يعرض 1 - 10 نتائج من 294 نتيجة بحث عن '"филогения"', وقت الاستعلام: 1.52s تنقيح النتائج
  1. 1
  2. 2
    دورية أكاديمية

    المصدر: Problems of Particularly Dangerous Infections; № 1 (2024); 154-161 ; Проблемы особо опасных инфекций; № 1 (2024); 154-161 ; 2658-719X ; 0370-1069

    وصف الملف: application/pdf

    العلاقة: https://journal.microbe.ru/jour/article/view/1956/1461Test; Пономаренко Д.Г., Скударева О.Н., Хачатурова А.А., Лукашевич Д.Е., Жаринова И.В., Даурова А.В., Германова А.Н., Логвиненко О.В., Ракитина Е.Л., Костюченко М.В., Манин Е.А., Малецкая О.В., Куличенко А.Н. Бруцеллез: тенденции развития ситуации в мире и прогноз на 2022 г. в Российской Федерации. Проблемы особо опасных инфекций. 2022; 2:36–45. DOI:10.21055/0370-1069-2022-2-36-45.; Ющук Н.Д., Венгеров Ю.Я., редакторы. Инфекционные болезни: национальное руководство. 3-е изд., перераб. и доп. М.: ГЭОТАР-Медиа; 2021. 1104 с. DOI:10.33029/9704-6122-8-INB2021-1-1104.; Al Dahouk S., Tomaso H., Prenger-Berninghoff E., Splettstoesser W.D., Scholz H.C., Neubauer H. Identification of Bruicella species and biotypes using polymerase chain reactionrestriction fragment length polymorphism (PCR-RFLP). Crit. Rev. Microbiol. 2005; 31(4):191–6. DOI:10.1080/10408410500304041.; Kumari G., Doimari S., Suman Kumar M., Singh M., Singh D.K. MLVA typing of Brucella melitensis and B. abortus isolates of animal and human origin from India. Anim. Biotechnol. 2023; 34(2):375–83. DOI:10.1080/10495398.2021.1971685.; Sayour A.E., Elbauomy E., Abdel-Hamid N.H., Mahrous A., Carychao D., Cooley M.B., Elhadidy M. MLVA fingerprinting of Brucella melitensis circulating among livestock and cases of sporadic human illness in Egypt. Transbound. Emerg. Dis. 2020; 67(6):2435– 45. DOI:10.1111/tbed.13581.; Zhao Z.J., Li J.Q., Ma L., Xue H.M., Yang X.X., Zhao Y.B., Qin Y.M., Yang X.W., Piao D.R., Zhao H.Y., Tian G.Z., Li Q., Wang J.L., Tian G., Jiang H., Xu L.Q. Molecular characteristics of Brucella melitensis isolates from humans in Qinghai Province, China. Infect. Dis. Poverty. 2021; 10(1):42. DOI:10.1186/s40249-021-00829-0.; Piao D.R., Liu X., Di D.D., Xiao P., Zhao Z.Z., Xu L.Q., Tian G.Z., Zhao H.Y., Fan W.X., Cui B.Y., Jiang H. Genetic polymorphisms identify in species/biovars of Brucella isolated in China between 1953 and 2013 by MLST. BMC Microbiol. 2018; 18(1):7. DOI:10.1186/s12866-018-1149-0.; Shome R., Krithiga N., Shankaranarayana P.B., Jegadesan S., Udayakumar S.V., Shome B.R., Saikia G.K., Sharma N.K., Chauhan H., Chandel B.S., Jeyaprakash R., Rahman H. Genotyping of Indian antigenic, vaccine, and field Brucella spp. using multilocus sequence typing. J. Infect. Dev. Ctries. 2016; 10(3):237–44. DOI:10.3855/jidc.6617.; Whatmore A.M., Koylass M.S., Muchowski J., EdwardsSmallbone J., Gopaul K.K., Perret L.L. Extended multilocus sequence analysis to describe the global population structure of the genus Brucella: phylogeography and relationship to biovars. Front. Microbiol. 2016; 7:2049. DOI:10.3389/fmicb.2016.02049.; Ковалев Д.А., Кузнецова И.В., Жиров А.М., Сердюк Н.С., Жилченко Е.Б., Пономаренко Д.Г., Водопьянов А.С., Водопьянов С.О., Куличенко А.Н. Генетическое типирование штаммов Brucella melitensis на основе анализа вариабельности INDEL-локусов. Эпидемиология и инфекционные болезни. Актуальные вопросы. 