يعرض 1 - 10 نتائج من 557 نتيجة بحث عن '"Ajami, Nadim"', وقت الاستعلام: 1.74s تنقيح النتائج
  1. 1
  2. 2
    مؤتمر
  3. 3
  4. 4
    دورية أكاديمية
  5. 5
    دورية أكاديمية

    المساهمون: CIST-Centro de Investigación en Salud para el Trópico

    وصف الملف: 11 páginas; application/pdf

    العلاقة: E13; 11 páginas; 39; Journal of Tropical Ecology; Ajami, NJ, Wong, MC, Ross, MC, Lloyd, RE and Petrosino, JF (2018) Maximal viral information recovery from sequence data using VirMAP. Nature Communications 9, 3205. https://doi.org/10.1038/s41467-018-05658-8Test; Alencar, J, Ferreira de Mello, C, Brisola Marcondes, C, Érico Guimarães, A, Toma, HK, Queiroz Bastos, A, Olsson Freitas Silva, S and Lisboa Machado, S (2021) Natural infection and vertical transmission of Zika virus in sylvatic mosquitoes Aedes albopictus and Haemagogus leucocelaenus from Rio de Janeiro, Brazil. Tropical Medicine and Infectious Disease 6, 99. https://doi.org/10.3390/tropicalmed6020099Test; Althouse, BM, Guerbois, M, Cummings, DAT, Diop, OM, Faye, O, Faye, A, Diallo, D, Sadio, BD, Sow, A, Faye, O, Sall, AA, Diallo, M, Benefit, B, Simons, E, Watts, DM, Weaver, SC and Hanley, KA (2018) Role of monkeys in the sylvatic cycle of chikungunya virus in Senegal. Nature Communications 9, 1046. https://doi.org/10.1038/s41467-018-03332-7Test; Althouse, BM, Vasilakis, N, Sall, AA, Diallo, M, Weaver, SC and Hanley, KA (2016) Potential for Zika virus to establish a sylvatic transmission cycle in the Americas. PLOS Neglected Tropical Diseases 10, e0005055. https://doi.org/10.1371/journal.pntd.0005055Test; Andrade de, MS, Campos, FS, Campos, AAS, Abreu, FVS, Melo, FL, Sevá da, AP, Cardoso da, JC, Dos Santos, E, Born, LC, Silva da, CMD, Müller, NFD, Oliveira de, CH, Silva da, AJJ, Simonini-Teixeira, D, Bernal-Valle, S, Mares-Guia, MAMM, Albuquerque, GR, Romano, APM, Franco, AC, Ribeiro, BM, Roehe, PM and Almeida de, MAB (2021) Real-time genomic surveillance during the 2021 re-emergence of the Yellow fever virus in Rio Grande do Sul State, Brazil. Viruses 13, 1976. https://doi.org/10.3390/v13101976Test; Attar, N (2016) ZIKA virus circulates in new regions. Nature Reviews Microbiology 14, 62. https://doi.org/10.1038/nrmicro.2015.28Test CrossRefGoogle Scholar Bahassi, EM and Stambrook, PJ (2014) Next-generation sequencing technologies: breaking the sound barrier of human genetics. Mutagenesis 29, 303–310. https://doi.org/10.1093/mutage/geu031Test; Barrett, ADT and Monath, TP (2003) Epidemiology and ecology of yellow fever virus. Advances in Virus Research 61, 291–315. https://doi.org/10.1016/S0065-3527Test(03)61007-9; Batovska, J, Lynch, SE, Cogan, NOI, Brown, K, Darbro, JM, Kho, EA and Blacket, MJ (2018) Effective mosquito and arbovirus surveillance using metabarcoding. Molecular Ecology Resources 18, 32–40. https://doi.org/10.1111/1755-0998.12682Test; Batson, J, Dudas, G, Haas-Stapleton, E, Kistler, AL, Li, LM, Logan, P, Ratnasiri, K and Retallack, H (2021) Single mosquito metatranscriptomics identifies vectors, emerging pathogens and reservoirs in one assay. eLife 10. https://doi.org/10.7554/eLife.68353Test; Bhatt, S, Gething, PW, Brady, OJ, Messina, JP, Farlow, AW, Moyes, CL, Drake, JM, Brownstein, JS, Hoen, AG, Sankoh, O, Myers, MF, George, DB, Jaenisch, T, William Wint, GR, Simmons, CP, Scott, TW, Farrar, JJ and Hay, SI (2013) The global distribution and burden of dengue. Nature 496, 504–507. https://doi.org/10.1038/nature12060Test; Birnberg L, Temmam S, Aranda C, Correa-Fiz F, Talavera S, Bigot T, Eloit M and Busquets N (2020) Viromics on honey-baited FTA cards as a new tool for the detection of circulating viruses in mosquitoes. Viruses 12, 274. https:// doi.org/10.3390/v12030274; Bohl JA, Lay S, Chea S, Ahyong V, Parker DM, Gallagher S, Fintzi J, Man S, Ponce A, Sreng S, Kong D, Oliveira F, Kalantar K, Tan M, Fahsbender L, Sheu J, Neff N, Detweiler AM, Yek C, Ly S, Sath R, Huch C, Kry H, Leang R, Huy R, Lon C, Tato CM, DeRisi JL and Manning JE (2022) Discovering disease-causing pathogens in resource-scarce Southeast Asia using a global metagenomic pathogen monitoring system. Proceedings of the National Academy of Sciences 119, e2115285119. https://doi.org/10.1073/pnasTest. 