يعرض 1 - 10 نتائج من 27 نتيجة بحث عن '"постковидный период"', وقت الاستعلام: 1.03s تنقيح النتائج
  1. 1
    دورية أكاديمية
  2. 2
    دورية أكاديمية

    المؤلفون: D. V. Koplik, Д. В. Коплик

    المصدر: Vestnik Universiteta; № 12 (2022); 119-124 ; Вестник университета; № 12 (2022); 119-124 ; 2686-8415 ; 1816-4277

    وصف الملف: application/pdf

    العلاقة: https://vestnik.guu.ru/jour/article/view/4117/2558Test; Борисик М.П, Иванова Е.С., Рюмкина К.А. Современные проблемы транспортной логистики РФ. Экономика и менеджмент инновационных технологий. 2022;1. https://ekonomika.snauka.ru/2022/01/17400Test (дата обращения: 13.10.2022); Ржесик К.А. Трансформация концепции маркетинга в постковидный период в условиях формирования маркетинговых стратегий развития рынка бытовой техники. Экономика: вчера, сегодня, завтра. 2020;10(11-1):409–420. https://doi.org/10.34670/AR.2020.51.55.047Test; Сидорова С.Н. Анализ необходимости применения компаниями методов цифрового маркетинга. Самоуправление. 2020;2(2(119)):507–511.; Вернигора И.С., Якушевский М.Д. Пути повышения эффективности работы транспортных организаций как базисного элемента транспортной логистики. В кн.: Молодой исследователь: материалы 1-й Всерос. науч. конф. с международ. участием, Липецк, 24 декабря 2020 г. Липецк: Липецкий государственный технический университет; 2021. С. 70–76.; Пучков В.Р., Ермоленко В.В. Управление логистическими процессами компании: инновации в логистике (на примере ООО «Кубань Транс Авто»). В кн.: Ермоленко В.В. (отв. ред.) Управление инновационной экосистемой региона и коммерциализацией нововведений. Организационное, аналитическое и информационно-документационное сопровождение деятельности инфраструктуры: сборник трудов 5-й Всерос. (нац.) науч.-практ. конф. с международ. участием, Краснодар, 24–29 мая 2021 г. Краснодар: Кубанский государственный университет; 2021. С. 184–192.; https://vestnik.guu.ru/jour/article/view/4117Test

  3. 3
    دورية أكاديمية

    المساهمون: The authors express their deepest gratitude to the personnel of Ural Phthisiopulmonology Research Institute – a Branch of National Medical Research Center of Phthisiopulmonology and Infectious Diseases, Russian Ministry of Health: S. Yu. Krasnoborova, Director of the Branch, L. A. Mamaeva, Head of the Clinical Diagnostic Department, E. A. Filatova, Functional Diagnostics Specialist, for their assistance and support during this study., Авторы выражают благодарность сотрудникам Уральского научно-исследовательского института фтизиопульмонологии – филиала Федерального государственного бюджетного учреждения «Национальный медицинский исследовательский центр фтизиопульмонологии и инфекционных заболеваний» Министерства здравоохранения Российской Федерации: директору филиала С. Ю. Красноборовой, заведующей клинико-диагностическим отделением Л. А. Мамаевой и врачу функциональной диагностики Е. А. Филатовой за содействие, помощь и поддержку в проведении данного научного исследования.

    المصدر: Tuberculosis and Lung Diseases; Том 101, № 3 (2023); 44–51 ; Туберкулез и болезни легких; Том 101, № 3 (2023); 44–51 ; 2542-1506 ; 2075-1230

