يعرض 1 - 10 نتائج من 77 نتيجة بحث عن '"транскрипционные факторы"', وقت الاستعلام: 1.40s تنقيح النتائج
  1. 1
    دورية أكاديمية
  2. 2
    دورية أكاديمية
  3. 3
    دورية أكاديمية

    المصدر: Vavilov Journal of Genetics and Breeding; Том 26, № 1 (2022); 65-73 ; Вавиловский журнал генетики и селекции; Том 26, № 1 (2022); 65-73 ; 2500-3259 ; 2500-0462 ; 10.18699/VJGB-22-01

    وصف الملف: application/pdf

  4. 4
    دورية أكاديمية

    المساهمون: The work is supported by the BRFFR (grant No. Б20Р-285), and by the RFBR (grant No. 20-51600017Бел_а)., Работа выполнена при поддержке БРФФИ (грант Б20Р-285), а также РФФИ (грант № 20-51600017Бел_а).

    المصدر: Doklady of the National Academy of Sciences of Belarus; Том 66, № 4 (2022); 414-424 ; Доклады Национальной академии наук Беларуси; Том 66, № 4 (2022); 414-424 ; 2524-2431 ; 1561-8323 ; 10.29235/1561-8323-2022-66-4

    وصف الملف: application/pdf

    العلاقة: https://doklady.belnauka.by/jour/article/view/1080/1082Test; Middleton, E. Jr. The effects of plant flavonoids on mammalian cells: Implications for inflammation, heart disease and cancer / E. Jr. Middleton, C. Kandaswami, T. C. Theoharides // Pharmacol. Rev. – 2000. – Vol. 52. – P. 673–751.; Хлесткина, Е. К. Гены биосинтеза флавоноидов пшеницы / Е. К. Хлесткина, О. Ю. Шоева, Е. И. Гордеева // Вавиловский журн. генетики и селекции. – 2014. – Т. 18, № 4/1. – С. 784–796.; Anthocyanin biosynthesis and degradation mechanisms in Solanaceous Vegetables: a review / Y. Liu [et al.] // Frontiers in Chemistry. – 2018. – Vol. 6. – P. 1–17. https://doi.org/10.3389/fchem.2018.00052Test; Naing, A. H. Roles of R2R3-MYB transcription factors in transcriptional regulation of anthocyanin biosynthesis in horticultural plants / A. H. Naing, C. K. Kim // Plant Mol. Biol. – 2018. – Vol. 98, N 1–2. – P. 1–18. https://doi.org/10.1007/s11103-018-0771-4Test; Stommel, J. R. Coordinated regulation of biosynthetic and regulatory genes coincides with anthocyanin accumulation in developing eggplant fruit / J. R. Stommel, J. M. Dumm // J. Amer. Soc. Horticult. Sci. – 2015. – Vol. 140, N 2. – P. 129–135. https://doi.org/10.21273/jashs.140.2.129Test; Lightbourn, G. J. Epistatic interactions influencing anthocyanin gene expression in Capsicum annuum / G. J. Lightbourn, J. R. Stommel, R. J. Griesbach // J. Amer. Soc. Horticult. Sci. – 2007. – Vol. 132, N 6. – P. 824–829. https://doi.org/10.21273/jashs.132.6.824Test; A non-LTR retrotransposon activates anthocyanin biosynthesis by regulating a MYB transcription factor in Capsicum annuum / S. Jung [et al.] // Plant Science. – 2019. – Vol. 287. – Art. 110181. https://doi.org/10.1016/j.plantsci.2019.110181Test; Изучение полиморфизма генов Myb-факторов на основе сравнительной геномики овощных пасленовых культур (томат, перец, баклажан) для поиска ДНК-маркеров, дифференцирующих образцы по накоплению антоцианов / О. Г. Бабак [и др.] // Докл. Нац. акад. наук Беларуси. – 2019. – Т. 63, № 6. – С. 721–729. https://doi.org/10.29235/1561-8323-2019-63-6-721-729Test; Identification of DNA Markers of Anthocyanin Biosynthesis Disorders Based on the Polymorphism of Anthocyanin 1 Tomato Ortholog Genes in Pepper and Eggplant / O. Babak [et al.] // Crop. Breed Genet. Genom. – 2020. – Vol. 2, N 3. – Art. e200011. https://doi.org/10.20900/cbgg20200011Test; Fine mapping the BjPl1 gene for purple leaf color in B2 of Brassica juncea L. through comparative mapping and whole-genome re-sequencing / Z. Zhao [et al.] // Euphytica. – 2017. – Vol. 213, N 4. – P. 80–90. https://doi.org/10.1007/s10681017-1868-6Test; Identification and characterization of anthocyanin biosynthesis-related genes in Kohlrabi / M. A. Rahim [et al.] // Appl. Biochem. Biotechnol. – 2018. – Vol. 184, N 4. – P. 1120–1141. https://doi.org/10.1007/s12010-017-2613-2Test; Wang, J. Molecular characterization of BrMYB73: a candidate gene for the purple-leaf trait in Brassica rapa / J. Wang, T. B. Su, Y. J. Yu // Int. J. Agric. Biol. – 2019. – Vol. 22. – P. 122–130. https://doi.org/10.17957/IJAB/15.1041Test; QTL-Seq and sequence assembly rapidly mapped the gene BrMYBL2.1 for the purple trait in Brassica rapa / X. Zhang [et al.] // Sci. Rep. – 2020. – Vol. 10, N 1. https://doi.org/10.1038/s41598-020-58916-5Test; Primer-BLAST: A tool to design target-specific primers for polymerase chain reaction / J. Ye [et al.] // BMC Bioinformatics. – 2012. – Vol. 13, N 1. – Art. 134. https://doi.org/10.1186/1471-2105-13-134Test; Molecular Evolutionary Genetics Analysis [Electronic resource]. – Mode of access: https://www.megasoftware.netTest/. – Date of access: 12.02.2022.; Vector NTI [Electronic resource]. – Mode of access: https://www.thermofisher.com/by/en/home/life-science/cloning/vector-nti-software.htmlTest. – Date of access: 05.02.2022.; https://doklady.belnauka.by/jour/article/view/1080Test