2115285119; Bonizzoni M, Dunn WA, Campbell CL, Olson KE, Marinotti O and James AA (2012) Complex modulation of the Aedes aegypti transcriptome in response to dengue virus infection. PLoS ONE 7, e50512. https://doi.orgTest/ 10.1371/journal.pone.0050512; Botti-Lodovico Y, Nair P, Nosamiefan D, Stremlau M, Schaffner S, Agignoae SV., Aiyepada JO, Ajogbasile FV., Akpede GO, Alhasan F, Andersen KG, Asogun DA, Ayodeji OO, Badiane AS, Barnes K, Bauer MR, Bell-Kareem A, Benard ME, Benevolence EO, Blessing O, Boehm CK, Boisen ML, Bond NG, Branco LM, Butts MJ, Carter A, Colubri A, Deme AB, DeRuff KC, Diédhiou Y, Edamhande AP, Elhamoumi S, Engel EJ, Eromon P, Fallah M, Folarin OA, Fry B, Garry R, Gaye A, Gbakie M, Gevao SM, Gionet G, Gladden-Young A, Goba A, Gomis JF, Happi AN, Houghton M, Ihekwuazu C, Iruolagbe CO, Jackson J, Jalloh S, Johnson J, Kanneh L, Kayode A, Kemball M, Kingsley OC, Koroma V, Kotliar D, Mehta S, Metsky HC, Michael A, Mirhashemi ME, Modjarrad K, Momoh M, Myhrvold CA, Naregose OG, Ndiaye T, Ndiaye M, Ndiaye A, Normandin E, Odia I, Oguzie JU, Okogbenin SA, Okokhere PO, Okolie J, Olawoye IB, Olumade TJ, Oluniyi PE, Omoregie O, Park DJ, Paye MF, Petros B, Philippakis AA, Priscilla A, Ricks A, Rimoin A, Sandi JD, Schieffelin JS, Schreiber M, Seck MC, Siddiqui S, Siddle K, Smither AR, Sy M, Sy N, Tomkins-Tinch CH, Tomori O, Ugwu C, Uwanibe JN, Uyigue EA, Victoria DI, Vinzé A, Vodzak ME, Welch N, Wurie HI, Zoumarou D, Grant DS, Ndiaye D, MacInnis B, Sabeti PC and Happi C (2021) The origins and future of sentinel: an early-warning system for pandemic preemption and response. Viruses 13, 1605. https:// doi.org/10.3390/v13081605; Braack L, Gouveia De Almeida AP, Cornel AJ, Swanepoel R and De Jager C. (2018) Mosquito-borne arboviruses of African origin: review of key viruses and vectors. Parasites and Vectors 11, 1–29. https://doi.org/10.1186/s13071Test- 017-2559-9; Brinkmann A, Nitsche A and Kohl C (2016) Viral metagenomics on bloodfeeding arthropods as a tool for human disease surveillance. International Journal of Molecular Sciences 17, 1743. https://doi.org/10.3390Test/ ijms17101743; Campos SS, Fernandes RS, dos Santos AAC, de Miranda RM, Telleria EL, Ferreira-de-Brito A, de Castro MG, Failloux A-B, Bonaldo MC and Lourenço-de-Oliveira R (2017) Zika virus can be venereally transmitted between Aedes aegypti mosquitoes. Parasites & Vectors 10, 605. https:// doi.org/10.1186/s13071-017-2543-4; Cardoso da JC, de Almeida MAB, dos Santos E, da Fonseca DF, Sallum MAM, Noll CA, Monteiro HA d. O, Cruz ACR, Carvalho VL, Pinto EV., Castro FC, Neto JPN, Segura MNO and Vasconcelos PFC (2010) Yellow fever virus in Haemagogus leucocelaenus and Aedes serratus mosquitoes, Southern Brazil, 2008. Emerging Infectious Diseases 16, 1918–1924. https://doi.org/10.3201/eid1612.100608Test; Catenacci LS, Ferreira MS, Fernandes D, Padda H, Travassos-da-Rosa ES, Deem SL, Vasconcelos PFC and Martins LC (2021) Individual, household and environmental factors associated with arboviruses in rural human populations, Brazil. Zoonoses and Public Health 68, 203–212. https://doi.org/10Test. 1111/zph.12811; Charles J, Tangudu CS, Hurt SL, Tumescheit C, Firth AE, Garcia-Rejon JE, Machain-Williams C and Blitvich BJ (2018) Detection of novel and recognized RNA viruses in mosquitoes from the Yucatan Peninsula of Mexico using metagenomics and characterization of their in vitro host ranges. Journal of General Virology 99, 1729–1738. https://doi.org/10.1099/jgv.0Test. 001165; Coffey LL, Forrester N, Tsetsarkin K, Vasilakis N and Weaver SC (2013) Factors shaping the adaptive landscape for arboviruses: implications for the emergence of disease. Future Microbiology 8, 155–176. https://doi.orgTest/ 10.2217/fmb.12.139; Conceição-Neto N, Yinda KC, Van Ranst M and Matthijnssens J (2018) NetoVIR: modular approach to customize sample preparation procedures for viral Metagenomics. In Methods in Molecular Biology. Vol. 1838. The Human Virome: Methods and Protocols. Springer ScienceþBusiness Media, LLC, part of Springer Nature, pp. 85–95.; Cunha dos MP, Duarte-Neto AN, Pour SZ, Ortiz-Baez AS, Černý J, Pereira de BBS, Braconi CT, Ho Y-L, Perondi B, Sztajnbok J, Alves VAF, Dolhnikoff M, Holmes EC, Saldiva PHN and Zanotto de PMA (2019) Origin of the São Paulo Yellow Fever epidemic of 2017–2018 revealed through molecular epidemiological analysis of fatal cases. Scientific Reports 9, 20418. https://doi.org/10.1038/s41598-019Test- 56650-1; De Ranitz CM, Myers RM, Varkey MJ, Isaac ZH and Carey DE 1965 Clinical impressions of chikungunya in Vellore gained from study of adult patients. The Indian Journal of Medical Research 53, 756–763.; de Vries JJC, Brown JR, Couto N, Beer M, Le Mercier P, Sidorov I, Papa A, Fischer N, Oude Munnink BB, Rodriquez C, Zaheri M, Sayiner A, Hönemann M, Pérez-Cataluna A, Carbo EC, Bachofen C, Kubacki J, ˜ Schmitz D, Tsioka K, Matamoros S, Höper D, Hernandez M, Puchhammer-Stöckl E, Lebrand A, Huber M, Simmonds P, Claas ECJ and L´opez-Labrador FX (2021) Recommendations for the introduction of metagenomic next-generation sequencing in clinical virology, part II: bioinformatic analysis and reporting. Journal of Clinical Virology 138, 104812. https://doi.org/10.1016/j.jcv.2021.104812Test; Dennehy JJ, Friedenberg NA, Holt RD and Turner PE (2006) Viral ecology and the maintenance of novel host use. The American Naturalist 167, 429–439. https://doi.org/10.1086/499381Test; Dick GWA (1952) Zika Virus (I). Isolations and serological specificity. Transactions of the Royal Society of Tropical Medicine and Hygiene. https://doi.org/10.1016/0035-9203Test(52)90042-4; Domingo