    وصف الملف: application/pdf

    العلاقة: https://www.tibl-journal.com/jour/article/view/1730/1738Test; Временные методические рекомендации «Профилактика, диагностика и лечение новой коронавирусной инфекции (COVID-19)». Версия 15 (22.02.2022). Доступно на: https://static0.minzdrav.gov.ru/system/attachments/attaches/000/059/392/originalTest/ВМР_COVID-19_V15.pdf [Дата обращения 10 сентября 2022]; Чучалин А. Г., Айсанов З. Р., Чикина С. Ю., Черняк А. В., Калманова Е. Н. Федеральные клинические рекомендации Российского респираторного общества по использованию метода спирометрии // Пульмонология. – 2014. – № 6. – С. 11–24. http://doi.org/10.18093/0869-0189-2014-0-6-11-24Test; Antoniou K. M., Vasarmidi E., Russell A. M., Andrejak C., Crestani B., Delcroix M., Dinh-Xuan A. T., Poletti V., Sverzellati N., Vitacca M., Witzenrath M., Tonia T., Spanevello A. European Respiratory Society statement on long COVID follow-up // Eur. Respir. J. ‒ 2022. ‒ Vol. 60, № 2. ‒ Р. 2102174. http://doi.org/10.1183/13993003.02174-2021Test; Aung A. K., Thompson P. J., Teh B. M., McGrath C. Pseudobronchiectasis after pertussis and mycoplasma infection // Am. J. Respir. Crit. Care Med. ‒ 2012. ‒ Vol. 186, № 3. ‒ Р. 292–294. http://doi.org/10.1164/ajrccm.186.3.292Test; González J., Benítez I. D., Carmona P., Santisteve S., Monge A., Moncusí-Moix A., Gort-Paniello C., Pinilla L., Carratalá A., Zuil M., Ferrer R., Ceccato A., Fernández L., Motos A., Riera J., Menéndez R., Garcia-Gasulla D., Peñuelas O., Bermejo-Martin J. F., Labarca G., Caballero J., Torres G., de Gonzalo-Calvo D., Torres A., Barbé F.; CIBERESUCICOVID Project (COV20/00110, ISCIII). Pulmonary function and radiologic features in survivors of critical COVID-19: a 3-month prospective cohort // Chest. ‒ 2021. ‒ № 160. ‒ Р. 187–198. http://doi.org/10.1016/j.chest.2021.02.062Test; Graham B. L., Steenbruggen I., Miller M. R., et al. Standardization of spirometry 2019 update. An official American Thoracic Society and European Respiratory Society technical statement// Am. J. Respir. Crit. Care Med. ‒ 2019. ‒ Vol. 200, № 8. ‒ Р. 70–88. http://doi.org/10.1164/rccm.201908-1590STTest; Hansell D. M., Bankier A. A., MacMahon H., McLoud T. C., Müller N. L., Remy J. Fleischner Society: glossary of terms for thoracic imaging // Radiology. ‒ 2008. ‒ Vol. 246, № 3. ‒ Р. 697–722. http://doi.org/10.1148/radiol.2462070712Test; Hu Q., Liu Y., Chen C., Sun Z., Wang Y., Xiang M., Guan H., Xia L. Reversible Bronchiectasis in COVID-19 Survivors With Acute Respiratory Distress Syndrome: Pseudobronchiectasis // Front Med (Lausanne). ‒ 2021. ‒ № 8. ‒ Р. 739857. http://doi.org/10.3389/fmed.2021.739857Test; Huang C., Huang L., Wang Y., Li X., Ren L., Gu X., Kang L., Guo L., Liu M., Zhou X., Luo J., Huang Z., Tu S., Zhao Y., Chen L., Xu D., Li Y., Li C., Peng L., Li Y., Xie W., Cui D., Shang L., Fan G., Xu J., Wang G., Wang Y., Zhong J., Wang C., Wang J., Zhang D, Cao B. 6-month consequences of COVID-19 in patients discharged from hospital: a cohort study // Lancet. ‒ 2021. ‒ Vol. 397, № 10270. ‒ Р. 220–232. http://doi.org/10.1016/S0140-6736Test(20)32656-8; Huang L., Li X., Gu X., Zhang H., Ren L., Guo L., Liu M., Wang Y., Cui D., Wang Y., Zhang X., Shang L., Zhong J., Wang X., Wang J., Cao B. Health outcomes in people 2 years after surviving hospitalisation with COVID-19: a longitudinal cohort study // Lancet Respir. Med. 2022: ‒ 2022. ‒ S2213-2600(22)00126-6. http://doi.org/10.1016/S2213-2600Test(22)00126-6; Huntley C. C., Patel K., Bil Bushra S. E., Mobeen F., Armitage M. N., Pye A., Knight C. B., Mostafa A., Kershaw M., Mughal A. Z., McKemey E., Turner A. M., Burge P. S., Walters G. I. Pulmonary function test and computed tomography features during follow-up after SARS, MERS and COVID-19: a systematic review and meta-analysis // ERJ Open Res. ‒ 2022. ‒ Vol. 8, № 2. ‒ Р. 00056-2022 http://doi.org/10.1183/23120541.00056-2022Test; Long Q., Li J., Hu X., Bai Y., Zheng Y., Gao Z. Follow-Ups on Persistent Symptoms and Pulmonary Function Among Post-Acute COVID-19 Patients: A Systematic Review and Meta-Analysis // Front Med (Lausanne). ‒ 2021. ‒ № 8. ‒ Р. 702635. http://doi.org/10.3389/fmed.2021.702635Test; Malkova A. M., Kudryavtsev I. V., Starshinova A. A., Kudlay D. A., Zinchenko Yu. S., Glushkova A., Yablonskiy P., Shoenfeld Ye. Post COVID-19 syndrome in patients with asymptomatic/mild form. Pathogens. 2021; 10 (11), 1408: 1-11.; Wang Y., Mao K., Li Z., Xu W., Shao H., Zhang R. Clinical study of pulmonary CT lesions and associated bronchiectasis in 115 convalescent patients with novel coronavirus pneumonia (COVID-19) in China // Can. J. Physiol. Pharmacol. ‒ 2021. ‒ Vol. 99, № 3. ‒ Р. 328–331. http://doi.org/10.1139/cjpp-2020-0522Test; Wells A. U., Devaraj A. Residual Lung Disease at Six-month Follow-up CT after COVID-19: Clinical Significance Is a Key Issue // Radiology. ‒ 2021. ‒ Vol. 301, № 2. ‒ Р. E406–E408. http://doi.org/10.1148/radiol.2021211284Test; Wu C., Chen X., Cai Y., Xia J., Zhou X., Xu S., Huang H., Zhang L., Zhou X., Du C., Zhang Y., Song J., Wang S., Chao Y., Yang Z., Xu J., Zhou X., Chen D., Xiong W., Xu L., Zhou F., Jiang J., Bai C., Zheng J., Song Y. Risk Factors Associated With Acute Respiratory Distress Syndrome and Death in Patients With Coronavirus Disease 2019 Pneumonia in Wuhan, China // JAMA Intern. Med. ‒ 2020. ‒ Vol. 180, № 7. ‒ Р. 934–943. http://doi.org/10.1001/jamainternmed.2020.0994Test; Wu X., Liu X., Zhou Y., Yu H., Li R., Zhan Q., Ni F., Fang S., Lu Y., Ding X., Liu H., Ewing R. M., Jones M. G., Hu Y., Nie H., Wang Y. 3-month, 6-month, 9-month, and 12-month respiratory outcomes in patients following COVID-19-related hospitalisation: a prospective study. Lancet Respir. Med. ‒ 2021. ‒ № 9. ‒ Р. 747– 754. http://doi.org/10.1016/S2213-2600Test(21)00174-0; https://www.tibl-journal.com/jour/article/view/1730Test