  5. 5
    دورية أكاديمية

    العلاقة: Явтушенко І. В. Зміни поведінкових реакцій щурів після відтворення черепно-мозкової травми та їхня корекція модуляторами транскрипційних чинників / І. В. Явтушенко, А. А. Левков, В. О. Костенко // Актуальні проблеми сучасної медицини: Вісник Української медичної стоматологічної академії. – 2020. – Т. 20, вип. 4 (72). – С. 157–162.; 2077-1096 (print); 2077-1126 (online); http://repository.pdmu.edu.ua/handle/123456789/15175Test

  6. 6
    دورية أكاديمية

    العلاقة: Явтушенко І. В. Вплив модуляторів редоксчутливих транскрипційних чинників на неврологічний дефіцит у щурів після відтворення черепно-мозкової травми / І. В. Явтушенко, В. О. Костенко // Актуальні проблеми сучасної медицини: Вісник Української медичної стоматологічної академії. – 2020. – Т. 20, № 2. – С. 198–202.; 2077-1096 (print); 2077-1126 (online); http://repository.pdmu.edu.ua/handle/123456789/14627Test

  7. 7
    دورية أكاديمية

    المساهمون: This work was supported by the Russian Science Foundation, project 18-76-10001.

    المصدر: Vavilov Journal of Genetics and Breeding; Том 23, № 8 (2019); 958-963 ; Вавиловский журнал генетики и селекции; Том 23, № 8 (2019); 958-963 ; 2500-3259 ; 2500-0462

