يعرض 1 - 10 نتائج من 1,343 نتيجة بحث عن '"A. A. Trukhin"', وقت الاستعلام: 1.20s تنقيح النتائج
  1. 1
    دورية أكاديمية
  2. 2
    دورية أكاديمية
  3. 3
    دورية أكاديمية
  4. 4
    دورية أكاديمية
  5. 5
    دورية أكاديمية
  6. 6
    دورية أكاديمية
  7. 7
    دورية أكاديمية
  8. 8
  9. 9
    دورية أكاديمية

    المصدر: Journal Infectology; Том 15, № 3 (2023); 67-76 ; Журнал инфектологии; Том 15, № 3 (2023); 67-76 ; 2072-6732 ; 10.22625/2072-6732-2023-15-3

    وصف الملف: application/pdf

    العلاقة: https://journal.niidi.ru/jofin/article/view/1544/1088Test; Масакова, В.Л. Актуальные вопросы профилактики гриппа и ОРВИ / В.Л. Масакова, М.К. Ерофеева // Фарматека. – 2013. – Т. 15 (268), №4. – С. 32–35.; Костинов, М.П. Приоритетная вакцинация респираторных инфекций в период пандемии SARS-CoV-2 и после ее завершения : пособие для врачей / М.П. Костинов, А.Г. Чучалин. – М.: Группа МДВ, 2020. – 32 с.; Шахтахтинская, Ф.Ч. Актуальные вопросы вакцинопрофилактики гриппа / Ф.Ч. Шахтахтинская [и др.] // Вопросы современной педиатрии. – 2021. – Т. 20, № 4. – С. 333–337.; Immunization in the context of COVID-19 pandemic: frequently asked questions ( FAQ) , 16 April 2020. WHO. – 6 p. Available from: https://apps.who.int/iris/handle/10665/331818Test.; Брико, Н.И. Иммунопрофилактика и лечение гриппа: успехи и проблемы / Н.И. Брико [и др.] // Лечащий врач. – 2019. – № 12. – С. 53–58.; Приказ Министерства здравоохранения Российской Федерации от 06.12.2021 № 1122н «Об утверждении национального календаря профилактических прививок, календаря профилактических прививок по эпидемическим показаниям и порядка проведения профилактических прививок» (Зарегистрирован 20.12.2021 № 66435).; Шамшева, О.В. Место вакцинации против гриппа в календаре профилактических прививок России / О.В. Шамшева [и др.] // Детские инфекции. – 2011. – №1. – С. 26–32.; World Health Organization. Vaccines against influenza. WHO position paper. — November 2012. Wkly Epidemiol Rec. 2012; 87(47): 461–476.; Фельдблюм, И.В. Оценка реактогенности, безопасности и иммуногенности отечественной расщеплённой вакцины «ФЛЮ-М» при иммунизации взрослых в возрасте 18-60 лет. / И.В. Фельдблюм [и др.] // Эпидемиология, вакцинопрофилактика. – 2018. – Т.1, № 17. – С. 20–24.; Фельдблюм, И.В. Реактогенность, безопасность и иммуногенность отечественной гриппозной инактивированной расщеплённой вакцины «ФЛЮ-М» при иммунизации взрослых 18–60 лет / И.В. Фельдблюм [и др.] // ftурнал микробиологии, эпидемиологии и иммунобиологии. – 2018. – № 5. – С. 31–37.; Государственныйреестрлекарственныхсредств(РКИ №733 24.12.2019). Available from: https://grls.rosminzdrav.ru/CIPermissionMini.aspx?CIStatementGUID=749163a7-a280-47c1-9134-ffd6a35ab946&CIPermGUID=cb2448bd-9597-4a57-b732-208d65d238ecTest; «Ваксигрип»® (инактивированная сплит-вакцина для профилактики гриппа). Инструкция по медицинскому применению. Available from: http://grls.rosminzdrav.ru/GrlsView_v2.aspx?routingGuid=dbe0bb34-ff56-47e4-9873-0133b28f09c9&tTest=.; «Правила надлежащей клинической практики в Российской Федерации», утвержденные приказом Министерства здравоохранения Российской Федерации от 01.04.2016 No 200н. Available from: https://cdnimg.rg.ru/pril/130/47/73/43357.pdfTest.; FDA Guidance for industry: Clinical data needed to support the licensure of seasonal inactivated influenza vaccines. Available from: https://www.fda.gov/downloads/Biologics-BloodVaccines/guidanceComplianceRegulatoryInformation/Guidances/Vaccines/ucm091990.pdfTest; https://journal.niidi.ru/jofin/article/view/1544Test

  10. 10
    دورية أكاديمية

    المساهمون: The work was supported by the Russian Science Foundation under grant 22-14-00184., Работа выполнена при финансовой поддержке гранта РНФ 22-14-00184.