2022; 12(1):81–6. DOI:10.18565/epidem.2022.12.1.81-6.; Moran-Gilad J. Whole genome sequencing (WGS) for food-borne pathogen surveillance and control-taking the pulse. Euro Surveill. 2017; 22(23):30547. DOI:10.2807/1560-7917.ES.2017.22.23.30547.; Besser J., Carleton H.A., Gerner-Smidt P., Lindsey R.L., Trees E. Next-generation sequencing technologies and their application to the study and control of bacterial infections. Clin. Microbiol. Infect. 2018; 24(4):335–41. DOI:10.1016/j.cmi.2017.10.013.; Collineau L., Boerlin P., Carson C.A., Chapman B., Fazil A., Hetman B., McEwen S.A., Parmley E.J., Reid-Smith R.J., Taboada E.N., Smith B.A. Integrating whole-genome sequencing data into quantitative risk assessment of foodborne antimicrobial resistance: a review of opportunities and challenges. Front. Microbiol. 2019; 10:1107. DOI:10.3389/fmicb.2019.01107.; Carriço J.A., Sabat A.J., Friedrich A.W., Ramirez M. Bioinformatics in bacterial molecular epidemiology and public health: databases, tools and the next-generation sequencing revolution. Euro Surveill. 2013; 18(4):20382. DOI:10.2807/ese.18.04.20382-en.; Janowicz A., De Massis F., Ancora M., Cammà C., Patavino C., Battisti A., Prior K., Harmsen D., Scholz H., Zilli K., Sacchini L., Di Giannatale E., Garofolo G. Core genome multilocus sequence typing and single nucleotide polymorphism analysis in the epidemiology of Brucella melitensis infections. J. Clin. Microbiol. 2018; 56(9):e00517-18. DOI:10.1128/JCM.00517-18.; Abdel-Glil M.Y., Thomas P., Brandt C., Melzer F., Subbaiyan A., Chaudhuri P., Harmsen D., Jolley K.A., Janowicz A., Garofolo G., Neubauer H., Pletz M.W. Core genome multilocus sequence typing scheme for improved characterization and epidemiological surveillance of pathogenic Brucella. J. Clin. Microbiol. 2022; 60(8):e0031122. DOI:10.1128/jcm.00311-22.; Tan K.K., Tan Y.C., Chang L.Y., Lee K.W., Nore S.S., Yee W.Y., Mat Isa M.N., Jafar F.L., Hoh C.C., AbuBakar S. Full genome SNP-based phylogenetic analysis reveals the origin and global spread of Brucella melitensis. BMC Genomics. 2015; 16(1):93. DOI:10.1186/s12864-015-1294-x.; Pisarenko S.V., Kovalev D.A., Volynkina A.S., Ponomarenko D.G., Rusanova D.V., Zharinova N.V., Khachaturova A.A., Tokareva L.E., Khvoynova I.G., Kulichenko A.N. Global evolution and phylogeography of Brucella melitensis strains. BMC Genomics. 2018; 19(1):353. DOI:10.1186/s12864-018-4762-2.; FastQC: A quality control tool for high throughput sequence data. 2010. [Электронный ресурс]. URL: http://www.bioinformatics.babraham.ac.uk/projects/fastqcTest/ (дата обращения 20.07.2023).; Bolger A.M., Lohse M., Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. BioInformatics. 2014; 30(15):2114–20. DOI:10.1093/bioinformatics/btu170.; Gurevich A., Saveliev V., Vyahhi N., Tesler G. QUAST: quality assessment tool for genome assemblies. Bioinformatics. 2013; 29(8):1072–5. DOI:10.1093/bioinformatics/btt086.; Kumar S., Stecher G., Li M., Knyaz C., Tamura K. MEGA X: Molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 2018; 35(6):1547–9. DOI:10.1093/molbev/msy096.; Letunic I., Bork P. Interactive Tree Of Life (iTOL): an online tool for phylogenetic tree display and annotation. Bioinformatics. 2007; 23(1):127–8. DOI:10.1093/bioinformatics/btl529.; https://journal.microbe.ru/jour/article/view/1956Test

  3. 3
    دورية أكاديمية
  4. 4
  5. 5
    دورية أكاديمية

    المساهمون: The research was supported by the State Project No. 0279-2021-0010.