    وصف الملف: application/pdf

    العلاقة: https://vavilov.elpub.ru/jour/article/view/2388/1320Test; Achard P., Gong F., Cheminant S., Alioua M., Hedden P., Genschik P. The cold­inducible CBF1 factor­dependent signaling pathway modulates the accumulation of the growth­repressing DELLA proteins via its effect on gibberellin metabolism. Plant Cell. 2008;20:2117­2129.; Ban Q., Wang X., Pan C., Wang Y., Kong L., Jiang H., Xu Y., Wang W., Pan Y., Li Y., Jiang Ch. Comparative analysis of the response and gene regulation in cold resistant and susceptible tea plants. PLoS One. 2017;12(12):e0188514. DOI 10.1371/journal.pone.0188514.; Cao H., Wang L., Yue C., Hao X., Wang X., Yang Y. Isolation and expression analysis of 18 CsbZIP genes implicated in abiotic stress responses in the tea plant (Camellia sinensis). Plant Physiol. Biochem. 2015;97:432­442.; Chen J., Gao T., Wan S., Zhang Y., Yang J., Yu Y., Wang W. Genome­wide identification, classification and expression analysis of the HSP gene superfamily in tea plant (Camellia sinensis). Int. J. Mol. Sci. 2018;19:2633. DOI 10.3390/ijms19092633.; Chinnusamy V., Ohta M., Kanrar S., Lee B.H., Hong X., Agarwal M., Zhu J.K. ICE1: a regulator of cold­induced transcriptome and freezing tolerance in Arabidopsis. Genes Dev. 2003;17:1043­1054.; Ding Z., Li C., Shi H., Wang H., Wang Y. Pattern of CsICE1 expression under cold or drought treatment and functional verification through analysis of transgenic Arabidopsis. Genet. Mol. Res. 2015;14:11259­11270.; El Kayal W., Navarro M., Marque G., Keller G., Marque C., Teulieres C. Expression profile of CBF­like transcriptional factor genes from Eucalyptus in response to cold. J. Exp. Bot. 2006;57:2455­2469.; Eriksson M.E., Webb A.A.R. Plant cell responses to cold are all about timing. Curr. Opin. Plant Biol. 2011;14:731­737.; Gao S.Q., Chen M., Xu Z.S. The soybean GmbZIP1 transcription factor enhances multiple abiotic stress tolerances in transgenic plants. Plant Mol. Biol. 2011;75:537­553.; Hua J. Defining roles of tandemly arrayed CBF genes in freezing tolerance with new genome editing tools. New Phytol. 2016;212: 301­302.; Jia Y., Ding Y., Shi Y., Zhang X., Gong Z., Yang S. The cbfs triple mutants reveal the essential functions of CBFs in cold acclimation and allow the definition of CBF regulons in Arabidopsis. New Phytol. 2016;212:345­353.; Kargiotidou A., Deli D., Galanopoulou D., Tsaftaris A., Farmaki T. Low temperature and light regulate delta 12 fatty acid desaturases (FAD2) at a transcriptional level in cotton (Gossypium hirsutum). J. Exp. Bot. 2008;59:2043­2056. DOI 10.1093/jxb/ern065.; Kim J., Kang J.Y., Kim S.Y. Over­expression of a transcription factor regulating ABA­responsive gene expression confers multiple stress tolerance. Plant Biotechnol. J. 2004;2:459­466.; Kitashiba H., Ishizaka T., Isuzugawa K., Nishimura K., Suzuki T. Expression of a sweet cherry DREB1/CBF ortholog in Arabidopsis confers salt and freezing tolerance. J. Plant Physiol. 2004;161: 1171­1176.; Li L., Lu X., Ma H., Lyu D. Jasmonic acid regulates the ascorbate–glutathione cycle in Malus baccata Borkh. roots under low root­zone temperature. Acta Physiol. Plant. 2017;39:174.; Li Q., Lei S., Du K., Li L., Pang X., Wang Zh., Wei M., Fu S., Hu L., Xu L. RNA­seq based transcriptomic analysis uncovers α­linolenic acid and jasmonic acid biosynthesis pathways respond to cold acclimation in Camellia japonica. Sci. Rep. 2016;7(6):36463. DOI 10.1038/srep36463.; Li W.Q., Li M.Y., Zhang W.H., Welti R., Wang X.M. The plasma membrane­bound phospholipase D delta enhances freezing tolerance in Аrabidopsis thaliana. Nat. Biotechnol. 2004;22:427­433. DOI 10.1038/nbt949.; Li W.Q., Wang R.P., Li M.Y., Li L.X., Wang C.M., Welti R., Wang X. Differential degradation of extraplastidic and plastidic lipids during freezing and post­freezing recovery in Arabidopsis thaliana. J. Biol. Chem. 2008;283:461­468. DOI 10.1074/jbc.M706692200.; Li Y.Y., Zhou Y.Q., Xie X.F., Shu X.T., Deng W.W., Jiang C.J. Cloning and transcription analysis of dehydrin gene (CsDHN) in tea plant (Camellia sinensis). J. Agric. Biotechnol. 2016;24:332­341.; Megha S., Basu U., Kav N.N.V. Regulation of low temperature stress in plants by microRNAs. Plant Cell Environ. 2018;41:1­15.; Park S., Lee C.M., Doherty C.J., Gilmour S.J., Kim Y., Thomashow M.F. Regulation of the Arabidopsis CBF regulon by a complex low­temperature regulatory network. Plant J. 2015;82:193­207.; Paul A., Kumar S. Dehydrin2 is a stress­inducible, whereas Dehyd rin1 is constitutively expressed but up­regulated gene under varied cues in tea [Camellia sinensis (L.) O. Kuntze]. Mol. Biol. Rep. 2013;40: 3859­3863. DOI 10.1007/s11033­012­2466­2.; Pennycooke J.C., Cheng H., Stockinger E.J. Comparative genomic sequence and expression analyses of Medicago truncatula and alfalfa subspecies falcata COLD-ACCLIMATION-SPECIFIC genes. Plant Physiol. 