    المصدر: Biological Products. Prevention, Diagnosis, Treatment; Том 23, № 1 (2023): Вопросы разработки новых противовирусных вакцин; 42-64 ; БИОпрепараты. Профилактика, диагностика, лечение; Том 23, № 1 (2023): Вопросы разработки новых противовирусных вакцин; 42-64 ; 2619-1156 ; 2221-996X

    وصف الملف: application/pdf

    العلاقة: https://www.biopreparations.ru/jour/article/view/463/633Test; https://www.biopreparations.ru/jour/article/view/463/637Test; https://www.biopreparations.ru/jour/article/view/463/652Test; https://www.biopreparations.ru/jour/article/downloadSuppFile/463/538Test; https://www.biopreparations.ru/jour/article/downloadSuppFile/463/539Test; https://www.biopreparations.ru/jour/article/downloadSuppFile/463/540Test; https://www.biopreparations.ru/jour/article/downloadSuppFile/463/541Test; https://www.biopreparations.ru/jour/article/downloadSuppFile/463/648Test; Okeoma CM, ed. Chikungunya virus. Advances in Biology, Pathogenesis, and Treatment. Springer; 2016. https://doi.org/10.1007/978-3-319-42958-8Test; Weaver SC, Lecuit M. Chikungunya virus and the global spread of a mosquito-borne disease. N Engl J Med. 2015;372:1231–9. https://doi.org/10.1056/NEJMra1406035Test; Deeba F, Islam A, Kazim SN, Naqvi IH, Broor S, Ahmed A, Parveen S. Chikungunya virus: recent advances in epidemiology, host pathogen interaction and vaccine strategies. Pathogens Disease. 2016;74(3):ftv119. https://doi.org/10.1093/femspd/ftv119Test; Schrauf S, Tschismarov R, Tauber E, Ramsauer K. Current efforts in the development of vaccines for the prevention of Zika and Chikungunya virus infections. Front Immunol. 2020;11:592–612. https://doi.org/10.3389/fimmu.2020.00592Test; Simo FBN, Bigna JJ, Well EA, Kenmoe S, Sado FBY, Weaver SC, et al. Chikungunya virus infection prevalence in Africa: a contemporaneous systematic review and meta-analysis. Public Health. 2019;166:79–88. https://doi.org/10.1016/j.puhe.2018.09.027Test; Caglioti C, Lalle E, Castilletti C, Carletti F, Capobianchi MR, Bordi L. Chikungunya virus infection: an overview. New Microbiol. 2013;36(3):211–27.; Puntasecca CJ, King CH, LaBeaud AD. Measuring the global burden of Сhikungunya and Zika viruses: a systematic review. PLoS Negl Trop Dis. 2021;15(3):e0009055. https://doi.org/10.1371/journal.pntd.0009055Test; Volk SM, Chen R, Tsetsarkin KA, Adams AP, Garcia TI, Sall AA, et al. Genome-scale phylogenetic analyses of Сhikungunya virus reveal independent emergences of recent epidemics and various evolutionary rates. J Virol. 2010;84(13):6497–504. https://doi.org/10.1128/JVI.01603-09Test; Lum FM, Teo TH, Lee WW, Kam YW, Rénia L, Ng LF. An essential role of antibodies in the control of сhikungunya virus infection. J Immunol. 2013;190(12):6295–302. https://doi.org/10.4049/jimmunol.1300304Test; Kam YW, Lum FM, Teo TH, Lee WW, Simarmata D, Harjanto S, et al. Early neutralizing IgG response to Chikungunya virus in infected patients targets a dominant linear epitope on the E2 glycoprotein. EMBO Mol Med. 2012;4(4):330–43. https://doi.org/10.1002/emmm.201200213Test; Powers AM, Brault AC, Shirako Y, Strauss EG, Kang W, Strauss JH, Weaver SC. Evolutionary relationships and systematics of the alphaviruses. J Virol. 