C, Charrel RN, Schmidt-Chanasit J, Zeller H and Reusken C (2018) Yellow fever in the diagnostics laboratory. Emerging Microbes & Infections 7, 1–15. https://doi.org/10.1038/s41426-018-0128-8Test; Echeverry DM, Giraldo MI and Castano JC ˜ (2012) Prevalence of intestinal helminths in cats in Quindío, Colombia. Biomedica 32, 430–436. https:// doi.org/10.7705/biomedica.v32i3.439; Edgerton SV., Thongsripong P, Wang C, Montaya M, Balmaseda A, Harris E. and Bennett SN (2021) Evolution and epidemiologic dynamics of dengue virus in Nicaragua during the emergence of chikungunya and Zika viruses. Infection, Genetics and Evolution 92, 104680. https://doi.org/10.1016/jTest. meegid.2020.104680; Ellwanger JH and Chies JAB (2021) Zoonotic spillover: understanding basic aspects for better prevention. Genetics and Molecular Biology 44. https:// doi.org/10.1590/1678-4685-gmb-2020-0355; Erlanger TE, Weiss S, Keiser J, Utzinger J and Wiedenmayer K (2009) Past, present, and future of Japanese encephalitis. Emerging Infectious Diseases 15, 1–7. https://doi.org/10.3201/eid1501.080311Test; Esposito DLA and Fonseca da BAL (2017) Will Mayaro virus be responsible for the next outbreak of an arthropod-borne virus in Brazil? The Brazilian Journal of Infectious Diseases 21, 540–544. https://doi.org/10.1016/j.bjidTest. 2017.06.002; European Centre for Disease Prevention and Control ECDC (2018) Zika transmission. https://ecdc.europa.eu/en/zika-virus-infection/threats-andoutbreaks/zika-transmissionTest; Fauci AS and Morens DM (2016) Zika virus in the Americas — Yet another arbovirus threat. New England Journal of Medicine 374, 601–604. https://doiTest. org/10.1056/NEJMp1600297; Figueiredo LTM (2019) Human Urban arboviruses can infect wild animals and jump to sylvatic maintenance cycles in South America. Frontiers in Cellular and Infection Microbiology 9. https://doi.org/10.3389/fcimb.2019.00259Test; Forrester NL, Wertheim JO, Dugan VG, Auguste AJ, Lin D, Adams AP, Chen R, Gorchakov R, Leal G, Estrada-Franco JG, Pandya J, Halpin RA, Hari K, Jain R, Stockwell TB, Das SR, Wentworth DE, Smith MD, Kosakovsky Pond SL and Weaver SC (2017) Evolution and spread of Venezuelan equine encephalitis complex alphavirus in the Americas. PLOS Neglected Tropical Diseases 11, e0005693. https://doi.org/10.1371Test/ journal.pntd.0005693; French RK and Holmes EC (2020) An ecosystems perspective on virus evolution and emergence. Trends in Microbiology 28, 165–175. https://doi.org/10Test. 1016/j.tim.2019.10.010; Frierson JG (2010) The yellow fever vaccine: a history. Yale Journal of Biology and Medicine 83, 77–85.; Gao X, Liu H, Wang H, Fu S, Guo Z and Liang G (2013) Southernmost Asia is the source of Japanese Encephalitis Virus (Genotype 1) diversity from which the viruses disperse and evolve throughout Asia. PLoS Neglected Tropical Diseases 7, e2459. https://doi.org/10.1371/journal.pntd.0002459Test; Gardy JL and Loman NJ (2018) Towards a genomics-informed, real-time, global pathogen surveillance system. Nature Reviews Genetics 19, 9–20. https://doi.org/10.1038/nrg.2017.88Test; Geoghegan JL and Holmes EC (2018) The phylogenomics of evolving virus virulence. Nature Reviews Genetics 19, 756–769. https://doi.org/10.1038Test/ s41576-018-0055-5; GiovanettiM, Faria NR, Lourenço J, Goes de Jesus J,Xavier J,Claro IM,Kraemer MUG, Fonseca V, Dellicour S, Thézé J, da Silva Salles F, Gräf T, Silveira PP, do Nascimento VA, Costa de Souza V, de Melo Iani FC, Castilho-Martins EA, Cruz LN, Wallau G, Fabri A, Levy F, Quick J, de Azevedo V, Aguiar RS, de Oliveira T, Bôtto de Menezes C, da Costa Castilho M, Terra TM, Souza da Silva M, Bispo de Filippis AM, Luiz de Abreu A, Oliveira WK, Croda J, Campelo de Albuquerque CF, Nunes MRT, Sabino EC, Loman N, Naveca FG, Pybus OG and Alcantara LC (2020) Genomic and epidemiological surveillance of Zika virus in the Amazon region. Cell Reports 30, 2275–2283.e7. https:// doi.org/10.1016/j.celrep.2020.01.085; Go YY, Balasuriya UBR and Lee C (2014) Zoonotic encephalitides caused by arboviruses: transmission and epidemiology of alphaviruses and flaviviruses. Clinical and Experimental Vaccine Research 3, 58. https://doi.org/10.7774Test/ cevr.2014.3.1.58; Gould E, Pettersson J, Higgs S, Charrel R and de Lamballerie X (2017) Emerging arboviruses: why today? One Health 4, 1–13. https://doi.org/10Test. 1016/j.onehlt.2017.06.001; Gould EA, de Lamballerie X, Zanotto PMdA and Holmes EC (2003) Origins, evolution, and vector{plus 45 degree rule}host coadaptations within the Genus Flavivirus. Advances in Virus Research 59, 277–314. https://doi.orgTest/ 10.1016/S0065-3527(03)59008-X; Grard G, Fair JN, Lee D, Slikas E, Steffen I, Muyembe J-J, Sittler T, Veeraraghavan N, Ruby JG, Wang C, Makuwa M, Mulembakani P, Tesh RB, Mazet J, Rimoin AW, Taylor T, Schneider BS, Simmons G, Delwart E, Wolfe ND, Chiu CY and Leroy EM (2012) A Novel Rhabdovirus associated with acute hemorrhagic