以非競爭和非核甘酸型抑制劑為基礎透過虛擬高速藥物分子對接尋找C型肝炎病毒NS5B之抑制劑

التفاصيل البيبلوغرافية
العنوان: 以非競爭和非核甘酸型抑制劑為基礎透過虛擬高速藥物分子對接尋找C型肝炎病毒NS5B之抑制劑
المؤلفون: 盧俊龍
المساهمون: 林志侯
سنة النشر: 2005
المجموعة: National Tsing Hua University Institutional Repository (NTHUR)
مصطلحات موضوعية: C型肝炎病毒複製酶, 虛擬藥物篩選, 電腦輔助藥物篩選, 分子對接藥物篩選, HCV NS5B, HCV RNA-dependent RNA polymerase, Non-structure protein NS5B, virtual docking, CADD, PScore, DOCK
الوقت: 37
الوصف: 碩士 ; 國立清華大學 ; 分子醫學研究所 ; GH000924291 ; 據估計全球約有2%~3%的人口感染C型肝炎病毒,感染C型肝炎病毒患者,在感染該病毒的二十年間,大約有4%~5%的患者會演變成肝硬化和肝癌而死亡1,2,3。目前治療C型肝炎是使用interferon結合ribavirin,雖然對非基因型1的病患有較好的療效3,但是嚴重的副作用加上價格昂貴使得治療上有一定的瓶頸,因此,發展擁有價格低、副作用少的全新藥物來改善藥效與這些治療上的限制。 C型肝炎病毒之非結構型5B是一RNA依賴RNA複製酶4,它擔任病毒RNA複製的重任,因此,我們選擇C型肝炎病毒基因型1b NS5B為藥物標靶,以分子對接藥物篩選分別對非競爭型與非核甘酸型抑制劑作用部位找出新的前導化合物。針對非競爭型抑制劑的部份,我們已經完成了藥物篩選工作,並篩選出一百個作用向量與位置相異或不盡相異於原配體的化合物,並以能量評分與藥效基團多寡作降冪排列,選出計算結果最好的前五十名與次佳的五十名,目前該部分已經在做活性測試。另一部份非核甘酸型抑制劑,我們也篩選出一百個在作用走向與原子相異或不盡相異於原配體的化合物,並將這些做活性測試。 據估計全球約有2%~3%的人口感染C型肝炎病毒,感染C型肝炎病毒患者,在感染該病毒的二十年間,大約有4%~5%的患者會演變成肝硬化和肝癌而死亡1,2,3。目前治療C型肝炎是使用interferon結合ribavirin,雖然對非基因型1的病患有較好的療效3,但是嚴重的副作用加上價格昂貴使得治療上有一定的瓶頸,因此,發展擁有價格低、副作用少的全新藥物來改善藥效與這些治療上的限制。 C型肝炎病毒之非結構型5B是一RNA依賴RNA複製酶4,它擔任病毒RNA複製的重任,因此,我們選擇C型肝炎病毒基因型1b NS5B為藥物標靶,以分子對接藥物篩選分別對非競爭型與非核甘酸型抑制劑作用部位找出新的前導化合物。針對非競爭型抑制劑的部份,我們已經完成了藥物篩選工作,並篩選出一百個作用向量與位置相異或不盡相異於原配體的化合物,並以能量評分與藥效基團多寡作降冪排列,選出計算結果最好的前五十名與次佳的五十名,目前該部分已經在做活性測試。另一部份非核甘酸型抑制劑,我們也篩選出一百個在作用走向與原子相異或不盡相異於原配體的化合物,並將這些做活性測試。 ; It is estimated that there are 170 million chronically infected HCV carriers worldwide(2%~3% of the global population). Within 20 years of infection, about 4~5% of them will develop cirrhosis and hepatocellular carcinoma, often resulting in death. Current HCV therapy consists of injectable, α-interferon used alone or in combination with ribavirin. Although effective in certain patient populations, interferon therapy has several limitations including high cost and significant side effects that often require does adjustment or discontinuation of therapy. Moreover, while not will understood, interferon therapy has been shown to be most effective against genotype 2 and 3 HCV infections and least effective against genotype 1 infections. The lack of an effective and well-tolerated treatment has therefore spurred intense research efforts to develop affordable, oral and novel anti-HCV agents. We chose HCV genome type 1b as a drug target using the approach of virtual docking screening to find the potential drug candidates both of noncompetitive and nonnucleoside ...