    المصدر: Vavilov Journal of Genetics and Breeding; Том 27, № 4 (2023); 349-356 ; Вавиловский журнал генетики и селекции; Том 27, № 4 (2023); 349-356 ; 2500-3259 ; 2500-0462 ; 10.18699/VJGB-23-35

    وصف الملف: application/pdf

    العلاقة: https://vavilov.elpub.ru/jour/article/view/3777/1714Test; Ahmad S.F., Singchat W., Panthum T., Srikulnath K. Impact of repetitive DNA elements on snake genome biology and evolution. Cells. 2021;10(7):1707. DOI 10.3390/cells10071707.; Athanasouli M., R ӧ delsper g er C. Analysis of repeat elements in the Pristionchus pacificus genome reveals an ancient invasion by horizontally transferred transposons. BMC Genomics. 2022;23(1):523. DOI 10.1186/s12864-022-08731-1.; Bazikalova A.Ya. Amphipoda of Lake Baikal. In: Proceedings of the Baikal Limnological Station. Vol. 11. Moscow, 1945. (in Russian); Bird C.P., Stranger B.E., Dermitzakis E.T. Functional variation and evolution of non-coding DNA. Curr. Opin. Genet. Dev. 2006;16(6):559-564. DOI 10.1016/j.gde.2006.10.003.; Biscotti M.A., Olmo E., Heslop-Harrison J. Repetitive DNA in eukaryotic genomes. Chromosome Res. 2015;23(3):415-420. DOI 10.1007/s10577-015-9499-z.; Boto L. Horizontal gene transfer in the acquisition of novel traits by metazoans. Proc. Biol. Sci. 2014;281(1777):20132450. DOI 10.1098/rspb.2013.2450.; Butina T.V., Bukin Yu.S., Khanaev I.V., Kravtsova L.S., Maikova O.O., Tupikin A.E., Kabilov M.R., Belikov S.I. Metagenomic analysis of viral communities in diseased Baikal sponge Lubomirskia baikalensis. Limnol. Freshw. Biol. 2019;1:155-162. DOI 10.31951/2658-3518-2019-A-1-155.; Cavalier-Smith T., Beaton M. The skeletal function of non-genic nuclear DNA: new evidence from ancient cell chimaeras. Genetica. 1999;106(1-2):3-13. DOI 10.1023/a:1003701925110.; Chen S.C., Sun G.X., Rosen B.P., Zhang S.Y., Deng Y., Zhu B.K., Rensing C., Zhu Y.G. Recurrent horizontal transfer of arsenite methyltransferase genes facilitated adaptation of life to arsenic. Sci. Rep. 2017;7(1):7741. DOI 10.1038/s41598-017-08313-2.; Costa M., Manton J.D., Ostrovsky A.D., Prohaska S., Jefferis G.S. NBLAST: rapid, sensitive comparison of neuronal structure and con struction of neuron family databases. Neuron. 2016;91(2):293-311. DOI 10.1016/j.neuron.2016.06.012.; de Sena Brandine G., Smith A.D. Falco: high-speed FastQC emulation for quality control of sequencing data. F1000Res. 2019;8:1874. DOI 10.12688/f1000research.21142.2.; Dodsworth S., Chase M.W., Kelly L.J., Leitch I.J., Macas J., Novák P., Piednoël M., Weiss-Schneeweiss H., Leitch A.R. Genomic repeat abundances contain phylogenetic signal. Syst. Biol. 2015;64(1):112-126. DOI 10.1093/sysbio/syu080.; Drozdova P., Saranchina A., Madyarova E., Gurkov A., Timofeyev M. Experimental crossing confirms reproductive isolation between cryp tic species within Eulimnogammarus verrucosus (Crustacea: Amphi poda) from Lake Baikal. Int. J. Mol. Sci. 2022;23(18):10858. DOI 10.3390/ijms231810858.; Gurkov A., Rivarola-Duarte L., Bedulina D., Fernández Casas I., Michael H., Drozdova P., Nazarova A., Govorukhina E., Timofeyev M., Stadler P.F., Luckenbach T. Indication of ongoing amphipod speciation in Lake Baikal by genetic structures within endemic species. BMC Evol. Biol. 2019;19(1):138. DOI 10.1186/s12862-019-1470-8.; Hausdorf B., Röpstorf P., Riedel F. Relationships and origin of endemic Lake Baikal gastropods (Caenogastropoda: Rissooidea) based on mitochondrial DNA sequences. Mol. Phylogenet. Evol. 2003;26(3):435-443. DOI 10.1016/s1055-7903(02)00365-2.; Hou Z., Sket B. A review of gammaridae (crustacea: Amphipoda): the family extent, its evolutionary history, and taxonomic redefinition of genera. Zool. J. Linn. Soc. 2016;176(2):323-348. DOI 10.1111/zoj.12318.; Jalili V., Afgan E., Gu Q., Clements D., Blankenberg D., Goecks J., Taylor J., Nekrutenko A. The Galaxy platform for accessible, reproducible and collaborative biomedical analyses: 2020 update. Nucleic Acids Res. 2020;48(W1):W395-W402. DOI 10.1093/nar/gkaa434.; Kamaltynov R.M. On the higher classification of Lake Baikal amphipods. Crustaceana. 1999;72(8):933-944.; Kejnovsky E., Jedlicka P. Nucleic acids movement and its relation to genome dynamics of repetitive DNA: is cellular and intercellular movement of DNA and RNA molecules related to the evolutionary dynamic genome components? BioEssays. 2022;44(4):е2100242. DOI 10.1002/bies.202100242.; Kozhov M. Lake Baikal and Its Life. Monographiae Biologicae. Vol. 11. Dordrecht: Springer, 1963. DOI 10.1007/978-94-015-7388-7.; Lee I.P.A., Eldakar O.T., Gogarten J.P., Andam C.P. Bacterial cooperation through horizontal gene transfer. Trends Ecol. Evol. 2022;37(3):223-232. DOI 10.1016/j.tree.2021.11.006.; Lerat E., Casacuberta J., Chaparro C., Vieira C. On the importance to acknowledge transposable elements in epigenomic analyses. Genes. 