fever in Central Africa. PLoS Pathogens 8, e1002924. https://doi.org/10.1371/journal.ppat.1002924Test; Grubaugh ND, Ladner JT, Lemey P, Pybus OG, Rambaut A, Holmes EC and Andersen KG (2019) Tracking virus outbreaks in the twenty-first century. Nature Microbiology 4, 10–19. https://doi.org/10.1038/s41564-018-0296-2Test; Grubaugh ND, Sharma S, Krajacich BJ, Fakoli III LS, Bolay FK, Diclaro II JW, Johnson WE, Ebel GD, Foy BD and Brackney DE (2015) Xenosurveillance: a Novel mosquito-based approach for examining the human-pathogen landscape. PLOS Neglected Tropical Diseases 9, e0003628. https://doi.org/10.1371/journal.pntd.0003628Test; Guth S, Hanley KA, Althouse BM and Boots M (2020) Ecological processes underlying the emergence of novel enzootic cycles: arboviruses in the neotropics as a case study. PLOS Neglected Tropical Diseases 14, e0008338. https://doi.org/10.1371/journal.pntd.0008338Test; Guzmán-Terán C, Calder´on-Rangel A, Rodriguez-Morales A and Mattar S (2020) Venezuelan equine encephalitis virus: the problem is not over for tropical America. Annals of Clinical Microbiology and Antimicrobials 19, 19. https://doi.org/10.1186/s12941-020-00360-4Test; Hameed M, Khan S, Xu J, Zhang J, Wang X, Di D, Chen Z, Naveed Anwar M, Wahaab A, Ma X, Nawaz M, Liu K, Li B, Shao D, Qiu Y, Wei J and Ma Z (2021) Detection of Japanese encephalitis virus in mosquitoes from Xinjiang during next-generation sequencing arboviral surveillance. Transboundary and Emerging Diseases 68, 467–476. https://doi.org/10.1111/tbed.13697Test; Hayes EB (2009) Zika virus outside Africa. Emerging Infectious Diseases 15, 1347–1350. https://doi.org/10.3201/eid1509.090442Test; Heath CJ, Grossi-Soyster EN, Ndenga BA, Mutuku FM, Sahoo MK, Ngugi HN, Mbakaya JO, Siema P, Kitron U, Zahiri N, Hortion J, Waggoner JJ, King CH, Pinsky BA and LaBeaud AD (2020) Evidence of transovarial transmission of Chikungunya and Dengue viruses in field-caught mosquitoes in Kenya. PLOS Neglected Tropical Diseases 14, e0008362. https://doiTest. org/10.1371/journal.pntd.0008362; Hess JF, Kohl TA, Kotrová M, Rönsch K, Paprotka T, Mohr V, Hutzenlaub T, Brüggemann M, Zengerle R, Niemann S and Paust N (2020) Library preparation for next generation sequencing: a review of automation strategies. Biotechnology Advances 41, 107537. https://doi.org/10.1016/j.biotechTest adv.2020.107537; Holmes EC, Rambaut A and Andersen KG (2018) Pandemics: spend on surveillance, not prediction. Nature 558, 180–182. https://doi.org/10.1038Test/ d41586-018-05373-w; Hoyos-L´opez R, Atencia-Pineda MC and Gallego-G´omez JC (2019) Phylogenetic analysis of Dengue-2 serotypes circulating in mangroves in Northern Cordoba, Colombia. Revista da Sociedade Brasileira de Medicina Tropical 52. https://doi.org/10.1590/0037-8682-0060-2019Test; Hoyos J, Carrasquilla MC, Le´on C, Montgomery JM, Salyer SJ, Komar N and González C (2021) Host selection pattern and flavivirus screening of mosquitoes in a disturbed Colombian rainforest. Scientific Reports 11, 18656. https://doi.org/10.1038/s41598-021-98076-8Test; Huang J, Wang R, Gao C, Lü Y, Cao Z, Deng S and Yue C (2021) A case of tick-transmitted Q fever in Lishui, China diagnosed by next-generation sequencing. Journal of International Medical Research 49, 030006052 110253. https://doi.org/10.1177/03000605211025398Test; Johnston BL and Conly JM (2000) West Nile virus – where did it come from and where might it go? Canadian Journal of Infectious Diseases 11, 175–178. https://doi.org/10.1155/2000/856598Test; Kalantar KL, Carvalho T, de Bourcy CFA, Dimitrov B, Dingle G, Egger R, Han J, Holmes OB, Juan Y-F, King R, Kislyuk A, Lin MF, Mariano M, Morse T, Reynoso L V, Cruz DR, Sheu J, Tang J, Wang J, Zhang MA, Zhong E, Ahyong V, Lay S, Chea S, Bohl JA, Manning JE, Tato CM and DeRisi JL (2020) IDseq—an open source cloud-based pipeline and analysis service for metagenomic pathogen detection and monitoring. GigaScience 9. https://doi.org/10.1093/gigascience/giaa111Test; Kauffman EB, Franke MA, Wong SJ and Kramer LD (2010) Detection of West Nile virus. In Methods in Molecular Biology. Vol 665. Diagnostic Virology Protocols. Humana Press, pp. 383–413.; Kumar B, Manuja A, Gulati B, Virmani N and Tripathi BN (2018) Zoonotic viral diseases of equines and their impact on human and animal health. The Open Virology Journal 12, 80–98. https://doi.org/10.2174/187435790Test 1812010080; Kuno G and Chang GJJ (2005) Biological transmission of arboviruses: Reexamination of and new insights into components, mechanisms, and unique traits as well as their evolutionary trends. Clinical Microbiological Reviews 18, 608–637. https://doi.org/10.1128/CMR.18.4.608-637.2005Test; Laiton-Donato K, Alvarez DA, Peláez-Carvajal D, Mercado M, Ajami NJ, Bosch I and Usme-Ciro JA (2019) Molecular characterization of dengue virus reveals regional diversification of serotype 2 in Colombia. Virology Journal 16, 