يعرض 1 - 10 نتائج من 33 نتيجة بحث عن '"氣相磊晶法"', وقت الاستعلام: 0.86s تنقيح النتائج
  1. 1
    تقرير
  2. 2
    رسالة جامعية
  3. 3
    رسالة جامعية
  4. 4
    رسالة جامعية
  5. 5
    رسالة جامعية
  6. 6
  7. 7
    رسالة جامعية
  8. 8
    رسالة جامعية
  9. 9
    رسالة جامعية
  10. 10

    المؤلفون: 黃坤富, Fun-Fu Huang

    المساهمون: 吳孟奇, Meng-Chyi Wu

    الوقت: 47

    وصف الملف: 155 bytes; text/html

    العلاقة: [1] Y. Arakawa and H. Sakaki, “Multidimensional quantum well laser and temperature dependence of its threshold current”, Appl. Phys. Lett., vol 40,p.p 939-942, 1982. [2] D. Bimberg, M. Grunddmann and N. N. Ledentsov, Quantum Dot Herterostuctures (John Wiley & Sons Ltd, 1999) p. 19. [3] M. Sugawara, Self-Assembled InGaAs/GaAs Quantum Dots, vol 60 of Semiconductor and Semimetals (Academic Press, New York,1999) p.121 [4] V. A. Shchukin, N. N. Ledentsov, D. Bimberg, Epitaxy of Nanostructure (Springer, 2003) p.156 [5] M. Kondow, T. Kitatani, M. C. Larson, K. Nakahara, and K. Uomi, “Gas source MBE of GaInNAs for long-wavelength laser diodes,” presented at 6th Int. Conf. on CBE and Related Growth Techniques, Montreux, Switzerland, 1997. [6] R. Fehse, I. Marko and A.R. Adams,” Long wavelength lasers on GaAs substrates”, IEE Proc.-Circuits Devices Syst., Vol. 150, No. 6,p.p 521-528,2003. [7] N. Kirstaedter, N. N. Ledentsov, M. Grundmann, D. Bimberg, V. M. Ustinov, S. S. Ruvimov, M. V. Maximov, P. K. Kop’ev, Zh. I. Alferov, U. Richter, P. Werner, U. Gosele, and J. Heydenereich, “ Low threshold, large T0 injection laser emission from (InGa)As quantum dots,” Electron. Lett., vol 30, p.p 1416-1417, 1994. [8] R. Mirin, A. Gossard, and J. Bowers, “Room temperature lasing from InGaAs quantum dots,” Electron. Lett., vol. 32, pp. 1732–1734, 1996. [9] H. Shoji, Y. Nakata, K. Mukai, Y. Sugiyama,M. Sugawara, N. Yokoyama, and H. Ishikawa, “Self-formed InGaAs quantum dot lasers with multistacked dot layer,” Jpn. J. Appl. Phys., vol. 35, pp. L903–L905, 1996. [10] H. Saito, K. Nishi, I. Ogura, S. Sugou, and Y. Sugimoto, “Roomtemperature lasing operation of a quantum-dot vertical-cavity surfaceemitting laser,” Appl. Phys. Lett., vol. 69, pp. 3140–3142, 1996. [11] K. Kamath, P. Bhattacharya, T. Sosnowski, T. Norris, and J. Phillips, “Room-temperature operation of In0.4Ga0.6As/GaAs self-organised quantum dot lasers,” Electron. Lett., vol. 32, no. 15, pp. 1374–1375, 1996. [12] D. L. Huffaker, G. Park, Z. Zou, O. B. Shchekin, and D. G. Deppe, “1.3 μm room-temperature GaAs-based quantum-dot laser,” Appl. Phys. Lett., vol. 73, pp. 2564–2566, 1998. [13] K. Mukai, Y. Nakata, K. Ohtsubo, M. Sugawara, N. Yokoyama, and H. Ishikawa, “1.3-μm CW lasing of InGaAs-GaAs quantum dots at room temperature with a threshold current of 8 mA,” IEEE Photon. Technol.Lett., vol. 11, no. 10, pp. 1205–1207, 1999. [14] G. T. Liu, A. Stintz, H. Li, K. J. Malloy, and L. F. Lester, “Extremely low room-temperature threshold current density diode lasers using InAs dots in In0.15Ga0.85As quantum well,” Electron. Lett., vol. 35, no. 14, pp. 1163–1164, 1999. [15] A. E. Zhukov, A. R. Kovsh, N. A. Maleev, S. S. Mikhrin, V. M. Ustinov, A. F. Tsatsul’nikov,M. V.Maximov, B. V. Volovik, D. A. Bedarev, Y.M. Shernyakov, P. S. Kop’ev, Z. I. Alferov, N. N. Ledentsov, and