2019;10(4):258. DOI 10.3390/genes10040258.; Li Y., Liu Z., Liu C., Shi Z., Pang L., Chen C., Chen Y., Pan R., Zhou W., Chen X.X., Rokas A., Huang J., Shen X.X. HGT is widespread in insects and contributes to male courtship in lepidopterans. Cell. 2022;185(16):2975-2987.е10. DOI 10.1016/j.cell.2022.06.014.; Lipaeva P., Vereshchagina K., Drozdova P., Jakob L., Kondrateva E., Lucassen M., Bedulina D., Timofeyev M., Stadler P., Luckenbach T. Different ways to play it cool: transcriptomic analysis sheds light on different activity patterns of three amphipod species under long­term cold exposure. Mol. Ecol. 2021;30(22):5735-5751. DOI 10.1111/mec.16164.; Mats V.D., Shcherbakov D.Y., Efimova I.M. Late Cretaceous–Cenozoic history of the Lake Baikal depression and formation of its unique biodiversity. Stratigr. Geol. Correl. 2011;19(4):404-423. DOI 10.1134/S0869593811040058.; Naumenko S.A., Logacheva M.D., Popova N.V., Klepikova A.V., Penin A.A., Bazykin G.A., Etingova A.E., Mugue N.S., Kondrashov A.S., Yampolsky L.Y. Transcriptome-based phylogeny of endemic Lake Baikal amphipod species flock: fast speciation accompanied by frequent episodes of positive selection. Mol. Ecol. 2017;26(2):536-553. DOI 10.1111/mec.13927.; Novák P., Neumann P., Pech J., Steinhaisl J., Macas J. RepeatExplorer: a Galaxy-based web server for genome-wide characterization of euka ryotic repetitive elements from next-generation sequence reads. Bioinformatics. 2013;29(6):792-793. DOI 10.1093/bioinformatics/btt054.; Peretolchina T., Sitnikova T.Y., Sherbakov D.Y. The complete mitochondrial genomes of four Baikal molluscs from the endemic family Baicaliidae (Caenogastropoda: Truncatelloida). J. Molluscan Stud. 2020;86(3):201-209. DOI 10.1093/mollus/eyaa004.; Rocha A., Dalgarno A., Neretti N. The functional impact of nuclear reorganization in cellular senescence. Brief. Funct. Genomics. 2022;21(1):24-34. DOI 10.1093/bfgp/elab012.; Romanova E.V., Aleoshin V.V., Kamaltynov R.M., Mikhailov K.V., Logacheva M.D., Sirotinina E.A., Gornov A.Y., Anikin A.S., Sherbakov D.Y. Evolution of mitochondrial genomes in Baikalian amphipods. BMC Genomics. 2016;17(Suppl.14):1016. DOI 10.1186/s12864-016-3357-z.; Saitou N., Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 1987;4(4):406-425. DOI 10.1093/oxfordjournals.molbev.a040454.; Shen W., Le S., Li Y., Hu F. SeqKit: a cross-platform and ultrafast toolkit for FASTA/Q file manipulation. PloS One. 2016;11(10):e0163962. DOI 10.1371/journal.pone.0163962.; Sherbakov D.Y. Molecular phylogenetic studies on the origin of biodiversity in Lake Baikal. Trends Ecol. Evol. 1999;14(3):92-95. DOI 10.1016/s0169-5347(98)01543-2.; Silva B.S.M.L., Heringer P., Dias G.B., Svartman M., Kuhn G.C.S. De novo identification of satellite DNAs in the sequenced genomes of Drosophila virilis and D. americana using the RepeatExplorer and TAREAN pipelines. PLoS One. 2019;14(12):e0223466. DOI 10.1371/journal.pone.0223466.; Sitnikova T.Y. Endemic gastropod distribution in Baikal. Hydrobiologia. 2006;568(1):207-211. DOI 10.1007/s10750-006-0313-y.; Sitnikova T., Roepstorf P., Riedel F. Reproduction, duration of embryogenesis, egg capsules and protoconchs of gastropods of the family Baicaliidae (Caenogastropoda) endemic to Lake Baikal. Malacologia. 2001;43(1-2):59-85.; Steensels J., Gallone B., Verstrepen K.J. Interspecific hybridization as a driver of fungal evolution and adaptation. Nat. Rev. Microbiol. 2021; 19(8):485-500. DOI 10.1038/s41579-021-00537-4.; Takhteev V. On the current state of taxonomy of the Baikal Lake amphipods (Crustacea: Amphipoda) and the typological ways of constructing their system. Arthropoda Selecta. 2019;28(3):374-402. DOI 10.15298/arthsel.28.3.03.; Thakur J., Packiaraj J., Henikoff S. Sequence, chromatin and evolution of satellite DNA. Int. J. Mol. Sci. 2021;22(9):4309. DOI 10.3390/ijms22094309.; Titievsky A., Putintseva Y.A., Taranenko E.A., Baskin S., Oreshkova N.V., Brodsky E., Sharova A.V., Sharov V.V., Panov J., Kuzmin D.A., Brodsky L., Krutovsky K.V. Comparative genomics analysis of repetitive elements in ten gymnosperm species: “dark re peatome” and its abundance in conifer and gnetum species. Life. 2021;11(11):1234. DOI 10.3390/life11111234.; Yakhnenko A., Itskovich V. Analysis of mtDNA variability in closely related Baikal sponge species for new barcoding marker development. Limnology. 2020;21(1):49-57. DOI 10.1007/s10201-019-00599-7.; Zubakov D.Y., Shcherbakov D.Y., Sitnikova T.Y. Phylogeny of the endemial Baicaliidae molluscs inferred from partial nucleotide sequences of the CO1 mitochondrial gene. Mol. Biol. 1997;31(6):935-939.; https://vavilov.elpub.ru/jour/article/view/3777Test