2008;146:1242­1254. DOI 10.1104/pp.107.108779.; Sharabi­Schwager M., Samach A., Porat R. Overexpression of the CBF2 transcriptional activator in Arabidopsis counteracts hormone activation of leaf senescence. Plant Signal Behav. 2010;5(3):296­309.; Shen W., Li H., Teng R., Wang Y., Wang W., Zhuang J. Genomic and transcriptomic analyses of HD-Zip family transcription factors and their responses to abiotic stress in tea plant (Camellia sinensis). Genomics. 2018. DOI 10.1016/j.ygeno.2018.07.009.; Thomashow M.F. Plant cold acclimation: freezing tolerance genes and regulatory mechanisms. Annu. Rev. Plant Physiol. Plant Mol. Biol. 1999;50:571­599.; Vogel J.T., Zarka D.G., Van Buskirk H.A., Fowler S.G., Thomashow M.F. Roles of the CBF2 and ZAT12 transcription factors in configuring the low temperature transcriptome of Arabidopsis. Plant J. 2005;41:195­211.; Vyas D., Kumar S. Tea (Camellia sinensis (L.) O. Kuntze) clone with lower period of winter dormancy exhibits lesser cellular damage in response to low temperature. Plant Physiol. Biochem. 2005;43: 383­388.; Wang L., Cao H., Qian W., Yao L., Hao X., Li N., Yang Y., Wang X. Identification of a novel bZIP transcription factor in Camellia sinensis as a negative regulator of freezing tolerance in transgenic Arabidopsis. Ann. Bot. 2017;119:1195­1209.; Wang L., Li X., Zhao Q., Jing Sh., Chen Sh., Yuan H. Identification of genes induced in response to low­temperature treatment in tea leaves. Plant Mol. Biol. Rep. 2009;27:257­265. DOI 10.1007/s11105­008­0079­7.; Wang W., Gao T., Chen J., Yang J., Huang H., Yu Y. The late embryogenesis abundant gene family in tea plant (Camellia sinensis): Genome­wide characterization and expression analysis in response to cold and dehydration stress. Plant Physiol. Biochem. 2018;135:277­286. DOI 10.1016/j.plaphy.2018.12.009.; Wang Y., Jiang C.J., Li Y.Y., Wei C.L., Deng W.W. CsICE1 and CsCBF1: two transcription factors involved in cold responses in Camellia sinensis. Plant Cell Rep. 2012;31:27­34. DOI 10.1007/s00299­011­1136­5.; Wang Y.­X., Liu Z.­W., Wu Z.­J., Li H., Zhuang J. Transcriptome­wide identification and expression analysis of the NAC gene family in tea plant [Camellia sinensis (L.) O. Kuntze] PLoS One. 2016a; 11(11):e0166727. DOI 10.1371/journal.pone.0166727.; Wang Y., Shu Z., Wang W., Jiang X., Li D., Pan J., Li X. CsWRKY2, a novel WRKY gene from Camellia sinensis, is involved in cold and drought stress responses. Biol. Plant. 2016b;60:443­451. DOI 10.1007/s10535­016­0618­2.; Welling A., Palva E.T. Molecular control of cold acclimation in trees. Physiol. Plant. 2006;127:167­181.; Wu Zh., Li X., Liu Zh., Li H., Wang Y., Zhuang J. Transcriptome­based discovery of AP2/ERF transcription factors related to temperature stress in tea plant (Camellia sinensis) Funct. Integr. Genomics. 2015; 15(6):741­752. DOI 10.1007/s10142­015­0457­9.; Yin Y., Ma Q., Zhu Z., Cui Q., Chen Ch., Chen X., Fang W., Li X. Functional analysis of CsCBF3 transcription factor in tea plant (Camellia sinensis) under cold stress. Plant Growth Regul. 2016;80:335. DOI 10.1007/s10725­016­0172­0.; Yuan H.Y., Zhu X.P., Zeng W., Yang H.M., Sun N., Xie S.X., Cheng L. Isolation and transcription activation analysis of the CsCBF1 gene from Camellia sinensis. Acta Botanica Boreali­Occidentalia Sinica. 2013;110:147­151.; Yue C., Cao H.L., Wang L., Zhou Y.H., Huang Y.T., Hao X.Y., Wang Y.C., Wang B., Yang Y.J., Wang X.C. Effects of CA on sugar metabolism and sugar­related gene expression in tea plant during the winter season. Plant Mol. Biol. 2015;88:591­608. DOI 10.1007/s11103­015­0345­7.; Zhang L.L., Zhao M.G., Tian Q.Y., Zhang W.H. Comparative studies on tolerance of Medicago truncatula and Medicago falcata to freezing. Planta. 2011;234:445­457. DOI 10.1007/s00425­011­1416­x.; Zhao Ch., Zhang Zh., Xie Sh., Si T., Li Y., Zhu J. Mutational evidence for the critical role of CBF transcription factors in cold acclimation in Arabidopsis. Plant Physiol. 2016;171:2744­2759.; Zhao Ch., Zhu J. The broad roles of CBF genes: From development to abiotic stress. Plant Signal. Behav. 2016;11:8. DOI 10.1080/15592324.2016.1215794.; Zheng C., Zhao L., Wang Y., Shen J., Zhang Y., Jia S., Li Y., Ding Z. Integrated RNA­Seq and sRNA­Seq analysis identifies chilling and freezing responsive key molecular players and pathways in tea plant (Camellia sinensis). PLoS One. 2015;10(4):e0125031. DOI 10.1371/journal.pone.0125031.; Zhu J., Wang X., Guo L., Xu Q., Zhao S., Li F., Yan X., Liu Sh., Wei Ch. Characterization and alternative splicing profiles of the lipoxygenase gene family in tea plant (Camellia sinensis). Plant Cell Physiol. 2018;59(9):1765­1781. DOI 10.1093/pcp/pcy091.; https://vavilov.elpub.ru/jour/article/view/2388Test

