رسالة جامعية

Proceso avanzado de oxidación fenton integrado con coagulación-floculación o electrocoagulación para el tratamiento de aguas residuales industriales textiles ; Fenton advanced oxidation process integrated with coagulation-flocculation or electrocoagulation for the treatment of industrial textile wastewater

التفاصيل البيبلوغرافية
العنوان: Proceso avanzado de oxidación fenton integrado con coagulación-floculación o electrocoagulación para el tratamiento de aguas residuales industriales textiles ; Fenton advanced oxidation process integrated with coagulation-flocculation or electrocoagulation for the treatment of industrial textile wastewater
المؤلفون: Quintero Arias, Jesús David
المساهمون: Dobrosz-Gómez, Izabela, Gómez García, Miguel Ángel, Grupo de Investigación en Procesos Reactivos Intensificados con Separación y Materiales Avanzados (Prisma), Quintero Arias, Jesús David https://orcid.org/0009000168190862Test
بيانات النشر: Universidad Nacional de Colombia
Manizales - Ingeniería y Arquitectura - Doctorado en Ingeniería - Ingeniería Química
Facultad de Ingeniería y Arquitectura
Manizales, Colombia
Universidad Nacional de Colombia - Sede Manizales
سنة النشر: 2023
مصطلحات موضوعية: 660 - Ingeniería química, Aguas residuales industriales textiles, colorante negro ácido 194, coagulación, floculación, electrocoagulación, Procesos Avanzados de Oxidación, Oxidación Fenton, Procesos de tratamiento secuenciales, Optimización, Textile industrial wastewater, acid black 194 dye, coagulation, flocculation, electrocoagulation, Advanced Oxidation Processes, Fenton Oxidation, Sequential treatment processes, Optimization, Agua residual, Waste water
الوصف: graficas, tablas ; Colombia es considerada el sexto país con mejor oferta hídrica (2145 m³/s) y el décimo tercero en disponibilidad per cápita de agua (42740 m³) en el mundo. Además, tiene normas ambientales proyectadas para un uso responsable del recurso hídrico, penaliza la dilución de las aguas residuales y delimita concentraciones de diferentes sustancias en el vertimiento. La industria textil colombiana representa 1.2% del PIB nacional y contribuye con el 9% de las exportaciones. Sin embargo, esta involucra altos impactos ambientales debido a la diversidad de las materias primas y reactivos involucrados en sus procesos y al elevado consumo de agua que a su vez genera un gran volumen de aguas residuales. Estos efluentes se caracterizan por contener materia no biodegradable, tóxica, persistente y recalcitrante, elevada DQO y alto contenido de color. El objetivo de este estudio fue el tratamiento de las aguas residuales de una industria textil del eje cafetero resultantes de la etapa de teñido con colorante negro ácido 194 (ARnD) utilizando un Proceso Avanzado de Oxidación (PAO) que permita un tratamiento eficiente y de fácil implementación en planta. Así, se evaluaron los métodos de coagulación-floculación con alumbre asistida por cal (CF, disponible en la industria bajo estudio y que constituye el caso base como método de tratamiento) y de electrocoagulación (EC, alternativa al proceso de CF), la oxidación Fenton (F) como PAO junto a la respectiva neutralización de sus efluentes (F-N), y los procesos secuenciales CF-F-N y EC-F-N. La determinación de las condiciones óptimas de operación de cada uno de ellos se realizó mediante el diseño de experimentos, análisis estadístico, la metodología de superficie de respuesta, herramientas de análisis numérico multivariable y estudios cinéticos. El análisis de su desempeño se enfocó en la degradación de la materia orgánica recalcitrante, el incremento de la biodegradabilidad, la disminución de la toxicidad y los costos. Inicialmente, la ARnD se caracterizó en función ...
نوع الوثيقة: doctoral or postdoctoral thesis
وصف الملف: 440 páginas; application/pdf
اللغة: Spanish; Castilian
العلاقة: Abd-Alredha, L.; Al-Rubaie, R.; Jameel Mhessn, R. (2011). Synthesis and Characterization of Azo Dye Para Red and New Derivatives. Journal of Chemistry, 9(1), 465-470. https://doi.org/10.1155/2012/206076Test; Abdessalem, A. K.; Oturan, N.; Bellakhal, N.; Dachraoui, M.; Oturan, M. A. (2008). Experimental design methodology applied to electro-Fenton treatment for degradation of herbicide chlortoluron. Applied Catalysis B: Environmental, 78(3-4), 334- 341. https://doi.org/10.1016/j.apcatb.2007.09.032Test; Aboulhassan, M.A.; Souabi, S.; Yaacoubi A.; Baudu, M. (2005). Treatment of Textile Wastewater Using a Natural Flocculant. Environmental Technology. 26, 705-711. https://doi.org/10.1080/09593330.2001.9619510Test; Addai-Mensah, J.; Prestidge, C. A. (2005). Structure formation in dispersed systems. In: Stechemesser H and Dobiáš B (eds) Coagulation and Flocculation. USA: Taylor & Francis, 135-216.; Aguas de Manizales S.A. E.S.P-BIC, (2023). Tarifas, https://www.aguasdemanizales.com.co/Aguas-de-Manizales-SA-ESP/Atenci%C3%B3n-y-Servicios-al-Usuario/Informaci%C3%B3n-GeneralTest; Aguilar, M.I.; Saez, J.; Liorens, M.; Soler, A.; Ortuno, J.F. (2002). Nutrient removal and sludge production in the coagulation–flocculation process. Wat. Res. 36, 2910– 2919. https://doi.org/10.1016/s0043-1354Test(01)00508-5; Ahmed, F.; Dewani, R., Pervez, M. K.; Mahboob, S. J.; Soomro, S. A. (2016). Non-destructive FT-IR analysis of mono azo dyes. Bulgarian Chemical Communications, 48(1), 71 – 77.; Al-adilee, K. J.; Hatem, B. A.; Hatem, O. A. (2021). Synthesis and spectral characterization of new azo dye derived from benzimidazole and its complexation with selected transition metal ions. Journal of Physics: Conference Series, 1999 (1), 012123. https://doi.org/10.1088/1742-6596/1999/1/012123Test; Ali, A.; Shaikh, I.; Abid, T.; Samina, F.; Islam, S.; Khalid, A.; Firdous, N.; Javed, M. (2019). Reuse of Textile Wastewater After Treating with Combined Process of Chemical Coagulation and Electrocoagulation. Polish Journal of Environmental Studies, 28(4), 2565-2570. https://doi.org/10.15244/pjoes/91940Test; Al-Qodah, Z.; Tawalbeh, M.; Al-Shannag, M.; Al-Anber, Z.; Bani-Melhem, K. (2020). Combined electrocoagulation processes as a novel approach for enhanced pollutants removal: A state-of-the-art review. Science of The Total Environment, 744, 140806. https://doi.org/10.1016/j.scitotenv.2020.140806Test; Al-Rubaie, L; Mhessn, R. J. (2012). Synthesis and characterization of azo dye para red and new derivatives. E-Journal of Chemistry, 9(1), 465-470.; Amador-Díaz, A.; Veliz-Lorenzo, E.; Bataller-Venta, M. (2015). Tratamiento de lodos, generalidades y aplicaciones. Revista CENIC. Ciencias Químicas. 46, 1-10.; Amani-Ghadima, A.R.; Aber, S.; Olad, A.; Ashassi-Sorkhabi, H. (2011). Influence of anions on Reactive Red 43 removal in electrochemical coagulation process. Electrochim. Acta, 56, 1373–1380. https://doi.org/10.1016/j.electacta.2010.10.089Test; Amor, C.; De Torres-Socías, E.; Peres, J.A.; Maldonado, M.I.; Oller, I.; Malato, S.; Lucas, M.S. (2015). Mature landfill leachate treatment by coagulation/flocculation combined with Fenton and solar photo-Fenton processes. J. Hazard. Materials, 286, 261–268. https://doi.org/10.1016/j.jhazmat.2014.12.036Test; Amour, A.; Merzouk, B.; Leclerc, J.-P.; Lapicque, F. (2016). Removal of reactive textile dye from aqueous solutions by electrocoagulation in a continuous cell. Desalination and Water Treatment, 57(48-49), 22764-22773. https://doi.org/10.1080/19443994.2015.1106094Test; ANDI, BID, CIA-Universidad de Antioquia, CIDI-Universidad Pontificia Bolivariana (Eds.). (1997). Manual de caracterización de aguas residuales industriales (Ideas Graficas Ltda.). ANDI.; Andres, L. A.; Sislen, D.; Marin, P. (2010). Charting a New Course: Structural Reforms in Colombia’s Water Supply and Sanitation Sector. World Bank. https://doi.org/10.1596/27920Test; Anglada, Á.; Urtiaga, A.; Ortiz, I.; Mantzavinos, D.; Diamadopoulos, E. (2011). Treatment of municipal landfill leachate by catalytic wet air oxidation: Assessment of the role of operating parameters by factorial design. Waste Management, 31(8), 1833-1840. https://doi.org/10.1016/j.wasman.2011.03.023Test; Aoudj, S.; Khelifa, A.; Drouiche, N.; Hecini, M.; Hamitouche, H. (2010). Electrocoagulation process applied to wastewater containing dyes from textile industry. Chemical Engineering and Processing: Process Intensification, 49(11), 1176-1182. https://doi.org/10.1016/j.cep.2010.08.019Test; Aquino, J.; Pereira. G.; Rocha, R.; Bocchi, N.; Biaggio. S. (2016). Combined Coagulation and Electrochemical process to treat and detoxify a real textile effluent. Water. Air. Soil Pollut., 227 (8) 266. https://doi.org/10.1007/s11270-016-2967-zTest; Arboleda Valencia, J. (2000). Teoría y práctica de la purificación del agua. 3ra Ed. Mc-Graw Hill.; Argun, M. E.; Karatas, M. (2011). Application of Fenton process for decolorization of reactive black 5 from synthetic wastewater: Kinetics and thermodynamics. Environmental Progress & Sustainable Energy, 30(4), 540-548. https://doi.org/10.1002/ep.10504Test; Aris, A.; Sharratt, P. N. (2004). Fenton Oxidation of Reactive Black 5: Effect of Mixing Intensity and Reagent Addition Strategy. Environmental Technology, 25(5), 601-612. https://doi.org/10.1080/09593330.2004.9619350Test; Arslan, I.; Balcioğlu, I. A. (1999). Degradation of commercial reactive dyestuffs by heterogenous and homogenous advanced oxidation processes: A comparative study. Dyes and Pigments, 43(2), 95-108. https://doi.org/10.1016/S0143-7208Test(99)00048-0; Asgari, G.; Alahabadi, A.; Shomoossi, N.; Yazdani Aval, M.; Shabanloo, A.; Darvishmotevalli, M.; Zolghadr, H.; Salari, M. (2023). Mineralization and biodegradability improvement of textile wastewater using persulfate/dithionite process. Biomass Conversion and Biorefinery, https://doi.org/10.1007/s13399-023-04128-6Test; ASTM D2035-19. (2019). Standard Practice for Coagulation-Flocculation Jar Test of Water: West Conshohocken, PA. United States: ASTM International. https://doi.org/10.1520/D2035-19Test; ATSDR. (11 de 06 de 2019). Toxic Substances Portal - Naphthalene, 1-Methylnapthalene, 2-Methylnapthalene. Obtenido de Agency for Toxic Substances and Disease Registry https://www.atsdr.cdc.gov/phsTest; Aygun, A.; Nas, B.; Sevimli, M. F. (2019). Treatment of reactive dyebath wastewater by electrocoagulation process: Optimization and cost-estimation. Korean Journal of Chemical Engineering, 36(9), 1441-1449. https://doi.org/10.1007/s11814-019-0334-7Test; Babuponnusami, A,; Karuppan, M. (2014). A Review on Fenton and Improvements to the Fenton Process for Wastewater Treatment. Journal of Environmental Chemical Engineering, 2(1), 557-72. https://doi.org/10.1016/j.jece.2013.10.011Test; Baghel, R.; Upadhyaya, S.; Chaurasia, S. P.; Singh, K.; Kalla, S. (2018). Optimization of process variables by the application of response surface methodology for naphthol blue black dye removal in vacuum membrane distillation. Journal of Cleaner Production, 199, 900-915. https://doi.org/10.1016/j.jclepro.2018.07.214Test; Bakar, A. F. A.; Halim, A. A. (2013). Treatment of automotive wastewater by coagulation-flocculation using poly-aluminum chloride (PAC), ferric chloride (FeCl3) and aluminum sulfate (alum). AIP Conference Proceedings, 1571, 524-529. https://doi.org/10.1063/1.4858708Test; Balapure, K.; Aghera, P.; Bhatt, N.; Madamwar, D. (2019). Community Synergism: Degradation of Triazine Dye Reactive Black 1 by Mixed Bacterial Cultures KND_PR under Microaerophilic and Aerobic Conditions. Environmental Processes, 6(3), 713-739. https://doi.org/10.1007/s40710-019-00378-7Test; Bali, U.; Karagozoglu, B. (2007). Performance comparison of Fenton process, ferric coagulation and H2O2/pyridine/Cu(II) system for decolorization of Remazol Turquoise Blue G-133. Dyes and Pigments, 74(1), 73-80. https://doi.org/10.1016/j.dyepig.2006.01.013Test; Balla, W.; Essadki, A. H.; Gourich, B.; Dassaa, A.; Chenik, H.; Azzi, M. (2010). Electrocoagulation/electroflotation of reactive, disperse and mixture dyes in an external-loop airlift reactor. Journal of Hazardous Materials, 184(1-3), 710-716. https://doi.org/10.1016/j.jhazmat.2010.08.097Test; Baneshi, M. M.; Naraghi, B.; Rahdar, S.; Biglari, H.; Ahamadabadi, M.; Narooie, M. R.; Salimi, A.; Khaksefidi, R.; Alipour, V. (2016). Removal of remazol black b dye from aqueous solution by electrocoagulation equipped with iron and aluminium electrodes. 7, 8.; Bannoud, A. H.; Persin, F.; Rumeau, M. (1993). A study of the perfection of an electrochemical reactor for softening water. Wat. Res., 27, 1385 – 1391. https://doi.org/10.1016/0043-1354Test(93)90226-8; Bard, A. J.; Faulkner, L. R. (2001). Electrochemical methods: Fundamentals and applications (2nd ed). Wiley.; Barrenechea Martel, A.; Cánepa de Vargas, L.; Maldonado Yactayo, V.; Zumaeta, M. A. (2004). Tratamiento de agua para consumo humano. Plantas de filtración rápida. Manual I (Vol. 1). Centro Panamericano de Ingeniería Sanitaria y Ciencias del Ambiente.; Barrera-Díaz, C.; Cañizares, P.; Fernández, F. J.; Natividad, R.; Rodrigo, M. A. (2017). Electrochemical Advanced Oxidation Processes: An Overview of the Current Applications to Actual Industrial Effluents. Journal of the Mexican Chemical Society, 58(3). https://doi.org/10.29356/jmcs.v58i3.133Test; Barrera-Díaz, C.; Ureña-Nuñez, F.; Campos, E.; Palomar-Pardavé, M.; Romero, M. (2003). A combined electrochemical-irradiation treatment of highly colored and polluted industrial wastewater, Radiat. Phys. Chem., 67, 657–663. https://doi.org/10.1016/S0969-806XTest(02)00497-8; Bartošová, A.; Blinová, L.; Sirotiak, M.; Michalíková, A. (2017). Usage of FTIR-ATR as Non-Destructive Analysis of Selected Toxic Dyes. Research Papers Faculty of Materials Science and Technology Slovak University of Technology, 25(40), 103-111. https://doi.org/10.1515/rput-2017-0012Test; Bassyouni, D. G.; Hamad, H. A.; El-Ashtoukhy, E.-S. Z.; Amin, N. K.; El-Latif, M. M. A. (2017). Comparative performance of anodic oxidation and electrocoagulation as clean processes for electrocatalytic degradation of diazo dye Acid Brown 14 in aqueous medium. Journal of Hazardous Materials, 335, 176.2-187. https://doi.org/10.1016/j.jhazmat.2017.04.045Test; Basturk, E.; Karatas, M. (2014). Advanced oxidation of Reactive Blue 181 solution: A comparison between Fenton and Sono-Fenton Process. Ultrasonics Sonochemistry, 21(5), 1881-1885. https://doi.org/10.1016/j.ultsonch.2014.03.026Test; Bautista, P.; Mohedano, A. F.; Casas, J. A.; Zazo, J. A.; Rodríguez, J. J. (2008). An Overview of the Application of Fenton Oxidation to Industrial Wastewaters Treatment. Journal of Chemical Technology & Biotechnology, 83(10):1323-38. https://doi.org/10.1002/jctb.1988Test; Bayar, S.; Erdogan, M. (2019). Removal of COD and color from reactive red 45 azo dye wastewater using fenton and fenton-like oxidation processes: Kinetic studies. Applied Ecology and Environmental Research, 17(2), 1516.2-1529. https://doi.org/10.15666/aeer/1702_15171529Test; Bayramoglu, M.; Eyvaz, M.; Kobya, M. (2007). Treatment of the textile wastewater by electrocoagulation. Chemical Engineering Journal, 128(2-3), 155-161. https://doi.org/10.1016/j.cej.2006.10.008Test; Bayramoglu, M.; Kobya, M.; Can, O. T.; Sozbir, M. (2004). Operating cost analysis of electrocoagulation of textile dye wastewater. Separation and Purification Technology, 37(2), 117-125. https://doi.org/10.1016/j.seppur.2003.09.002Test; Bazrafshan, E.; Mahvi, A. H.; Zazouli, M. ali. (2014). Textile Wastewater Treatment by Electrocoagulation Process using Aluminum Electrodes. Iranian Journal of Health Sciences, 2(1), 16-29. https://doi.org/10.18869/acadpub.jhs.2.1.16Test; Behnajady, M. A.; Modirshahla, N.; Ghanbary, F. (2007). A kinetic model for the decolorization of C.I. Acid Yellow 23 by Fenton process. Journal of Hazardous Materials, 148(1-2), 98-102. https://doi.org/10.1016/j.jhazmat.2007.02.003Test; Bell-Ajy, K.; Abbaszadegan, M.; Ibrahim, E.; Verges, D.; Le Chevallier, M. (2000). Conventional and Optimized Coagulation for NOM Removal. Journal of the American Water Works Association, 92 (10), 44–58. https://doi.org/10.1002/j.1551-8833.2000.tb09023.xTest; Bello, M. M.; Abdul Raman, A. A.; Asghar, A. (2019). A review on approaches for addressing the limitations of Fenton oxidation for recalcitrant wastewater treatment. Process Safety and Environmental Protection, 126, 119-140. https://doi.org/10.1016/j.psep.2019.03.028Test; Belouafa, S.; Habti, F.; Benhar, S.; Belafkih, B.; Tayane, S.; Hamdouch, S.; Bennamara, A.; Abourriche, A. (2017). Statistical tools and approaches to validate analytical methods: Methodology and practical examples. International Journal of Metrology and Quality Engineering, 8, 9. https://doi.org/10.1051/ijmqe/2016030Test; Bener, S.; Bulca, Ö.; Palas, B.; Tekin, G.; Atalay, S.; Ersöz, G. (2019). Electrocoagulation process for the treatment of real textile wastewater: Effect of operative conditions on the organic carbon removal and kinetic study. Process Safety and Environmental Protection, 129, 47-54. https://doi.org/10.1016/j.psep.2019.06.010Test; Benhadji, A.; Ahmed, M. T.; Maachi, R. (2011). Electrocoagulation and effect of cathode materials on the removal of pollutants from tannery wastewater of Rouïba. Desalination. 