  6. 6
    دورية أكاديمية

    المساهمون: The authors are grateful to Dr. A.B. Ismailov (Mountain Botanical Garden, DFRC RAS, Makhachkala) for help in the organisation of field studies. This research was carried out within the framework of the institutional research project of the Komarov Botanical Institute RAS (project no. 122011900032‐7, “Herbarium funds of the BIN RAS (history, preservation, study and enrichment)”) using the equipment of the Core Facility Centre “Cell and Molecular Technologies in Plant Science” at the Komarov Botanical Institute, RAS (St. Petersburg, Russia)., Авторы благодарят к.б.н. А.Б. Исмаилова (Горный ботанический сад ДФИЦ РАН, Махачкала) за помощь в организации полевых исследований. Работа выполнена в рамках государственного задания БИН РАН по теме №122011900032‐7 «Гербарные фонды БИН РАН (история, сохранение, изучение и пополнение)» с использованием оборудования Центра коллективного пользования научным оборудованием «Клеточные и молекулярные технологии изучения растений и грибов» Ботанического института им. В.Л. Комарова РАН (Санкт‐Петербург).

    المصدر: South of Russia: ecology, development; Том 18, № 2 (2023); 44‐52 ; Юг России: экология, развитие; Том 18, № 2 (2023); 44‐52 ; 2413-0958 ; 1992-1098 ; 10.18470/1992-1098-2023-2