  4. 4
    دورية أكاديمية
  5. 5
    دورية أكاديمية
  6. 6
    دورية أكاديمية

    المصدر: Meditsinskiy sovet = Medical Council; № 20 (2023); 190-198 ; Медицинский Совет; № 20 (2023); 190-198 ; 2658-5790 ; 2079-701X

    وصف الملف: application/pdf

    العلاقة: https://www.med-sovet.pro/jour/article/view/7919/7016Test; Demeco A, Marotta N, Barletta M, Pino I, Marinaro C, Petraroli A et al. Rehabilitation of patients post-COVID-19 infection: a literature review. J Int Med Res. 2020;48(8):300060520948382. https://doi.org/10.1177/0300060520948382Test.; Баймухамбетова ДВ, Горина АО, Румянцев МА, Шихалева АА, Эль-Тарави ЯА, Бондаренко ЕД, Капустина ВА, Мунблит ДБ. Постковидное состояние у взрослых и детей. Пульмонология. 2021;31(5): 562–570. https://doi.org/10.18093/0869-0189-2021-31-5-562-570Test.; Arnold DT, Hamilton FW, Milne A, Morley AJ, Viner J, Attwood M et al. Patient outcomes after hospitalisation with COVID-19 and implications for follow-up: results from a prospective UK cohort. Thorax. 2021;76(4):399–401. https://doi.org/10.1136/thoraxjnl-2020-216086Test.; Poletti V, Capozzolo A. Respiratory Rehabilitation in the COVID-19 Era. Respiration. 2020;99(6):461–462. https://doi.org/10.1159/000509558Test.; Troyer EA, Kohn JN, Hong S. Are we facing a crashing wave of neuropsychiatric sequelae of COVID-19? Neuropsychiatric symptoms and potential immunologic mechanisms. Brain Behav Immun. 2020;87:34–39. https://doi.org/10.1016/j.bbi.2020.04.027Test.; Guo T, Fan Y, Chen M, Wu X, Zhang L, He T et al. Cardiovascular Implications of Fatal Outcomes of Patients With Coronavirus Disease 2019 (COVID-19). JAMA Cardiol. 2020;5(7):811–818. https://doi.org/10.1001/jamacardio.2020.1017Test.; Zuo T, Zhang F, Lui GCY, Yeoh YK, Li AYL, Zhan H et al. Alterations in Gut Microbiota of Patients With COVID-19 During Time of Hospitalization. Gastroenterology. 2020;159(3):944–955.e8. https://doi.org/10.1053/j.gastro.2020.05.048Test.; Ritchie AI, Singanayagam A. Immunosuppression for hyperinflammation in COVID-19: a double-edged sword? Lancet. 2020;395(10230):1111. https://doi.org/10.1016/S0140-6736Test(20)30691-7.; Бутко ДЮ, Баранцевич ЕР, Вознюк ИА, Даниленко ЛА, Стариков СМ. Возможности использования в лечении и реабилитации пациентов с острыми респираторными вирусными инфекциями комбинированных лекарственных средств растительного происхождения в условиях пандемии COVID-19. Академия медицины и спорта. 2020;1(2):23–27. https://doi.org/10.15829/2712-7567-2020-2-11Test.; Арушанян ЭБ, Бейер ЭВ. Адаптогены растительного происхождения. Ставрополь: Изд-воСтГМУ; 2017. 150 с. Режим доступа: https://elibrary.ru/item.asp?edn=yqxdhvTest.; Li Y, Li J, Zhong D, Zhang Y, Zhang Y, Guo Y et al. Clinical practice guidelines and experts’ consensuses of traditional Chinese herbal medicine for novel coronavirus (COVID-19): protocol of a systematic review. Syst Rev. 2020;9(1):170. https://doi.org/10.1186/s13643-020-01432-4Test.; Chen PS, Chiu WT, Hsu PL, Lin SC, Peng IC, Wang CY, Tsai SJ. Pathophysiological implications of hypoxia in human diseases. J Biomed Sci. 2020;27(1):63. https://doi.org/10.1186/s12929-020-00658-7Test.; Li YN, He J, Zhang J, Shi YX, Guo LB, Peng ZC et al. Existing knowledge on Euphorbia fischeriana Steud. (Euphorbiaceae): Traditional uses, clinical applications, phytochemistry, pharmacology and toxicology. J Ethnopharmacol. 