277, 128 – 134. https://doi:10.1016/j.desal.2011.04.014Test; Benitez, F.J.; Acero, J.L.; Real, F.J.; Rubio, F.J.; Leal, A.I. (2001). The role of hydroxyl radicals for the decomposition of p-hydroxy phenylacetic acid in aqueous solutions. Water Res., 35, 1338–1343. https://doi.org/10.1016/S0043-1354Test(00)00364-X; Bernal, E. (2014). Limit of Detection and Limit of Quantification Determination in Gas Chromatography. En X. Guo (Ed.), Advances in Gas Chromatography. InTech. https://doi.org/10.5772/57341Test; Bes-Piá, A.; Mendoza-Roca, J. A.; Alcaina-Miranda, M. I.; Iborra-Clar, A.; Iborra-Clar, M. I. (2002). Reuse of wastewater of the textile industry after its treatment with a combination of physico-chemical treatment and membrane technologies. Desalination, 149(1-3), 169-174. https://doi.org/10.1016/S0011-9164Test(02)00750-6; Bezerra, M. A.; Santelli, R. E.; Oliveira, E. P.; Villar, L. S.; Escaleira, L. A. (2008). Response surface methodology (RSM) as a tool for optimization in analytical chemistry. Talanta, 76(5), 965-977. https://doi.org/10.1016/j.talanta.2008.05.019Test; Bhatnagar, R.; Joshi, H.; Mall, I. D.; Srivastava, V. C. (2014). Electrochemical treatment of acrylic dye-bearing textile wastewater: Optimization of operating parameters. Desalination and Water Treatment, 52(1-3), 111-122. https://doi.org/10.1080/19443994.2013.786653Test; Bidhendi, G. R.; Torabian, A.; Ehsani, H.; Razmkhah. (2007). Evaluation of Industrial Dyeing Wastewatre Treatment with Coagulants and Polyelectrolyte as a Coagulant Aid. Iran J. Environ. Health. Sci. Eng. 4, 1, 29 -36.; Bigda, R. J. (1995). Consider Fenton’s Chemistry for Wastewater Treatment. Chemical Engineering Progress, 5.; Bilińska, L.; Blus, K.; Gmurek, M.; Ledakowicz, S. (2019). Coupling of electrocoagulation and ozone treatment for textile wastewater reuse. Chemical Engineering Journal, 358, 992-1001. https://doi.org/10.1016/j.cej.2018.10.093Test; Bird, R. B.; Stewart, W. E.; Lightfoot, E. N. (2009). Transport Phenomena (2nd ed). Wiley.; Blanco, J.; Torrades, F.; De la Varga, M.; García-Montaño, J. (2012). Fenton and biological-Fenton coupled processes for textile wastewater treatment and reuse. Desalination, 286, 394–399., https://doi.org/10.1016/j.desal.2011.11.055Test; Blanco, J.; Torrades, F.; Moron, M.; Marolda, B.-A.; Garcia, J. (2014). Photo-Fenton and sequencing batch reactor coupled to photo-Fenton processes for textile wastewater reclamation: Feasibility of reuse in dyeing processes. Chem. Eng. J., 469-475. https://doi.org/10.1016/j.cej.2013.10.101Test; Borchate, S. S; Kulkarni, G. S; Kore, V. S. (2014). A Review on Applications of Coagulation- Flocculation and Ballast Flocculation for Water and Wastewater. International Journal of Innovations in Engineering and Technology, 4(4), 216 - 223.; Bratby, J. (2016). Coagulation and Flocculation in Water and Wastewater Treatment. Water Intelligence Online, 15(0), (2nd edition). IWA Publishing., https://doi.org/10.2166/9781780407500Test; Brillas, E. (2020). A review on the photoelectro-Fenton process as efficient electrochemical advanced oxidation for wastewater remediation. Treatment with UV light, sunlight, and coupling with conventional and other photo-assisted advanced technologies. Chemosphere, 250, 126198. https://doi.org/10.1016/j.chemosphere.2020.126198Test; Brillas, E.; Martinez-Huitle, C.A. (2015). Decontamination of wastewaters containing synthetic organic dyes by electrochemical methods. An updated review. Applied Catalysis B: Environmental, 166-167, 603-643. https://doi.org/10.1016/j.apcatb.2014.11.016Test; Brüschweiler, B. J.; Küng, S.; Bürgi, D.; Muralt, L.; Nyfeler, E. (2014). Identification of non-regulated aromatic amines of toxicological concern which can be cleaved from azo dyes used in clothing textiles. Regulatory Toxicology and Pharmacology, 69(2), 263-272. https://doi.org/10.1016/j.yrtph.2014.04.011Test; Butler, E.; Hung, Y.-T.; Yeh, R. Y.-L.; Suleiman Al Ahmad, M. (2011). Electrocoagulation in Wastewater Treatment. Water, 3(2), 495-525. https://doi.org/10.3390/w3020495Test; Butnaru, R.; Savin, I.-I. (2008). Wastewater characteristics in textile finishing mills. Environmental Engineering and Management Journal, 7(6), 859-864. https://doi.org/10.30638/eemj.2008.113Test; Cabot, F. A. (2012). El Camino Invisible de un Bien Preciado. Infografía.; Çalik, Ç.; Çifçi D. İ. (2022) Comparison of kinetics and costs of Fenton and photo-Fenton processes used for the treatment of a textile industry wastewater. Journal of Environmental Management. 304, 114234. https://doi.org/10.1016/j.jenvman.2021.114234Test; Can, O. T.; Bayramoğlu, M.; Kobya, M. (2003). Decolorization of Reactive Dye Solutions by Electrocoagulation Using Aluminum Electrodes. Industrial Engineering Chemistry Research, 42(14), 3391-3396. https://doi.org/10.1021/ie020951gTest; Cañizares, P.; Martínez, F.; Jiménez, C.; Lobato, J.; Rodrigo, M. A. (2006). Coagulation and Electrocoagulation of Wastes Polluted with Dyes. Environmental Science Technology, 40(20), 6418-6424. https://doi.org/10.1021/es0608390Test; Cárdenas Torrado, G.; Molina Pérez, F. J. (2022). Alternativas para tratar lodos originados en sistemas de tratamiento de aguas residuales: una revisión. Ingeniería, Vol. 27 No. 3 https://doi.org/10.14483/23448393.17945Test; Carmona, I. (2013). De colorantes sintéticos a naturales en la industria alimentaria. Argentina.: Agrimundo.; Carolina Investigations® for AP® Biology (2014). Carolina Investigations® for AP® Biology: Transformation Kit: Teacher's Manual and Students Guide. https://www.carolina.com/teacher-resources/Document/ap-biology-transformation-kit-manual/tr37235.trTest; Carvalho, J. R. S.; Amaral, F. M.; Florencio, L.; Kato, M. T.; Delforno, T. P.; Gavazza, S. (2020). Microaerated UASB reactor treating textile wastewater: The core microbiome and removal of azo dye Direct Black 22. Chemosphere, 242, 125157. https://doi.org/10.1016/j.chemosphere.2019.125157Test; Çatıkkaş, B. (2017). Raman and FT-IR spectra, DFT and SQMFF calculations for N, N-dimethylaniline. Periodicals of Engineering and Natural Sciences, 5(2).; Cavazzuti, M. (2013). Optimization methods: From theory to design: scientific and technological aspects in mechanics. Springer.; Centro del Agua. (15 de 09 de 2017). Los Recursos Hídricos en América Latina. Recuperado el 22 de 08 de 2017, de Centro del Agua.: http://www.centrodelagua.orgTest; Cepillo, D.-I. S. (2011). Diseño Óptimo de Laminados en Materiales Compuestos. Aplicación del MEF y el Método de las Superficies de Respuesta. Universidad de Sevilla.; Cestarolli, D. T.; das Graças de Oliveira, A.; Guerra, E. M. (2019). Removal of Eriochrome Black textile dye from aqueous solution by combined electrocoagulation–electroflotation methodology. Applied Water Science, 9(4). https://doi.org/10.1007/s13201-019-0985-xTest; Chafi, M.; Gourich, B.; Essadki, A. H.; Vial, C.; Fabregat, A. (2011). Comparison of electrocoagulation using iron and aluminium electrodes with chemical coagulation for the removal of a highly soluble acid dye. Desalination, 281, 285-292. https://doi.org/10.1016/j.desal.2011.08.004Test; Chan, K. H.; Chu, W. (2003). Modeling the reaction kinetics of Fenton’s process on the removal of atrazine. Chemosphere, 51(4), 305-311. https://doi.org/10.1016/S0045-6535Test(02)00812-3; Chandana, L.; Lakshminarayana, B.; Subrahmanyam, C. (2015). Influence of hydrogen peroxide on the simultaneous removal of Cr(VI) and methylene blue from aqueous medium under atmospheric pressure plasma jet. Journal of Environmental Chemical Engineering, 3(4): 2760–2767. https://doi.org/10.1016/j.jece.2015.09.030Test; Chang, E. E.; Hsing, H.-J.; Ko, C. S.; Chiang, P. C. (2007). Decolorization, mineralization, and toxicity reduction of acid orange 6 by iron-sacrificed plates in the electrocoagulation process. Journal of Chemical Technology & Biotechnology, 82(5), 486.2-495. https://doi.org/10.1002/jctb.1696Test; Chang, S. H.; Chuang, S. H.; Li, H. C.; Liang, H. H.; Huang, L. C. (2009). Comparative study on the degradation of I.C. Remazol Brilliant Blue R and I.C. Acid Black 1 by Fenton oxidation and Fe0/air process and toxicity evaluation. Journal of Hazardous Materials, 166(2-3), 1279-1288. https://doi.org/10.1016/j.jhazmat.2008.12.042Test; Chantes, P.; Jarusutthirak, C.; Kanchanapiya, P.; Danwittayakul, S. (2015). Treatment of Textile Dyeing Wastewater by Electrocoagulation. Key Engineering Materials, 659, 284-288. https://doi.org/10.4028/www.scientific.net/KEM.659.284Test; Chen, J.; Tyagi, R.D.; Li, J.; Zhang, X.; Drogui, P.; Sun, F. (2018). Economic assessment of biodiesel production from wastewater sludge. Biores. Technol., 253, 41–48. https://doi.org/10.1016/j.biortech.2018.01.016Test; Chi, G. T.; Nagy, Z. K.; Huddersman, K. D. (2011). Kinetic Modelling of the Fenton-Like Oxidation of Maleic Acid Using a Heterogeneous Modified Polyacrylonitrile (Pan) Catalyst. Progress in Reaction Kinetics and Mechanism, 36(3), 189-214. https://doi.org/10.3184/146867811X13021847366179Test; Chung, K.-T. (2016). Azo dyes and human health: A review. Journal of Environmental Science and Health, Part C, 34(4), 233-261. https://doi.org/10.1080/10590501.2016.1236602Test; Coates, J. (2000). Interpretation of infrared spectra, a practical approach. In Encyclopedia of Analytical Chemistry. R.A. Meyers (Ed.) pp. 10815–10837. John Wiley & Sons; Collivignarelli, M. C.; Abbà, A.; Miino, M. C.; Damiani, S. (2019). Treatments for color removal from wastewater: State of the art. Journal of Environmental Management, 236, 727 – 745, https://doi.org/10.1016/j.jenvman.2018.11.094Test; Colorants. (18 de Marzo de 2013). Recuperado el 28 de 08 de 2017, The Essential Chemical Industry.: http://www.essentialchemicalindustry.orgTest; CONPES. (2002). Acciones prioritarias y lineamientos para la formulación del plan nacional de manejo de aguas residuales (3177; p. 27). Consejo Nacional de Política Económica y Social. https://colaboracion.dnp.gov.co/CDT/Conpes/Econ%C3%B3micos/3177.pdfTest; Contreras, C. A.; Sugita, S.; Ramos, E. (2006). Preparation of sodium aluminate from basic aluminum sulfate. Advances in Technology of Materials and Materials Processing Journal, 8 (2), 122.; Cooper, P. (Ed.). (1995). Colour in dyehouse effluent. Society of Dyers and Colourists.; CORPOCALDAS. (2014). Por medio de la cual se ajustan los objetivos de calidad del recurso hidrico en la subcuenca del rfo Chinchina, y se definen para la microcuenca de la quebrada Manizales jurisdicción de la Corporación Autónoma Regiaonal de Caldas, CORPOCALDAS (Resolución 496; p. 6).; Crittenden, J. C.; Trussell, R. R.; Hand, D. W.; Howe, K. J.; Tchobanoglous, G. (2012). MWH’s Water Treatment: Principles and Design. John Wiley & Sons, Inc. https://doi.org/10.1002/9781118131473Test; CTA, GSI-LAC, COSUDE, IDEAM. (2015). Evaluación Multisectorial de la Huella Hídrica en Colombia. Resultados por subzonas hidrográficas en el marco del Estudio Nacional del Agua 2014. Medellín.; Currie, L. A. (1968). Limits for qualitative detection and quantitative determination. Application to radiochemistry. Analytical Chemistry, 40 (3), 586-593. https://doi.org/10.1021/ac60259a007Test; Currie, L. A. (1985). The limitations of models and measurements as revealed through chemometric intercomparison. Journal of Research of the National Bureau of Standards, 90 (6), 409. https://doi.org/10.6028/jres.090.033Test; Currie, L. A. (1999). Detection and quantification limits: Origins and historical overview. Analytica Chimica Acta, 8.; Dalvand, A.; Gholami, M.; Joneidi, A.; Mahmoodi, N. M. (2011). Dye Removal, Energy Consumption and Operating Cost of Electrocoagulation of Textile Wastewater as a Clean Process: Electrocoagulation of Textile Wastewater. CLEAN - Soil, Air, Water, 39(7), 665-672. https://doi.org/10.1002/clen.201000233Test; DANE. (23 de 6 de 2020). DANE. Recuperado el 22 de 08 de 2017, de Departamento Administrativo Nacional de Estadística.: www.dane.gov.co; Daneshvar, N.; Khataee, A. R.; Amani Ghadim, A. R.; Rasoulifard, M. H. (2007). Decolorization of C.I. Acid Yellow 23 solution by electrocoagulation process: Investigation of operational parameters and evaluation of specific electrical energy consumption (SEEC). Journal of Hazardous Materials, 148(3), 566-572. https://doi.org/10.1016/j.jhazmat.2007.03.028Test; Danzer, K.; Currie, L. A. (1998). Guidelines for calibration in analytical chemistry. Part I. Fundamentals and single component calibration (IUPAC Recommendations 1998). Pure and Applied Chemistry, 70(4), 993-1014. https://doi.org/10.1351/pac199870040993Test; Deghles, A. (2019). Treatment of Tannery Wastewater by the Application of Electrocoagulation Process Using Iron and Aluminum Electrodes. Green and Sustainable Chemistry. 9, 119-134. https://doi.org/10.4236/gsc.2019.94009Test; Demirci, Y.; Pekel, L. C.; Alpbaz, M. (2015). Investigation of Different Electrode Connections in Electrocoagulation of Textile Wastewater Treatment. Int. J. Electrochem. Sci.; 10, 9.; Dempsey, B. A. (2006). Chapter 2 - Coagulant characteristics and reactions. En: Interface Science and Technology, Gayle Newcombe, David Dixon Editor(s). Elsevier, https://doi.org/10.1016/S1573-4285Test(06)80071-2; Deng, Y.; Englehardt, J. D. (2006). Treatment of landfill leachate by the Fenton process. Water Research, 40(20), 3683-3694. https://doi.org/10.1016/j.watres.2006.08.009Test; Dentel, S. K. (1991). Coagulant control in water treatment. Critical Reviews in Environmental Control, 21(1), 41-135. https://doi.org/10.1080/10643389109388409Test; Dermentzis, K.; Valsamidou, E.; Chatzichristou, C.; Mitkidou, S. (2013). Decolorization Treatment of Copper Phthalocyanine Textile Dye Wastewater by Electrochemical Methods. Journal of Engineering Science and Technology Review, 6(1), 33-37. https://doi.org/10.25103/jestr.061.07Test; Devi, O. Z.; Basavaiah, K.; Vinay, K. B. (2012). Application of potassium permanganate to spectrophotometric assay of metoclopramide hydrochloride in pharmaceuticals. Journal of Applied Spectroscopy, 78(6), 873-883. https://doi.org/10.1007/s10812-012-9547-9Test; DIAN. (2021). Dirección de Impuestos y Aduanas Nacionales [Consultas Arancel]. Dirección de Impuestos y Aduanas Nacionales. https://www.dian.gov.coTest/; Dilaver, M.; Hocaoğlu, S. M.; Soydemir, G.; Dursun, M.; Keskinler, B.; Koyuncu, I.; Ağtaş, M. (2018). Hot wastewater recovery by using ceramic membrane ultrafiltration and its reusability in textile industry. Journal of Cleaner Production, 171, 220 – 233. https://doi.org/10.1016/j.jclepro.2017.10.015Test; Do, S. H.; Batchelor, B.; Lee, H. K.; Kong, S. H. (2009). Hydrogen peroxide decomposition on manganese oxide (pyrolusite): Kinetics, intermediates, and mechanism. Chemosphere, 75(1), 8-12. https://doi.org/10.1016/j.chemosphere.2008.11.075Test; Dobrosz-Gómez, I.; Gómez-García, M. Á.; Ibarra, H. (2021). Integration of environmental and economic performance of Electro-Coagulation-Anodic Oxidation sequential process for the treatment of soluble coffee industrial effluent. The Science of The Total Environment, 837: 155880. https://doi.org/10.1016/j.scitotenv.2022.155880Test; Dobrosz-Gómez, I.; Gómez-García, M. Á.; Ibarra, H. (2022). Treatment of soluble coffee industrial effluent by electro coagulation–electro oxidation process: multiobjective optimization and kinetic study. International journal of Environmental Science and Technology, 19(7). https://doi.org/10.1007/s13762-022-04050-wTest; Domènech, X.; Jardim, W.; Litter, M. (2004). Procesos avanzados de oxidación para la eliminación de contaminantes. Colección Documentos, 29.; Donadelli, J. A.; Carlos, L.; Arques, A.; García Einschlag, F. S. (2018). Kinetic and mechanistic analysis of Rahman azo dyes decolorization by ZVI-assisted Fenton systems: PH-dependent shift in the contributions of reductive and oxidative transformation pathways. Applied Catalysis B: Environmental, 231, 51-61. https://doi.org/10.1016/j.apcatb.2018.02.057Test; Drumond Chequer, F. M.; de Oliveira, G. A. R.; Anastacio Ferraz, E. R.; Carvalho, J.; Boldrin Zanoni, M. V.; de Oliveir, D. P. (2013). Textile Dyes: Dyeing Process and Environmental Impact. En M. Gunay (Ed.), Eco-Friendly Textile Dyeing and Finishing. InTech. https://doi.org/10.5772/53659Test; Du, Y.; Zhou, M.; Lei, L. (2006) Role of the intermediates in the degradation of phenolic compounds by Fenton-like process. Journal of Hazardous Materials, B136, 859 – 865. https://doi.org/10.1016/j.jhazmat.2006.01.022Test; Du, Y.; Zhou, M.; Lei, L. (2007). Kinetic model of 4-CP degradation by Fenton/O2 system. Water Research, 41(5), 1121-1133. https://doi.org/10.1016/j.watres.2006.11.038Test; Dulov, A.; Dulova, N.; Trapido, M. (2011). Combined Physicochemical Treatment of Textile and Mixed Industrial Wastewater. Ozone: Science & Engineering. 