62. https://doi.org/10.1186/s12985-019-1170-4Test; Lee GO, Vasco L, Márquez S, Zuniga-Moya JC, Van Engen A, Uruchima J, Ponce P, Cevallos W, Trueba G, Trostle J, Berrocal VJ, Morrison AC, Cevallos V, Mena C, Coloma J and Eisenberg JNS (2021) A dengue outbreak in a rural community in Northern Coastal Ecuador: an analysis using unmanned aerial vehicle mapping. PLOS Neglected Tropical Diseases 15, e0009679. https://doi.org/10.1371/journal.pntd.000967Test; Lewandowska DW, Zagordi O, Geissberger F-D, Kufner V, Schmutz S, Böni J, Metzner KJ, Trkola A and Huber M (2017) Optimization and validation of sample preparation for metagenomic sequencing of viruses in clinical samples. Microbiome 5, 94. https://doi.org/10.1186/s40168Test- 017-0317-z; Li SL, Acosta AL, Hill SC, Brady OJ, de Almeida MAB, Cardoso da JC, Hamlet A, Mucci LF, Telles de Deus J, Iani FCM, Alexander NS, Wint GRW, Pybus OG, Kraemer MUG, Faria NR and Messina JP (2022) Mapping environmental suitability of Haemagogus and Sabethes spp. mosquitoes to understand sylvatic transmission risk of yellow fever virus in Brazil. PLOS Neglected Tropical Diseases 16, e0010019. https://doi.org/10Test. 1371/journal.pntd.0010019; L´opez-Labrador FX, Brown JR, Fischer N, Harvala H, Van Boheemen S, Cinek O, Sayiner A, Madsen TV, Auvinen E, Kufner V, Huber M, Rodriguez C, Jonges M, Hönemann M, Susi P, Sousa H, Klapper PE, Pérez-Cataluňa A, Hernandez M, Molenkamp R, der Hoek van L, Schuurman R, Couto N, Leuzinger K, Simmonds P, Beer M, Höper D, Kamminga S, Feltkamp MCW, Rodríguez-Díaz J, Keyaerts E, Nielsen XC, Puchhammer-Stöckl E, Kroes ACM, Buesa J, Breuer J, Claas ECJ and de Vries JJC (2021) Recommendations for the introduction of metagenomic high-throughput sequencing in clinical virology, part I: Wet lab procedure. Journal of Clinical Virology 134, 104691. https://doi.org/10.1016/jTest. jcv.2020.104691; Lourenço-de-Oliveira R and Failloux AB (2017) High risk for chikungunya virus to initiate an enzootic sylvatic cycle in the tropical Americas. PLoS Neglected Tropical Diseases 11, e0005698. https://doi.org/10.1371/journalTest. pntd.0005698; Lundberg L, Carey B and Kehn-Hall K (2017) Venezuelan equine encephalitis virus Capsid—the clever caper. Viruses 9, 279. https://doi.org/10.3390Test/ v9100279; MacNamara F (1954) Zika virus: a report on three cases of human infection during an epidemic of jaundice in Nigeria. Transactions of the Royal Society of Tropical Medicine and Hygiene 48, 139–145. https://doi.org/10Test. 1016/0035-9203(54)90006-1; Moreira-Soto A, Carneiro de IO, Fischer C, Feldmann M, Kümmerer BM, Silva NS, Santos UG, Souza de BFCD, Liborio de FA, ValençaMontenegro MM, Laroque de PO, da Fontoura FR, Oliveira AVD, Drosten C, de Lamballerie X, Franke CR and Drexler JF (2018) Limited evidence for infection of Urban and peri-urban nonhuman primates with Zika and Chikungunya viruses in Brazil. mSphere 3. https://doi.org/10Test. 1128/msphere.00523-17; Moreira J, Peixoto TM, Siqueira AM and Lamas CC (2017) Sexually acquired Zika virus: a systematic review. Clinical Microbiology and Infection 23, 296–305. https://doi.org/10.1016/j.cmi.2016.12.027Test; Morrison TE (2014) Reemergence of Chikungunya virus. Journal of Virology 88, 11644–11647. https://doi.org/10.1128/jvi.01432-14Test; Mowatt L and Jackson ST (2014) Chikungunya in the Caribbean: an epidemic in the making. Infectious Diseases and Therapy 3, 63–68. https://doi.org/10Test. 1007/s40121-014-0043-9; Musso D (2015) Zika virus transmission from French Polynesia to Brazil. Emerging Infectious Diseases 21, 1887–1887. https://doi.org/10.3201Test/ eid2110.151125; Musso D, Roche C, Robin E, Nhan T, Teissier A and Cao-Lormeau V-M (2015) Potential sexual transmission of Zika virus. Emerging Infectious Diseases 21, 359–361. https://doi.org/10.3201/eid2102.141363Test; Nash D, Mostashari F, Fine A, Miller J, O’Leary D, Murray K, Huang A, Rosenberg A, Greenberg A, Sherman M, Wong S, Campbell GL, Roehrig JT, Gubler DJ, Shieh W-J, Zaki S, Smith P and Layton M (2001) The Outbreak of West Nile Virus Infection in the New York City Area in 1999. New England Journal of Medicine 344, 1807–1814. https:// doi.org/10.1056/NEJM200106143442401; Oehler E, Watrin L, Larre P, Leparc-Goffart I, Lastãre S, Valour F, Baudouin L, Mallet HP, Musso D and Ghawche F (2014) Zika virus infection complicated by Guillain-Barré syndrome – case report, French Polynesia, December 2013. Eurosurveillance 19. https://doi.org/10.2807/1560-7917.es2014.19.9Test. 20720; Pan American Health Organisation (2015) Epidemiological Alert: Neurological Syndrome, Congenital Malformations, and Zika virus Infection. Implications for Public Health in the Americas. Washington DC: Pan American Health Organization. https://iris.paho.org/handle/10665.2/50697Test; Parra-Henao G, Coelho G, Escobar JP, Gonzalvez G and Bezerra H (2021)Beyond traditional vector control and the need for strengthening integrated vector management