2021;275:114095. https://doi.org/10.1016/j.jep.2021.114095Test.; Kosakowska O, Bączek K, Przybył JL, Pióro-Jabrucka E, Czupa W, Synowiec A et al. Antioxidant and Antibacterial Activity of Roseroot (Rhodiola rosea L.) Dry Extracts. Molecules. 2018;23(7):1767. https://doi.org/10.3390/molecules23071767Test.; Lan KC, Chao SC, Wu HY, Chiang CL, Wang CC, Liu SH, Weng TI. Salidroside ameliorates sepsis-induced acute lung injury and mortality via downregulating NF-κB and HMGB1 pathways through the upregulation of SIRT1. Sci Rep. 2017;7(1):12026. https://doi.org/10.1038/s41598-017-12285-8Test.; Tang H, Gao L, Mao J, He H, Liu J, Cai X et al. Salidroside protects against bleomycin-induced pulmonary fibrosis: activation of Nrf2-antioxidant signaling, and inhibition of NF-κB and TGF-β1/Smad-2/-3 pathways. Cell Stress Chaperones. 2016;21(2):239–49. https://doi.org/10.1007/s12192-015-0654-4Test.; Shahzad M, Shabbir A, Wojcikowski K, Wohlmuth H, Gobe GC. The Antioxidant Effects of Radix Astragali (Astragalus membranaceus and Related Species) in Protecting Tissues from Injury and Disease. Curr Drug Targets. 2016;17(12):1331–1340. https://doi.org/10.2174/1389450116666150907104742Test.; Zhang R, Xu L, An X, Sui X, Lin S. Astragalus polysaccharides attenuate pulmonary fibrosis by inhibiting the epithelial-mesenchymal transition and NF-κB pathway activation. Int J Mol Med. 2020;46(1):331–339. https://doi.org/10.3892/ijmm.2020.4574Test.; Zhou Y, Men L, Sun Y, Wei M, Fan X. Pharmacodynamic effects and molecular mechanisms of lignans from Schisandra chinensis Turcz. (Baill.), a current review. Eur J Pharmacol. 2021;892:173796. https://doi.org/10.1016/j.ejphar.2020.173796Test.; Zhong S, Bai LP, Liu XD, Cai DY, Yau LF, Huang CQ, Zhang JQ, Lai KF, Zhong NS. Cough Inhibition Activity of Schisandra chinensis in Guinea Pigs. J Med Food. 2021;24(4):348–357. https://doi.org/10.1089/jmf.2020.4824Test.; Tian M, Li LN, Zheng RR, Yang L, Wang ZT. Advances on hormone-like activity of Panax ginseng and ginsenosides. Chin J Nat Med. 2020;18(7):526–535. https://doi.org/10.1016/S1875-5364Test(20)30063-7.; Kim JH, Yi YS, Kim MY, Cho JY. Role of ginsenosides, the main active components of Panax ginseng, in inflammatory responses and diseases. J Ginseng Res. 2017; 41(4): 435–443. https://doi.org/10.1016/j.jgr.2016.08.004Test.; Irfan M, Kim M, Rhee MH. Anti-platelet role of Korean ginseng and ginsenosides in cardiovascular diseases. J Ginseng Res. 2020;44(1):24–32. https://doi.org/10.1016/j.jgr.2019.05.005Test.; Kim DS, Irfan M, Sung YY, Kim SH, Park SH, Choi YH et al. Schisandra chinensis and Morus alba Synergistically Inhibit In Vivo Thrombus Formation and Platelet Aggregation by Impairing the Glycoprotein VI Pathway. Evid Based Complement Alternat Med. 2017;2017:7839658. https://doi.org/10.1155/2017/7839658Test.; Gan XT, Karmazyn M. Cardioprotection by ginseng: experimental and clinical evidence and underlying mechanisms. Can J Physiol Pharmacol. 2018;96(9):859–868. https://doi.org/10.1139/cjpp-2018-0192Test.; Chen X, Wang Q, Shao M, Ma L, Guo D, Wu Y et al. Ginsenoside Rb3 regulates energy metabolism and apoptosis in cardiomyocytes via activating PPARα pathway. Biomed Pharmacother. 2019;120:109487. https://doi.org/10.1016/j.biopha.2019.109487Test.; Liu Z, Song L, Zhang P, Cao Z, Hao J, Tian Y et al. Ginsenoside Rb1 exerts antiarrhythmic effects by inhibiting INa and ICaL in rabbit ventricular myocytes. Sci Rep. 2019;9(1):20425. https://doi.org/10.1038/s41598-019-57010-9Test.; Wang M, Wang RY, Zhou JH, Xie XH, Sun GB, Sun XB. Calenduloside E Ameliorates Myocardial Ischemia-Reperfusion Injury through Regulation of AMPK and Mitochondrial OPA1. Oxid Med Cell Longev. 