33(4):285-93. https://doi:10.1080/01919512.2011.583136Test; Duque-Escobar, G. (2017). El Paisaje Cultural Cafetero. Manizales: Universidad Nacional de Colombia sede Manizales.; Echeverri, M. J. (2017). Manizales’ Water Distribution System – Aguas de Manizales S.A. E.S.P. Procedia Engineering, 186, 36-43. https://doi.org/10.1016/j.proeng.2017.03.205Test; EcoSiglos. (2017). Recuperado el 22 de 08 de 2017, de Infografía: La Huella del Agua.: http://waterfootprint.orgTest; Edwards, F. G.; Fendley, D. L.; Lunsford, J. V. (2006). Electrolytic Treatment of an Industrial Wastewater from a Hosiery Plant. Water Environment Research, 78(4), 435-441. https://doi.org/10.2175/106143006X98831Test; El Colombiano. (10 de 6 de 2016). Obtenido de Identifican a otra empresa de textiles que está tiñendo el río Medellín: http://www.elcolombiano.com/medio-ambiente/identifican-a-otra-empresa-de-textiles-que-esta-tinendo-el-rio-medellin-IE4363659Test; El Colombiano. (3 de 6 de 2016). Obtenido de Así cazan a las empresas que tiñen de colores el río Medellín: http://www.elcolombiano.com/antioquia/asi-son-los-operativos-contra-los-que-contaminan-el-rio-medellin-CM4284455Test; El-Gohary, F.; Tawfik, A. (2009). Decolorization and COD reduction of disperse and reactive dyes wastewater using chemical-coagulation followed by sequential batch reactor (SBR) process. Desalination, 249(3), 1159-1164. https://doi.org/10.1016/j.desal.2009.05.010Test; El-Hosiny, F. I.; Abdel-Khalek, M. A.; Selim, K. A.; Osama, I. (2018). Physicochemical study of dye removal using electro-coagulation-flotation process. Physicochemical Problems of Mineral Processing; ISSN 2084-4735. https://doi.org/10.5277/ppmp1825Test; Eliyas, A.; Ljutzkanov, L.; Stambolova, I.; Blaskov, V.; Vassilev, S.; Razkazova-Velkova, E.; Mehandjiev, D. (2013). Visible light photocatalytic activity of TiO2 deposited on activated carbon. Open Chemistry, 11(3). https://doi.org/10.2478/s11532-012-0183-2Test; El-Khorassani, H., Trebuchon, P., Bitar, H., Thomas, O. A. (1999). Simple UV spectrophotometric procedure for the survey of industrial sewage system. Water Sc. Technol., 39 (10–11), 77–82. https://doi.org/10.2166/wst.1999.0633Test; Ellouzea, E.; Ellouzea, D.; Jradb, A.; Ben Amara, R. (2011). Treatment of synthetic textile wastewater by combined chemical coagulation/membrane processes. Desalination and Water Treatment. 33, 118–124. https://doi.org/10.5004/dwt.2011.2612Test; Emamjomeh, M.; Sivakumar, M. (2009). Review of pollutants removed by electrocoagulation and electrocoagulation/flotation processes. Journal of Environmental Management, 90(5), 1663-1679. https://doi.org/10.1016/j.jenvman.2008.12.011Test; EMAS (2021). Empresa Metropolitana de Aseo S.A E.S.P. Cotización realizada en junio de 2021.; EPA. (1997). Profile of the textile industry. Washington.: Environmental Protection Agency.; Erdem, E., Sari, E. Y., Kilinçarslan, R., Kabay, N. (2009). Synthesis and characterization of azo-linked Schiff bases and their nickel(II), copper(II), and zinc(II) complexes. Transition Metal Chemistry, 34(2), 167-174. https://doi.org/10.1007/s11243-008-9173-9Test; Ertugay, N.; Acar, F. N. (2017). Removal of COD and color from Direct Blue 71 azo dye wastewater by Fenton’s oxidation: Kinetic study. Arabian Journal of Chemistry, 10, S1158-S1163. https://doi.org/10.1016/j.arabjc.2013.02.009Test; EWA. (2005). Efficient use of water in the textile finishing industry. Brussels: Official Publication of the European Water Association (EWA).; Eyvaz, M.; Kirlaroglu, M.; Aktas, T. S.; Yuksel, E. (2009). The effects of alternating current electrocoagulation on dye removal from aqueous solutions. Chemical Engineering Journal, 153(1-3), 16-22. https://doi.org/10.1016/j.cej.2009.05.028Test; Fajardo, A. S.; Martins, R. C.; Silva, D. R.; Martínez-Huitle, C. A.; Quinta-Ferreira, R. M. (2017). Dye wastewaters treatment using batch and recirculation flow electrocoagulation systems. Journal of Electroanalytical Chemistry, 801, 30-37. https://doi.org/10.1016/j.jelechem.2017.07.015Test; FAO. (15 de 09 de 2017). Food and Agriculture Organizacion of the United Nations. Recuperado el 22 de 08 de 2017, de World Water Resources by Country.: http://www.fao.orgTest; Faust, S.D.; Aly, O.M. (1998). Chemistry of Water Treatment, 2nd edition. Taylor & Francis.; Favero, B. M.; Favero, A. C.; Taffarel, S. R.; Souza, F. S. (2018). Evaluation of the efficiency of coagulation/flocculation and Fenton process in reduction of colour, turbidity and COD of a textile effluent. Environmental Technology, 1-10. https://doi.org/10.1080/09593330.2018.1542035Test; Ferrari-Lima, A. M.; Ueda, A. C.; Bergamo, E. A.; Marques, R. G.; Ferri, E. A. V.; Pinto, C. S.; Pereira, C. A. A.; Yassue-Cordeiro, P. H.; Souza, R. P. (2017). Perovskite-type titanate zirconate as photocatalyst for textile wastewater treatment. Environmental Science and Pollution Research, 24(14), 12529-12537. https://doi.org/10.1007/s11356-016-7590-4Test; Fogler, H. S. (2020). Elements of chemical reaction engineering (Sixth edition). Pearson.; Forero, J.-E.; Ortiz, O.-P. (2005). Aplicación de procesos de oxidación avanzada como tratamiento de fenol en aguas residuales industriales de refinería. 3, 14.; Freitas, T. K. F. S.; Almeida, C. A.; Manholer, D. D.; Geraldino, H. C. L.; de Souza, M. T. F.; Garcia, J. C. (2018). Review of Utilization Plant-Based Coagulants as Alternatives to Textile Wastewater Treatment. En S. S. Muthu (Ed.), Detox Fashion (pp. 27-79). Springer Singapore. https://doi.org/10.1007/978-981-10-4780-0_2Test; Freitas, T. K. F. S.; Oliveira, V. M.; de Souza, M. T. F.; Geraldino, H. C. L.; Almeida, V. C., Fávaro, S. L.; Garcia, J. C. (2015). Optimization of coagulation-flocculation process for treatment of industrial textile wastewater using okra (A. esculentus) mucilage as natural coagulant. Industrial Crops and Products, 76, 538-544. https://doi.org/10.1016/j.indcrop.2015.06.027Test; Georgiou, D.; Aivazidis, A.; Hatiras, J.; Gimouhopoulos, K. (2003). Treatment of cotton textile wastewater using lime and ferrous sulfate. Water Research, 37(9), 2248-2250. https://doi.org/10.1016/S0043-1354Test(02)00481-5; Ghafari, S.; Aziz, H. A.; Isa, M. H.; Zinatizadeh, A. A. (2009). Application of response surface methodology (RSM) to optimize coagulation–flocculation treatment of leachate using poly-aluminum chloride (PAC) and alum. Journal of Hazardous Materials, 163(2-3), 650-656. https://doi.org/10.1016/j.jhazmat.2008.07.090Test; Ghaly, A.; Ananthashankar, R.; Alhattab, M.; Ramakrishnan, V. V. (2013). Production, Characterization and Treatment of Textile Effluents: A Critical Review. Journal of Chemical Engineering & Process Technology, 05 (01). https://doi.org/10.4172/2157-7048.1000182Test; Ghanbari, F.; Moradi, M.; Eslami, A.; Emamjomeh, M. M. (2014). Electrocoagulation/Flotation of Textile Wastewater with Simultaneous Application of Aluminum and Iron as Anode. Environmental Processes, 1(4), 447-457. https://doi.org/10.1007/s40710-014-0029-3Test; Ghernaout, D.; Elboughdiri, N.; Ghareba, S. (2020). Fenton Technology for Wastewater Treatment: Dares and Trends, Open Access Library Journal, 7, 1-26. https://doi:10.4236/oalib.1106045Test; Ghernaout, D.; Ghernaout, B.; Kellil, A. (2009). Natural organic matter removal and enhanced coagulation as a link between coagulation and electrocoagulation. Desalin. Water Treat., 2, 203–222. https://doi:10.5004/dwt.2009.116Test; Ghodake, G.; Jadhav, U.; Tamboli, D.; Kagalkar, A.; Govindwar, S. (2011). Decolorization of Textile Dyes and Degradation of Mono-Azo Dye Amaranth by Acinetobacter calcoaceticus NCIM 2890. Indian J Microbiol., 51(4), 501–508. http://doi:10.1007/s12088-011-0131-4Test; Ghosh, P.; Samanta, A. N.; Ray, S. (2010). COD reduction of petrochemical industry wastewater using Fenton’s oxidation. The Canadian Journal of Chemical Engineering, 88(6), 1021-1026. https://doi.org/10.1002/cjce.20353Test; GilPavas, E. (2020). Procesos Avanzados de Oxidación para la degradación de índigo y materia orgánica de aguas Residuales de una Industria textil. Tesis de doctorado. Departamento de Ingeniería Química, Universidad Nacional de Colombia – Sede Manizales. https://repositorio.unal.edu.co/handle/unal/78505Test; GilPavas, E.; Dobrosz-Gómez, I.; Gómez-García, M. Á. (2011). The removal of the trivalent chromium from the leather tannery wastewater: The optimisation of the electro-coagulation process parameters. Water Science and Technology, 63(3), 385-394. https://doi.org/10.2166/wst.2011.232Test; GilPavas, E.; Dobrosz-Gómez, I.; Gómez-García, M. Á. (2012). Decolorization and mineralization of Diarylide Yellow 12 (PY12) by photo-Fenton process: The Response Surface Methodology as the optimization tool. Water Science and Technology, 65(10), 1795-1800. https://doi.org/10.2166/wst.2012.078Test; GilPavas, E.; Dobrosz-Gómez, I.; Gómez-García, M. Á. (2017). Coagulation-Flocculation Sequential with Fenton or Photo-Fenton Processes as an Alternative for the Industrial Textile Wastewater Treatment. Journal of Environmental Management. 191:189-97. https://doi:10.1016/j.jenvman.2017.01.015Test; GilPavas, E.; Dobrosz-Gómez, I.; Gómez-García, M. Á. (2018). Optimization of solar-driven photo-electro-Fenton process for the treatment of textile industrial wastewater. Journal of Water Process Engineering, 24, 49-55 https://doi.org/10.1016/j.jwpe.2018.05.007Test; GilPavas, E.; Dobrosz-Gómez, I.; Gómez-García, M. Á. (2019). Optimization and toxicity assessment of a combined electrocoagulation, H2O2/Fe2+/UV and activated carbon adsorption for textile wastewater treatment. Science of The Total Environment, 651, 551-560. https://doi.org/10.1016/j.scitotenv.2018.09.125Test; GilPavas, E.; Molina-Tirado, K.; Gómez-García, M. Á. (2009). Treatment of automotive industry oily wastewater by electrocoagulation: Statistical optimization of the operational parameters. Water Science and Technology, 60(10), 2581-2588. https://doi.org/10.2166/wst.2009.519Test; Glaze, W. H.; Kang, J.-W.; Chapin, D. H. (1987). The Chemistry of Water Treatment Processes Involving Ozone, Hydrogen Peroxide and Ultraviolet Radiation. Ozone: Science & Engineering: The Journal of the International Ozone Association, 9(4), 335-352. https://doi.org/10.1080/01919518708552148Test; Glugoski, L. P.; de Jesus Cubas, P.; Fujiwara, S. T. (2017). Reactive Black 5 dye degradation using filters of smuggled cigarette modified with Fe3+. Environmental Science and Pollution Research, 24(7), 6143-6150. https://doi.org/10.1007/s11356-016-6820-0Test; Gogate, P.R.; Pandit, A.B. (2004). A review of imperative technologies for wastewater treatment I: oxidation technologies at ambient conditions. Adv. Environ. Res., 8 (3–4), 501–551. https://doi.org/10.1016/S1093-0191Test(03)00032-7; Gohil, C.; Makwana, A. R. (2019). Navy Blue 3G Dye Electrocoagulation using Stainless Steel Electrode in Presence and Absence of Granular Activated Carbon Particle Electrode. International Journal of Engineering and Advanced Technology, 8(6), 741-745. https://doi.org/10.35940/ijeat.F9218.088619Test; Gökkuş, Ö.; Yıldız, Y. Ş. (2014). Investigation of the effect of process parameters on the coagulation flocculation. Fresenius Environmental Bulletin, 23(2), 463-470.; Golob, V.; Vinder, A.; Simonic, M. (2005). Efficiency of coagulation/flocculation method for treatment of dye bath effluents. Dyes and Pigments, 67, 93-97. https://doi.org/10.1016/j.dyepig.2004.11.003Test; Gómez, C. A.; Gómez-García, M. Á.; Dobrosz-Gómez, I. (2023) Analysis of the Capacity of the Fenton Process for the Treatment of Polluted Wastewater from the Leather Dyeing Industry. The Scientific World Journal. https://doi.org/10.1155/1969/4724606Test; Gonçalves, M. V. B.; Oliveira, S. C. D.; Abreu, B. M. P. N.; Guerra, E. M.; Cestarolli, D. T. (2016). Electrocoagulation/electroflotation Process Applied to Decolourization of a Solution Containing the Dye Yellow Sirius K-CF. International Journal of Electrochemical Science, 7576-7583. https://doi.org/10.20964/2016.09.42Test; Govindan, K.; Oren, Y.; Noel, M. (2014). Effect of dye molecules and electrode material on the settling behavior of flocs in an electrocoagulation induced settling tank reactor (EISTR). Separation and Purification Technology, 133, 396-406. https://doi.org/10.1016/j.seppur.2014.04.046Test; Grenda, K.; Arnold, J.; Hunkeler, D.; Gamelas, J. A. F.; Rasteiro, M. G. (2018). Tannin-based Coagulants from Laboratory to Pilot Plant Scales for Coloured Wastewater Treatment. BioResources, 13(2). https://doi.org/10.15376/biores.13.2.2727-2747Test; Gunawan, D.; Kuswadi, V. B.; Sapei, L.; Riadi, L. (2017). Yarn dyed wastewater treatment using hybrid electrocoagulation-Fenton method in a continuous system: Technical and economical viewpoint. Environmental Engineering Research, 23(1), 114-119. https://doi.org/10.4491/eer.2017.108Test; Gündüz, Z.; Atabey, M. (2019). Effects of Operational Parameters on the Decolourisation of Reactive Red 195 Dye from Aqueous Solutions by Electrochemical Treatmen. International Journal of Electrochemical Science, 5868-5885. https://doi.org/10.20964/2019.06.37Test; Guo, Y.; Xue, Q.; Zhang, H.; Wang, N.; Chang, S.; Fang, Y.; Wang, H.; Yuan, F.; Pang, H.; Chen, H. (2018). Highly efficient treatment of real benzene dye intermediate wastewater by simple limestone and lime neutralization-coagulation with improved Fenton oxidation. Environmental Science and Pollution Research, 25(31), 31125-31135. https://doi.org/10.1007/s11356-018-3101-0Test; Gürses, A.; Açıkyıldız, M.; Güneş, K.; Gürses, M. S. (2016). Dyes and Pigments: Their Structure and Properties. En A. Gürses, M. Açıkyıldız, K. Güneş, M. S. Gürses, Dyes and Pigments (pp. 13-29). Springer International Publishing. https://doi.org/10.1007/978-3-319-33892-7_2Test; Gutiérrez Pulido, H.; Vara Salazar, R.; Cano Carrasco, A.; Osorio Sánchez, M. (2008). Análisis y diseño de experimentos (2.a Ed., Vol. 1). Mc Graw-Hill.; Hakizimana, J. N.; Gourich, B.; Chafi, M.; Stiriba, Y.; Vial, C.; Drogui, P.; Naja, J. (2017). Electrocoagulation process in water treatment: A review of electrocoagulation modeling approaches. Desalination, 404, 1-21. https://doi.org/10.1016/j.desal.2016.10.011Test; Hall, P.; Selinger, B. (1989). A statistical justification to relating interlaboratory coefficients of variation with concentration levels. Analytical Chemistry, 61(13), 1465-1466. https://doi.org/10.1021/ac00188a033Test; Hao, O. J.; Kim, H.; Chiang, P.-C. (2000). Decolorization of wastewater. Critical Reviews in Environmental Science and Technology., Vol. 30, pp 449-505.; Harris, D. C. (2010). Quantitative chemical analysis (8th ed). W.H. Freeman and Co.; Hassan, H.; Wan, Z. (2012). Fenton-like oxidation of Reactive Black 5 solutions using acid-activated Kuala Kangsar clay. 2012 IEEE Business, Engineering & Industrial Applications Colloquium (BEIAC), 6-11. https://doi.org/10.1109/BEIAC.2012.6226108Test; Hayati, F.; Khodabakhshi, M. R.; Isari, A. A.; Moradi, S.; Kakavandi, B. (2020). LED-assisted sonocatalysis of sulfathiazole and pharmaceutical wastewater using N,Fe co-doped TiO2@SWCNT: Optimization, performance and reaction mechanism studies, Journal of Water Process Engineering, 38: 101693. https://doi.org/10.1016/j.jwpe.2020.101693Test; He, Y. Q. (2011). Experiment on Treating the Dying Wastewater with Blast-Furnace Ash and Fenton Reagent. Advanced Materials Research, 295-297:1120-23. https://doi:10.4028/www.scientific.net/AMR.295-297.1120Test; He, Z.; Huang, C.; Wang, Q.; Jiang, Z.; Chen, J.; Song, S. (2011). Preparation of a Praseodymium Modified Ti/SnO2-Sb/PbO2 Electrode and its Application in the Anodic Degradation of the Azo Dye Acid Black 194. Int. J. Electrochem. Sci., 6, 14. https://doi.org/10.1016/S1452-3981Test(23)18332-5; Helmes, C. T.; Sigman, C. C.; Fung, V. A.; Thompson, K.; Doeltz, M. K.; Mackie, M.; Klein, T. E.; Lent, D. (1984). A study of azo and nitro dyes for the selection of candidates for carcinogen bioassay. Journal of Environmental Science and Health. Part A: Environmental Science and Engineering, 19(2), 97-231. https://doi.org/10.1080/10934528409375152Test; Herbst, W.; Hunger, K.; Wilker, G. (2004). Industrial organic pigments: Production, properties, applications (3rd, completely rev. ed.). Wiley-VCH.; Hill, C. G.; Root, T. W. (2014). An introduction to chemical engineering kinetics and reactor design (Second edition). John Wiley & Sons, Inc.; Holt, P. K.; Barton, G. W.; Mitchell, C. A. (2005). The future for electrocoagulation as a localised water treatment technology. Chemosphere, 59(3), 355-367. https://doi.org/10.1016/j.chemosphere.2004.10.023Test; Hooshmandfar, A.; Ayati, B.; Khodadadi Darban, A. (2016). Optimization of material and energy consumption for removal of Acid Red 14 by simultaneous electrocoagulation and electroflotation. Water Science and Technology, 73(1), 192-202. https://doi.org/10.2166/wst.2015.477Test; Horning, R. H. (1977). Characterization and Treatment Of Textile Dyeing Wastewaters. Textile Chemist & Colorist, 9, 4.; Horning, R. H. (1978). Textile dyeing wastewaters: Characterization and treatment. Environmental Protection Agency, Office of Research and Development; for sale by the National Technical Information Service. https://catalog.hathitrust.org/Record/100966545Test; Horwitz, W. (1982). Evaluation of analytical methods used for regulation of foods and drugs. Analytical Chemistry, 54(1), 67-76. https://doi.org/10.1021/ac00238a002Test; Horwitz, W.; Albert, R. (2006). The Horwitz Ratio (HorRat): A Useful Index of Method Performance with Respect to Precision. Journal of AOAC International, 89(4), 1095-1109. https://doi.org/10.1093/jaoac/89.4.1095Test; Horwitz, W.; Kamps, L. V. R.; Boyer, K. W. (1980). Quality Assurance in the Analysis of Foods for Trace Constituents. Journal of AOAC International, 63(6), 1344-1354. https://doi.org/10.1093/jaoac/63.6.1344Test; Hsueh, C.