in Latin America. Therapeutic Advances in Infectious Disease 8, 204993612199765. https://doi.org/10.1177/2049936121997655Test; Pereira dos Santos T, Roiz D, Santos de Abreu FV, Luz SLB, Santalucia M, Jiolle D, Santos Neves MSA, Simard F, Lourenço-de-Oliveira R and Paupy C (2018) Potential of Aedes albopictus as a bridge vector for enzootic pathogens at the urban-forest interface in Brazil. Emerging Microbes & Infections 7, 1–8. https://doi.org/10.1038/s41426-018-0194-yTest; Phan TG, del Valle Mendoza J, Sadeghi M, Altan E, Deng X and Delwart E (2018) Sera of Peruvians with fever of unknown origins include viral nucleic acids from non-vertebrate hosts. Virus Genes 54, 33–40. https://doi.org/10Test. 1007/s11262-017-1514-3; Piantadosi A, Mukerji SS, Ye S, Leone MJ, Freimark LM, Park D, Adams G, Lemieux J, Kanjilal S, Solomon IH, Ahmed AA, Goldstein R, Ganesh V, Ostrem B, Cummins KC, Thon JM, Kinsella CM, Rosenberg E, Frosch MP, Goldberg MB, Cho TA and Sabeti P (2021) Enhanced virus detection and metagenomic sequencing in patients with meningitis and encephalitis. mBio 12. https://doi.org/10.1128/mBio.01143-21Test; Quintão de TSC, Slavov SN, de Oliveira PM, Bezerra dos RS, Cassemiro ÉM, Alves de PPM, Gontijo CC, Martins dos FAP, Gurgel da HC, Noronha EF, Ramalho WM, de Araújo WN, Pereira AL and Haddad R (2022) Viral metagenomics in nasopharyngeal swabs of Brazilian patients negative for SARS-CoV-2 unveils the presence of Chikungunya virus infection. Journal of Infection 84, e24–e26. https://doi.org/10.1016/j.jinf.2021.12.001Test; Reed W, Carroll J, Agramonte A and Lazear JW (2001) The etiology of Yellow fever — a preliminary note. Military Medicine 166, 29–36. https://doi.org/10Test. 1093/milmed/166.suppl_1.29; Reyes A, Carbo EC, Harinxma thoe Slooten van JS, Kraakman MEM, Sidorov IA, Claas ECJ, Kroes ACM, Visser LG and De JJCV (2021) Viral metagenomic sequencing in a cohort of international travellers returning with febrile illness. Journal of Clinical Virology 143, 104940. https://doi.org/10.1016/j.jcv.2021.104940Test; Robinson MC (1955) An epidemic of virus disease in Southern Province, Tanganyika territory, in 1952–1953. Transactions of the Royal Society of Tropical Medicine and Hygiene 49, 28–32. https://doi.org/10.1016/0035Test- 9203(55)90080-8; Rougeron V, Sam I-C, Caron M, Nkoghe D, Leroy E and Roques P (2015) Chikungunya, a paradigm of neglected tropical disease that emerged to be a new health global risk. Journal of Clinical Virology 64, 144–152; Roux S, Matthijnssens J and Dutilh BE (2021) Metagenomics in virology. Encyclopedia of Virology, 133–140. https://doi.org/10.1016/B978-0-12Test- 809633-8.20957-6; Russell JA, Campos B, Stone J, Blosser EM, Burkett-Cadena N and Jacobs JL (2018) Unbiased strain-typing of arbovirus directly from mosquitoes using nanopore sequencing: a field-forward Biosurveillance protocol. Scientific Reports 8, 5417. https://doi.org/10.1038/s41598-018-23641-7Test; Sacchetto L, Silva NIO, Rezende de IM, Arruda MS, Costa TA, de Mello ÉM, Oliveira GFG, Alves PA, de Mendonça VE, Stumpp RGAV, Prado AIA, Paglia AP, Perini FA, Lacerda Nogueira M, Kroon EG, de Thoisy B, Trindade de GS and Drumond BP (2020) Neighbor danger: Yellow fever virus epizootics in urban and urban-rural transition areas of Minas Gerais state, during 2017–2018 yellow fever outbreaks in Brazil. PLOS Neglected Tropical Diseases 14, e0008658. https://doi.org/10.1371/journal.pntdTest. 0008658; Shi M, Lin XD, Tian JH, Chen LJ, Chen X, Li CX, Qin XC, Li J, Cao JP, Eden JS, Buchmann J, Wang W, Xu J, Holmes EC and Zhang YZ (2016) Redefining the invertebrate RNA virosphere. Nature. https://doi.org/10Test. 1038/nature20167; Simmonds P, Adams MJ, Benko M, Breitbart M, Brister JR, Carstens EB, ˝Davison AJ, Delwart E, Gorbalenya AE, Harrach B, Hull R, King AMQ, Koonin E V., Krupovic M, Kuhn JH, Lefkowitz EJ, Nibert ML, Orton R, Roossinck MJ, Sabanadzovic S, Sullivan MB, Suttle CA, Tesh RB, van der Vlugt RA, Varsani A and Zerbini FM (2017) Virus taxonomy in the age of metagenomics. Nature Reviews Microbiology 15, 161–168. https://doi.org/10.1038/nrmicro.2016.177Test; Solomon T (2006) Control of Japanese encephalitis — within our grasp? New England Journal of Medicine 355, 869–871. https://doi.org/10.1056Test/ NEJMp058263; Soper FL (1963) The elimination of urban Yellow fever in the Americas through the eradication of Aedes aegypti. American Journal of Public Health and the Nations Health 53, 7–16. https://doi.org/10.2105/AJPH.53.1.7Test; Tang P and Chiu C (2010) Metagenomics for the discovery of novel human viruses. Future Microbiology 5, 177–189. https://doi.org/10.2217/fmb.09.120Test; Theiler M and Smith HH (1937) The use of yellow fever virus modified by in vitro cultivation for human immunization. Journal of Experimental Medicine 65, 787–800. https://doi.org/10.1084/jem.65.6.787Test; Tsetsarkin KA, Vanlandingham DL, McGee CE and Higgs S (2007) A single mutation in Chikungunya virus affects vector specificity and epidemic potential. PLoS Pathogens 3, e201. https://doi.org/10.1371/journal.ppatTest. 