D. Bimberg, “Long-wavelength lasing from multiply stacked InAs/InGaAs quantum dots on GaAs substrates,” Appl. Phys. Lett., vol. 75, pp. 1926–1928, 1999. [16] G. Park, O. B. Shchekin, S. Csutak, D. L. Huffaker, and D. G. Deppe, “Room-temperature continuous-wave operation of a single-layered 1.3 μm quantum dot laser,” Appl. Phys. Lett., vol. 75, pp. 3267–3269, 1999. [17] K. Otsubo, N. Hatori, M. Ishida, S. Okumura, T. Akiyama, Y. Nakata, H. Ebe, M. Sugawara, and Y. Arakawa, “Temperature-insensitive eyeopening under 10-Gb/s modulation of 1.3-μm p-doped quantum dot lasers without current adjustments,” Jpn. J. Appl. Phys., vol. 43, no. 8B, pp. L1124–L1126, 2004. [18] P. G. Eliseev, H. Li, A. Stinz, G. T. Liu, T. C. Newell, K. J. Malloy, and L. F. Lester, “Transition dipole moment of InAs/InGaAs quantum dots from experiments on ultralow-threshold laser diodes,” Appl. Phys. Lett., vol. 77, pp. 262–264, 2000. [19] J. A. Lott, N. N. Ledentsov, V. M. Ustinov, N. A. Maleev, A. E. Zhukov, A. R. Kovsh, M. V. Maximov, B. V. Volovik, Z. I. Alferov, and D. Bimberg, “InAs-InGaAs quantum dot VCSELs on GaAs substrates emitting at 1.3 μm,” Electron. Lett., vol. 36, no. 16, pp. 1384–1385, 2000. [20] V. M. Ustinov, N. A. Maleev, A. R. Kovsh, and A. E. Zhukov, “Quantum dot VCSELs,” Phys. Status Solidi A, vol. 202, pp. 396–402, 2005. [21] Y. H. Chang, P. C. Peng, W. K. Tsai, Gray Lin, FangI Lai, R. S. Hsiao, H. P. Yang, H. C. Yu, K. F. Lin, J. Y. Chi, S. C. Wang, and H. C. Kuo, “Single-Mode Monolithic Quantum-Dot VCSEL in 1.3 μm With Sidemode Suppression Ratio Over 30 dB”, Photon. Technol. Lett, vol 18, p.p 847-849, 2006 [22] R. L. Sellin, C. Ribbat, M. Grundmann, N. N. Ledentsov, and D. Bimberg, “Close-to-ideal device characteristics of high-power InGaAs/GaAs quantum dot lasers,” Appl. Phys. Lett., vol. 78, pp. 1207–1209, 2001. [23] A. Passaseo, M. De Vittorio, M. T. Todaro, I. Tarantini, M. De Giorgi, R. Cingolani, A. Taurino, M. Catalano, A. Fiore, A. Markus, J. X. Chen, C. Paranthoen, U. Oesterle, andM. Ilegems, “Comparison of radiative and structural properties of 1.3 μm Inx Ga(1-x)As quantum-dot laser structures grown by metal-organic chemical vapor deposition and molecularbeam epitaxy: Effect on the lasing properties,” Appl. Phys. Lett., vol. 82, pp. 3632–3634, 2003. [24] J. Tatebayashi, N. Hatori, H. Kakuma, H. Ebe, H. Sudo, A. Kuramata, Y. Nakata, M. Sugawara, and Y. Arakawa, “Low threshold current operation of self-assembled InAs/GaAs quantum dot lasers by metal-organic chemical vapor deposition,” Electron. Lett., vol. 39, no. 15, pp. 1130–1131, 2003. [25] S. M. Kim,Y.Wang, M.Keever, and J. S. Harris, “High-frequencymodulation characteristics of 1.3-μm InGaAs quantum dot lasers,” IEEE Photon. Technol. Lett., vol. 16, no. 2, pp. 377–379, 2004. [26] I. N. Kainander, R. L. Sellin, T. Kettler, N. N. Ledentsov, D. Bimberg, N. D. Zakharov, and P. Werner, “1.24 μm InGaAs/GaAs quantum dot lasers grown by metal-organic chemical vapor deposition using tertiarybutylarsine,” Appl. Phys. Lett., vol. 84, pp. 2992–2994, 2004. [27] J.Tatebayashi,Y.Arakawa,N.Hatori,H.Ebe,M. Sugawara, H. Sudou, and A. Kuramata, “InAs/GaAs self-assembled quantum-dot lasers grown by