-L.; Huang, Y.-H.; Wang, C.-C.; Chen, C.-Y. (2006). Photoassisted Fenton degradation of nonbiodegradable azo-dye (Reactive Black 5) over a novel supported iron oxide catalyst at neutral pH. Journal of Molecular Catalysis A: Chemical, 245(1-2), 78-86. https://doi.org/10.1016/j.molcata.2005.09.044Test; Hu, H.; Xu, K. (2020). Physicochemical technologies for HRPs and risk control. En High-Risk Pollutants in Wastewater (pp. 169-207). Elsevier. https://doi.org/10.1016/B976.2-0-12-816446.2-8.00006.2-3Test; Huang, L. Z.; Zhu, M.; Liu, Z.; Wang, Z.; Hansen, H. C. B. (2019). Single sheet iron oxide: An efficient heterogeneous electro-Fenton catalyst at neutral pH. Journal of Hazardous Materials, 364, 39-47. https://doi.org/10.1016/j.jhazmat.2018.10.026Test; Huang, Y.-H.; Huang, Y.-F.; Chang, P.-S.; Chen, C.-Y. (2008). Comparative study of oxidation of dye-Reactive Black B by different advanced oxidation processes: Fenton, electro-Fenton and photo-Fenton. Journal of Hazardous Materials, 154(1-3), 655-662. https://doi.org/10.1016/j.jhazmat.2007.10.077Test; Huang, Y. F.; Shih, C. H.; Chiueh, P. T.; Lo, S. L. (2015). Microwave co-pyrolysis of sewage sludge and rice straw. Energy. 87, 638–644. https://doi.org/10.1016/j.energy.2015.05.039Test; Huber, L. (2010). Validation of Analytical Methods. Agilent Technologies.; Hussain, I.; Hussain, J.; Arif, M. (2013). Environmental impact of dyeing and printing industry of Sanganer, Rajasthan (India). Turkish Journal Of Engineering And Environmental Sciences, 37, 272-285. https://doi.org/10.3906/muh-1310-8Test; Hussain, J.; Hussain, I.; Arif, M. (2004). Characterization of Textile Wastewater. Journal of Industrial Pollution Control., 20, 137-144.; Ibarra, H.; Dobrosz-Gómez, I.; Gómez-García, M. Á. (2018). Optimización Multiobjetivo del Proceso Fenton en el Tratamiento de Aguas Residuales provenientes de la Producción de Café Soluble. Información tecnológica, 29(5):111-122. https://doi.org/10.4067/S0718-07642018000500111Test; Ibarra, H.; GilPavas, E., Blatchley, E.R.; Gómez-García, M. Á.; Dobrosz-Gómez, I. (2017). Integrated electrocoagulation-electrooxidation process for the treatment of soluble coffee effluent: Optimization of COD degradation and operation time analysis. Journal of Environmental Management, 200: 530-538, https://doi.org/10.1016/j.jenvman.2017.05.095Test; Ibrahim, G. P. S.; Isloor, A. M.; Inamuddin, A. M.; Ismail, N.; Ismail, A. F.; Ashraf, G. M. (2017). Novel, one-step synthesis of zwitterionic polymer nanoparticles via distillation-precipitation polymerization and its application for dye removal membrane. Scientific Reports, 7(1). https://doi.org/10.1038/s41598-017-16131-9Test; ICONTEC. (1995). Calidad Del Agua. Muestreo. Parte 2. Técnicas Generales De Muestreo (p. 17). Instituto Colombiano de Normas Técnicas y Certificación (ICONTEC).; ICONTEC. (2004). Calidad Del Agua. Muestreo. Parte 3: Directrices Para La Preservación Y Manejo De Las Muestras (p. 57). Instituto Colombiano de Normas Técnicas y Certificación (ICONTEC).; ICONTEC. (2010). Calidad Del Agua. Muestreo. Parte 1. Directrices para el diseño de programas y técnicas de muestreo (p. 31). Instituto Colombiano de Normas Técnicas y Certificación (ICONTEC).; IDEAM (2015). Toma y preservación de muestras. Instituto de Hidrología, Meteorología y Estudios Ambientales-IDEAM. http://www.ideam.gov.co/documents/14691/38158/Toma_Muestras_AguasResiduales.pdf/f5baddf0-7d86-4598-bebd-0e123479d428Test; IDEAM. (2002a). Guía para el Monitoreo de Vertimientos, Aguas Superficiales y Aguas Subterráneas. https://oab.ambientebogota.gov.co/?post_type=dlm_download&p=3834Test; IDEAM. (2002b). Tipificación De Procesos Industriales. IDEAM. http://www.ideam.gov.co/documents/14691/38158/Tipificacion_+procesosindustriales.pdf/b145f0d9-803f-4bee-8d75-9d2a637dd221Test; IDEAM. (2019). Estudio Nacional del Agua 2018. Bogotá: Instituto de Hidrología, Meteorología y Estudios Ambientales – IDEAM.; International Trade Centre. (2021, marzo). International Trade Centre. [Trade Map]. International Trade Centre. https://www.intracen.orgTest/; International Trade Centre. (2022, marzo). International Trade Centre [Trade Map]. International Trade Centre. https://www.intracen.orgTest/; Irfan, M.; Butt, T.; Imtiaz, N.; Abbas, N.; Khan, R. A.; Shafique, A. (2017). The removal of COD, TSS and colour of black liquor by coagulation–flocculation process at optimized pH, settling and dosing rate. Arabian Journal of Chemistry, 10, S2307-S2318. https://doi.org/10.1016/j.arabjc.2013.08.007Test; ISO 5667-1. (2006). Water quality—Sampling—Part 1: Guidance on the design of sampling programmes and sampling techniques (p. 31). International Organization for Standardization. https://www.iso.org/standard/36693.htmlTest; ISO 5667-10. (1992). Water quality—Sampling—Part 10: Guidance on sampling of waste waters. International Organization for Standardization. https://www.iso.org/standard/11773.htmlTest; ISO 5667-16 (2000). Calidad del agua. Muestreo. Parte 16: Guía para el ensayo biológico de muestras. https://tienda.icontec.org/gp-calidad-del-agua-muestreo-parte-16-guia-para-el-ensayo-biologico-de-muestras-ntc-iso5667-16-2000.htmlTest; ISO 5667-3. (2003). Water quality—Sampling—Part 3: Guidance on the preservation and handling of water samples. International Organization for Standardization. https://www.iso.org/standard/33486.htmlTest; ISO 6341 (2012). Water quality - Determination of the inhibition of the mobility of Daphnia magna Straus (Cladocera, Crustacea) - Acute toxicity test. https://www.une.org/encuentra-tu-norma/busca-tu-norma/norma?c=N0051030Test; ISO 7887 (2011) Water quality — Examination and determination of colour. https://www.iso.org/standard/46425.htmlTest; Issa, Y. M.; El-Hawary, W.F.; Youssef, A.F.A.; Senosy, A.R. (2012). Synthesis and Structural Study of the Ion-Associates of Sildenafil Citrate with Chromotropic Acid Azo Dyes. European Chemical Bulletin, 1(6), 205-209.; Jiang, B.; Niu, Q.; Li, C.; Oturan, N.; Oturan, M. A. (2020). Outstanding performance of electro-Fenton process for efficient decontamination of Cr (III) complexes via alkaline precipitation with no accumulation of Cr (VI): Important roles of iron species. Applied Catalysis B: Environmental, 272, 119002. https://doi.org/10.1016/j.apcatb.2020.119002Test; Joo, D. J.; Shin, W. S.; Choi, J.-H.; Choi, S. J.; Kim, M.-C.; Han, M. H.; Ha, T. W.; Kim, Y.-H. (2007). Decolorization of reactive dyes using inorganic coagulants and synthetic polymer. Dyes and Pigments, 73(1), 59-64. https://doi.org/10.1016/j.dyepig.2005.10.011Test; Jorfi, S.; Barzegar, G.; Ahmadi, M.; Cheshmeh, R.; Jafarzadeh, N.; Takdastan, A.; Saeedi, R.; Abtahi, M. (2016). Enhanced coagulation-photocatalytic treatment of Acid red 73 dye and real textile wastewater using UVA/ synthesized MgO nanoparticles. J. Environ. Manage, 177, 111-118. https://doi.org/10.1016/j.jenvman.2016.04.005Test; Jose, R. L.; Gigimol, M. G.; Mathew, B. (2020). Adsorptive Removal of Anionic Azo Dye Acid Black 194 from Aqueous Solution using NNMBA-Crosslinked Poly N-Vinyl Pyrrolidone Hydrogel. Asian Journal of Chemistry, 32(2), 311-316. https://doi.org/10.14233/ajchem.2020.22338Test; Jung, Y. S.; Lim, W. T.; Park, J. Y.; Kim, Y. H. (2009). Effect of pH on Fenton and Fenton‐like oxidation. Environmental Technology, 30(2), 183-190. https://doi.org/10.1080/09593330802468848Test; Kakoi, B.; Kaluli, J. W.; Ndiba, P.; Thiong’o, G. (2017). Optimization of Maerua Decumbent bio-coagulant in paint industry wastewater treatment with response surface methodology. Journal of Cleaner Production, 164, 1124-1134. https://doi.org/10.1016/j.jclepro.2017.06.240Test; Kang, L.-S. (1994). Flocculation kinetics using Fe(III) coagulant in water treatment: The effects of sulfate and temperature (p. 6453506) [Doctor of Philosophy, Iowa State University, Digital Repository]. https://doi.org/10.31274/rtd-180813-11468Test; Kang, S.-F.; Liao, C.-H.; Chen, M.-C. (2002). Pre-oxidation and coagulation of textile wastewater by the Fenton process. Chemosphere, 46(6), 923-928. https://doi.org/10.1016/S0045-6535Test(01)00159-X; Kang, Y. W.; Hwang, K. Y. (2000). Effects of reaction conditions on the oxidation efficiency in the Fenton process. Water Research. 34 (10) 2786–2790. https://doi.org/10.1016/S0043-1354Test(99)00388-7; Kanth, S. V.; Venba, R.; Jayakumar, G. C.; Chandrababu, N. K. (2009). Kinetics of leather dyeing pretreated with enzymes: Role of acid protease. Bioresource Technology, 100(8), 2430-2435. https://doi.org/10.1016/j.biortech.2008.11.026Test; Kavak, D. (2017). Treatment of dye solutions by DL nanofiltration membrane. Desalination and Water Treatment, 69, 116-122. https://doi.org/10.5004/dwt.2017.20277Test; Kehinde, F.; Aziz, H. A. (2014). Textile Waste Water and the advanced Oxidative Treatment Process, an Overview. International Journal of Innovative Research in Science, Engineering and Technology, 03(08), 15310-15317. https://doi.org/10.15680/IJIRSET.2014.0308034Test; Keskin, C. S.; Özdemir, A.; Şengil, İ. A. (2011). Simultaneous decolorization of binary mixture of Reactive Yellow and Acid Violet from wastewaters by electrocoagulation. Water Science and Technology, 63(8), 1644-1650. https://doi.org/10.2166/wst.2011.306Test; Khamaruddin, P. F.; Bustam, M. A.; Omar, A. A. (2011). Using Fenton’s Reagents for the Degradation of Diisopropanolamine: Effect of Temperature and pH. International Conference on Environment and Industrial Innovation, 12.; Khan, M. A.; Khan, M. I.; Zafar, S. (2017). Removal of different anionic dyes from aqueous solution by anion exchange membrane. Membrane Water Treatment, 8(3), 259-277. https://doi.org/10.12989/mwt.2017.8.3.259Test; Khataee, A.R.; Vatanpour, V.; Amani Ghadim, A.R. (2009). Decolorization of C.I. Acid Blue 9 solution by UV/Nano-TiO2, Fenton, Fenton-like, electro-Fenton and electrocoagulation processes: A comparative study. J. Hazardous Mat., 161 (2–3), 1225-1233. https://doi.org/10.1016/j.jhazmat.2008.04.075Test; Khorram, A. G.; Fallah, N. (2018). Treatment of textile dyeing factory wastewater by electrocoagulation with low sludge settling time: Optimization of operating parameters by RSM. Journal of Environmental Chemical Engineering, 6(1), 635-642. https://doi.org/10.1016/j.jece.2017.12.054Test; Khorram, A. G.; Fallah, N. (2019). Comparison of sludge settling velocity and filtration time after electrocoagulation process in treating industrial textile dyeing wastewater: RSM optimization. International Journal of Environmental Science and Technology, 16(7), 3437-3446. https://doi.org/10.1007/s13762-018-1731-xTest; Khosravi, R.; Hazrati, S.; Fazlzadeh, M. (2016). Decolorization of AR18 dye solution by electrocoagulation: Sludge production and electrode loss in different current densities. Desalination and Water Treatment, 57(31), 14656-14664. https://doi.org/10.1080/19443994.2015.1063092Test; Kim, H.-L.; Cho, J.-B.; Park, Y.-J.; Cho, I.-H. (2016). Treatment and toxicity reduction of textile dyeing wastewater using the electrocoagulation-electroflotation process. Journal of Environmental Science and Health, Part A, 1-8. https://doi.org/10.1080/10934529.2016.1159877Test; Kim, S.M.; Geissen, S.U.; Vogelpohl, A. (1997). Landfill leachate treatment by a photoassisted Fenton reaction. Water Sci. Technol., 35 (4), 239–248. https://doi.org/10.2166/wst.1997.0128Test; Kim, S-M.; Vogelpohl, A. (1999). Degradation of Organic Pollutants by the Photo-Fenton-Process. Chemical & Engineering Technology. 21(2), 187-191. https://doi.org/10.1002Test/(SICI)1521-4125(199802)21:23.0.CO;2-H; Kobya, M.; Gengec, E.; Demirbas. (2016). Operating parameters and costs assessments of a real dyehouse wastewater effluent treated by a continuous electrocoagulation process. Chemical Engineering and Processing: Process Intensification. 101, 87-100. https://doi.org/10.1016/j.cep.2015.11.012Test.; Kobya, M.; Gengec, E.; Sensoy, M. T.; Demirbas, E. (2014). Treatment of textile dyeing wastewater by electrocoagulation using Fe and Al electrodes: Optimisation of operating parameters using central composite design. Coloration Technology, 130(3), 226-235. https://doi.org/10.1111/cote.12090Test; Korpe, S.; Rao, P. V. (2021). Application of Advanced Oxidation Processes and Cavitation Techniques for Treatment of Tannery Wastewater - A Review. Journal of Environmental Chemical Engineering, 9(3), 105234 https://doi.org/10.1016/j.jece.2021.105234Test; Köse, T. E.; Bi̇Roğul, Çaliskan N. (2016). Real Textile Wastewater Reclamation using a Combined Coagulation/ Flocculation/ Membrane Filtration System and the Evaluation of Several Natural Materials as Flocculant Aids. Gazi University Journal of Science, 29, 565 - 572.; Krause, M. (2009). The political economy of water and sanitation. Routledge.; Kulik, N.; Panova, Y.; Trapido, M. (2007). The Fenton Chemistry and Its Combination with Coagulation for Treatment of Dye Solutions. Separation Science and Technology, 42(7), 1521-1534. https://doi.org/10.1080/01496390701290185Test; Kumar, N.; Sinha, S.; Mehrotra, T.; Singh, R.; Tandon, S.; Thakur, I. S. (2019). Biodecolorization of azo dye Acid Black 24 by Bacillus pseudomycoides: Process optimization using Box Behnken design model and toxicity assessment. Bioresource Technology Reports, 8, 100311. https://doi.org/10.1016/j.biteb.2019.100311Test; Kumar, P.; Prasad, B.; Mishra, I. M.; Chand, S. (2008). Decolorization and COD reduction of dyeing wastewater from a cotton textile mill using thermolysis and coagulation. Journal of Hazardous Materials, 153 (1-2), 635-645. https://doi.org/10.1016/j.jhazmat.2007.09.007Test; Kuo, W. G. (1992). Decolorizing dye wastewater with Fenton’s reagent. Water Research, 26(7), 881-886. https://doi.org/10.1016/0043-1354Test(92)90192-7; Kwan, W. P. (Wai P. (1999). Kinetics of the Fe(III) initiated decomposition of hydrogen peroxide: Experimental and model results [Thesis, Massachusetts Institute of Technology]. https://dspace.mit.edu/handle/1721.1/80211Test; La Patria. (10 de 04 de 2020). Daño en empresa de Maltería provocó coloración azul de la quebrada Manizales. Obtenido de La Patria: https://www.lapatria.com/medioambiente/dano-en-empresa-de-malteria-provoco-coloracion-azul-de-la-quebrada-manizalesTest; La Patria. (10 de 05 de 2020). El azul de la quebrada Manizales era tinta para dulces. Obtenido de La Patria: https://www.lapatria.com/denuncie/el-azul-de-la-quebrada-manizales-era-tinta-para-dulces-452338Test; Lakshmanan, D.; Clifford, D. A.; Samanta, G. (2009). Ferrous and Ferric Ion Generation During Iron Electrocoagulation. Environmental Science Technology, 43(10), 3853-3859. https://doi.org/10.1021/es8036669Test; Lal, K.; Garg, A. (2017). Physico-chemical treatment of pulping effluent: Characterization of flocs and sludge generated after treatment. Separation Science and Technology, 52(9), 1583–1593. http://dx.doi.org/10.1080/01496395.2017.1292294Test; Larkin, P. (2011). Infrared and Raman spectroscopy: Principles and spectral interpretation. Elsevier.; Lau, I. W. C.; Wang, P.; Fang, H. H. P. (2001). Organic removal of anaerobically treated leachate by Fenton coagulation. J. Environ. Eng., 27 (7), 666–669.; LegisComex. (2012). Inteligencia de Mercados-Textiles y Confecciones en Colombia. LegisComex.; Li, Y. F.; Zhang, L. L.; Yuan, X. D.; Zhang. X. Y. (2006). Experimental study on coagulation-Fenton process for the treatment of printing and dyeing wastewater. Shenyang Jianzhu Daxue Xuebao (Ziran Kexue Ban)/Journal of Shenyang Jianzhu University (Natural Science). 