2001;75(21):10118–31. https://doi.org/10.1128/JVI.75.21.10118-10131.2001Test; Pialoux G, Gaüzère BA, Jauréguiberry S, Strobel M. Chikungunya, an epidemic arbovirosis. Lancet Infect Dis. 2007;7(5):319–27. https://doi.org/10.1016/S1473-3099Test(07)70107-X; Peyrefitte CN, Rousset D, Pastorino BA, Pouillot R, Bessaud M, Tock F, et al. Chikungunya virus, Cameroon, 2006. Emerg Infect Dis. 2007;13(5):768–71. https://doi.org/10.3201/eid1305.061500Test; Tsetsarkin KA, Vanlandingham DL, McGee CE, Higgs S. A single mutation in Сhikungunya virus affects vector specificity and epidemic potential. PLoS Pathog. 2007;3(12):e201. https://doi.org/10.1371/journal.ppat.0030201Test; Tsetsarkin KA, Chen R, Yun R, Rossi SL, Plante KS, Guerbois M, et al. Multi-peaked adaptive landscape for Chikungunya virus evolution predicts continued fitness optimization in Aedes albopictus mosquitoes. Nat Commun. 2014;16(5):4084. https://doi.org/10.1038/ncomms5084Test; Gordon A, Gresh L, Ojeda S, Chowell G, Gonzalez K, Sanchez N, et al. Differences in transmission and disease severity between 2 successive waves of chikungunya. Clin Infect Dis. 2018;67(11):1760–7. https://doi.org/10.1093/cid/ciy356Test; Chirathaworn C, Chansaenroj J, Poovorawan Y. Cytokines and chemokines in Chikungunya virus infection: protection or induction of pathology. Pathogens. 2020;9(6):415. https://doi.org/10.3390/pathogens9060415Test; Wauquier N, Becquart P, Nkoghe D, Padilla C, Ndjoyi-Mbiguino A, Leroy EM. The acute phase of сhikungunya virus infection in humans is associated with strong innate immunity and T CD8 cell activation. J Infect Dis. 2011;204(1):115–23. https://doi.org/10.1093/infdis/jiq006Test; Reddy V, Mani RS, Desai A, Ravi V. Correlation of plasma viral loads and presence of сhikungunya IgM antibodies with cytokine/chemokine levels during acute Chikungunya virus infection. J Med Virol. 2014;86(8):1393–401. https://doi.org/10.1002/jmv.23875Test; Davenport BJ, Bullock C, McCarthy MK, Hawman DW, Murphy KM, Kedl RM, et al. Chikungunya virus evades antiviral CD8 + T cell responses to establish persistent infection in joint-associated tissues. J Virol. 2020;94(9):e02036-19. https://doi.org/10.1128/JVI.02036-19Test; Schilte C, Staikovsky F, Couderc T, Madec Y, Carpentier F, Kassab S, et al. Chikungunya virus-associated long-term arthralgia: a 36-month prospective longitudinal study. PLoS Negl Trop Dis. 2013;7(3):e2137. https://doi.org/10.1371/journal.pntd.0002137Test; Marimoutou C, Ferraro J, Javelle E, Deparis X, Simon F. Chikungunya infection: self-reported rheumatic morbidity and impaired quality of life persist 6 years later. Clin Microbiol Infect. 