2020;2020:2415269. https://doi.org/10.1155/2020/2415269Test.; Yu L, Qin Y, Wang Q, Zhang L, Liu Y, Wang T et al. The efficacy and safety of Chinese herbal medicine, Rhodiola formulation in treating ischemic heart disease: a systematic review and meta-analysis of randomized controlled trials. Complement Ther Med. 2014;22(4):814–825. https://doi.org/10.1016/j.ctim.2014.05.001Test.; Бочарова ОА, Карпова РВ, Бочаров ЕВ, Вершинская АА, Барышникова МА, Казеев ИВ и др. Фитоадаптогены в биотерапии опухолей и гериатрии (часть 1). Российский биотерапевтический журнал. 2020;19(2):13–21. https://doi.org/10.17650/1726-9784-2019-19-2-13-21Test.; Shiokawa Y, Miyauchi-Wakuda S, Kagota S, Maruyama-Fumoto K, Yamada S, Shinozuka K. Acanthopanax senticosus Induces Vasorelaxation via Endothelial Nitric Oxide-Dependent and -Independent Pathways. Planta Med. 2019;85(13):1080–1087. https://doi.org/10.1055/a-0978-5214Test.; Li F, Zhang N, Wu Q, Yuan Y, Yang Z, Zhou M et al. Syringin prevents cardiac hypertrophy induced by pressure overload through the attenuation of autophagy. Int J Mol Med. 2017;39(1):199–207. https://doi.org/10.3892/ijmm.2016.2824Test.; Nishida M, Kondo M, Shimizu T, Saito T, Sato S, Hirayama M et al. Antihyperlipidemic effect of Acanthopanax senticosus (Rupr. et Maxim) Harms leaves in high-fat-diet fed mice. J Sci Food Agric. 2016;96(11):3717–3722. https://doi.org/10.1002/jsfa.7557Test.; Xing SS, Yang XY, Zheng T, Li WJ, Wu D, Chi JY et al. Salidroside improves endothelial function and alleviates atherosclerosis by activating a mitochondria-related AMPK/PI3K/Akt/eNOS pathway. Vascul Pharmacol. 2015;72:141–52. https://doi.org/10.1016/j.vph.2015.07.004Test.; Hwang KA, Hwang YJ, Song J. Cholesterol-lowering effect of Aralia elata (Miq.) Seem via the activation of SREBP-2 and the LDL receptor. J Chin Med Assoc. 2017;80(10):630–635. https://doi.org/10.1016/j.jcma.2017.06.007Test.; Ghaeminia M, Rajkumar R, Koh HL, Dawe GS, Tan CH. Ginsenoside Rg1 modulates medial prefrontal cortical firing and suppresses the hippocampo-medial prefrontal cortical long-term potentiation. J Ginseng Res. 2018;42(3):298–303. https://doi.org/10.1016/j.jgr.2017.03.010Test.; Song Y, Yang CJ, Wang ZB, Zhao N, Feng XS, Meng FH. Chemical constituents of Eleutherococcus sessiliflorus extract and its sedative-hypnotic effect. Nat Prod Res. 2017;31(17):1995–2000. https://doi.org/10.1080/14786419.2016.1272106Test.; Cayer C, Ahmed F, Filion V, Saleem A, Cuerrier A, Allard M et al. Characterization of the anxiolytic activity of Nunavik Rhodiola rosea. Planta Med. 2013;79(15):1385–91. https://doi.org/10.1055/s-0033-1350709Test.; Jin Y, Cui R, Zhao L, Fan J, Li B. Mechanisms of Panax ginseng action as an antidepressant. Cell Prolif. 2019;52(6):e12696. https://doi.org/10.1111/cpr.12696Test.; Amsterdam JD, Panossian AG. Rhodiola rosea L. as a putative botanical antidepressant. Phytomedicine. 2016;23(7):770–83. https://doi.org/10.1016/j.phymed.2016.02.009Test.; Tan J, Luo J, Meng C, Jiang N, Cao J, Zhao J. Syringin exerts neuroprotective effects in a rat model of cerebral ischemia through the FOXO3a/NF-κB pathway. Int Immunopharmacol. 