22:136-40.; Lide, D. R. (2006). CRC Handbook of Chemistry and Physics, 91th Edition (87. ed.; 2006-2007). CRC, Taylor Francis.; Lieberman, M. (1999). A Brine Shrimp Bioassay for Measuring Toxicity and Remediation of Chemicals. Journal of Chemical Education, 76(12), 1689. https://doi.org/10.1021/ed076p1689Test; Lin, S. H.; Lo, C. C. (1997). Fenton process for treatment of desizing wastewater. Water Research, 31(8), 2050-2056. https://doi.org/10.1016/S0043-1354Test(97)00024-9; Lin, S. H.; Peng, C. F. (1995). A Continuous Fenton’s Process for Treatment of Textile Wastewater. Environmental Technology, 16(7), 693-699. https://doi.org/10.1080/09593330.1995.9618268Test; Liu T.; Zhu Y.; Zhang X.; Zhang To.; Zhang Ta. (2010). Synthesis and characterization of calcium hydroxide nanoparticles by hydrogen plasma-metal reaction method. Mater. Lett., 64(23), 2575-2577. https://10.1016/j.matlet.2010.08.050Test; Liu, H.; Zhao, X.; Qu, J. (2010). Electrocoagulation in Water Treatment. En C. Comninellis G. Chen (Eds.), Electrochemistry for the Environment (pp. 245-262). Springer New York. https://doi.org/10.1007/978-0-387-68318-8_10Test; Liu, J.; Peng, G.; Jing, X.; Yi, Z. (2018). Treatment of methyl orange by the catalytic wet peroxide oxidation process in batch and continuous fixed bed reactors using Fe-impregnated 13X as catalyst. Water Science and Technology, 78(4), 936-946. https://doi.org/10.2166/wst.2018.372Test; Liu, W., Yu, Y. (2021). Removal of recalcitrant trivalent chromium complexes from industrial wastewater under strict discharge standards. Environmental Technology and Innovation, 23. https://doi.org/10.1016/j.eti.2021.101644Test; Liu, X.; Qiu, M.; Huang, C. (2011). Degradation of the Reactive Black 5 by Fenton and Fenton-like system. Procedia Engineering, 15, 4835-4840. https://doi.org/10.1016/j.proeng.2011.08.902Test; Liu, Y.; Lu, X.; Zhang, P.; Rao, T. (2009). Study on the Treatment Simulated Dye Wastewater by Electro-coagulation-floatation Method. http://en.cnki.com.cn/Article_en/CJFDTOTAL-HDJT200902005.htmTest; Lodha, B.; Chaudhari, S. (2007). Optimization of Fenton-biological treatment scheme for the treatment of aqueous dye solutions. Journal of Hazardous Materials, 148(1-2), 459-466. https://doi.org/10.1016/j.jhazmat.2007.02.061Test; Lofrano, G.; Meriç, S.; Zengin, G. E.; Orhon, D. (2013). Chemical and biological treatment technologies for leather tannery chemicals and wastewaters: A review. Science of The Total Environment, 461-462, 265-281. https://doi.org/10.1016/j.scitotenv.2013.05.004Test; Lopez, A.; Pagano, M.; Volpe, A.; Di Pinto, A. (2004). Fenton’s pretreatment of mature landfill leachate. Chemosphere, 54 (7), 1000–1005. https://doi.org/j.chemosphere.2003.09.015Test; Lu, M. C.; Chen, J. N.; Chang, C. P. (1999). Oxidation of dichlorvos with hydrogen peroxide using ferrous ion as catalyst. Journal of Hazardous Materials, 65(3), 276-288. https://doi.org/10.1016/S0304-3894Test(98)00266.2-4; Lucas, M. P. (2009). Application of Advanced Oxidation Processes To Wastewater Treatment. Vila Real.: University of Trás-os-Montes and Alto Douro.; Lucas, M. S.; Dias, A. A.; Sampaio, A.; Amaral, C.; Peres, J. A. (2007). Degradation of a textile reactive Azo dye by a combined chemical–biological process: Fenton’s reagent-yeast. Water Research, 41(5), 1103-1109. https://doi.org/10.1016/j.watres.2006.12.013Test; Lucas, M.; Peres, J. (2006). Decolorization of the azo dye Reactive Black 5 by Fenton and photo-Fenton oxidation. Dyes and Pigments, 71(3), 236-244. https://doi.org/10.1016/j.dyepig.2005.07.007Test; MADS. (2010). Decreto 3930 de 2010. Bogota: Ministerio de Ambiente y Desarrollo Sostenible.; MADS. (2010). Política Nacional para la Gestión Integral del Recurso Hídrico. Bogotá, D.C.: Ministerio de Ambiente, Vivienda y Desarrollo Territorial.; MADS. (2021). Por la cual se reglamenta el uso de las aguas residuales y se adoptan otras disposiciones (Resolución 1256; p. 4; Decreto 1076 de 2015). Ministerio de Ambiente y Desarrollo Sostenible. https://www.minambiente.gov.co/wp-content/uploads/2021/12/Resolucion-1256-de-2021.pdfTest; Magnusson, B.; Örnemark, U. (2014). The fitness for purpose of analytical methods: A laboratory guide to method validation and related topics (Eurachem Guide, Ed.; 2ed.). https://www.eurachem.org/images/stories/Guides/pdf/MV_guide_2nd_ed_EN.pdfTest; Mahmoodi, N. M.; Dalvand, A. (2013). Treatment of colored textile wastewater containing acid dye using electrocoagulation process. Desalination and Water Treatment, 51(31-33), 5959-5964. https://doi.org/10.1080/19443994.2013.791769Test; Majeed, H. A. S.; Al-Ahmad, A. Y.; Hussain, K. A. (2011). The Preparation, Characterization and the Study of the Linear Optical Properties of a New Azo. Journal of Basrah Researches (Sciences), 37(2A).; Malik, P. K.; Saha, S. K. (2003). Oxidation of direct dyes with hydrogen peroxide using ferrous ion as catalyst. Separation and Purification Technology, 31(3), 241-250. https://doi.org/10.1016/S1383-5866Test(02)00200-9; Mamelkina, M. A.; Tuunila, R.; Silänpää, M.; Häkkinen, A. (2019). Systematic study on sulfate removal from mining waters by electrocoagulation. Separation and Purification Technology, 216, 43 – 50. https://doi.org/10.1016/j.seppur.2019.01.056Test; Manara, P.; Zabaniotou A. (2012). Towards sewage sludge-based biofuels via thermochemical conversion – a review. Renew. Sustain. Energy Rev., 16, 2566–2582. https://doi.org/10.1016/j.rser.2012.01.074Test; Manenti, D. R.; Módenes, A. N.; Soares, P. A.; Espinoza-Quiñones, F. R.; Boaventura, R. A. R.; Bergamasco, R.; Vilar, V. J. P. (2014). Assessment of a multistage system based on electrocoagulation, solar photo-Fenton and biological oxidation processes for real textile wastewater treatment. Chemical Engineering Journal, 252, 120-130. https://doi.org/10.1016/j.cej.2014.04.096Test; Mantzavinos, D.; Livingston, A. G.; Hellenbrand, R.; Metcalfe, I. S. (1996). Wet air oxidation of polyethylene glycols; mechanisms, intermediates and implications for integrated chemical-biological wastewater treatment. Chemical Engineering Science, 51(18), 4219-4235. https://doi.org/10.1016/0009-2509Test(96)00272-2; Markets and Markets. (2016). Dyes & Pigments Market.; Marmanis, D.; Konstantinos, D.; Christoforidis, A. (2016). Design and Application of Electrochemical Processes for Decolorization Treatment of Nylanthrene Red dye Bearing Wastewaters. Journal of Engineering Science and Technology Review, 9(1), 111-115. https://doi.org/10.25103/jestr.091.17Test; Márquez, A. A.; Coreño, O.; Nava, J. L. (2022). An innovative process combining electrocoagulation and photoelectro-Fenton-like methods during the abatement of Acid Blue 113 dye. Process Safety and Environmental Protection, 163, 475-486. https://doi.org/10.1016/j.psep.2022.05.061Test; Martínez Navarro, F. (2007). Tratamiento de aguas residuales industriales mediante electrocoagulación y coagulación convencional. Ediciones de la Universidad de Castilla-La Mancha. https://ruidera.uclm.es/xmlui/handle/10578/984Test; Martins, A.; Vasconcelos, T.; Wilde, M. (2005). Influence of variables of the combined coagulation–Fenton-sedimentation process in the treatment of trifluraline effluent. Journal of Hazardous Materials, 127(1-3), 111-119. https://doi.org/10.1016/j.jhazmat.2005.06.028Test; Martins, J. E. C. A.; Abdala Neto, E. F.; Lima, A. C. A. de, Ribeiro, J. P.; Maia, F. E. F.; Nascimento, R. F. do. (2017). Delineamento Box-Behnken para remoção de DQO de efluente têxtil utilizando eletrocoagulação com corrente contínua pulsada. Engenharia Sanitaria e Ambiental, 22(6), 1055-1064. https://doi.org/10.1590/s1413-41522017150743Test; Masiello, C. A.; Gallagher, M. E.; Randerson, J. T.; Deco, R. M.; Chadwick, O. A. (2008). Evaluating two experimental approaches for measuring ecosystem carbon oxidation state and oxidative ratio. Journal of Geophysical Research, 113(G3). https://doi.org/10.1029/2007JG000534Test; Mathur, N.; Krishnatrey, R.; Sharma, S.; Sharma, K. (2003). Toxic effects of textile printing industry effluents on liver and testes of albino rats. Bull Environ Contam Toxicol., 71, 453–457. https://doi.org/10.1007/s00128-003-8781-5Test; Maurer-Jones, M. A.; Love, S. A.; Meierhofer, S.; Marquis, B. J.; Liu, Z.; Haynes, C. L. (2013). Toxicity of Nanoparticles to Brine Shrimp: An Introduction to Nanotoxicity and Interdisciplinary Science. Journal of Chemical Education, 90(4), 475-478. https://doi.org/10.1021/ed3005424Test; Mbarek, W. B.; Azabou, M.; Pineda, E.; Fiol, N.; Escoda, L.; Suñol, J. J.; Khitouni, M. (2017). Rapid degradation of azo-dye using Mn–Al powders produced by ball-milling. RSC Advances, 7, 12620-12628, https://doi.org/10.1039/C6RA28578CTest; Mbarek, W. B.; Saurina, J.; Escoda, L.; Pineda, E.; Khitouni, M.; Suñol, J. J. (2020) Effects of the Addition of Fe, Co on the Azo Dye Degradation Ability of Mn-Al Mechanically Alloyed Powders. Metals, 10, 1578-1594. https://doi:10.3390/met10121578Test; McCabe, W. L.; Smith, J. C.; Harriott, P. (1998). Operaciones unitarias en ingeniería química. McGraw-Hill.; McCleskey, R. B. (2011). Electrical Conductivity of Electrolytes Found In Natural Waters from (5 to 90)°C. Journal of Chemical Engineering Data, 56(2), 317-327. https://doi.org/10.1021/je101012nTest; McCleskey, R. B.; Nordstrom, D. K.; Ryan, J. N. (2012). Comparison of electrical conductivity calculation methods for natural waters: Methods for calculation of conductivity. Limnology and Oceanography: Methods, 10(11), 952-967. https://doi.org/10.4319/lom.2012.10.952Test; Meriç, S.; Kaptan, D.; Ölmez, T. (2004). Color and COD removal from wastewater containing Reactive Black 5 using Fenton’s oxidation process. Chemosphere, 54(3), 435-441. https://doi.org/10.1016/j.chemosphere.2003.08.01Test; Meriç, S.; Lofrano, G.; Belgiorno, V. (2005). Treatment of reactive dyes and textile finishing wastewater using Fenton’s oxidation for reuse. International Journal of Environment and Pollution, 23(3), 248. https://doi.org/10.1504/IJEP.2005.006865Test; Merzouk, B.; Gourich, B.; Madani, K.; Vial, C.; Sekki, A. (2011). Removal of a disperse red dye from synthetic wastewater by chemical coagulation and continuous electrocoagulation. A comparative study. Desalination, 272(1-3), 246-253. https://doi.org/10.1016/j.desal.2011.01.029Test; Merzouk, B.; Gourich, B.; Sekki, A.; Madani, K.; Vial, C.; Barkaoui, M. (2009). Studies on the decolorization of textile dye wastewater by continuous electrocoagulation process. Chemical Engineering Journal, 149(1-3), 207-214. https://doi.org/10.1016/j.cej.2008.10.018Test; Merzouk, B.; Yakoubi, M.; Zongo, I.; Leclerc, J. P.; Paternotte, G.; Pontvianne, S.; Lapicque, F. (2011). Effect of modification of textile wastewater composition on electrocoagulation efficiency. Desalination, 275(1-3), 181-186. https://doi.org/10.1016/j.desal.2011.02.055Test; Mickley, M. (2009). Treatment of Concentrate (Report 155; Desalination and Water Purification Research and Development Program). https://www.usbr.gov/research/dwpr/reportpdfs/report155.pdfTest; Miller, J. N.; Miller, J. C. (2010). Statistics and chemometrics for analytical chemistry (6th ed). Prentice Hall/Pearson.; Ministerio de Vivienda, Ciudad y Territorio (MinVivienda). (2014). Decreto 1287 de 2014 compilado con el Decreto 1077 de 2015. https://www.minvivienda.gov.co/sites/default/files/normativa/1287%20-%202014.pdfTest; Módenes, A. N.; Espinoza-Quiñones, F. R.; Borba, F. H.; Manenti, D. R. (2012). Performance evaluation of an integrated photo-Fenton – Electrocoagulation process applied to pollutant removal from tannery effluent in batch system. Chemical Engineering Journal, 197, 1-9. https://doi.org/10.1016/j.cej.2012.05.015Test; Mollah, M. Y. A.; Schennach, R.; Parga, J. R.; Cocke, D. L. (2001). Electrocoagulation (EC)—Science and applications. Journal of Hazardous Materials, 84(1), 29-41. https://doi.org/10.1016/S0304-3894Test(01)00176-5; Mondal, B.; Srivastava, V. C.; Mall, I. D. (2012). Electrochemical treatment of dye-bath effluent by stainless steel electrodes: Multiple response optimization and residue analysis. Journal of Environmental Science and Health, Part A, 47(13), 2040-2051. https://doi.org/10.1080/10934529.2012.695675Test; Montgomery, D. C. (2019). Design and analysis of experiments (10th Edition). John Wiley & Sons, Inc.; Montgomery, D. C.; Runger, G. C. (2014). Applied statistics and probability for engineers (Sixth edition). John Wiley and Sons, Inc.; Mook, W. T.; Aroua, M. K.; Szlachta, M.; Lee, C. S. (2017). Optimisation of Reactive Black 5 dye removal by electrocoagulation process using response surface methodology. Water Science and Technology, 75(4), 952-962. https://doi.org/10.2166/wst.2016.563Test; Moradi, M.; Eslami, A.; Ghanbari, F. (2014). Direct Blue 71 removal by electrocoagulation sludge recycling in photo-Fenton process: Response surface modeling and optimization. Desalination and Water Treatment, 1-12. https://doi.org/10.1080/19443994.2014.995714Test; Moradi, M.; Ghanbari, F. (2014). Application of response surface method for coagulation process in leachate treatment as pretreatment for Fenton process. Biodegradability improvement. Journal of Water Process Engineering. 4, 67 – 73. http://dx.doi.org/10.1016/j.jwpe.2014.09.002Test; Moraga C, P.; Ávila P, R.; Vilaxa O, A. (2015). Salinidad y temperatura óptimas para reproducción ovípara y desarrollo de Artemia franciscana. Idesia (Arica), 33(1), 85-92. https://doi.org/10.4067/S0718-34292015000100009Test; Mordor Intelligence. (2018). Global Pigments Market (Chemicals & Materials 46248). (https://www.mordorintelligence.com/industry-reports/pigments-marketTest); Moreno, A. D.; Lorenzo, E. G.; De Bazúa, C. D.; De La Torre, J. M.; Zamora, R. M. R. (2003). Fenton’s reagent and coagulation-flocculation as pretreatments of combined wastewater for reuse. Water Science and Technology, 47(11), 145-151. https://doi.org/10.2166/wst.2003.0598Test; Mouedhen, G.; Feki, M.; Wery, M. D. P.; Ayedi, H. F. (2008). Behavior of aluminum electrodes in electrocoagulation process. Journal of Hazardous Materials, 150(1), 124-135. https://doi.org/10.1016/j.jhazmat.2007.04.090Test; Mountassir, Y.; Benyaich, A.; Berçot, P.; Rezrazi, M. (2015). Potential use of clay in electrocoagulation process of textile wastewater: Treatment performance and flocs characterization. Journal of Environmental Chemical Engineering, 3(4), 2900-2908. https://doi.org/10.1016/j.jece.2015.10.004Test; Murthy, U. N.; Rekha, H. B. (2011). Electrochemical Treatment of Textile Dye Wastewater Using Stainless Steel Electrode.; Naje, A. S.; Abbas, S. A. (2013). Electrocoagulation Technology in Wastewater Treatment: A Review of Methods and Applications. Civil and Environmental Research, 15.; Naje, A. S.; Chelliapan, S.; Zakaria, Z.; Abbas, S. A. (2015). Treatment Performance of Textile Wastewater Using Electrocoagulation (EC) Process under Combined Electrical Connection of Electrodes. Int. J. Electrochem. Sci., 10, 18.; Naje, A. S.; Chelliapan, S.; Zakaria, Z.; Abbas, S. A. (2016). Electrocoagulation using a rotated anode: A novel reactor design for textile wastewater treatment. Journal of Environmental Management, 176, 34-44. https://doi.org/10.1016/j.jenvman.2016.03.034Test; Naje, A. S.; Chelliapan, S.; Zakaria, Z.; Ajeel, M. A.; Alaba, P. A. (2016). A review of electrocoagulation technology for the treatment of textile wastewater. Reviews in Chemical Engineering, 33(3). https://doi.org/10.1515/revce-2016-0019Test; Nakamoto, K. (2009). Infrared and Raman spectra of inorganic and coordination compounds (6th ed). Wiley.; Nesheiwat, F.K.; Swanson, A.G. (2000). Clean contaminated sites using Fenton’s reagent. Chem. Eng. Prog., 96(4), 61-66.; Neyens, E.; Baeyens, J. (2003). A Review of Classic Fenton’s Peroxidation as an Advanced Oxidation Technique. Journal of Hazardous Materials 98(1-3):33-50. https://doi.org/10.1016/S0304-3894Test(02)00282-0; Nourmoradi, H.; Rahmati, Z.; Javaheri, M.; Moradnejadi, K.; Noorimotlagh, Z. (2015). Effect of Praestol as a Coagulant-Aid to Improve Coagulation-Flocculation in Dye containing Wastewaters. Global NEST Journal, 18 (1), 38-46. https://doi.org/10.30955/gnj.001738Test; NSF/ANSI-60. (2013). NSF/ANSI Drinking Water Treatment Chemicals - Health Effects. International Standard / American National Standard.; Núñez, J.; Yeber, M.; Cisternas, N.; Thibaut, R.; Medina, P.; Carrasco, C. (2019). Application of electrocoagulation for the efficient pollutants removal to reuse the treated wastewater in the dyeing process of the textile industry. Journal of Hazardous Materials, 371, 705-711. https://doi.org/10.1016/j.jhazmat.2019.03.030Test; Obiora-Okafo I. A.; Onukwuli O. D. (2015). Optimization of coagulation-flocculation process for colour removal from synthetic dye wastewater using natural organic polymers: Response surface methodology applied. International Journal of Scientific & Engineering Research, 6(12), 12.; Oldham, K. B.; Myland, J. C.; Bond, A. M. (2013). Electrochemical science and technology: Fundamentals and applications (Reprinted with corrections). Wiley.; Oller, I.; Malato, S.; Sánchez-Pérez, J. (2011). Combination of Advanced Oxidation Processes and biological treatments for wastewater decontamination—A review. Science of the Total Environment, 409, 4141–4166. https://doi.org/10.1016/j.scitotenv.2010.08.061Test; Olvera-Vargas, H.; Zheng, X.; Garcia-Rodriguez, O.; Lefebvre, O. (2019). Sequential “electrochemical peroxidation e Electro-Fenton” process for anaerobic sludge treatment. Water Res., 154, 277-286. https://doi.org/10.1016/j.watres.2019.01.063Test; Ong, H. R.; Hegde, G.; Chigrinov, V. G.; Khan, Md. M. R. (2016). Sulfuric disazo dye stabilized copper nanoparticle composite mixture: Synthesis and characterization. RSC Advances. 