0030201; Valentine MJ, Murdock CC and Kelly PJ (2019) Sylvatic cycles of arboviruses in non-human primates. Parasites & Vectors 12, 463. https://doi.org/10Test. 1186/s13071-019-3732-0; Vasilakis N, Cardosa J, Hanley KA, Holmes EC and Weaver SC (2011) Fever from the forest: prospects for the continued emergence of sylvatic dengue virus and its impact on public health. 9. https://doi.org/10.1038Test/ nrmicro2595; Vasilakis N, Tesh RB, Popov VL, Widen SG, Wood TG, Forrester NL, Gonzalez JP, Saluzzo JF, Alkhovsky S, Lam SK, Mackenzie JS and Walker PJ (2019) Exploiting the legacy of the arbovirus hunters. Viruses 11, 471. https://doi.org/10.3390/v11050471Test; Ventura C V, Maia M, Bravo-Filho V, G´ois AL and Belfort R (2016) Zika virus in Brazil and macular atrophy in a child with microcephaly. The Lancet 387, 228. https://doi.org/10.1016/S0140-6736Test(16)00006-4; Vilsker M, Moosa Y, Nooij S, Fonseca V, Ghysens Y, Dumon K, Pauwels R, Alcantara LC, Vanden Eynden E, Vandamme A-M, Deforche K and de Oliveira T (2019) Genome Detective: an automated system for virus identification from high-throughput sequencing data. Bioinformatics 35, 871–873. https://doi.org/10.1093/bioinformatics/bty695Test; Vorou R (2016) Zika virus, vectors, reservoirs, amplifying hosts, and their potential to spread worldwide: what we know and what we should investigate urgently. International Journal of Infectious Diseases 48, 85–90. https://doiTest. org/10.1016/j.ijid.2016.05.014; Wang E, Ni H, Xu R, Barrett ADT, Watowich SJ, Gubler DJ and Weaver SC (2000) Evolutionary relationships of endemic/epidemic and sylvatic dengue viruses. Journal of Virology 74, 3227–3234. https://doi.org/10.1128/JVI.74.7Test. 3227-3234.2000; Weaver SC (2014) Arrival of Chikungunya virus in the new world: prospects for spread and impact on public health. PLoS Neglected Tropical Diseases 8, e2921. https://doi.org/10.1371/journal.pntd.0002921Test; Weaver SC, Charlier C, Vasilakis N and Lecuit M (2018) Zika, Chikungunya, and other emerging vector-borne viral diseases. Annual Review of Medicine 69, 395–408. https://doi.org/10.1146/annurev-med-050715-105122Test; Weaver SC and Reisen WK (2010) Present and future arboviral threats. Antiviral Research 85, 328–345. https://doi.org/10.1016/j.antiviral.2009.10.008Test; WHO/PAHO (2017) Epidemiological Update: Yellow Fever. Washington, DC: World Health Organization/Pan American Health Organization. https://irisTest. paho.org/handle/10665.2/50557; WHO (2019) Japanese encephalitis. https://www.who.int/news-room/factsheets/detail/japanese-encephalitisTest; WHO (2022) Global Genomic Surveillance Strategy for Pathogens with Pandemic and Epidemic Potential, 2022–2032. Geneva: World Health Organization; Wu F, Zhao S, Yu B, Chen Y-M, Wang W, Song Z-G, Hu Y, Tao Z-W, Tian JH, Pei Y-Y, Yuan M-L, Zhang Y-L, Dai F-H, Liu Y, Wang Q-M, Zheng J-J, Xu L, Holmes EC and Zhang Y-Z (2020) A new coronavirus associated with human respiratory disease in China. Nature 579, 265–269. https://doi.orgTest/ 10.1038/s41586-020-2008-3; Xiao P, Li C, Zhang Y, Han J, Guo X, Xie L, Tian M, Li Y, Wang M, Liu H, Ren J, Zhou H, Lu H and Jin N (2018) Metagenomic sequencing from mosquitoes in China reveals a variety of insect and human viruses. Frontiers in Cellular and Infection Microbiology 8. https://doi.org/10.3389/fcimb.2018Test. 00364; Xie J and Zhu Z (2021) A case report of pyogenic liver abscess caused by hypervirulent Klebsiella pneumoniae diagnosed by metagenomic next-generation sequencing. Journal of International Medical Research 49, 030006052110327. https://doi.org/10.1177/03000605211032793Test; Yang Y, Garver LS, Bingham KM, Hang J, Jochim RC, Davidson SA, Richardson JH and Jarman RG (2015) Feasibility of using the mosquito blood meal for rapid and efficient human and animal virus surveillance and discovery. The American Journal of Tropical Medicine and Hygiene 93, 1377–1382. https://doi.org/10.4269/ajtmh.15-0440Test; Ye SH, Siddle KJ, Park DJ and Sabeti PC (2019) Benchmarking metagenomics tools for taxonomic classification. Cell 178, 779–794. https://doi.org/10Test. 1016/j.cell.2019.07.010; Yozwiak NL, Skewes-Cox P, Stenglein MD, Balmaseda A, Harris E and DeRisi JL (2012) Virus identification in unknown tropical febrile illness cases using deep sequencing. PLoS Neglected Tropical Diseases 6, e1485. https://doi.org/10.1371/journal.pntd.0001485Test; Zacks MA and Paessler S (2010) Encephalitic alphaviruses. Veterinary Microbiology 140, 281–286. https://doi.org/10.1016/j.vetmic.2009.08.023Test; Zanluca C, Melo de VCA, Mosimann ALP, Santos dos GIV, Santos dos CND and Luz K (2015) First report of autochthonous transmission of Zika virus in Brazil. Mem´orias do Instituto Oswaldo Cruz 110, 569–572. https://doi.org/10Test. 1590/0074-02760150192; Zhang Y-Z, Shi M and Holmes EC (2018) Using metagenomics to characterize an expanding virosphere. Cell 172, 1168–1172. https://doi.org/10.1016/j.cellTest. 2018.02.043; Laiton-Donato, K., Guzmán Cardozo, C., Peláez Carvajal. D, Ajami, N., Navas, M.C., Parra Henao, G., & Usme Ciro J.A. (2023). Evolution and emergence of mosquito-borne viruses of medical importance: Towards a routine metagenomic surveillance approach. J Trop Ecol 39: E13. doi:10.1017/S0266467423000019.https://hdl.handle.net/20.500.12494/55529Test; https://hdl.handle.net/20.500.12494/55529Test

