https://doi.org/10.1016/j.dsr2.2005.07.006Test; Pisias, Nicklas G; Mix, Alan C (1997): Spatial and temporal oceanographic variability of the eastern equatorial Pacific during the Late Pleistocene: Evidence from radiolaria microfossils. Paleoceanography, 12(3), 381-393, https://doi.org/10.1029/97PA00583Test; Prebble, Joseph G; Bostock, Helen C; Cortese, Giuseppe; Lorrey, A M; Hayward, Bruce William; Calvo, Eva; Northcote, Lisa C; Scott, George H; Neil, Helen L (2017): Evidence for a Holocene Climatic Optimum in the southwest Pacific: A multiproxy study. Paleoceanography, 32(8), 763-779, https://doi.org/10.1002/2016PA003065Test; Wang, Rujian; Abelmann, Andrea (2002): Radiolarian responses to paleoceanographic events of the southern South China Sea during the Pleistocene. Marine Micropaleontology, 46(1-2), 25-44, https://doi.org/10.1016/S0377-8398Test(02)00048-8; Wang, Rujian; Clemens, Steven C; Huang, Baoqi; Chen, Muhong (2003): Quaternary palaeoceanographic changes in the northern South China Sea (ODP Site 1146): radiolarian evidence. Journal of Quaternary Science, 18(8), 745-756, https://doi.org/10.1002/jqs.784Test; Wang, Rujian; Jian, Zhimin; Li, Baohua; Chen, Ronghua (1998): Paleoceanographic implications of Radiolaria in the southern Okinawa Trough over the last 20 000 years. Science in China Series D: Earth Science, 41(1), 21-27, https://doi.org/10.1007/BF02932416Test; https://doi.pangaea.de/10.1594/PANGAEA.923053Test; https://doi.org/10.1594/PANGAEA.923053Test

  9. 9

    الوقت: 57-06, 57-11

    وصف الملف: text/tab-separated-values, 130 data points

    العلاقة: https://doi.org/10.1594/PANGAEA.923111Test; Hernández-Almeida, Iván; Bjorklund, Kjell R; Diz, Paula; Kruglikova, Svetlana B; Ikenoue, Takahito; Matul, Alexander G; Saavedra-Pellitero, Mariem; Swanberg, Neil R (2020): Life on the ice-edge: Paleoenvironmental significance of the radiolarian species Amphimelissa setosa in the northern hemisphere. Quaternary Science Reviews, 248, 106565, https://doi.org/10.1016/j.quascirev.2020.106565Test; Bjorklund, Kjell R; Hatakeda, K; Kruglikova, Svetlana B; Matul, Alexander G (2015): Amphimelissa setosa (Cleve)(Polycystina, Nassellaria)–a stratigraphic and paleoecological marker of migrating polar environments in the northern hemisphere during the quaternary. Stratigraphy, 12, 23-37; Bjorklund, Kjell R; Swanberg, Neil R (1987): The distribution of two morphotypes of the radiolarian Amphimelissa setosa Cleve (Nassellarida): A result of environmental variability? Sarsia, 72(3-4), 245-254, https://doi.org/10.1080/00364827.1987.10419721Test; Matul, Alexander G; Abelmann, Andrea (2005): Pleistocene and Holocene distribution of the radiolarian Amphimelissa setosa Cleve in the North Pacific and North Atlantic: Evidence for water mass movement. Deep Sea Research Part II: Topical Studies in Oceanography, 52(16-18), 2351-2364, https://doi.org/10.1016/j.dsr2.2005.07.008Test; https://doi.pangaea.de/10.1594/PANGAEA.923064Test; https://doi.org/10.1594/PANGAEA.923064Test