    وصف الملف: application/pdf

    العلاقة: https://ecodag.elpub.ru/ugro/article/view/2825/1343Test; Baldrian P., Valášková V. Degradation of cellulose by basidiomycetous fungi // FEMS Microbiology Reviews. 2008. V. 32. N 3. P. 501–521. https://doi.org/10.1111/j.1574Test‐6976.2008.00106.x; Мухин В.А., Воронин П.Ю. Микогенное разложение древесины и эмиссия углерода в лесных экосистемах // Экология. 2007. N 1. С. 24–29.; Казарцев И.А., Рощин В.И., Соловьев В.А. Разложение углеводов древесины Populus tremula и Picea abies под действием лигнинразрушающих грибов // Микология и фитопатология. 2014. Т. 48. N 2. С. 112–117.; Boddy L., Frankland J.C., van West P. Ecology of saprotrophic basidiomycetes. London, Elsevier Academic Press, 2008, 372 p.; Bahram M., Netherway T. Fungi as mediators linking organisms and ecosystems // FEMS Microbiology Reviews. 2022. V. 46. N 2. Article id: fuab058. https://doi.org/10.1093/femsre/fuab058Test; Geml J., Leal C.M., Nagy R., Sulyok J. Abiotic environmental factors drive the diversity, compositional dynamics and habitat preference of ectomycorrhizal fungi in Pannonian forest types // Frontiers in Microbiology. 2022. V. 13. Art. 1007935. https://doi.org/10.3389/fmicb.2022.1007935Test; Mueller G.M., Cunha K.M., May T.W., Allen J.L., Westrip J.R.S., Canteiro C., Costa‐Rezende D.H., Drechsler‐Santos E.R., Vasco‐Palacios A.M., Ainsworth A.M., Alves‐Silva G., Bungartz F., Chandler A., Gonçalves S.C., Krisai‐Greilhuber I., Iršėnaitė R., Jordal J.B., Kosmann T., Lendemer J., McMullin R.T., Mešić A., Motato‐Vásquez V., Ohmura Y., Næsborg R.R., Perini C., Saar I., Simijaca D., Yahr R., Dahlberg A. What do the first 597 Global Fungal Red List assessments tell us about the threat status of fungi? // Diversity. 2022. V. 14. N 9. Art. 736. https://doi.org/10.3390/d14090736Test; Mace G.M., Collar N.J., Gaston K.J., Hilton‐Taylor C., Akçakaya H.R., Leader‐Williams N., Milner‐Gulland E.J., Stuart S.N. Quantification of extinction risk: IUCN’s system for classifying threatened species // Conservation Biology. 2008. V. 22. N 6. P. 1424–1442. https://doi.org/10.1111/j.1523Test‐1739.2008.01044.x; Dahlberg A., Genney D.R., Heilmann‐Clausen J. Developing a comprehensive strategy for fungal conservation in Europe: current status and future needs // Fungal Ecology. 2010. V. 3. N 2. P. 50–64. https://doi.org/10.1016/j.funeco.2009.10.004Test; Красная книга Республики Дагестан. Махачкала: Типография ИП Джамалудинов М.А., 2020. 800 с.; Pegler D.N., Læssøe T., Spooner B.M. British puffballs, earthstars and stinkhorns. Kew, 1995, 255 p.; Volobuev S., Shakhova N. Towards the discovery of active lignocellulolytic enzyme producers: a screening study of xylotrophic macrofungi from the Central Russian Upland // Iranian Journal of Science and Technology, Transactions A: Science. 2022. V. 46. N 1. P. 91–100. https://doi.org/10.1007/s40995Test‐021‐01245‐7; Benson D.A., Cavanaugh M., Clark K., Karsch‐Mizrachi I., Lipman D.J., Ostell J., Eric W. Sayers E.W. GenBank // Nucleic Acids Research. 2013. V. 41. N D1. P. D36–D42. https://doi.org/10.1093/nar/gks1195Test; Katoh K., Standley D.M. MAFFT multiple sequence alignment software version 7: improvements in performance and usability // Molecular Biology and Evolution. 