2015;21(7):688–93. https://doi.org/10.1016/j.cmi.2015.02.024Test; Erasmus JH, Rossi SL, Weaver SC. Development of vaccines for сhikungunya fever. J Infect Dis. 2016;214(Suppl_5):S488–96. https://doi.org/10.1093/infdis/jiw271Test; Langsjoen RM, Haller SL, Roy CJ, Vinet-Oliphant H, Bergren NA, Erasmus JH, et al. Chikungunya virus strains show lineage-specific variations in virulence and cross-protective ability in murine and nonhuman primate models. mBio. 2018;9(2):e02449-17. https://doi.org/10.1128/mBio.02449-17Test; Partidos CD, Weger J, Brewoo J, Seymour R, Borland EM, Ledermann JP, et al. Probing the attenuation and protective efficacy of a candidate Chikungunya virus vaccine in mice with compromised interferon (IFN) signaling. Vaccine. 2011;29(16):3067–73. https://doi.org/10.1016/j.vaccine.2011.01.076Test; Gorchakov R, Wang E, Leal G, Forrester N, Plante K, Rossi SL, et al. Attenuation of Chikungunya virus vaccine strain 181/clone 25 is determined by two amino acid substitutions in the E2 envelope glycoprotein. J Virol. 2012;86(11):6084–96. https://doi.org/10.1128/JVI.06449-11Test; Levitt NH, Ramsburg HH, Hasty SE, Repik PM, Cole FE Jr, Lupton HW. Development of an attenuated strain of Chikungunya virus for use in vaccine production. Vaccine. 1986;4(3):157–62. https://doi.org/10.1016/0264-410xTest(86)90003-4; Plante K, Wang E, Partidos CD, Weger J, Gorchakov R, Tsetsarkin K, et al. Novel chikungunya vaccine candidate with an IRES-based attenuation and host range alteration mechanism. PLoS Pathog. 2011;7(7):e1002142. https://doi.org/10.1371/journal.ppat.1002142Test; Chan YH, Teo TH, Utt A, Tan JJ, Amrun SN, Abu Bakar F, et al. Mutating Chikungunya virus non-structural protein produces potent live-attenuated vaccine candidate. EMBO Mol Med. 2019;11(6):e10092. https://doi.org/10.15252/emmm.201810092Test; Saraswat S, Athmaram TN, Parida M, Agarwal A, Saha A, Dash PK. Expression and characterization of yeast derived сhikungunya virus like particles (CHIK-VLPs) and its evaluation as a potential vaccine candidate. PLOS Negl Trop Dis. 2016;10(7):e0004782. https://doi.org/10.1371/journal.pntd.0004782Test; Weger-Lucarelli J, Chu H, Aliota MT, Partidos CD, Osorio JE. A novel MVA vectored сhikungunya virus vaccine elicits protective immunity in mice. PLOS Negl Tropic Dis. 2014;8(7):e2970. https://doi.org/10.1371/journal.pntd.0002970Test; Hallengärd D, Kakoulidou M, Lulla A, Kümmerer BM, Johansson DX, Mutso M, et al. Novel attenuated сhikungunya vaccine candidates elicit protective immunity in C57BL/6 mice. J Virol. 2014;88(5):2858–66. https://doi.org/10.1128/JVI.03453-13Test; Roques P, Ljungberg K, Kümmerer BM, Gosse L, Dereuddre-Bosquet N, Tchitchek N, et al. Attenuated and vectored vaccines protect nonhuman primates against Chikungunya virus. JCI Insight. 2017;2(6):e83527. https://doi.org/10.1172/jci.insight.83527Test; Harrison VR, Eckels KH, Bartelloni PJ, Hampton C. Production and evaluation of a formalin-killed сhikungunya vaccine. J Immunol. 1971;107(3):643–7.; Hoke CH Jr, Pace-Templeton J, Pittman P, Malinoski FJ, Gibbs P, Ulderich T, et al. US Military contributions to the global response to pandemic chikungunya. Vaccine. 