metal-organic chemical vapor deposition—effects of postgrowth annealing on stacked InAs quantum dots,” Appl. Phys. Lett., vol. 85, pp. 1024–1026, 2004. [28] J. Tatebayashi, N. Hatori, M. Ishida, H. Ebe, M. Sugawara, Y. Arakawa, H. Sudo, and A. Kuramata, “1.28 μm lasing from stacked InAs/GaAs quantum dots with low-temperature-grown AlGaAs cladding layer by metal-organic chemical vapor deposition,” Appl. Phys. Lett., vol. 86, pp. 053107-053109, 2005. [29] N. Nuntawong,Y. C. Xin, S. Birudavolu, P. S.Wong, S. Huang, C. P. Hains, and D. L. Huffaker, “Quantum dot lasers based on a stacked and straincompensated active region grown by metal-organic chemical vapor deposition,” Appl. Phys. Lett., vol. 86, pp. 193115-193117, 2005. [30] U. Helin. K. Streubel, V. Oskarsson, E. Backlin, and A. Johanson,” High-brightness visible (660 nm) resonant-cavity light-emitting diodes”, IEEE Photon. Technol. Lett., vol. 10, pp. 1685–1687, 1998. [31] R. Wirth, C. Karnutsch, S. Kugler, and K. Streubel, ”High-efficiency resonant-cavity LEDs emitting at 650 nm”, IEEE Photon. Technol. Lett., vol. 13, pp. 421–423, 2001. [32] N. E. J. Hunt, E. F. Schubert, R. F. Kopf, D. L. Sivco, A. Y. Cho, and G. J. Zydzik, “Increased fiber communications bandwidth from a resonant cavity light emitting diode emitting at λ=940 nm”, Appl. Phys. Lett., vol. 63, pp. 2600-2602, 1993. [33] D. Bimberg, M. Grunddmann and N. N. Ledentsov, in Quantum Dot Herterostuctures (John Wiley & Sons Ltd, 1999) p. 38. [34] D.J. Bottomley, “The physical origin of InAs quantum dots on GaAs (001)”, Appl. Phys. Lett. vol. 72, pp. 783-785, 1998. [35] T.E.Sale,”Cavity and reflector design for vertical cavity surface emitting laser diodes”, IEE Proc. J, vol. 142, pp 37-43, 1995. [36] E. F. Schubert, In Light-Emitting Diodes, Chap. 10, Cambridge Univ. Press, United Kingdom, 2003. [37] A. G. Thompson,” MOCVD technology for semiconductors’’, Mater. Lett. vol.30, pp 255-263, 1997 [38] J. P. Hirtz, M. Razeghi, M. Bonnet, and J. P. Duchemin, “Ga0.47In0.53As/InP and GaInAsP/InP double heterostructures grown by low-pressure Metal-organic vapour-phase epitaxy”, In T. P. Pearsall (ed.), GaInAsP Alloy Semiconductors, pp. 61-86, New York: John Wiley & Sons, 1982. [39] G. Park, O. B. Shchekin, D.L. Huffaker and D. G. Deppe,” Low-threshold oxide-confined 1.3-μm quantum-dot laser”,IEEE Photonics Techno. Lett. vol.13, pp.230-232, 2000. [40] O. B. Shchekin and D. G. Deppe,” Low-threshold high-T0 1.3-μ m InAs quantum-dot lasers due to p-type modulation doping of the active region”, IEEE Photonics Techno. Lett. vol.14, pp.1231-1233, 2002. [41] K.Nishi, H. Saito, S.Sugou, J-S.Lee,”Light emission spectra of columnar-shaped self-assembled InGaAs/GaAs quantum-dot lasers: Effect of homogeneous broadening of the optical gain on lasing characteristics”, Appl. Phys.Lett, vol. 74, pp. 1561-1563,1999. [42] N. -T. Yeh, T. -E. Nee and J.