2021;90 107268. https://doi.org/10.1016/j.intimp.2020.107268Test.; Zhang M, Xu L, Yang H. Schisandra chinensis Fructus and Its Active Ingredients as Promising Resources for the Treatment of Neurological Diseases. Int J Mol Sci. 2018;19(7):1970. https://doi.org/10.3390/ijms19071970Test.; Rajabian A, Rameshrad M, Hosseinzadeh H. Therapeutic potential of Panax ginseng and its constituents, ginsenosides and gintonin, in neurological and neurodegenerative disorders: a patent review. Expert Opin Ther Pat. 2019;29(1):55–72. https://doi.org/10.1080/13543776.2019.1556258Test.; Liu H, Lv P, Zhu Y, Wu H, Zhang K, Xu F et al. Salidroside promotes peripheral nerve regeneration based on tissue engineering strategy using Schwann cells and PLGA: in vitro and in vivo. Sci Rep. 2017;7:39869. https://doi.org/10.1038/srep39869Test.; Seto SW, Chang D, Jenkins A, Bensoussan A, Kiat H. Angiogenesis in Ischemic Stroke and Angiogenic Effects of Chinese Herbal Medicine. J Clin Med. 2016;5(6):56. https://doi.org/10.3390/jcm5060056Test.; Yamauchi Y, Ge YW, Yoshimatsu K, Komastu K, Kuboyama T, Yang X, Tohda C. Memory Enhancement by Oral Administration of Extract of Eleutherococcus senticosus Leaves and Active Compounds Transferred in the Brain. Nutrients. 2019;11(5):1142. https://doi.org/10.3390/nu11051142Test.; Juřica J, Koupá T. Rhodiola rosea and its neuropsychotropic effects. Ceska Slov Farm. 2016;65(3):87–93. Available at: https://pubmed.ncbi.nlm.nih.gov/27854435Test/.; Xu M, Zhang X, Ren F, Yan T, Wu B, Bi K et al. Essential oil of Schisandra chinensis ameliorates cognitive decline in mice by alleviating inflammation. Food Funct. 2019;10(9):5827–5842. https://doi.org/10.1039/c9fo00058eTest.; Zhang Z, Zhang L, Xu H. Effect of Astragalus polysaccharide in treatment of diabetes mellitus: a narrative review. J Tradit Chin Med. 2019;39(1): 133–138. Available at: https://pubmed.ncbi.nlm.nih.gov/32186034Test.; Mosbah H, Chahdoura H, Kammoun J, Hlila MB, Louati H, Hammami S et al. Rhaponticum acaule (L) DC essential oil: chemical composition, in vitro antioxidant and enzyme inhibition properties. BMC Complement Altern Med. 2018;18(1):79. https://doi.org/10.1186/s12906-018-2145-5Test.; Zhou P, Xie W, He S, Sun Y, Meng X, Sun G, Sun X. Ginsenoside Rb1 as an Anti-Diabetic Agent and Its Underlying Mechanism Analysis. Cells. 2019;8(3):204. https://doi.org/10.3390/cells8030204Test.; Sun C, Chen Y, Li X, Tai G, Fan Y, Zhou Y. Anti-hyperglycemic and anti-oxidative activities of ginseng polysaccharides in STZ-induced diabetic mice. Food Funct. 2014;5(5):845–848. https://doi.org/10.1039/c3fo60326aTest.; Niu CS, Chen LJ, Niu HS. Antihyperglycemic action of rhodiola-aqeous extract in type1-like diabetic rats. BMC Complement Altern Med. 2014;14:20. https://doi.org/10.1186/1472-6882-14-20Test.; Saito T, Nishida M, Saito M, Tanabe A, Eitsuka T, Yuan SH et al. The fruit of Acanthopanax senticosus (Rupr. et Maxim.) Harms improves insulin resistance and hepatic lipid accumulation by modulation of liver adenosine monophosphate-activated protein kinase activity and lipogenic gene expression in high-fat diet-fed obese mice. Nutr Res. 2016;36(10):1090–1097. https://doi.org/10.1016/j.nutres.2016.09.004Test.; Hashimoto T, Okada Y, Yamanaka A, Ono N, Uryu K, Maru I. The effect of eleutherococcus senticosus on metabolism-associated protein expression in 3T3-L1 and C2C12 cells. Phys Act Nutr. 2020;24(3):13–18. https://doi.org/10.20463/pan.2020.0016Test.; Тусупбекова ГА, Рахметова АМ, Молдакарызова АЖ, Алшынбекова ГК, Тулеуханов СТ, Ашимханова ГС, Кударинова АС. Основные свойства иммуномодулирующих фитопрепаратов и эффективность их применения. Вестник Казахского Национального медицинского университета. 