2012;30(47):6713–20. https://doi.org/10.1016/j.vaccine.2012.08.025Test; Tiwari M, Parida M, Santhosh SR, Khan M, Dash PK, Rao PV. Assessment of immunogenic potential of Vero adapted formalin inactivated vaccine derived from novel ECSA genotype of Chikungunya virus. Vaccine. 2009;27(18):2513–22. https://doi.org/https://doi.org/10.1016/j.vaccine.2009.02.062Test; Kumar M, Sudeep AB, Arankalle VA. Evaluation of recombinant E2 protein-based and whole-virus inactivated candidate vaccines against Сhikungunya virus. Vaccine. 2012;30(43):6142–9. https://doi.org/10.1016/j.vaccine.2012.07.072Test; Khan M, Dhanwani R, Rao PVL, Parida M. Subunit vaccine formulations based on recombinant envelope proteins of Chikungunya virus elicit balanced Th1/Th2 response and virus-neutralizing antibodies in mice. Virus Res. 2012;167(2):236–46. https://doi.org/10.1016/j.virusres.2012.05.004Test; Metz SW, Gardner J, Geertsema C, Le TT, Goh L, Vlak JM, Suhrbier A, Pijlman GP. Effective Chikungunya virus-like particle vaccine produced in insect cells. PLoS Negl Trop Dis. 2013;7(3):e2124. https://doi.org/10.1371/journal.pntd.0002124Test; Weber C, Büchner SM, Schnierle BS. A small antigenic determinant of the сhikungunya virus E2 protein is sufficient to induce neutralizing antibodies which are partially protective in mice. PLoS Negl Trop Dis. 2015;9(4):e0003684. https://doi.org/10.1371/journal.pntd.0003684Test; Szurgot I, Ljungberg K, Kümmerer BM, Liljeström P. Infectious RNA vaccine protects mice against Chikungunya virus infection. Sci Rep. 2020;10(1):21076. https://doi.org/10.1038/s41598-020-78009-7Test; Zhang YN, Deng CL, Li JQ, Li N, Zhang QY, Ye HQ, Yuan ZM, Zhang B. Infectious Chikungunya virus (CHIKV) with a complete capsid deletion: a new approach for a CHIKV vaccine. J Virol. 2019;93(15):e00504-19. https://doi.org/10.1128/JVI.00504-19Test; Taylor A, Liu X, Zaid A, Goh LY, Hobson-Peters J, Hall RA, et al. Mutation of the N-terminal region of сhikungunya virus capsid protein: implications for vaccine design. mBio. 2017;8(1):e01970-16. https://doi.org/10.1128/mBio.01970-16Test; Abeyratne E, Freitas JR, Zaid A, Mahalingam S, Taylor A. Attenuation and stability of CHIKV-NoLS, a live-attenuated сhikungunya virus vaccine candidate. Vaccines (Basel). 2018;7(1):2. https://doi.org/10.3390/vaccines7010002Test; Carrau L, Rezelj VV, Noval MG, Levi LI, Megrian D, Blanc H, et al. Chikungunya virus vaccine candidates with decreased mutational robustness are attenuated in vivo and have compromised transmissibility. J Virol. 2019;93(18):e00775-19. https://doi.org/10.1128/JVI.00775-19Test; Piper A, Ribeiro M, Smith KM, Briggs CM, Huitt E, Nanda K, et al. Chikungunya virus host range E2 transmembrane deletion mutants induce protective immunity against challenge in C57BL/6J mice. J Virol. 2013;87(12):6748–57. https://doi.org/10.1128/JVI.03357-12Test; Gardner CL, Hritz J, Sun C, Vanlandingham DL, Song TY, Ghedin E, et al. Deliberate attenuation of Сhikungunya virus by adaptation to heparan sulfate-dependent infectivity: a model for rational arboviral vaccine design. PLoS Negl Trop Dis. 2014;8(2):e2719. https://doi.org/10.1371/journal.pntd.0002719Test; Chu H, Das SC, Fuchs JF, Suresh M, Weaver SC, Stinchcomb DT, et al. Deciphering the protective role of adaptive immunity to CHIKV/IRES a novel candidate vaccine against Chikungunya in the A129 mouse model. Vaccine. 