نوع الوثيقة: other/unknown material
وصف الملف: 155 bytes; text/html
اللغة: Chinese
العلاقة: 1.(a)Memon,M.I.;Memon,M.A.J.Viral.Hepat.2002,9,84(b)Moradpour,D.;Cerny,A.;Heim,M.H.;Blum,H.E. Swiss Med Weekly 2001,131,291 2.For a review of HCV epidemiology, pathogenesis, and clinical treatment, see:(a)Lauer, G. M.;Walker, B. D. N. Engl. J.Med. 2001,345,41;(b)Di Bisceglie, A. M. Lancet 1998, 351,351 3.For a clinical overview of HCV, see:Strader, D. B.;Seeff, L. B. ILAR J. 2001,42,107 4.Shirota, Y. et al. Hepatitis C virus (HCV) NS5A binds RNAdependent RNA polymerase (RdRP) NS5B and modulates RNA-dependent RNA polymerase activity. J. Biol. Chem. 277, 11149–11155 (2002) 5. Tan SL, Pause A, Shi Y, Sonenberg N. Hepatitis C therapeutics: current status and emerging strategies. Nat Rev Drug Discov. 2002 Nov;1(11):867-81 6. Friebe, P., Lohmann, V., Krieger, N. & Bartenschlager, R. Sequences in the 5′?nontranslated region of hepatitis C virus required for RNA replication. J. Virol. 2001 75, 12047–12057 7. Reed, K. E. & Rice, C. M. Overview of hepatitis C virus genome structure, polyprotein processing, and protein properties. Hep. C Viruses 2000 242, 55–84 7.Reed, K. E. & Rice, C. M. Overview of hepatitis C virus genome structure, polyprotein processing, and protein properties. Hep. C Viruses 2000 242, 55–84 8. Shirota, Y. et al. Hepatitis C virus (HCV) NS5A binds RNA-dependent RNA polymerase (RdRP) NS5B and modulates RNA-dependent RNA polymerase activity. J. Biol. Chem. 2002 277, 11149–11155 9. Pileri, P. et al. Binding of hepatitis C virus to CD81. Science 1998 282, 938–941 Monazahian, M. et al. Low density lipoprotein receptor as a candidate receptor for hepatitis C virus. J. Med. Virol. 1999 57,223–229 10. Monazahian, M. et al. Low density lipoprotein receptor as a candidate receptor for hepatitis C virus. J. Med. Virol. 1999 57,223–229 11. Agnello, V., Abel, G., Elfahal, M., Knight, G. B. & Zhang, Q. X. Hepatitis C virus and other Flaviviridae viruses enter cells via low density lipoprotein receptor. Proc. Natl Acad. Sci. USA 1999 96, 12766–12771 12. Bartenschlager, R. & Lohmann, V. Replication of hepatitis C virus. J. Gen. Virol. 2000 81, 1631–1648 13. Bukh, J., Miller, R. H. & Purcell, R. H. Genetic heterogeneity of hepatitis C virus — quasispecies and genotypes. Semin.Liv. Dis. 1995 15, 41–63 14.www.prn.org/./models/ img_pgs/hcv.3d.med.htm 15.www.genelabs.com/ research/antiviral.html 16. http://www.hopkins-gi.org/pages/latin/templates/index.cfmTest 17.Kolykhalov, A. A., Mihalik, K., Feinstone, S. M. & Rice, C. M.Hepatitis C virus-encoded enzymatic activities and conserved RNA elements in the 3′ nontranslated region are essential for virus replication in vivo. J. Virol. 74, 2046–2051 (2000) 18.Kolykhalov, A. A. et al. Transmission of hepatitis C by intrahepatic inoculation with transcribed RNA. Science 277, 570–574 (1997). 19. Leveque, V. J.-P. & Wang, Q. M. RNA-dependent RNA polymerase encoded by hepatitis C virus: biomedical applications. Cell. Mol. Life Sci. 59, 909–919 (2002). 20. http://dock.compbio.ucsf.edu/DOCK_5/index.htmTest 21. http://sw16.im.med.umich.edu/software/xtool/manual/trouble.htmlTest 22. http://www.rcsb.org/pdbTest/ 23. 3-(4-AMINO-2-TERT-BUTYL-5-METHYL-PHENYLSULFANYL)- 6-CYCLOPENTYL-4-HYDROXY-6-[2-(4-HYDROXY-PHENYL)- ETHYL]-5,6-DIHYDRO-PYRAN-2-ONE 24. Pfizer Global Research and Development, La Jolla Laboratories, San Diego, California 92121 Received 14 January 2003/Accepted 2 April 2003 25. Ago, H., T. Adachi, A. Yoshida, M. Yamamoto, N. Habuka, K. Yatsunami, and M. Miyano. 