2013. V. 30. N 4. P. 772–780. https://doi.org/10.1093/molbev/mst010Test; Katoh K., Rozewicki J., Yamada K.D. MAFFT online service: multiple sequence alignment, interactive sequence choice and visualization // Briefings in Bioinformatics. 2019. V. 20. N 4. P. 1160–1166. https://doi.org/10.1093/bib/bbx108Test; Trifinopoulos J., Nguyen L.T., von Haeseler A., Minh B.Q. W‐IQ‐TREE: a fast online phylogenetic tool for maximum likelihood analysis // Nucleic Acids Research. 2016. V. 44. N W1. P. W232–W 235. https://doi.org/10.1093/nar/gkw256Test; Martín M.P., Johannesson H. Battarea phalloides and B. stevenii, insight into a long‐standing taxonomic puzzle // Mycotaxon. 2000. V. 76. P. 67–75.; Martín M.P., Rusevska K., Dueñas M., Karadelev M. Battarrea phalloides in Macedonia: genetic variability, distribution and ecology // Acta Mycologica. 2013. V. 48. N 1. P. 113–122. https://doi.org/10.5586/am.2013.013Test; Garrido‐Benavent I. The Battarrea phalloides‐stevenii complex: multiple sources of evidence as a strategy to unveil cryptic species within poorly characterized taxa // Butlletí Societat Micològica Valenciana. 2014. V. 19. P. 17–35.; Shepherd L.D., Cooper J.A. First record of the fungus Battarrea phalloides (Agaricaceae) in New Zealand // New Zealand Journal of Botany. 2018. V. 56. N 1. P. 109–114. http://dx.doi.org/10.1080/0028825X.2017.1385491Test; iNaturalist contributors, iNaturalist (2022). iNaturalist Research‐grade Observations. iNaturalist.org. Occurrence dataset https://doi.org/10.15468/ab3s5x2022Test‐12‐20. URL: https://www.gbif.org/occurrence/4034748523Test (дата обращения: 20.12.2022); Pilát A. (ed.) Gasteromycetes. Flora ČSR. B. 1. Praha, 1958, 836 p.; Ivančević B, Mešić A, Tkalčec Z, Kušan I, Horjan I. Studies on Croatian Basidiomycota 3: the first record of Battarrea phalloides (Agaricales) with a worldwide taxonomic review of Battarrea species // Nova Hedwigia. 2016. V. 102. N 1–2. P. 197–209. https://doi.org/10.1127/nova_hedwigia/2015/0300Test; Akata İ., Altuntaş D., Sahin E., Alli H., Kabaktepe Ş. A note on Battarrea phalloides in Turkey // Mantar Dergisi. 2021. V. 12. N 1. P. 1–9. https://doi.org/10.30708.mantar.800585Test; Fraiture A., Otto P. Distribution, ecology and status of 51 macromycetes in Europe. Results of the ECCF Mapping Programme // Scripta Botanica Belgica. 2015. V. 53. P. 1–247.; Battarrea phalloides. URL: https://redlist.info/iucn/species_view/159853Test/ (дата обращения: 16.12.2022); Красная книга Республики Калмыкия. В 2‐х томах. Том 2. Редкие и находящиеся под угрозой исчезновения растения и грибы. Элиста: ЗАОр «НПП «Джангар», 2014. 199 с.; Gargano M.L., Venturella G., Ferraro V. Is Battarrea phalloides really an endangered species? // Plant Biosystems – An International Journal Dealing with all Aspects of Plant Biology. 2021. V. 155. N 4. P. 759–762. https://doi.org/10.1080/11263504.2020.1779847Test; https://ecodag.elpub.ru/ugro/article/view/2825Test

  7. 7
    دورية أكاديمية
  8. 8
    دورية أكاديمية
  9. 9
    دورية أكاديمية
  10. 10
    دورية أكاديمية