2013;31(33):3353–60. https://doi.org/10.1016/j.vaccine.2013.05.059Test; Roy CJ, Adams AP, Wang E, Plante K, Gorchakov R, Seymour RL, et al. Chikungunya vaccine candidate is highly attenuated and protects nonhuman primates against telemetrically monitored disease following a single dose. J Infect Dis. 2014;209(12):1891–9. https://doi.org/10.1093/infdis/jiu014Test; Voigt EA, Fuerte-Stone J, Granger B, Archer J, Van Hoeven N. Live-attenuated RNA hybrid vaccine technology provides single-dose protection against Chikungunya virus. Mol Ther. 2021;29(9):2782–93. https://doi.org/10.1016/j.ymthe.2021.05.018Test; Metz SW, Martina BE, van den Doel P, Geertsema C, Osterhaus AD, Vlak JM, Pijlman GP. Chikungunya vi-rus-like particles are more immunogenic in a lethal AG129 mouse model compared to glycoprotein E1 or E2 subunits. Vaccine. 2013;31(51):6092–6. https://doi.org/10.1016/j.vaccine.2013.09.045Test; Arévalo MT, Huang Y, Jones CA, Ross TM. Vaccination with a Chikungunya virus-like particle vaccine exacerbates disease in aged mice. PLoS Negl Trop Dis. 2019;13(4):e0007316. https://doi.org/10.1371/journal.pntd.0007316Test; Brandler S, Ruffié C, Combredet C, Brault JB, Najburg V, Prevost MC, et al. A recombinant measles vaccine expressing Chikungunya virus-like particles is strongly immunogenic and protects mice from lethal challenge with Сhikungunya virus. Vaccine. 2013;31(36):3718–25. https://doi.org/10.1016/j.vaccine.2013.05.086Test; Ramsauer K, Schwameis M, Firbas C, Müllner M, Putnak R, Thomas SJ, et al. Immunogenicity, safety, and tolerability of a recombinant measles-virus-based chikungunya vaccine: a randomised, double-blind, placebo-controlled, active-comparator, first-in-man trial. Lancet Infect Dis. 2015;15(5):519–27. https://doi.org/10.1016/S1473-3099Test(15)70043-5; Chattopadhyay A, Wang E, Seymour R, Weaver SC, Rose JK. A chimeric vesiculo/alphavirus is an effective alphavirus vaccine. J Virol. 2013;87(1):395–402. https://doi.org/10.1128/JVI.01860-12Test; Wang D, Suhrbier A, Penn-Nicholson А, Woraratanadharm J, Gardner J, Luo M, et al. A complex adenovirus vaccine against Chikungunya virus provides complete protection against viraemia and arthritis. Vaccine. 2011;29(15):2803–9. https://doi.org/10.1016/j.vaccine.2011.01.108Test; Dora EG, Rossi SL, Weaver SC, Tucker SN, Mateo R. An adjuvanted adenovirus 5-based vaccine elicits neutralizing antibodies and protects mice against Chikungunya virus-induced footpad swelling. Vaccine. 2019;37(24):3146–50. https://doi.org/10.1016/j.vaccine.2019.04.069Test; López-Camacho C, Kim YC, Blight J, Lazaro-Moreli M, Montoya-Diaz E, Huiskonen JT, et al. Assessment of immunogenicity and neutralisation efficacy of viral-vectored vaccines against Chikungunya virus. Viruses. 