6(18), 15094-15100. https://doi.org/10.1039/C5RA26492HTest; Ong, S. T.; Keng, P.-S.; Lee, W. N.; Ha, S. T.; Hung, Y.-T. (2011). Dye Waste Treatment. Water, Vol 3, pp 157-176.; OSHA. (22 de 06 de 2019). Hexavalent Chromium. Obtenido de Occupational Safety and Health Administration: https://www.osha.gov/SLTC/hexavalentchromiumTest/; Osorio, P. C.; Peña, D. (1999). Determinación de la relación DQO/DBO5 en aguas residuales de comunas con población menor a 25.000 habitantes en la VIII región. Antofagasta: XIII Congreso de Ingeniería Sanitaria y Ambiental.; Özdemir, C.; Öden, M. K.; Şahinkaya, S.; Kalipçi, E. (2011). Color Removal from Synthetic Textile Wastewater by Sono-Fenton Process. CLEAN - Soil, Air, Water, 39(1), 60-67. https://doi.org/10.1002/clen.201000263Test; Pajootan, E.; Arami, M.; Bahrami, H. (2016). Optimization of the combined UV/electrocoagulation process for dye removal from textile wastewater using response surface methodology. Environmental Engineering and Management Journal, 15(1), 189-198.; Patabandige, D. S. B. T.; Wadumethrige, S. H.; Wanniarachchi, S. (2020). Decolorization and COD removal from synthetic and real textile dye bath wastewater containing Reactive Black 5. Desalination And Water Treatment, 197, 392-401. https://doi.org/10.5004/dwt.2020.25954Test; Patel, D. K.; Tipre, D. R.; Dave, S. R. (2017). Enzyme mediate bacterial biotransformation and reduction in toxicity of 1:2 chromium complex AB193 and AB194 dyes. Journal of the Taiwan Institute of Chemical Engineers, 77, 1–9. http://dx.doi.org/10.1016/j.jtice.2017.02.027Test; Patel, U. D.; Ruparelia, J. P.; Patel, M. U. (2011). Electrocoagulation treatment of simulated floor-wash containing Reactive Black 5 using iron sacrificial anode. Journal of Hazardous Materials, 197, 128-136. https://doi.org/10.1016/j.jhazmat.2011.09.064Test; Patil, A. D.; Raut, P. D. (2014). Treatment of textile wastewater by Fenton’s process as an Advanced Oxidation Process. IOSR Journal of Environmental Science, Toxicology and Food Technology, 8(10), 29-32. https://doi.org/10.9790/2402-081032932Test; Peplowski, L.; Szczesny, R.; Skowronski, L.; Krupka, A.; Smokal, V.; Derkowska-Zielinska, B. (2022). Vibrational spectroscopy studies of methacrylic polymers containing heterocyclic azo dyes. Vibrational Spectroscopy, 120, 103377. https://doi.org/10.1016/j.vibspec.2022.103377Test; Pereira, L.; Alves, M. (2012). Dyes—Environmental Impact and Remediation. En A. Malik & E. Grohmann (Eds.), Environmental Protection Strategies for Sustainable Development (pp. 111-162). Springer Netherlands. https://doi.org/10.1007/978-94-007-1591-2_4Test; Pérez, O. P.; Lazo, F. J. (2010). Ensayo de Artemia: Útil herramienta de trabajo para ecotoxicólogos y químicos de productos naturales. 25(1), 10.; Pérez, S.; Morales, J.B.; Félix, R.M.; Hernández, O.M.; 2011. Evaluation of the Eletrocoagulation Process for the Removal of Turbidity of River Water, Wastewater and Pond Water. Rev. Mex. Ing. Química, 10, 79–91.; Phalakornkule, C.; Polgumhang, S.; Tongdaung, W.; Karakat, B.; Nuyut, T. (2010). Electrocoagulation of blue reactive, red disperse and mixed dyes, and application in treating textile effluent. Journal of Environmental Management, 91(4), 918-926. https://doi.org/10.1016/j.jenvman.2009.11.008Test; Pi, K.-W.; Xiao, Q.; Zhang, H.-Q.; Xia, M.; Gerson, A. R. (2014). Decolorization of synthetic Methyl Orange wastewater by electrocoagulation with periodic reversal of electrodes and optimization by RSM. Process Safety and Environmental Protection, 92(6), 796-806. https://doi.org/10.1016/j.psep.2014.02.008Test; Pignatello, J. J. (1992). Dark and photo-assisted Fe3+ catalyzed degradation of chlorophenoxy herbicides by hydrogen peroxide. Environ. Sci. Technol. 26, 944–951. https://doi.org/10.1021/es00029a012Test; Pinheiro, H. M.; Touraud; E.; Thomas O. (2004) Aromatic amines from azo dye reduction: status review with emphasis on direct UV spectrophotometric detection in textile industry wastewaters. Dyes and Pigments, 61, 121–139. https://doi.org/10.1016/j.dyepig.2003.10.009Test; Pirkarami, A.; Olya, M. E. (2017). Removal of dye from industrial wastewater with an emphasis on improving economic efficiency and degradation mechanism. Journal of Saudi Chemical Society, 21, S179-S186. https://doi.org/10.1016/j.jscs.2013.12.008Test; Pouran, S. R.; Raman, A. A. A.; Daud, W. M. A. W. (2014). Review on the application of modified iron oxides as heterogeneous catalysts in Fenton reactions. Journal of Cleaner Production, 64, 24-35. https://doi.org/10.1016/j.jclepro.2013.09.013Test; Pourbaix, M.; Burbank, J. (1964). Atlas D-Equilibres Electrochimiques. Journal of The Electrochemical Society, 111(1), 14C. https://doi.org/10.1149/1.2426051Test; Pourrezaei, P.; Afzal, A.; Ding, N.; Islam, S.; Moustafa, A.; Drzewicz, P.; Chelme-Ayala, P.; Gamal El-Din, M. Physico-Chemical Processes. (2010). Water Environment Research, 82, 10, 997 – 1072.; Poyatos, J. M.; Muñio, M. M.; Almecija, M. C.; Torres, J. C.; Hontoria, E.; Osorio, F. (2010). Advanced Oxidation Processes for Wastewater Treatment: State of the Art. Water, Air, and Soil Pollution, 205(1-4), 187-204. https://doi.org/10.1007/s11270-009-0065-1Test; Pretsch, E.; Bühlmann, P.; Badertscher, M. (2009). Structure determination of organic compounds: Tables of spectral data (4th Ed.). Springer.; Priesing, C. P. (1962). A theory of coagulation useful for design. Industrial & Engineering Chemistry, 54 (8), 38-45. https://doi.org/10.1021/ie50632a006Test; Primo, O.; Rivero, M. J.; Ortiz, I. (2008). Photo-Fenton process as an efficient alternative to the treatment of landfill leachates. Journal of Hazardous Materials, 153(1-2), 834-842. https://doi.org/10.1016/j.jhazmat.2007.09.053Test; Procolombia. (2018). Paints and Dyes in Colombia. (https://procolombia.coTest/); Procolombia. (9 de 01 de 2020). Inversión en el sector Sistema Moda. Recuperado el 23 de 08 de 2017, de Exportaciones turismo inversión marca país.: http://inviertaencolombia.com.coTest; Pysarevska, S.; Dubenska, L.; Spanik, I.; Kovalyshyn, J.; Tvorynska, S. (2013). Reactions of o,o′-Dihydroxy Azo Dyes with the Third Group M(III) Ions: A Spectroscopic and Electrochemical Study. Journal of Chemistry, 2013, 1-10. https://doi.org/10.1155/2013/853763Test; Qiu, M.; Shou, J.; Ren, P.; Lin, J. (2014). Treatment of the azo dye in the solution by fenton-SBR process. Journal of Chemical and Pharmaceutical Research, 6(7), 2039-2045.; Radin Mohamed, R. M. S.; Mt. Nanyan, N.; Rahman, N.; Kutty, N.; Mohd Kassim, A. H. (2014). Colour Removal of Reactive Dye from Textile Industrial Wastewater using Different Types of Coagulants. Asian Journal of Applied Sciences, 2, 650-657.; Raja, A. S. M.; Arputharaj, A.; Saxena, S.; Patil, P. G. (2019). Water requirement and sustainability of textile processing industries. En Water in Textiles and Fashion (pp. 155-173). Elsevier. https://doi.org/10.1016/B978-0-08-102633-5.00009-9Test; Ramírez, J. H.; Costa, C. A.; Madeira, L. M. (2005). Experimental design to optimize the degradation of the synthetic dye Orange II using Fenton's reagent. Catalysis Today, 107-108, 68 – 76. https://doi.org/10.1016/j.cattod.2005.07.060Test; Ramírez, J. H.; Costa, C. A.; Madeira, L. M.; Mata, G.; Vicente, M. A.; Rojas-Cervantes, M.; Lopez-Peinado, A. J.; Martin-Aranda R. M. (2007). Fenton-like oxidation of Orange II solutions using heterogeneous catalysts based on saponite clay. Applied Catalysis B: Environmental, 71, 44 – 56. https://doi.org/10.1016/j.apcatb.2006.08.012Test; Rana, S.; Suresh, S. (2017). Comparison of different Coagulants for Reduction of COD from Textile industry wastewater. Materials Today: Proceedings, 4(2), 567-574. https://doi.org/10.1016/j.matpr.2017.01.058Test; Rand View Research. (2017). Dyes & Pigments Market.; Ravina, L. (1991). Everything You Want to Know about Coagulation & Flocculation. Zeta-Meter, Inc.; Rebhun, M.; Lurie, M. (1993). Control of organic-matter by coagulation and floc separation. Water Science and Technology, 27. 1 – 20. https://doi.org/10.4236/gsc.2013.32013Test; Riadi, L.; Sapei, L.; Lidiawati, T.; Agustin, Y. E. (2017). Application of a hybrid Electrocoagulation-Fenton process in yarn dye wastewater: Kinetic study. IOP Conference Series: Materials Science and Engineering, 162(1), 012026. https://doi.org/10.1088/1756.2-899X/162/1/012026Test; Ribeiro, J. P.; Nunes, M. I. (2021). Recent trends and developments in Fenton processes for industrial wastewater treatment – A critical review. Environmental Research, 197, 110957. https://doi.org/10.1016/j.envres.2021.110957Test; Ricordel, C.; Darchen, A.; Hadjiev, D. (2010). Electrocoagulation–electroflotation as a surface water treatment for industrial uses. Separation and Purification Technology. 74, 342 –347. https://doi:10.1016/j.seppur.2010.06.024Test; Rigg, T.; Taylor, W.; Weiss, J. (1954). The Rate Constant of the Reaction between Hydrogen Peroxide and Ferrous Ions. The Journal of Chemical Physics, 22(4), 575-577. https://doi.org/10.1063/1.1740127Test; Riva, V.; Mapelli, F.; Syranidou, E.; Crotti, E.; Choukrallah, R.; Kalogerakis, N.; Borin, S. (2019). Root Bacteria Recruited by Phragmites australis in Constructed Wetlands Have the Potential to Enhance Azo-Dye Phytodepuration. Microorganisms, 7(10), 384. https://doi.org/10.3390/microorganisms7100384Test; Rivas, F. J.; Beltrán, F. J.; Frades, J.; Buxeda, P. (2001). Oxidation of p-hydroxybenzoic acid by Fenton’s reagent. Water Res. 35(2), 387-396. https://doi.org/10.1016/S0043-1354Test(00)00285-2; Rodrigues, C. S. D.; Boaventura, R. A. R.; & Madeira, L. M. (2014a). A new strategy for treating a cotton dyeing wastewater—Integration of physical-chemical and advanced oxidation processes. International Journal of Environment and Waste Management, 14(3), 232. https://doi.org/10.1504/IJEWM.2014.064583Test; Rodrigues, C. S. D.; Boaventura, R. A. R.; & Madeira, L. M. (2014b). Technical and economic feasibility of polyester dyeing wastewater treatment by coagulation/flocculation and Fenton’s oxidation. Environmental Technology, 35(10), 1307-1319. https://doi.org/10.1080/09593330.2013.866983Test; Romero Rojas, Jairo Alberto. 1999. Potabilización del agua: 3ª edición, Escuela Colombiana de Ingeniería. Editorial Alfaomega.; Rubio-Clemente, A.; Chica, E. L.; Peñuela, G. A. (2014). Application of Fenton process for treating petrochemical wastewater. Ingeniería y Competitividad, 2, 13.; Sadri Moghaddam, S.; Alavi Moghaddam, M. R.; Arami, M. (2011). Response surface optimization of acid red 119 dye from simulated wastewater using Al based waterworks sludge and polyaluminium chloride as coagulant. Journal of Environmental Management, 92(4), 1284-1291. https://doi.org/10.1016/j.jenvman.2010.12.015Test; Sahu, O.; Mazumdar, B.; Chaudhari, P. K. (2014). Treatment of wastewater by electrocoagulation: A review. Environmental Science and Pollution Research, 21(4), 2397-2413. https://doi.org/10.1007/s11356-013-2208-6Test; Samanta, K. K.; Pandit, P.; Samanta, P.; Basak, S. (2019). Water consumption in textile processing and sustainable approaches for its conservation. En Water in Textiles and Fashion (pp. 41-59). Elsevier. https://doi.org/10.1016/B978-0-08-102633-5.00003-8Test; Sanchez, M.; Rivero, M. J.; Ortiz, I. (2011). Kinetics of dodecylbenzenesulphonate mineralisation by TiO2 photocatalysis. Applied Catalysis B: Environmental, 101(3-4), 515-521. https://doi.org/10.1016/j.apcatb.2010.10.023Test; Santana da R.; R. M.; Charamba, L. C. V.; do Nascimento, G. E.; de Oliveira, J. G. C.; Sales, D. C. S.; Duarte, M. M. M. B.; Napoleão, D. C. (2019). Degradation of Textile Dyes Employing Advanced Oxidative Processes: Kinetic, Equilibrium Modeling, and Toxicity Study of Seeds and Bacteria. Water, Air, & Soil Pollution, 230(6). https://doi.org/10.1007/s11270-019-4178-xTest; Sarayu, K.; Sandhya, S. (2012). Current Technologies for Biological Treatment of Textile Wastewater–A Review. Appl Biochem Biotechnol., Vol 167, pp 645–661.; Sass, B. M.; Rai, D. (1987). Solubility of amorphous chromium(III)-iron(III) hydroxide solid solutions. Inorganic Chemistry, 26, 14, 2228–2232. https://doi.org/10.1021/ic00261a013Test; Sasson, M. B.; Calmano, W.; Adin, A. (2009). Iron-oxidation processes in an electroflocculation (electrocoagulation) cell. Journal of Hazardous Materials, 171(1-3), 704-709. https://doi.org/10.1016/j.jhazmat.2009.06.057Test; Sawyer, C.; McCarty, P.; Parkin, G. (2003). Chemistry for Environmental Engineering and Science, fifth ed. McGraw-Hill Education, New York; Scopus. (2023, febrero 21). Scopus—Analyze search results. https://www-scopus-comTest; SDC-AATCC. (2019). Colour Index: Fourth Edition. United Kingdom: Society of Dyers and Colourists; Association of Textile Chemists and Colorists.; Seader, J. D.; Henley, E. J.; Roper, D. K. (2011). Separation process principles: Chemical and biochemical operations (3rd ed). Wiley.; Sebastiano, R., Contiello, N., Senatore, S., Righetti, P. G., Citterio, A. (2012). Analysis of commercial Acid Black 194 and related dyes by micellar electrokinetic chromatography. Dyes and Pigments, 94(2), 258–265. https://doi.org/10.1016/j.dyepig.2011.12.014Test; Şengil, İ. A.; Özacar, M. (2009). The decolorization of C.I. Reactive Black 5 in aqueous solution by electrocoagulation using sacrificial iron electrodes. Journal of Hazardous Materials, 161(2-3), 1369-1376. https://doi.org/10.1016/j.jhazmat.2008.04.100Test; Serna-Galvis, E.A.; Silva-Agredo, J.; Lee, J.; Echavarría-Isaza, A.; Torres-Palma, R.A. (2023). Possibilities and Limitations of the Sono-Fenton Process Using Mid-High-Frequency Ultrasound for the Degradation of Organic Pollutants. Molecules. 28, 1113. https://doi.org/10.3390/molecules28031113Test; Shaikh, M. A. (2009). Water conservation in textile industry. Pakistan Textile Journal, 58; pp 48-51.; Sharma, L.; Kimura, T. (2003). FT‐IR Investigation into the miscible interactions in new materials for optical devices. Polymers for Advanced Technologies, 14(6), 392-399.; Sharma, S.; Mathur, S.; Sharma, R. (2011). Efficacy of Electrocoagulation in Treatment of Textile Wastewater Containing Basic Red Dye Using Iron Electrodes. Nature Environment and Pollution Technology, 10(2), 4.; Sharygin, A. V.; Mokbel, I.; Xiao, C.; Wood, R. H. (2001). Tests of Equations for the Electrical Conductance of Electrolyte Mixtures: Measurements of Association of NaCl (Aq) and Na2SO4(aq) at High Temperatures. The Journal of Physical Chemistry B, 105(1), 229-237. https://doi.org/10.1021/jp002564vTest; Siche, R.; Falguera, V.; Ibarz, A. (2015). Use of Response Surface Methodology to Describe the Combined Effect of Temperature and Fiber on the Rheological Properties of Orange Juice: Orange Juice with Fiber RSM. Journal of Texture Studies, 46(2), 67-73. https://doi.org/10.1111/jtxs.12112Test; Silva, L. C. da, Neto, B. de B.; Silva, V. L. da. (2009). Homogeneous degradation of the Remazol Black B dye by Fenton and photo-Fenton processes in aqueous medium. Afinidad LXVI, 66, 232.; Silverstein, R. M.; Webster, F. X.; Kiemle, D. J. (2005). Spectrometric identification of organic compounds (7th ed). John Wiley & Sons.; Singh, H.; Singh, G.; Bhatti, M. S.; Reddy, A. S. (2015). Textile dyebath wastewater decolorization by electrolytic processes: Response surface optimization using IV-optimal design. Desalination and Water Treatment, 56(3), 665-676. https://doi.org/10.1080/19443994.2014.937763Test; Singh, P. K.; Kumar, P.; Seth, T.; Rhee, H.