    الإتاحة: https://doi.org/20.500.12494/5552910.1038/s41467-018-05658-810.3390/tropicalmed602009910.1038/s41467-018-03332-710.1371/journal.pntd.000505510.3390/v1310197610.1038/nrmicro.2015.2810.1016/S0065-3527Test(03)61007-910.1111/1755-0998.1268210.7554/eLife.6835310.1038/nature1206010.3390/v1203027410.1073/pnas10.3390/v1308160510.1186/s1307110.3201/eid1612.10060810.1099/jgv.010.1038/s41598-01910.1016/j.jcv.2021.10481210.1086/49938110.1016/0035-9203(52)90042-410.7705/biomedica.v32i3.43910.1016/j10.1590/1678-4685-gmb-2020-035510.3201/eid1501.08031110.1056/NEJMp160029710.3389/fcimb.2019.0025910.1371/journal.pntd.000245910.1038/nrg.2017.8810.1016/j.celrep.2020.01.08510.1371/journal.ppat.100292410.1038/s41564-018-0296-210.1371/journal.pntd.000362810.1371/journal.pntd.000833810.1186/s12941-020-00360-410.1111/tbed.1369710.3201/eid1509.09044210.1371/journal.pntd.000836210.1016/j.biotech10.1590/0037-8682-0060-201910.1038/s41598-021-98076-810.1177/0300060521102539810.1093/gigascience/giaa11110.2174/18743579010.1128/CMR.18.4.608-637.200510.1186/s12985-019-1170-410.1371/journal.pntd.00096710.1186/s4016810.1371/journal10.1016/j.cmi.2016.12.02710.1128/jvi.01432-1410.3201/eid2102.14136310.1056/NEJM20010614344240110.2807/1560-7917.es2014.19.910.1177/204993612199765510.1128/mBio.01143-2110.1016/j.jinf.2021.12.00110.1016/j.jcv.2021.10494010.1016/003510.1016/B978-0-1210.1038/s41598-018-23641-710.1371/journal.pntd10.1038/nrmicro.2016.17710.2105/AJPH.53.1.710.2217/fmb.09.12010.1084/jem.65.6.78710.1371/journal.ppat10.3390/v1105047110.1016/S0140-6736(16)00006-410.1093/bioinformatics/bty69510.1016/j.ijid.2016.05.01410.1128/JVI.74.710.1371/journal.pntd.000292110.1146/annurev-med-050715-10512210.1016/j.antiviral.2009.10.00810.3389/fcimb.201810.1177/0300060521103279310.4269/ajtmh.15-044010.1371/journal.pntd.000148510.1016/j.vetmic.2009.08.02310.1016/j.cell10.1017/S0266467423000019
    https://hdl.handle.net/20.500.12494/55529Test

  6. 6
    دورية أكاديمية

    المساهمون: Complex Disease Genetics, Institute for Molecular Medicine Finland, Statistical and population genetics

    وصف الملف: application/pdf

    العلاقة: The TEDDY Study is funded by U01 DK63829, U01 DK63861, U01 DK63821, U01 DK63865, U01 DK63863, U01 DK63836, U01 DK63790, UC4 DK63829, UC4 DK63861, UC4 DK63821, UC4 DK63865, UC4 DK63863, UC4 DK63836, UC4 DK95300, UC4 DK100238, UC4 DK106955, UC4 DK112243, UC4 DK117483, U01 DK124166, U01 DK128847, and Contract No. HHSN267200700014C from the National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institute of Allergy and Infectious Diseases (NIAID), Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institute of Environmental Health Sciences (NIEHS), Centers for Disease Control and Prevention (CDC), and JDRF. This work is supported in part by the NIH/NCATS Clinical and Translational Science Awards to the University of Florida (UL1 TR000064) and the University of Colorado (UL1 TR002535). The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health. We acknowledge additional financial support from the Academy of Finland (project no. 312043, M.N., 325999, K.J.R.), European Commission Horizon 2020 programme (grant no. 825033, M.N.), The Diabetes Research Foundation (M.N.), The Leona M and Harry B Helmsley Charitable Trust (H.H.), Sigrid Juselius Foundation (M.N., K.J.R., H.H.), and Päivikki and Sakari Sohlberg’s Foundation (J.E.L.).; The TEDDY Study Group , Lin , J , Moradi , E , Salenius , K , Lehtipuro , S , Häkkinen , T , Laiho , J E , Oikarinen , S , Randelin , S , Parikh , H M , Krischer , J P , Toppari , J , Lernmark , Å , Petrosino , J F , Ajami , N J , She , J-X , Hagopian , W A , Rewers , M J , Lloyd , R E , Rautajoki , K J , Hyöty , H & Nykter , M 2023 , ' Distinct transcriptomic profiles in children prior to the appearance of type 1 diabetes-linked islet autoantibodies and following enterovirus infection ' , Nature Communications , vol. 14 , no. 1 , 7630 . https://doi.org/10.1038/s41467-023-42763-9Test; ORCID: /0000-0001-9928-1663/work/150742892; 85177635181; 0ad56f15-e6c0-4302-b32e-73e02c2272f5; http://hdl.handle.net/10138/568972Test; 001108433300010

  7. 7
    دورية أكاديمية

    المصدر: School of Graduate Studies Faculty Publications

    وصف الملف: application/pdf

  8. 8
    دورية أكاديمية
  9. 9
    دورية أكاديمية
  10. 10
    دورية أكاديمية