2019;11(4):322. https://doi.org/10.3390/v11040322Test; Folegatti PM, Harrison K, Preciado-Llanes L, Lopez FR, Bittaye M, Kim YC, et al. A single dose of ChAdOx1 CHIK vaccine induces neutralizing antibodies against four Chikungunya virus lineages in a phase 1 clinical trial. Nat Commun. 2021;12(1):4636. https://doi.org/10.1038/s41467-021-24906-yTest; García-Arriaza J, Cepeda V, Hallengärd D, Sorzano CÓ, Kümmerer BM, Liljeström P, Esteban M. A novel pox-virus-based vaccine, MVA-CHIKV, is highly immunogenic and protects mice against сhikungunya infection. J Virol. 2014;88(6):3527–47. https://doi.org/10.1128/JVI.03418-13Test; van den Doel P, Volz A, Roose JM, Sewbalaksing VD, Pijlman GP, van Middelkoop I, et al. Recombinant modified vaccinia virus Ankara expressing glycoprotein E2 of Chikungunya virus protects AG129 mice against lethal challenge. PLoS Negl Trop Dis. 2014;8(9):e3101. https://doi.org/10.1371/journal.pntd.0003101Test; Wang E, Kim DY, Weaver SC, Frolov I. Chimeric Chikungunya viruses are nonpathogenic in highly sensitive mouse models but efficiently induce a protective immune response. J Virol. 2011;85(17):9249–52. https://doi.org/10.1128/JVI.00844-11Test; Wang E, Volkova E, Adams AP, Forrester N, Xiao SY, Frolov I, Weaver SC. Chimeric alphavirus vaccine candidates for Сhikungunya. Vaccine. 2008;26(39):5030–9. https://doi.org/10.1016/j.vaccine.2008.07.054Test; Erasmus JH, Auguste AJ, Kaelber JT, Luo H, Rossi SL, Fenton K, et al. A chikungunya fever vaccine utilizing an insect-specific virus platform. Nat Med. 2017;23(2):192–9. https://doi.org/10.1038/nm.4253Test; Adam A, Luo H, Osman SR, Wang B, Roundy CM, Auguste AJ, et al. Optimized production and immunogenicity of an insect virus-based Chikungunya virus candidate vaccine in cell culture and animal models. Emerg Microbes Infect. 2021;10(1):305–16. https://doi.org/10.1080/22221751.2021.1886598Test; Ferraro B, Morrow MP, Hutnick NA, Shin TH, Lucke CE, Weiner DB. Clinical applications of DNA vaccines: current progress. Clin Infect Dis. 2011;53(3):296–302. https://doi.org/10.1093/cid/cir334Test; Mallilankaraman K, Shedlock DJ, Bao H, Kawalekar OU, Fagone P, Ramanathan AA, et al. A DNA vaccine against Chikungunya virus is protective in mice and induces neutralizing antibodies in mice and nonhuman primates. PLoS Negl Trop Dis. 2011;5(1):e928. https://doi.org/10.1371/journal.pntd.0000928Test; Muthumani K, Block P, Flingai S, Muruganantham N, Chaaithanya IK, Tingey C, et al. Rapid and long-term immunity elicited by DNA-encoded antibody prophylaxis and DNA vaccination against Chikungunya virus. J Infect Dis. 2016;214(3):369–78. https://doi.org/10.1093/infdis/jiw111Test; Bao H, Ramanathan AA, Kawalakar O, Sundaram SG, Tingey C, Bian CB, et al. Nonstructural protein 2 (nsP2) of Chikungunya virus (CHIKV) enhances protective immunity mediated by a CHIKV envelope protein expressing DNA vaccine. Viral Immunol. 2013;26(1):75–83. https://doi.org/10.1089/vim.2012.0061Test; Hallengärd D, Lum FM, Kümmerer BM, Lulla A, Lulla V, García-Arriaza J, et al. Prime-boost immunization strategies against Chikungunya virus. J Virol. 