  10. 10

    وصف الملف: text/tab-separated-values, 4327 data points

    العلاقة: https://doi.org/10.1594/PANGAEA.923111Test; Hernández-Almeida, Iván; Bjorklund, Kjell R; Diz, Paula; Kruglikova, Svetlana B; Ikenoue, Takahito; Matul, Alexander G; Saavedra-Pellitero, Mariem; Swanberg, Neil R (2020): Life on the ice-edge: Paleoenvironmental significance of the radiolarian species Amphimelissa setosa in the northern hemisphere. Quaternary Science Reviews, 248, 106565, https://doi.org/10.1016/j.quascirev.2020.106565Test; Bjorklund, Kjell R; Hatakeda, K; Kruglikova, Svetlana B; Matul, Alexander G (2015): Amphimelissa setosa (Cleve)(Polycystina, Nassellaria)–a stratigraphic and paleoecological marker of migrating polar environments in the northern hemisphere during the quaternary. Stratigraphy, 12, 23-37; Bjorklund, Kjell R; Kruglikova, Svetlana B; Hammer, Øyvind (accepted): The radiolarian fauna during the Younger Dryas–Holocene transition in Andfjorden, northern Norway. Polar Research, 38(0), https://doi.org/10.33265/polar.v38.3444Test; Ikenoue, Takahito; Okazaki, Yusuke; Takahashi, Kozo; Sakamoto, Tatsuhiko (2016): Bering Sea radiolarian biostratigraphy and paleoceanography at IODP Site U1341 during the last four million years. Deep Sea Research Part II: Topical Studies in Oceanography, 125-126, 38-55, https://doi.org/10.1016/j.dsr2.2015.03.004Test; Matsuzaki, Kenji M; Itaki, Takuya; Tada, Ryuji (accepted): Paleoceanographic changes in the Northern East China Sea during the last 400 kyr as inferred from radiolarian assemblages (IODP Site U1429). Progress in Earth and Planetary Science, 6(1), https://doi.org/10.1186/s40645-019-0256-3Test; Matsuzaki, Kenji M; Suzuki, Noritoshi (2018): Quaternary radiolarian biostratigraphy in the subarctic northeastern Pacific (IODP Expedition 341 Site U1417) and synchroneity of bioevents across the North Pacific. Journal of Micropalaeontology, 37(1), 1-10, https://doi.org/10.5194/jm-37-1-2018Test; Matul, Alexander G (1994): On the Late Quaternary paleoceanology of the North-Atlantic by the data of the radiolarian analysis. Trudove Na Instituta Po Okeanologiya, 34, 607-613; Matul, Alexander G; Abelmann, Andrea (2005): Pleistocene and Holocene distribution of the radiolarian Amphimelissa setosa Cleve in the North Pacific and North Atlantic: Evidence for water mass movement. Deep Sea Research Part II: Topical Studies in Oceanography, 52(16-18), 2351-2364, https://doi.org/10.1016/j.dsr2.2005.07.008Test; Matul, Alexander G; Abelmann, Andrea; Nürnberg, Dirk; Tiedemann, Ralf (2009): Stratigraphy and major paleoenvironmental changes in the Sea of Okhotsk during the last million years inferred from radiolarian data. Oceanology, 49(1), 92-100, https://doi.org/10.1134/S0001437009010111Test; Matul, Alexander G; Yushina, Irina G (1999): Radiolarians in North Atlantic sediments. In: Spielhagen, R F; Barash, M S; Ivanov, G I & Thiede, J (eds.), German-Russian Cooperation: Biogeographic and biostratigraphic investigations on selected sediment cores from the Eurasian continental margin and marginal seas to analyze the Late Quaternary climatic variability, Reports on Polar Research, Alfred Wegener Institute for Polar and Marine Research, Bremerhaven, 170 pp, 306, 35-45, hdl:10013/epic.10309.d001; Matul, Alexander G; Yushina, Irina G; Emelyanov, Emelyan M (2002): On the Late Quaternary paleohydrological parameters of the Labrador Sea based on radiolarians. Trudove Na Instituta Po Okeanologiya, 42, 247-251; Schröder-Ritzrau, Andrea (1995): Aktuopaläontologische Untersuchung zur Verbreitung und Vertikalfluss von Radiolarien sowie ihre räumliche und zeitliche Entwicklung im Europäischen Nordmeer. Berichte aus dem Sonderforschungsbereich 313, Christian-Albrechts-Universität, Kiel, 52, 99 pp, https://doi.org/10.2312/reports-sfb313.1995.52Test; https://doi.pangaea.de/10.1594/PANGAEA.923063Test; https://doi.org/10.1594/PANGAEA.923063Test