  8. 8
    دورية أكاديمية
  9. 9
    دورية أكاديمية

    العلاقة: Єлінська А. М. Поєднана дія водорозчинної форми кверцетину та інгібітора транскрипційного чинника AP-1 на дезінтеграцію органічного матриксу пародонта щурів за умов системного та локального введення ліпополісахариду Salmonella Typhi / А. М. Єлінська, В. О. Костенко // Актуальні проблеми сучасної медицини: Вісник Української медичної стоматологічної академії. – 2019. – Т. 19, вип. 2 (66). – С. 110–113.; 2077-1096 (print); 2077-1126 (online); http://repository.pdmu.edu.ua/handle/123456789/12553Test

  10. 10
    دورية أكاديمية

    المساهمون: Program of Fundamental Scientific Research of the State Academies of Sciences for 2013–2020 using the equipment of the Center for Collective Use “Human Proteome” (V.N. Orekhovich Scientific Research Institute of Biomedical Chemistry), supported by the Ministry of Education and Science of Russia (unique identifier of the project RFMEFI62117X0017), Программа фундаментальных научных исследований государственных академий наук на 2013–2020 гг. с использованием оборудования Центра коллективного пользования «Протеом человека» (ФГБНУ «Научно-исследовательский институт биомедицинской химии им. В.Н. Ореховича»), поддержанного Минобрнауки России (уникальный идентификатор проекта RFMEFI62117X0017)

    المصدر: Russian Journal of Pediatric Hematology and Oncology; Том 5, № 3 (2018); 43-55 ; Российский журнал детской гематологии и онкологии (РЖДГиО); Том 5, № 3 (2018); 43-55 ; 2413-5496 ; 2311-1267 ; 10.17650/2311-1267-2018-5-3