2019;(1):484–487. Режим доступа: https://cyberleninka.ru/article/n/osnovnye-svoystva-immunomoduliruyuschih-fitopreparatov-i-effektivnostih-primeneniyaTest.; Panossian A, Brendler T. The Role of Adaptogens in Prophylaxis and Treatment of Viral Respiratory Infections. Pharmaceuticals (Basel). 2020;13(9):236. https://doi.org/10.3390/ph13090236Test.; Кривошеева ЕМ, Фефелова ЕВ, Кохан СТ. Спектр фармакологической активности растительных адаптогенов. Фундаментальные исследования. 2011;(6):85–88. Режим доступа: https://www.elibrary.ru/nqwodlTest.; Kim DH. Gut microbiota-mediated pharmacokinetics of ginseng saponins. J Ginseng Res. 2018;42(3):255–263. https://doi.org/10.1016/j.jgr.2017.04.011Test.; Lau KM, Yue GG, Chan YY, Kwok HF, Gao S, Wong CW, Lau CB. A review on the immunomodulatory activity of Acanthopanax senticosus and its active components. Chin Med. 2019;14:25. https://doi.org/10.1186/s13020-019-0250-0Test.; Graczyk F, Orzechowska B, Franz D, Strzemski M, Verpoorte R, Załuski D. The intractum from the Eleutherococcus senticosus fruits affects the innate immunity in human leukocytes: From the ethnomedicinal use to contemporary evidence-based research. J Ethnopharmacol. 2021;268:113636. https://doi.org/10.1016/j.jep.2020.113636Test.; Xu X, Li P, Zhang P, Chu M, Liu H, Chen X, Ge Q. Differential effects of Rhodiola rosea on regulatory T cell differentiation and interferon-γ production in vitro and in vivo. Mol Med Rep. 2016;14(1):529–536. https://doi.org/10.3892/mmr.2016.5278Test.; Song H, Park J, Choi K, Lee J, Chen J, Park HJ et al. Ginsenoside Rf inhibits cyclooxygenase-2 induction via peroxisome proliferator-activated receptor gamma in A549 cells. J Ginseng Res. 2019;43(2):319–325. https://doi.org/10.1016/j.jgr.2018.11.007Test.; Panossian A. Understanding adaptogenic activity: specificity of the pharmacological action of adaptogens and other phytochemicals. Ann N Y Acad Sci. 2017;1401(1):49–64. https://doi.org/10.1111/nyas.13399Test.; Arring NM, Millstine D, Marks LA, Nail LM. Ginseng as a Treatment for Fatigue: A Systematic Review. J Altern Complement Med. 2018;24(7):624–633. https://doi.org/10.1089/acm.2017.0361Test.; Lekomtseva Y, Zhukova I, Wacker A. Rhodiola rosea in Subjects with Prolonged or Chronic Fatigue Symptoms: Results of an Open-Label Clinical Trial. Complement Med Res. 2017;24(1):46–52. https://doi.org/10.1159/000457918Test.; Yang DK, Lee SJ, Adam GO, Kim SJ. Aralia continentalis kitagawa Extract Attenuates the Fatigue Induced by Exhaustive Exercise through Inhibition of Oxidative Stress. Antioxidants (Basel). 2020;9(5):379. https://doi.org/10.3390/antiox9050379Test.; Karosanidze I, Kiladze U, Kirtadze N, Giorgadze M, Amashukeli N, Parulava N et al. Efficacy of Adaptogens in Patients with Long COVID-19: A Randomized, Quadruple-Blind, Placebo-Controlled Trial. Pharmaceuticals (Basel). 2022;15(3):345. https://doi.org/10.3390/ph15030345Test.; Ang L, Lee HW, Kim A, Lee MS. Herbal medicine for the management of COVID-19 during the medical observation period: A review of guidelines. Integr Med Res. 2020;9(3):100465. https://doi.org/10.1016/j.imr.2020.100465Test.; Brendler T, Al-Harrasi A, Bauer R, Gafner S, Hardy ML, Heinrich M et al. Botanical drugs and supplements affecting the immune response in the time of COVID-19: Implications for research and clinical practice. Phytother Res. 2021;35(6):3013–3031. https://doi.org/10.1002/ptr.7008Test.; https://www.med-sovet.pro/jour/article/view/7919Test