2014;88(22):13333–43. https://doi.org/10.1128/JVI.01926-14Test; Hidajat R, Nickols B, Forrester N, Tretyakova I, Weaver S, Pushko P. Next generation sequencing of DNA-launched Chikungunya vaccine virus. Virology. 2016;490:83–90. https://doi.org/10.1016/j.virol.2016.01.009Test; Ge N, Sun J, Liu Z, Shu J, Yan H, Kou Z, Wei Y, Jin X. An mRNA vaccine encoding Chikungunya virus E2-E1 protein elicits robust neutralizing antibody responses and CTL immune responses. Virol Sin. 2022;37(2):266–76. https://doi.org/10.1016/j.virs.2022.01.032Test; Shaw C, Panther L, August A, Zaks T, Smolenov I, Bart S, Watson M. Safety and immunogenicity of a mRNA-based chikungunya vaccine in a phase 1 dose-ranging trial. Int J Infect Dis. 2019;79(S1):17. https://doi.org/10.1016/j.ijid.2018.11.058Test; Rossi SL, Comer JE, Wang E, Azar SR, Lawrence WS, Plante JA, et al. Immunogenicity and efficacy of a measles virus-vectored Сhikungunya vaccine in nonhuman primates. J Infect Dis. 2019;220(5):735–42. https://doi.org/10.1093/infdis/jiz202Test; Edelman R, Tacket CO, Wasserman SS, Bodison SA, Perry JG, Mangiafico JA. Phase II safety and immunogenicity study of live Chikungunya virus vaccine TSI-GSD-218. Am J Trop Med Hyg. 2000;62(6):681–5. https://doi.org/10.4269/ajtmh.2000.62.681Test; Reisinger EC, Tschismarov R, Beubler E, Wiedermann U, Firbas C, Loebermann M, et al. Immunogenicity, safety, and tolerability of the measles-vectored Chikungunya virus vaccine MV-CHIK: a double-blind, randomised, placebo-controlled and active-controlled phase 2 trial. Lancet. 2019;392(10165):2718–27. https://doi.org/10.1016/S0140-6736Test(18)32488-7; Akahata W, Yang ZY, Andersen H, Sun S, Holdaway HA, Kong WP, et al. A virus-like particle vaccine for epidemic Chikungunya virus protects nonhuman primates against infection. Nat Med. 2010;16(3):334–8. https://doi.org/10.1038/nm.2105Test; Goo L, Dowd KA, Lin TY, Mascola JR, Graham BS, Ledgerwood JE, Pierson TC. A virus-like particle vaccine elicits broad neutralizing antibody responses in humans to all Chikungunya virus genotypes. J Infect Dis. 2016;214(10):1487–91. https://doi.org/10.1093/infdis/jiw431Test; Chang LJ, Dowd KA, Mendoza FH, Saunders JG, Sitar S, Plummer SH, et al. Safety and tolerability of Chikungunya virus-like particle vaccine in healthy adults: a phase 1 dose-escalation trial. Lancet. 2014;384(9959):2046–52. https://doi.org/10.1016/S0140-6736Test(14)61185-5; Bennett SR, McCarty JM, Ramanathan R, Mendy J, Richardson JS, Smith J, et al. Safety and immunogenicity of PXVX0317, an aluminium hydroxide-adjuvanted Chikungunya virus-like particle vaccine: a randomised, double-blind, parallel-group, phase 2 trial. Lancet Infect Dis. 2022;22(9):1343–55. https://doi.org/10.1016/S1473-3099Test(22)00226-2; Chen GL, Coates EE, Plummer SH, Carter CA, Berkowitz N, Conan-Cibotti M, et al. Effect of a сhikungunya virus-like particle vaccine on safety and tolerability outcomes: a randomized clinical trial. JAMA. 2020;323(14):1369–77. https://doi.org/10.1001/jama.2020.2477Test; https://www.biopreparations.ru/jour/article/view/463Test