    وصف الملف: application/pdf

    العلاقة: https://journal.nodgo.org/jour/article/view/405/398Test; Di Girolamo F., Lante I., Muraca M., Putignani L. The Role of Mass Spectrometry in the “Omics” Era. Curr Org Chem 2013;17(23):2891–905. doi:10.2174/1385272817888131118162725.; Wu H.Y., Goan Y.G., Chang Y.H. et al. Qualification and Verification of Serological Biomarker Candidates for Lung Adenocarcinoma by Targeted Mass Spectrometry. J Proteome Res 2015;14(8):3039–50. doi:10.1021/pr501195t.; Naryzhny S.N., Zgoda V.G., Maynskova M.A. et al. Combination of virtual and experimental 2DE together with ESI LC-MS/MS gives a clearer view about proteomes of human cells and plasma. Electrophoresis 2016;37(2):302–9. doi:10.1002/elps.201500382.; Kopylov A.T., Ilgisonis E.V., Moysa A.A. et al. Targeted Quantitative Screening of Chromosome 18 Encoded Proteome in Plasma Samples of Astronaut Candidates. J Proteome Res 2016;15(11):4039–46. doi:10.1021/acs.jproteome.6b00384.; Novikova S.E., Tikhonova O.V., Kurbatov L.K. et al. Application of selected reaction monitoring and parallel reaction monitoring for investigation of HL-60 cell line differentiation. Eur J Mass Spectrom (Chichester) 2017;23(4):202–8. doi:10.1177/1469066717719848.; Breitman T.R., Selonick S.E., Collins S.J. Induction of differentiation of the human promyelocytic leukemia cell line (HL-60) by retinoic acid. Proc Natl Acad Sci U S A 1980;77(5):2936–40. PMID: 6930676.; Dalton W.T., Ahearn M.J., McCredie K.B. et al. HL-60 cell line was derived from a patient with FAB-M2 and not FAB-M3. Blood 1988;71(1):242–7. PMID: 3422031.; Liu S.M., Chen W., Wang J. Distinguishing between cancer cell differentiation and resistance induced by all-trans retinoic acid using transcriptional profiles and functional pathway analysis. Sci Rep 2014;4:5577. doi:10.1038/srep05577.; Tasseff R., Jensen H.A., Congleton J. et al. An Effective Model of the Retinoic Acid Induced HL-60 Differentiation Program. Sci Rep 2017;7(1):14327. doi:10.1038/s41598-017-14523-5.; Zheng P.Z., Wang K.K., Zhang Q.Y. et al. Systems analysis of transcriptome and proteome in retinoic acid/arsenic trioxide-induced cell differentiation/apoptosis of promyelocytic leukemia. Proc Natl Acad Sci U S A 2005;102(21):7653–8. doi:10.1073/pnas.0502825102.; Bertagnolo V., Grassilli S., Bavelloni A. et al. Vav1 modulates protein expression during AT-RA-induced maturation of APL-derived promyelocytes: a proteomic-based analysis. J Proteome Res 2008;7(9):3729–36. doi:10.1021/pr7008719.; Valiuliene G., Stirblyte I., Cicenaite D. et al. Belinostat, a potent HDACi, exerts antileukaemic effect in human acute promyelocytic leukaemia cells via chromatin remodeling. J Cell Mol Med 2015;19(7):1742–55. doi:10.1111/jcmm.12550.; Simicevic J., Schmid A.W., Gilardoni P.A. et al. Absolute quantification of transcription factors during cellular differentiation using multiplexed targeted proteomics. Nat Methods 2013;10(6):570–6. doi:10.1038/nmeth.2441.; Wisniewski J.R., Zougman A., Nagaraj N., Mann M. Universal sample preparation method for proteome analysis. Nat Methods 2009;6(5):359–62. doi:10.1038/nmeth.1322.; Tickenbrock L., Klein H.U., Trento C. et al.; Study Alliance Leukemia Group. Increased HDAC1 deposition at hematopoietic promoters in AML and its association with patient survival. Leuk Res 2011;35(5):620–5. doi:10.1016/j.leukres.2010.11.006.; Fredly H., Gjertsen B.T., Bruserud O. Histone deacetylase inhibition in the treatment of acute myeloid