1999. Crystal structure of the RNA-dependent RNA polymerase of hepatitis C virus. Structure 7:1417–1426. 26. Bressanelli, S., L. Tomei, A. Roussel, I. Incitti, R. L. Vitale, M. Mathieu, R. De Francesco, and F. A. Rey. 1999. Crystal structure of the RNA-dependent RNA polymerase of hepatitis C virus. Proc. Natl. Acad. Sci. USA 96:13034–13039. 27. Lesburg, C. A., M. B. Cable, E. Ferrari, Z. Hong, A. F. Mannarino, and P. C. Weber. 1999. Crystal structure of the RNA-dependent RNA polymerase from hepatitis C virus reveals a fully encircled active site. Nat. Struct. Biol. 6:937–943. 28. Labonte, P., V. Axelrod, A. Agarwal, A. Aulabaugh, A. Amin, and P. Mak. 2002. Modulation of hepatitis C virus RNA-dependent RNA polymerase activity by structure-based site-directed mutagenesis. J. Biol. Chem. 277:38838–38846. 29. Qin, W., H. Luo, T. Nomura, N. Hayashi, T. Yamashita, and S. Murakami. 2002. Oligomeric interaction of hepatitis C virus NS5B is critical for catalytic activity of RNA-dependent RNA polymerase. J. Biol. Chem. 277:2132–2137. 30. Wang, Q. M., M. A. Hockman, K. Staschke, R. B. Johnson, K. A. Case, J. Lu, S. Parsons, F. Zhang, R. Rathnachalam, K. Kirkegaard, and J. M. Colacino. 2002. Oligomerization and cooperative RNA synthesis activity of hepatitis C virus RNA-dependent RNA polymerase. J. Virol. 76:3865–3872. 31. Yamashita, T., S. Kaneko, Y. Shirota, W. Qin, T. Nomura, K. Kobayashi, and S. Murakami. 1998. RNA-dependent RNA polymerase activity of the soluble recombinant hepatitis C virus NS5B protein truncated at the Cterminal region. J. Biol. Chem. 273:15479–15486. 32. Bressanelli, S., L. Tomei, F. A. Rey, and R. De Francesco. 2002. Structural analysis of the hepatitis C virus RNA polymerase in complex with ribonucleotides. J. Virol. 76:3482–3492. 33. (2Z)-2-(BENZOYLAMINO)-3-[4-(2-BROMOPHENOXY)PHENYL]- 2-PROPENOIC ACID 34. Jeffrey A. Pfefferkorn, Meredith L. Greene, Richard A. Nugent, Rebecca J. Gross, Mark A. Mitchell, Barry C. Finzel, Melissa S. Harris, Peter A. Wells, John A. Shelly, Robert A. Anstadt, Robert E. Kilkuskie, Laurice A. Kopta and Francis J. Schwende . Inhibitors of HCV NS5B polymerase. Part 1: Evaluation of the southern region of (2Z)-2-(benzoylamino)-3-(5-phenyl-2-furyl)acrylic acid. Bioorganic & Medicinal Chemistry Letters 15 (2005) 2481–2486. 35. (a) Jacob-Molina, A.; Ding, J.; Nanni, R. G.; Clark, A. D.; Lu, X.; Tantillo, C.; Williams, R. L.; Kamer, G.; Ferris, A. L.; Clark, P.; Hizi, A.; Hughes, S. H.; Arnold, E. Proc. Natl. Acad. Sci. U.S.A. 1993, 90, 6320; (b) Huang, H.; Chopra, R.; Verdine, G. L.; Harrison, S. C. Science 1998, 282, 1669. 36. Jeffrey A. Pfefferkorn, Richard Nugent, Rebecca J. Gross, Meredith Greene, Mark A. Mitchell, Matthew T. Reding, Lee A. Funk, Rebecca Anderson, Peter A. Wells, John A. Shelly, Robert Anstadt, Barry C. Finzel, Melissa S. Harris, Robert E. Kilkuskie, Laurice A. Kopta and Francis J. Schwendea.Inhibitors of HCV NS5B polymerase. Part 2:Evaluation of the northern region of (2Z)-2-benzoylamino-3-(4-phenoxy-phenyl)-acrylic acid. Bioorganic & Medicinal Chemistry Letters 15 (2005) 2812–2818.; http://nthur.lib.nthu.edu.tw/dspace/handle/987654321/30924Test
الإتاحة: http://nthur.lib.nthu.edu.tw/dspace/handle/987654321/30924Test
رقم الانضمام: edsbas.9EFA62C0
قاعدة البيانات: BASE