-W.; Bhattacharya, B. (2012). Preparation, characterization and application of Nano CdS doped with alum composite electrolyte. Journal of Physics and Chemistry of Solids, 73, 1159–1163. http://dx.doi.org/10.1016/j.jpcs.2012.05.008Test; Skoog, D. A., Holler, F. J., Crouch, S. R. (2018). Principles of instrumental analysis (7th Ed.). Cengage Learning.; Solbrig, R. (1982). Raman and infrared spectroscopy of the oxo-bridged iron (III) complex, [Cl3Fe O FeCl3]−2 as a spectroscopic model for the oxo bridge in hemerythrin and ribonucleotide reductase. Journal of Inorganic Biochemistry, 17(1), 69-74. https://doi.org/10.1016/S0162-0134Test(00)80231-7; Standard Methods Committee, American Public Health Association, American Water Works Association, Water Environment Federation, Bridgewater, L. L., Baird, R. B., Eaton, A. D., & Rice, E. W. (Eds.). (2017). Standard methods for the examination of water and wastewater (23rd edition, Vol. 1). American Public Health Association APHA Press. https://doi.org/10.2105/SMWW.2882.002Test; Stephenson, R. J.; Duff, S. J. B. (1996) Coagulation and precipitation of a mechanical pulping effluent—I. Removal of carbon, colour and turbidity. Water Research, 30. 781-792. https://doi:10.1016/0043-1354Test(95)00213-8; Stergiopoulos, D.; Konstantinos, D.; Giannakoudakis, P.; Sotiropoulos, S. (2014). Electrochemical Decolorization and Removal of Indigo Carmine Textile Dye from Wastewater. Global NEST Journal, 16(3), 499-506. https://doi.org/10.30955/gnj.001330Test; Streli, C.; Wobrauschek, P.; Kregsamer, P. (2017). X-Ray Fluorescence Spectroscopy, Applications. En Encyclopedia of Spectroscopy and Spectrometry (pp. 707-715). Elsevier. https://doi.org/10.1016/B978-0-12-803224-4.00315-0Test; Stumm, W.; Morgan, J. J. (1996). Aquatic chemistry: Chemical equilibria and rates in natural waters (3rd ed). Wiley.; Stumm, W.; O’Melia, C. R. (1968). Stoichiometry of Coagulation. Journal - American Water Works Association, 60(5), 514-539. https://doi.org/10.1002/j.1551-8833.1968.tb03579.xTest; Sum, O. S. N.; Feng, J.; Hub, X.; Yue, P. L. (2005). Photo-assisted fenton mineralization of an azo-dye acid black 1 using a modified laponite clay-based Fe nanocomposite as a heterogeneous catalyst. Topics in Catalysis, 33(1-4), 233-242. https://doi.org/10.1007/s11244-005-2532-2Test; Sun, J.; Sun, S.; Sun, J.; Sun, R.; Qiao, L.; Guo, H.; Fan, M. (2007). Degradation of azo dye Acid black 1 using low concentration iron of Fenton process facilitated by ultrasonic irradiation. Ultrasonics Sonochemistry, 14(6), 761-766. https://doi.org/10.1016/j.ultsonch.2006.12.010Test; Sun, J.; Zhou, Y.; Jiang, X.; Fan, J. (2022). Different adsorption behaviors and mechanisms of anionic azo dyes on polydopamine–polyethyleneimine modified thermoplastic polyurethane nanofiber membranes. Water. 14, 3865. https://doi.org/10.3390/w14233865Test; Sun, J. H.; Sun, S. P.; Wang, G. L.; Qiao, L. P. (2007). Degradation of azo dye Amido black 10B in aqueous solution by Fenton oxidation process. Dyes and Pigments, 74(3), 647-652. https://doi.org/10.1016/j.dyepig.2006.04.006Test; Sun, S.-P.; Li, C.-J.; Sun, J.-H.; Shi, S.-H.; Fan, M.-H.; Zhou, Q. (2009). Decolorization of an azo dye Orange G in aqueous solution by Fenton oxidation process: Effect of system parameters and kinetic study. Journal of Hazardous Materials, 161(2-3), 1052-1057. https://doi.org/10.1016/j.jhazmat.2008.04.080Test; Superintendente de Sociedades. (2017). Desempeño del sector textil-confección informe. Bogotá D.C.: Superintendente de Sociedades.; Swaminathan, K.; Sandhya, S.; Carmalin Sophia, A.; Pachhade, K.; Subrahmanyam, Y. V. (2003). Decolorization and degradation of H-acid and other dyes using ferrous–hydrogen peroxide system. Chemosphere, 50(5), 619-625. https://doi.org/10.1016/S0045-6535Test(02)00615-X; Sylwan, I.; Thorin, E. (2021). Removal of Heavy Metals during Primary Treatment of Municipal Wastewater and Possibilities of Enhanced Removal: A Review. Water. 13(8), 1121. https://doi.org/10.3390/w13081121Test; Taghried A, S.; Mayasa I, A. (2019). Eriochrome Black T dye adsorption onto natural and modified orange peel. Research Journal of Chemistry and Environment, 23(1), 155-169.; Taheri, M.; Moghaddam, M. R. A.; Arami, M. (2012). Optimization of Acid Black 172 decolorization by electrocoagulation using response surface methodology. Iranian Journal of Environmental Health Science Engineering, 9(1), 23. https://doi.org/10.1186/1735-2746-9-23Test; Tantak, N.; Chaudhari, S. (2006). Degradation of azo dyes by sequential Fenton’s oxidation and aerobic biological treatment. Journal of Hazardous Materials, 136(3), 698-705. https://doi.org/10.1016/j.jhazmat.2005.12.049Test; Tanveer, R.; Yasar, A.; Tabinda, A.-B.; Ikhlaq, A.; Nissar, H.; Nizami, A.-S. (2022). Comparison of ozonation, Fenton, and photo-Fenton processes for the treatment of textile dye-bath effluents integrated with electrocoagulation. Journal of Water Process Engineering, 46, 102547. https://doi.org/10.1016/j.jwpe.2021.102547Test; Technavio. (2016). Global Dyes And Pigments Market. (https://www.technavio.com/report/dyes-and-pigments-market-analysisTest); Teh, C. Y.; Budiman, P. M.; Shak, K. P. Y.; Wu, T. Y. (2016). Recent Advancement of Coagulation–Flocculation and Its Application in Wastewater Treatment. Industrial & Engineering Chemistry Research, 55(16), 4363-4389. https://doi.org/10.1021/acs.iecr.5b04703Test; Tejedor, A. S. (08 de 2017). La industria de los colorantes y pigmentos. Recuperado el 28 de 08 de 2017, de Química Orgánica Industrial.: https://www.eii.uva.esTest; Tezcan Un, U.; Aytac, E. (2013). Electrocoagulation in a packed bed reactor-complete treatment of color and cod from real textile wastewater. Journal of Environmental Management, 123, 113-119. https://doi.org/10.1016/j.jenvman.2013.03.016Test; Tezcan Ün, Ü.; Koparal, A. S.; Bakir Öğütveren, Ü. (2009). Hybrid processes for the treatment of cattle-slaughterhouse wastewater using aluminum and iron electrodes. Journal of Hazardous Materials, 164(2-3), 580-586. https://doi.org/10.1016/j.jhazmat.2008.08.045Test; Tharpa, K.; Basavaiah, K.; Vinay, K. B. (2009). Spectrophotometric Determination of Furosemide in Pharmaceuticals Using Permanganate. Jordan Journal of Chemistry, 4(4), 387-397.; Théraulaz, F.; Djellal L.; Thomas, O. (1996). Simple LAS determination in sewage using advanced UV spectrophotometry. Tenside Surfactants Detergents, 33,447–451.; Thiam, A.; Zhou, M.; Brillas, E.; Sirés, I. (2014a). Two-step mineralization of Tartrazine solutions: Study of parameters and by-products during the coupling of electrocoagulation with electrochemical advanced oxidation processes. Applied Catalysis B: Environmental, 150-151, 116-125. https://doi.org/10.1016/j.apcatb.2013.12.011Test; Thiam, A.; Zhou, M.; Brillas, E.; Sirés, I. (2014b). A first pre-pilot system for the combined treatment of dye pollutants by electrocoagulation/EAOPs: Treatment of dye pollutants by combined electrocoagulation/EAOPs. Journal of Chemical Technology & Biotechnology, 89(8), 1136-1144. https://doi.org/10.1002/jctb.4358Test; Tizaoui, C.; Bouselmi, L.; Mansouri, L.; Ghrabi, A. (2007). Landfill leachate treatment with ozone and ozone/hydrogen peroxide systems. Journal of Hazardous Materials, 140(1-2), 316-324. https://doi.org/10.1016/j.jhazmat.2006.09.023Test; Tony, M. A.; Mansour, S. A. (2019). Removal of the commercial reactive dye Procion Blue MX-7RX from real textile wastewater using the synthesized Fe2O3 nanoparticles at different particle sizes as a source of Fenton’s reagent. Nanoscale Advances, 1(4), 1362-1371. https://doi.org/10.1039/C8NA00129DTest; Torrades, F.; Garcı́a-Montaño, J.; Garcı́a-Hortal, J.A. Domènech, X.; Peral, J. (2004). Decolorization and mineralization of commercial reactive dyes under solar light assisted photo-Fenton conditions. Solar Energy. 77(5), 573-581. https://doi.org/10.1016/j.solener.2004.05.004Test; Torres-Segundo, C.; Vergara-Sánchez, J.; Reyes-Romero, P. G.; Gómez-Díaz, A.; Rodríguez-Albarrán, M. J.; Martínez-Valencia, H. (2019). Effect on Discoloration By Nonthermal Plasma In Dissolved Textile Dyes: Acid Black 194. Revista Mexicana de Ingeniería Química, 18(3), 939-947. https://doi.org/10.24275/uam/izt/dcbi/revmexingquim/2019v18n3/TorresTest; TRM dólar histórico. (2023). https://www.dolar-colombia.com/historicoTest; Tsitonaki, A.; Petri, B.; Crimi, B.; Mosbaek, H.; Siegrist, R. L.; Bjerg, P. L. (2010). In Situ Chemical Oxidation of Contaminated Soil and Groundwater Using Persulfate: A Review. Critical Reviews in Environmental Science and Technology, 40 (1), 55-91, https://doi.org/10.1080/10643380802039303Test; Tünay, O.; Kabdasli, I.; Eremektar, G.; Orhon, D. (1996). Color removal from textile wastewaters. Water Science and Technology, 34(11), 9-16. https://doi.org/10.1016/S0273-1223Test(96)00815-3; Tyagi, N.; Mathur, S.; Kumar, D. (2014). Electrocoagulation process for textile wastewater treatment in continuous upflow reactor. Journal of Scientific & Industrial Research. 73, 195-198; Tzoupanos, N. D.; Zouboulis, A. I. (2008). Coagulation-flocculation processes in water/wastewater treatment: the application of new generation of chemical reagents. 6th IASME/WSEAS International Conference on Heat Transfer, Thermal Engineering And Environment (HTE'08). Rhodes, Greece, August 20-22, 2008. 309 - 317; Ubale, M. A.; Salkar, V. D. (2017). Experimental study on electrocoagulation of textile wastewater by continuous horizontal flow through aluminum baffles. Korean Journal of Chemical Engineering, 34(4), 1044-1050. https://doi.org/10.1007/s11814-016-0351-8Test; Uner, H.; Dogruel, S.; Arslan-Alaton, I.; Babuna, F. G.; Orhon, D. (2006). Evaluation of Coagulation-Flocculation on a COD-Based Molecular Size Distribution for a Textile Finishing Mill Effluent. Journal of Environmental Science and Health Part A, 41:1899–1908. https://doi.org/10.1080/10934520600779158Test; UN-WATER/WWAP. (2017). Informe Mundial de las Naciones Unidas sobre el Desarrollo de los Recursos Hídricos 2017. Aguas residuales: El recurso desaprovechado. París, Francia: Unesco.; Uppala, R.; Sundar, K.; Muthukumaran, A. (2019). Response surface methodology mediated optimization of decolorization of azo dye amido black 10B by Kocuria kristinae RC3. International Journal of Environmental Science and Technology, 16(8), 4203-4214. https://doi.org/10.1007/s13762-018-1888-3Test; UPS. (2022). US Pharmacopeia [1225 Validation of Compendial Procedures]. The United States Pharmacopeial Convention. https://www.usp.orgTest/; US EPA, O. (2015, septiembre 22). Chromium in Drinking Water [Overviews and Factsheets]. https://www.epa.gov/sdwa/chromium-drinking-waterTest; Vanhaecke, P., Persoone, G., Claus, C., Sorgeloos, P. (1981). Proposal for a short-term toxicity test with Artemia nauplii. Ecotoxicology and Environmental Safety. 5(3), 382-387. https://doi.org/10.1016/0147-6513Test(81)90012-9; Veerakumar, P.; Jeyapragasam, T.; Surabhi Salamalai, K.; Maiyalagan, T.; Lin, K.-C. (2019). Functionalized Mesoporous Carbon Nanostructures for Efficient Removal of Eriochrome Black-T from Aqueous Solution. Journal of Chemical & Engineering Data, 64(4), 1305-1321. https://doi.org/10.1021/acs.jced.8b00878Test; Vepsäläinen, M.; Sillanpää, M. (2020). Chapter 1. Electrocoagulation in the treatment of industrial waters and wastewaters. En: Advanced Water Treatment (Editor: Mika Sillanpää), pp. 1 – 78. https://doi.org/10.1016/B978-0-12-819227-6.00001-2Test; Verma, A. K. (2017). Treatment of textile wastewaters by electrocoagulation employing Fe-Al composite electrode. Journal of Water Process Engineering, 20, 168-172. https://doi.org/10.1016/j.jwpe.2017.11.001Test; Verma, A. K.; Bhunia, P.; Dash, R. R. (2014). Reclamation of wastewater using composite coagulants: A sustainable solution to the textile industries. Chemical Engineering Transactions, 175-180. https://doi.org/10.3303/CET1442030Test; Verma, A. K.; Dash, R. R.; Bhunia, P. (2012). A review on chemical coagulation/flocculation technologies for removal of colour from textile wastewaters. Journal of Environmental Management, 93(1), 154-168. https://doi.org/10.1016/j.jenvman.2011.09.012Test; Verma, S. K.; Khandegar, V.; Saroha, A. K. (2013). Removal of chromium from electroplating industry effluent using electrocoagulation. J. Hazard. Toxic Radioact. Waste., 17, 146 – 152. https://doi.org/10.1061Test/(ASCE)HZ.2153-5515.0000170; Vidal, J.; Espinoza, C.; Contreras, N.; Salazar, R. (2017). Elimination of industrial textile dye by electrocoagulation using iron electrodes. Journal of the Chilean Chemical Society, 62(2), 3519-3524. https://doi.org/10.4067/S0717-97072017000200019Test; Vidal, J.; Villegas, L.; Peralta-Hernández, J. M.; Salazar González, R. (2016). Removal of Acid Black 194 dye from water by electrocoagulation with aluminum anode. Journal of Environmental Science and Health, Part A, 51(4), 289-296. https://doi.org/10.1080/10934529.2015.1109385Test; Vineta, S.; Silvana, Z.; Sanja, R.; Golomeova, S. (2014). Methods for waste waters treatment in textile industry. International Scientific Conference., 248-252.; Vogel, A. I.; Jeffery, G. H. (Eds.). (1989). Vogel’s textbook of quantitative chemical analysis (5 ed.). Longman.; Walling, C.; Goosen, A. (1973). Mechanism of the ferric ion catalyzed decomposition of hydrogen peroxide. Effect of organic substrates. Journal of the American Chemical Society, 95(9), 2987-2991. https://doi.org/10.1021/ja00790a042Test; Wan, Z.; Hassan, H. (2012). Heterogeneous catalyst acid-activated clamshell for fenton-like oxidation of reactive black 5 solutions. 2012 IEEE Symposium on Humanities, Science and Engineering Research, 277-281. https://doi.org/10.1109/SHUSER.2012.6268861Test; Wang, L. P.; Chuan Guo, Y.; Zhong Chen, Y.; Deng Du, E.; Jing Mao, Y. (2011). The Treatment of Printing and Dyeing Wastewater by Using Coagulation and Fenton Reagent Oxidation Combined Process. Advanced Materials Research. 331:368-71. https://doi:10.4028/www.scientific.net/AMR.331.368Test; Wang, N.; Zheng, T.; Zhang, G.; Wang, P. (2016). A review on Fenton-like processes for organic wastewater treatment. J. Environ. Chem. Eng., 4: 762–787. https://doi.org/10.1016/j.jece.2015.12.016Test; Wang, S. (2008). A Comparative study of Fenton and Fenton-like reaction kinetics in decolourisation of wastewater. Dyes and Pigments, 76(3), 714-720. https://doi.org/10.1016/j.dyepig.2007.01.012Test; Wang, X.; Su, D.; Li, H. B. (2011). Treatment of Textile Dye Wastewater by Electrocoagulation Method. Advanced Materials Research, 281, 276-279. https://doi.org/10.4028/www.scientific.net/AMR.281.276Test; Wang, Z.; Fang, C.; Megharaj, M. (2014). Characterization of Iron–Polyphenol Nanoparticles Synthesized by Three Plant Extracts and Their Fenton Oxidation of Azo Dye. ACS Sustainable Chemistry & Engineering, 2(4), 1022-1025. https://doi.org/10.1021/sc500021nTest; Wang, Z.; Xue, M.; Huang, K.; Liu, Z. (2011). Textile Dyeing Wastewater Treatment. (Peter J. Hauser Ed.), Advances in Treating Textile Effluent. InTech. https://doi.org/10.5772/22670Test; Wang, Z.; Yu, C.; Fang, C.; Mallavarapu, M. (2014). Dye removal using iron–polyphenol complex nanoparticles synthesized by plant leaves. Environmental Technology & Innovation, 1-2, 29-34. https://doi.org/10.1016/j.eti.2014.08.003Test; WHO. (2017). Guidelines for drinking-water quality.; Win, T. T.; Swe, T. M.; Ei, H. H.; Win, N. N.; Swe, K. K.; Nandar, W.; Ko, T. K.; Fu, P. (2021). An evaluation into the biosorption and biodegradation of azo dyes by indigenous siderophores-producing bacteria immobilized in chitosan. Biodegradation 32(6):697-710. https://doi:10.1007/s10532-021-09961-yTest; Wojciechowski, K.; Szuster, L. (2016). [Azo-Hyd] Tautomerism and Structure of Selected Metal Complex Dyes AM1 and ZINDO/1 Methods. Computational Chemistry, 04(04), 97-118. https://doi.org/10.4236/cc.2016.44010Test; Wong, P. W.; Teng, T. T.; & Norulaini, N. A. R. N. (2007). Efficiency of the Coagulation-Flocculation Method for the Treatment of Dye Mixtures Containing Disperse and Reactive Dye. Water Quality Research Journal, 42(1), 54-62. https://doi.org/10.2166/wqrj.2007.008Test; Workman Jr., J. (2000). The Handbook of Organic Compounds, First edition. Academic Press, USA, eBook ISBN: 9780080533650; World Health Organization, 2004. Guidelines for Drinking e Water Quality. World Health Organization, Geneva, Switzerland, pp. 301-303.; WQA. (2012, agosto 2). Chromium in Drinking Water [Chromium in Drinking Water]. Water Quality Association. https://www.wqa.org/learn-aboutwater/commoncontaminants/chromiumTest; Xiao, X.; Sun, Y.; Sun, W.; Shen, H.; Zheng, H.; Xu, Y.; Zhao, J.; Wu, H.; Liu, C. (2017). Advanced treatment of actual textile dye wastewater by Fenton-flocculation process. The Canadian Journal of Chemical Engineering, 95(7), 1245-1252. https://doi.org/10.1002/cjce.22752Test; Xiaoxu, S.; Jin, X.; Xingyu, L. (2017). Experimental Study on Treatment of Dyeing Wastewater by Activated Carbon Adsorption, Coagulation and Fenton Oxidation. IOP Conference Series: Earth and Environmental Science, 100, 012199. https://doi.org/10.1088/1755-1315/100/1/012199Test; Xue, D.; Li, C.; Dengchao, L.; Jiang, H.; Xiaowen, L.; Zhang, H. (2014). Oxidation treatment of printing and dyeing wastewater by flocculation-Fenton reagent. Chinese Journal of Environmental Engineering. 