leukemia: the effects of valproic acid on leukemic cells, and the clinical and experimental evidence for combining valproic acid with other antileukemic agents. Clin Epigenetics 2013;5(1):12. doi:10.1186/1868-7083-5-12.; Min C., Moore N., Shearstone J.R. et al. Selective Inhibitors of Histone Deacetylases 1 and 2 Synergize with Azacitidine in Acute Myeloid Leukemia. PLoS One 2017;12(1):e0169128. doi:10.1371/journal.pone.0169128.; Wang C., Ivanov A., Chen L. et al. MDM2 interaction with nuclear corepressor KAP1 contributes to p53 inactivation. EMBO J 2005;24(18):3279–90. doi:10.1038/sj.emboj.7600791.; Lee Y.K., Thomas S.N., Yang A.J., Ann D.K. Doxorubicin down-regulates Kruppel-associated box domain-associated protein 1 sumoylation that relieves its transcription repression on p21WAF1/CIP1 in breast cancer MCF-7 cells. J Biol Chem 2007;282(3):1595–606. doi:10.1074/jbc.M606306200.; Hurtz C., Hatzi K., Cerchietti L. et al. BCL6-mediated repression of p53 is critical for leukemia stem cell survival in chronic myeloid leukemia. J Exp Med 2011;208(11):2163–74. doi:10.1084/jem.20110304.; Rota S.G., Roma A., Dude I. et al. Estrogen Receptor β Is a Novel Target in Acute Myeloid Leukemia. Mol Cancer Ther 2017;16(11):2618–26. doi:10.1158/1535-7163.MCT-17-0292.; Sanchez-Aguilera A., Arranz L., Martin-Perez D. et al. Estrogen signaling selectively induces apoptosis of hematopoietic progenitors and myeloid neoplasms without harming steadystate hematopoiesis. Cell Stem Cell 2014;15(6):791–804. doi:10.1016/j.stem.2014.11.002.; Picot T., Aanei C.M., Fayard A. et al. Expression of embryonic stem cell markers in acute myeloid leukemia. Tumour Biol 2017;39(7):1010428317716629. doi:10.1177/1010428317716629.; Garros-Regulez L., Garcia I., Carrasco-Garcia E. et al. Targeting SOX2 as a Therapeutic Strategy in Glioblastoma. Front Oncol 2016;6:222. doi:10.3389/fonc.2016.00222.; Hauses M., Tonjes R.R., Grez M. The transcription factor Sp1 regulates the myeloid-specific expression of the human hematopoietic cell kinase (HCK) gene through binding to two adjacent GC boxes within the HCK promoter-proximal region. J Biol Chem 1998;273(48):31844–52. PMID: 9822652.; Chen H.M., Pahl H.L., Scheibe R.J. et al. The Sp1 transcription factor binds the CD11b promoter specifically in myeloid cells in vivo and is essential for myeloid-specific promoter activity. J Biol Chem 1993;268(11):8230–9. PMID: 8096519.; Pabst T., Mueller B.U., Zhang P. et al. Dominant-negative mutations of CEBPA, encoding CCAAT/enhancer binding protein-alpha (C/EBPalpha), in acute myeloid leukemia. Nat Genet 2001;27(3):263–70. doi:10.1038/85820.; Reeves H.L., Narla G., Ogunbiyi O. et al. Kruppel-like factor 6 (KLF6) is a tumor-suppressor gene frequently inactivated in colorectal cancer. Gastroenterology 2004;126(4):1090–103. PMID: 15057748.; Humbert M., Halter V., Shan D. et al. Deregulated expression of Kruppel-like factors in acute myeloid leukemia. Leuk Res 2011;35(7):909–13. doi:10.1016/j.leukres.2011.03.010.; Yu L., Hitchler M.J., Sun W. et al. AP-2alpha Inhibits c-MYC Induced Oxidative Stress and Apoptosis in HaCaT Human Keratinocytes. J Oncol 2009;2009:780874. doi:10.1155/2009/780874.; Bennett K.L., Romigh T., Arab K. et al. Activator protein 2 alpha (AP2alpha) suppresses 42 kDa C/CAAT enhancer binding protein alpha (p42(C/EBPalpha)) in head and neck squamous cell carcinoma. Int J Cancer 2009;124(6):1285–92. doi:10.1002/ijc.24087.; https://journal.nodgo.org/jour/article/view/405Test