-I. Chyi,”Matrix dependence of strain-induced wavelength shift in self-assembled InAs quantum-dot heterostructures”, Appl. Phys. Lett. vol. 76 pp.1567-1569, 2000. [43] A. Stintz, G. T. Liu, H. Li, L.F. Lester, and K.J. Malloy,” Low-threshold current density 1.3-μm InAs quantum-dot lasers with the dots-in-a-well (DWELL) structure”, IEEE Photonics Techno. Lett. vol.12, pp. 591-593, 2000. [44] P. B. Joyce, T. J. Krzyzewski, G. R. Bell, T. S. Jones, S. Malik, D. Childs and R. Murry,” Effect of growth rate on the size, composition, and optical properties of InAs/GaAs quantum dots grown by molecular-beam epitaxy”, Phys. Rev. B, vol.62 pp.10891-10895,2000. [45] Y. Nakata, K. Mukai, M, Sugawara, K. Ohtsubo, H. Ishikawa, and N. Yokoyama,” Molecular beam epitaxial growth of InAs self-assembled quantum dots with light-emission at 1.3μm”, J. Cryst. Growth, vol. 208, pp. 93-99, 2000. [46] J. Tatebayashi, M. Nishioka and Y. Arakawa,” Over 1.5 µm light emission from InAs quantum dots embedded in InGaAs strain-reducing layer grown by metalorganic chemical vapor deposition”, Appl. Phys. Lett. vol. 78, pp. 3469-3471, 2001. [47] D. Bimberg, M. Grunddmann and N. N. Ledentsov, in Quantum Dot Herterostuctures (John Wiley & Sons Ltd, 1999) p. 78. [48] P. B. Joyce, T. J. Krzyzewski, G. R. Bell, T. S. Jones, E. C. Le Ru and R. Murry, Phys. Rev. B ,vol. 64, pp.235317-235323, 2001. [49] E. F. Schubert, in Light-Emitting Diodes, Cambridge University Press, Cambridge, pp. 178-216, 2003. [50] C. L. Tsai, C. W. Ho, C. Y. Huang, F. M. Lee, M. C. Wu, H. L. Wang, S. C. Ko, and W. J. Ho,” Fabrication and characterization of 650 nm resonant-cavity light-emitting diodes”, J. Vacuum Sci. Technol. B, vol.22, pp.2518-2522, 2004. [51] J. W. Gray, D. Childs, S. Malik, P. Siverns, C. Roberts, P. N. Stavrinou, M. Whitehead, R. Murray, and G. Parry, ”Quantum dot resonant cavity light emitting diode operating near 1300 nm”, Electron. Lett. vol. 35, pp. 242-243, 1999. [52] M. T. Todaro, V. Tasco, M. De Giorgi, L. Martiradonna, G. Rain?, M. De Vittorio, A. Passaseo, and R. Cingolani, “High-efficiency 1.3 µm InGaAs/GaAs quantum-dot microcavity light-emitting diodes grown by metalorganic chemical vapor deposition”, Appl. Phys. Lett. vol. 86, pp.151118-151120, 2005. [53] J. Tatebayashi , Y. Arakawa, N. Hatori, H. Ebe, M. Sugawara, H. Sudo, and A. Kuramata, “InAs/GaAs self-assembled quantum-dot lasers grown by metalorganic chemical vapor deposition—Effects of postgrowth annealing on stacked InAs quantum dots”, Appl. Phys. Lett. vol. 85, pp. 1024-1026, 2004. [54] Z. R. Wasilewski, S. Fafard, and J. P. McCaffrey, “Size and shape engineering of vertically stacked self-assembled quantum dots”, J. Cryst. Growth, vol. 201, pp.1131-1135, 1999. [55] R. Sellin, F. Heinrichsdorff, C. H. Ribbat, M. Grundmann, U. W. Pohl, and D. Bimberg, “Surface flattening during MOCVD of thin GaAs layers covering InGaAs quantum dots”, J. Cryst. Growth, vol. 221, pp.581-585, 2000. [56] D. L. Huffaker and D. G. Deppe, “Electroluminescence efficiency of 1.3 µm wavelength InGaAs/GaAs quantum dots”, Appl. Phys. Lett. vol.73, pp.520-522, 1998. [57] G. Park, O.B. Shchekin, D.L. Huffaker and D.G. Deppe, “Low-Threshold Oxide-Confined 1.3 ?m Quantum-Dot Laser”,IEEE Photon. Technol. Lett. vol. 13, pp. 230-232, 2000. [58] K.F. Huang, T.P. Hsieh, N.T. Yeh, W.J. Ho, J.I. Chyi and M.C. Wu, “1.3μm InAs/GaAs quantum dots directly capped with GaAs grown by metal-organic chemical vapor deposition”, J. Cryst. Growth. vol. 264, pp. 128-133, 2004. [59] T. Yang, J. Tatebayashi, S. Tsukamoto and Y. Arakawa, “Highly