8:3601-6.; Yadav, A.; Mukherji, S.; Garg, A. (2013). Removal of Chemical Oxygen Demand and Color from Simulated Textile Wastewater Using a Combination of Chemical/Physicochemical Processes. Industrial & Engineering Chemistry Research. 52(30):10063-71. https://doi:10.1021/ie400855bTest.; Yaseen, D. A.; Scholz, M. (2019). Textile dye wastewater characteristics and constituents of synthetic effluents: A critical review. International Journal of Environmental Science and Technology, 16(2), 1193-1226. https://doi.org/10.1007/s13762-018-2130-zTest; Yaser, A. Z.; Nurmin, B.; Rosalam, S. (2013). Coagulation/Flocculation of Anaerobically Treated Palm Oil Mill Effluent (AnPOME): A Review. En: Pogaku, R.; Bono, A.; Chu, C. (Eds). Developments in Sustainable Chemical and Bioprocess Technology. Springer. New York.; Yavuz, Y.; Shahbazi, R.; Koparal, A. S.; Öğütveren, Ü. B. (2014). Treatment of Basic Red 29 dye solution using iron-aluminum electrode pairs by electrocoagulation and electro-Fenton methods. Environmental Science and Pollution Research, 21(14), 8603-8609. https://doi.org/10.1007/s11356-014-2789-8Test; Ye, C.; Wang, D.; Shi, B.; Yu, J.; Qu, J.; Edwards, M.; Tang, H. (2007), Alkalinity effect of coagulation with polyaluminum chlorides: Role of electrostatic patch. Colloids and Surfaces A: Physicochem. and Engin. Aspects, 294, 163–173. https://doi.org/10.1016/j.colsurfa.2006.08.005Test; Yesil, H.; Molaey, R.; Calli, B.; Tugtas, A. E. (2021). Removal and recovery of heavy metals from sewage sludge via three stage integrated process. Chemosphere 280, 130650. https://doi.org/10.1016/j.chemosphere.2021.130650Test; Yılmaz, A. (2012). Determination of the optimum conditions in the removal of color from synthetic textile wastewater using electrocoagulation method. Fresenius Environmental Bulletin, 21, 1052-1059.; Yoon, J.; Lee, Y.; Kim, S. (2001). Investigation of the reaction pathway of OH radicals produced by Fenton oxidation in the conditions of wastewater treatment. Water Science and Technology: A Journal of the International Association on Water Pollution Research, 44(5), 15-21.; Yuksel, E.; Eyvaz, M.; Gurbulak, E. (2013). Electrochemical treatment of colour index reactive orange 84 and textile wastewater by using stainless steel and iron electrodes. Environmental Progress Sustainable Energy, 32(1), 60-68. https://doi.org/10.1002/ep.10601Test; Yuksel, E.; Gurbulak, E.; Eyvaz, M. (2012). Decolorization of a reactive dye solution and treatment of a textile wastewater by electrocoagulation and chemical coagulation: Techno-economic comparison. Environmental Progress Sustainable Energy, 31(4), 524-535. https://doi.org/10.1002/ep.10574Test; Yukseler, H., Uzal, N., Sahinkaya, E., Kitis, M., Dilek, F.B., Yetis, U. (2017). Analysis of the best available techniques for wastewaters from a denim manufacturing textile mill. Journal of Environmental Management, 203, 1118-1125. https://doi.org/j.jenvman.2017.03.041Test; Zaharia, C.; Suteu, D. (2012). Textile Organic Dyes – Characteristics, Polluting Effects and Separation/Elimination Procedures from Industrial Effluents – A Critical Overview. En Tomasz Puzyn (Ed.), Organic Pollutants Ten Years After the Stockholm Convention—Environmental and Analytical Update. InTech. https://doi.org/10.5772/32373Test; Zarei, M.; Niaei, A.; Salari, D.; Khataee, A. (2010). Application of response surface methodology for optimization of peroxi-coagulation of textile dye solution using carbon nanotube–PTFE cathode. Journal of Hazardous Materials, 173(1-3), 544-551. https://doi.org/10.1016/j.jhazmat.2009.08.120Test; Zaroual, Z.; Azzi, M.; Saib, N.; Chainet, E. (2006). Contribution to the study of electrocoagulation mechanism in basic textile effluent. Journal of Hazardous Materials, 131(1-3), 73-78. https://doi.org/10.1016/j.jhazmat.2005.09.021Test; Zayed, M. A.; El-desawy, M.; Eladly, A. A. (2018). Experimental and theoretical spectroscopic studies in relation to molecular structure investigation of para chloro, para fluoro and para nitro maleanilinic acids. Computational Biology and Chemistry. 76, 338–356. https://doi.org/10.1016/j.compbiolchem.2018.08.006Test; Zazou, H.; Afanga, H.; Akhouairi, S.; Ouchtak, H.; Addi, A. A.; Akbour, R. A.; Assabbane, A.; Douch, J.; Elmchaouri, A.; Duplay, J.; Jada, A.; Hamdani, M. (2019). Treatment of textile industry wastewater by electrocoagulation coupled with electrochemical advanced oxidation process. Journal of Water Process Engineering, 28, 214-221. https://doi.org/10.1016/j.jwpe.2019.02.006Test; Zemskov, A. V.; Rodionova, G. N.; Tuchin, Yu. G.; Karpov, V. V. (1988). IR spectra and structure of some azo dyes - P-azobenzene derivatives - In various aggregate states. Journal of Applied Spectroscopy, 49(4), 1020-1024. https://doi.org/10.1007/BF00657220Test; Zhai, J.; Ma, H.; Liao, J.; Rahaman, M. H.; Yang, Z.; Chen, Z. (2018). Comparison of Fenton, ultraviolet–Fenton and ultrasonic–Fenton processes on organics and color removal from pre-treated natural gas produced water. International Journal of Environmental Science and Technology, 15(11), 2411-2422. https://doi.org/10.1007/s13762-017-1604-8Test; Zhang, M.; Dong, H.; Zhao, L.; Wang, D.; Meng, D. (2019). A review on Fenton process for organic wastewater treatment based on optimization perspective. Science of The Total Environment, 670, 110-121. https://doi.org/10.1016/j.scitotenv.2019.03.180Test; Zhang, Q.; Hu, J.; Lee, D-J.; Chang, Y.; Lee, Y-J. (2017). Sludge Treatment: Current Research Trends. Bioresource Technology, http://dx.doi.org/10.1016/j.biortech.2017.07.070Test; Zhao, M.; Wang, X.; Wang, S.; Mingming, G. (2024). Cr-containing wastewater treatment based on Cr self-catalysis: a critical review. Front. Environ. Sci. Eng., 18, 1-22. https://doi.org/10.1007/s11783-024-1761-1Test; Zhou, Y.-L.; Huang, W.; Yu, Y.-B.; Wu, L.-Y.; Hong, J.-M.; Zhang, Q. (2019). Electrocatalytic degradation of organic dye RBk5 by oxide graphene. China Environmental Science, 39(11), 4653-4659.; Zodi, S.; Potier, O.; Lapicque, F.; Leclerc, J.-P. (2010). Treatment of the industrial wastewaters by electrocoagulation: Optimization of coupled electrochemical and sedimentation processes. Desalination, 261(1-2), 186-190. https://doi.org/10.1016/j.desal.2010.04.024Test; Zonoozi, M. H.; Moghaddam, M. R. A.; Arami, M. (2009). Coagulation/flocculation of dye-containing solutions using polyaluminium chloride and alum. Water Science and Technology, 59(7), 1343-1351. https://doi.org/10.2166/wst.2009.128Test; Zuluaga, S.; Ibarra, H. N.; Dobrosz-Gómez, I.; Gómez, M.-Á. (2018). Ajuste de Parámetros Cinéticos y Cálculo de sus Desviaciones usando Matlab. Formación universitaria, 11(6), 53-62. https://doi.org/10.4067/S0718-50062018000600053Test; https://repositorio.unal.edu.co/handle/unal/86293Test; Universidad Nacional de Colombia; Repositorio Institucional Universidad Nacional de Colombia; https://repositorio.unal.edu.coTest/
الإتاحة: https://doi.org/10.1155/2012/20607610.1016/j.apcatb.2007.09.03210.1080/09593330.2001.961951010.1016/s0043-1354Test(01)00508-510.1088/1742-6596/1999/1/01212310.15244/pjoes/9194010.1016/j.scitotenv.2020.14080610.1016/j.electacta.2010.10.08910.1016/j.jhazmat.2014.12.03610.1080/19443994.2015.110609410.1596/2792010.1016/j.wasman.2011.03.02310.1016/j.cep.2010.08.01910.1007/s11270-016-2967-z10.1080/09593330.2004.961935010.1016/S0143-7208(99)00048-010.1007/s13399-023-04128-610.1520/D2035-1910.1007/s11814-019-0334-710.1016/j.jece.2013.10.01110.1016/j.jclepro.2018.07.21410.1063/1.485870810.1007/s40710-019-00378-710.1016/j.dyepig.2006.01.01310.1016/j.jhazmat.2010.08.09710.1016/0043-1354(93)90226-810.29356/jmcs.v58i3.13310.1016/S0969-806X(02)00497-810.1515/rput-2017-001210.1016/j.jhazmat.2017.04.04510.1016/j.ultsonch.2014.03.02610.15666/aeer/1702_1517152910.1016/j.cej.2006.10.00810.1016/j.seppur.2003.09.00210.18869/acadpub.jhs.2.1.1610.1016/j.jhazmat.2007.02.00310.1002/j.1551-8833.2000.tb09023.x10.1016/j.psep.2019.03.02810.1051/ijmqe/201603010.1016/j.psep.2019.06.01010.1016/j.desal.2011.04.01410.1016/S0043-1354(00)00364-X10.5772/5734110.1016/S0011-9164(02)00750-610.1016/j.talanta.2008.05.01910.1080/19443994.2013.78665310.1016/j.cej.2018.10.09310.1016/j.desal.2011.11.05510.1016/j.cej.2013.10.10110.2166/978178040750010.1016/j.chemosphere.2020.12619810.1016/j.apcatb.2014.11.01610.1016/j.yrtph.2014.04.01110.3390/w302049510.30638/eemj.2008.11310.1016/j.jenvman.2021.11423410.1021/ie020951g10.1021/es060839010.14483/23448393.1794510.1016/j.chemosphere.2019.12515710.1007/s13201-019-0985-x10.1016/j.desal.2011.08.00410.1016/S0045-6535(02)00812-310.1016/j.jece.2015.09.03010.1016/j.jhazmat.2008.12.04210.4028/www.scientific.net/KEM.659.28410.1016/j.biortech.2018.01.01610.3184/146867811X1302184736617910.1080/10590501.2016.123660210.1016/j.jenvman.2018.11.09410.1021/ac60259a00710.6028/jres.090.03310.1002/clen.20100023310.1016/j.jhazmat.2007.03.02810.1351/pac19987004099310.4236/gsc.2019.9400910.1016/S1573-4285(06)80071-210.1016/j.watres.2006.08.00910.1080/1064338910938840910.25103/jestr.061.0710.1007/s10812-012-9547-910.1016/j.jclepro.2017.10.01510.1016/j.chemosphere.2008.11.07510.1016/j.scitotenv.2022.15588010.1007/s13762-022-04050-w10.1016/j.apcatb.2018.02.05710.5772/5365910.1016/j.jhazmat.2006.01.02210.1016/j.watres.2006.11.03810.1016/j.proeng.2017.03.20510.2175/106143006X9883110.1016/j.desal.2009.05.01010.5277/ppmp182510.2478/s11532-012-0183-210.2166/wst.1999.063310.5004/dwt.2011.261210.1016/j.jenvman.2008.12.01110.1007/s11243-008-9173-910.1016/j.arabjc.2013.02.00910.1016/j.cej.2009.05.02810.1016/j.jelechem.2017.07.01510.1080/09593330.2018.154203510.1007/s11356-016-7590-410.1007/978-981-10-4780-0_210.1016/j.indcrop.2015.06.02710.1016/S0043-1354(02)00481-510.1016/j.jhazmat.2008.07.09010.1007/s40710-014-0029-310.4236/oalib.110604510.5004/dwt.2009.11610.1007/s12088-011-0131-410.1002/cjce.2035310.2166/wst.2011.23210.2166/wst.2012.07810.1016/j.jenvman.2017.01.01510.1016/j.jwpe.2018.05.00710.1016/j.scitotenv.2018.09.12510.2166/wst.2009.51910.1007/s11356-016-6820-010.1016/S1093-0191(03)00032-710.35940/ijeat.F9218.08861910.1016/j.dyepig.2004.11.00310.1155/1969/472460610.20964/2016.09.4210.1016/j.seppur.2014.04.04610.15376/biores.13.2.2727-274710.4491/eer.2017.10810.20964/2019.06.3710.1007/s11356-018-3101-010.1007/978-3-319-33892-7_210.1016/j.desal.2016.10.01110.1021/ac00188a03310.1016/j.jwpe.2020.10169310.4028/www.scientific.net/AMR.295-297.112010.1016/S1452-3981(23)18332-510.1080/1093452840937515210.1016/j.chemosphere.2004.10.02310.2166/wst.2015.47710.1021/ac00238a00210.1093/jaoac/89.4.109510.1093/jaoac/63.6.134410.1016/j.molcata.2005.09.04410.1016/B976.2-0-12-816446.2-8.00006.2-310.1016/j.jhazmat.2018.10.02610.1016/j.jhazmat.2007.10.07710.1016/j.energy.2015.05.03910.3906/muh-1310-810.4067/S0718-0764201800050011110.1016/j.jenvman.2017.05.09510.1038/s41598-017-16131-910.1016/j.arabjc.2013.08.00710.1016/j.apcatb.2020.11900210.1016/j.dyepig.2005.10.01110.1016/j.jenvman.2016.04.00510.14233/ajchem.2020.2233810.1080/0959333080246884810.1016/j.jclepro.2017.06.24010.31274/rtd-180813-1146810.1016/S0045-6535(01)00159-X10.1016/S0043-1354(99)00388-710.1016/j.biortech.2008.11.02610.5004/dwt.2017.2027710.15680/IJIRSET.2014.030803410.2166/wst.2011.30610.12989/mwt.2017.8.3.25910.1016/j.jhazmat.2008.04.07510.1016/j.jece.2017.12.05410.1007/s13762-018-1731-x10.1080/19443994.2015.106309210.1080/10934529.2016.115987710.2166/wst.1997.012810.1016/j.cep.2015.11.01210.1111/cote.1209010.1016/j.jece.2021.10523410.1080/0149639070129018510.1016/j.biteb.2019.10031110.1016/j.jhazmat.2007.09.00710.1016/0043-1354(92)90192-710.1021/es803666910.1080/01496395.2017.129229410.1021/ed076p168910.1016/S0043-1354(97)00024-910.1080/09593330.1995.961826810.1007/978-0-387-68318-8_1010.2166/wst.2018.37210.1016/j.eti.2021.10164410.1016/j.proeng.2011.08.90210.1016/j.jhazmat.2007.02.06110.1016/j.scitotenv.2013.05.00410.1016/S0304-3894(98)00266.2-410.1016/j.watres.2006.12.01310.1016/j.dyepig.2005.07.00710.1080/19443994.2013.79176910.1016/S1383-5866(02)00200-910.1016/j.seppur.2019.01.05610.1016/j.rser.2012.01.07410.1016/j.cej.2014.04.09610.1016/0009-2509(96)00272-210.25103/jestr.091.1710.1016/j.psep.2022.05.06110.1016/j.jhazmat.2005.06.02810.1590/s1413-4152201715074310.1029/2007JG00053410.1007/s00128-003-8781-510.1021/ed300542410.1039/C6RA28578C10.3390/met1012157810.1021/je101012n10.4319/lom.2012.10.95210.1016/j.chemosphere.2003.08.0110.1504/IJEP.2005.00686510.1016/j.desal.2011.01.02910.1016/j.cej.2008.10.01810.1016/j.desal.2011.02.05510.1016/j.cej.2012.05.01510.1016/S0304-3894(01)00176-510.1080/10934529.2012.69567510.2166/wst.2016.56310.1080/19443994.2014.99571410.1016/j.jwpe.2014.09.00210.4067/S0718-3429201500010000910.2166/wst.2003.059810.1016/j.jhazmat.2007.04.09010.1016/j.jece.2015.10.00410.1016/j.jenvman.2016.03.03410.1515/revce-2016-001910.1016/S0304-3894(02)00282-010.30955/gnj.00173810.1016/j.jhazmat.2019.03.03010.1016/j.scitotenv.2010.08.06110.1016/j.watres.2019.01.06310.1039/C5RA26492H10.1002/clen.20100026310.5004/dwt.2020.2595410.1016/j.jtice.2017.02.02710.1016/j.jhazmat.2011.09.06410.9790/2402-08103293210.1016/j.vibspec.2022.10337710.1016/j.jenvman.2009.11.00810.1016/j.psep.2014.02.00810.1021/es00029a01210.1016/j.dyepig.2003.10.00910.1016/j.jscs.2013.12.00810.1016/j.jclepro.2013.09.01310.1149/1.242605110.1007/s11270-009-0065-110.1016/j.jhazmat.2007.09.05310.1155/2013/85376310.1016/B978-0-08-102633-5.00009-910.1016/j.cattod.2005.07.06010.1016/j.apcatb.2006.08.01210.1016/j.matpr.2017.01.05810.4236/gsc.2013.3201310.1088/1756.2-899X/162/1/01202610.1016/j.envres.2021.11095710.1016/j.seppur.2010.06.02410.1063/1.174012710.3390/microorganisms710038410.1016/S0043-1354(00)00285-210.1016/j.jenvman.2010.12.01510.1007/s11356-013-2208-610.1016/B978-0-08-102633-5.00003-810.1016/j.apcatb.2010.10.02310.1021/ic00261a01310.1016/j.jhazmat.2009.06.05710.1016/j.dyepig.2011.12.01410.1016/j.jhazmat.2008.04.10010.3390/molecules2803111310.1021/jp002564v10.1111/jtxs.1211210.1080/19443994.2014.93776310.1016/j.jpcs.2012.05.00810.1016/S0162-0134(00)80231-710.1016/0043-1354(95)00213-810.30955/gnj.00133010.1016/B978-0-12-803224-4.00315-010.1002/j.1551-8833.1968.tb03579.x10.1007/s11244-005-2532-210.1016/j.ultsonch.2006.12.01010.3390/w1423386510.1016/j.dyepig.2006.04.00610.1016/j.jhazmat.2008.04.08010.1016/S0045-6535(02)00615-X10.3390/w1308112110.1186/1735-2746-9-2310.1016/j.jhazmat.2005.12.04910.1016/j.jwpe.2021.10254710.1016/j.jenvman.2013.03.01610.1016/j.jhazmat.2008.08.04510.1016/j.apcatb.2013.12.01110.1016/j.jhazmat.2006.09.02310.1039/C8NA00129D10.1016/j.solener.2004.05.00410.24275/uam/izt/dcbi/revmexingquim/2019v18n3/Torres10.1080/1064338080203930310.1016/S0273-1223(96)00815-310.1007/s11814-016-0351-810.1080/1093452060077915810.1007/s13762-018-1888-310.1016/0147-6513(81)90012-910.1016/B978-0-12-819227-6.00001-210.1016/j.jwpe.2017.11.00110.3303/CET144203010.1016/j.jenvman.2011.09.01210.1061/(ASCE)HZ.2153-5515.000017010.4067/S0717-9707201700020001910.1080/10934529.2015.110938510.1021/ja00790a04210.1109/SHUSER.2012.626886110.4028/www.scientific.net/AMR.331.36810.1016/j.jece.2015.12.01610.1016/j.dyepig.2007.01.01210.4028/www.scientific.net/AMR.281.27610.5772/2267010.1007/s10532-021-09961-y10.4236/cc.2016.4401010.1002/cjce.2275210.1088/1755-1315/100/1/01219910.1007/s13762-018-2130-z10.1007/s11356-014-2789-810.1016/j.colsurfa.2006.08.00510.1016/j.chemosphere.2021.13065010.1002/ep.1060110.1002/ep.1057410.5772/3237310.1016/j.jhazmat.2009.08.12010.1016/j.jhazmat.2005.09.02110.1016/j.compbiolchem.2018.08.00610.1016/j.jwpe.2019.02.00610.1007/BF0065722010.1007/s13762-017-1604-810.1016/j.scitotenv.2019.03.18010.1016/j.biortech.2017.07.07010.1007/s11783-024-1761-110.1016/j.desal.2010.04.02410.2166/wst.2009.12810.4067/S0718-50062018000600053
https://repositorio.unal.edu.co/handle/unal/86293Test
https://repositorio.unal.edu.coTest/
حقوق: Atribución-NoComercial-SinDerivadas 4.0 Internacional ; http://creativecommons.org/licenses/by-nc-nd/4.0Test/ ; info:eu-repo/semantics/openAccess
رقم الانضمام: edsbas.DC2D311C
قاعدة البيانات: BASE