uniform self-assembled InAs/GaAs quantum dots emitting at 1.3μm by metalorganic chemical vapor deposition”, Physica E, vol. 26, pp.77-80, 2005. [60] D. Bimberg, N. Kirstaedter, N.N. Ledentsov, Zh.I. Alferov, P.S. Kop’ev and V.M. Ustinov, IEEE J. Selected Topics in Quantum Electron. “InGaAs-GaAs quantum-dot lasers”, vol.3, pp. 196-205, 1997. [61] M. Grundmann, N. N. Ledentsov, O. Stier, D. Bimberg, V.M. Ustinov, P.S. Kop’ev, and Zh.I. Alferov, “Excited states in self-organized InAs/GaAs quantum dots: Theory and experiment”, Appl. Phys. Lett. vol. 68, pp. 979-982, 1996 [62] I. Kegel, T.H. Metzger, A. Lorke, J. Peisl, J. Stangl, G. Bauer, J.M. Garc?a and P.M. Petroff,” Nanometer-Scale Resolution of Strain and Interdiffusion in Self-Assembled InAs/GaAs Quantum Dots”, Phys. Rev. Lett. vol. 85, pp. 1694-1697, 2000. [63] R. Heitz, I. Mukhametzhanov, A. Madhukar, A. Hoffmann, and D. Bimberg,” Temperature dependent optical properties of self-organized InAs/GaAs quantum dots”, J. Electron. Mater. vol. 28, pp.520, 1999. [64] S. Sanguinetti, M. Henini, M. Grassi Alessi, M. Capizzi, P. Frigeri and S. Franchi. “Carrier thermal escape and retrapping in self-assembled quantum dots”, physic. Rev. B, vol. 60, pp.8276-8283, 1999. [65] Y. T. Dai, J. C. Fan, Y. F. Chen, R. M. Lin, S. C. Lee, and H. H. Lin,”Temperature dependence of photoluminescence spectra in InAs/GaAs quantum dot superlattices with large thicknesses” , J. Appl. Phys, vol. 82, pp. 4489-4492, 1997. [66] H. L. Wang, D. Ning, S L. Feng, “Temperature dependence of the optical properties of InAs/GaAs self-organized quantum dots with bimodal size distribution”, J. Cryst. Growth. vol. 209, pp. 630-636, 2000. [67] Y. C. Zhang, C. J. Huang, F. Q. Liu, B. Xu, D. Ding, W. H. Jiang, Y. F. Li, X. L. Ye, J. Wu, Y. H. Chen, and Z. G. Wang, “Temperature dependence of electron redistribution in modulation-doped InAs/GaAs quantum dots”, J. Cryst. Growth. vol. 219, pp. 199-204, 2000. [68] Y. P. Varshni,“Temperature dependence of the energy gap in semiconductors”, Physica, vol. 34, pp. 149-154, 1967. [69] Z.Y. Xu, Z. D. Lu, X. P. Yang, B. Z. Zheng, J. Z. Xu, W. K. Ge, Y. Wang, J. Wang, and L. L. Chang, “Carrier relaxation and thermal activation of localized excitons in self-organized InAs multilayers grown on GaAs substrates”, physic. Rev. B, vol. 54, pp. 11528-11531, 1996. [70] S. Sanguinetti, M. Henini, M. Grassi Alessi, M. Capizzi, P. Frigeri and S. Franchi. “Carrier thermal escape and retrapping in self-assembled quantum dots”, physic. Rev. B, vol. 60, pp. 8276-8283,1999. [71] N. N. Ledentsov, M. V. Maximov, D. Bimberg, T. Maka, C. M. Sotomayor Torres, I. V. Kochnev, I. L. Krestnikov, V. M. Lantratov, N. A. Cherkashin, and Y. M. Musikhin,” 1.3μm luminescence and gain form defect-free InGaAs-GaAs quantum dots grown by metal-organic chemical vapour deposition”, Semicond. Sci. Technol. vol.15, pp. 604-607, 2000. [72] I. N. Kaiander, R. L. Sellin, T. Kettler, N. N. Ledentsov, D. Bimberg, N.D. Zakhorov, and P. Werner,” 1.24 µm InGaAs/GaAs quantum dot laser grown by metalorganic chemical vapor deposition using tertiarybutylarsine”, Appl. Phys. Lett. vol. 84, pp. 2992-2994, 2004.; http://nthur.lib.nthu.edu.tw/dspace/handle/987654321/34479Test