  7. 7
  8. 8
    دورية أكاديمية

    وصف الملف: application/pdf

    العلاقة: Уральский медицинский журнал. 2022. Т. 21, № 3.; Особенности проявлений хронических заболеваний после перенесенной коронавирусной инфекции Covid-19 / Г. Б. Идрисова, А. Ш. Галикеева, М. А. Шарафутдинов [и др.]. – Текст: электронный // Уральский медицинский журнал. – 2022. – Т. 21, № 3. - С. 15-20.; http://elib.usma.ru/handle/usma/9968Test

  9. 9
    دورية أكاديمية

    المساهمون: The authors express their gratitude to the administration and staff of the pulmonological service of the “Novaya bol’nitsa” Clinical Association Limited Liability Companies for their assistance, aid and support in conducting this scientific study., Авторы выражают благодарность администрации и сотрудникам пульмонологической службы Общества с ограниченной ответственностью «Медицинское объединение “Новая больница”» за содействие, помощь и поддержу в проведении данного научного исследования.

    المصدر: PULMONOLOGIYA; Том 32, № 4 (2022); 539-547 ; Пульмонология; Том 32, № 4 (2022); 539-547 ; 2541-9617 ; 0869-0189

    وصف الملف: application/pdf

    العلاقة: https://journal.pulmonology.ru/pulm/article/view/4132/3426Test; Woodruff P., Bhakta N., Fahy J. Asthma: Pathogenesis and phentoypes. In: Broaddus V.C., Robert J., Ernst J.D. Murray and Nadel's Textbook of Respiratory Medicine. 6th Edn. Elsevier; 2016: 713–730. e7. DOI:10.1016/B978-1-4557-3383-5.00041-5.; Atmar R.L., Guy E., Guntupalli K.K. et al. Respiratory tract viral infections in inner-city asthmatic adults. Arch. Intern. Med. 1998; 158 (22): 2453–2459. DOI:10.1001/archinte.158.22.2453.; Cheung D.S., Ehlenbach S.J., Kitchens R.T. et al. Cutting edge: CD49d+ neutrophils induce FcepsilonRI expression on lung dendritic cells in a mouse model of postviral asthma. J. Immunol. 2010; 185 (9): 4983–4987. DOI:10.4049/jimmunol.1002456.; Stephens R., Randolph D.A., Huang G. et al. Antigen-nonspecific recruitment of Th2 cells to the lung as a mechanism for viral infection-induced allergic asthma. J. Immunol. 2002; 169 (10): 5458–5467. DOI:10.4049/jimmunol.169.10.5458.; Cheung D.S., Ehlenbach S.J., Kitchens T. et al. Development of atopy by severe paramyxoviral infection in a mouse model. Ann. Allergy Asthma. Immunol. 2010; 105 (6): 437–443.e1. DOI:10.1016/j.anai.2010.09.010.; Johnston N.W., Johnston S.L., Duncan J.M. et al. The September epidemic of asthma exacerbations in children: a search for etiology. J. Allergy Clin. Immunol. 2005; 115 (1): 132–138. DOI:10.1016/j.jaci.2004.09.025.; Global Initiative for Asthma. Global Strategy for Asthma Management and Prevention. Updated 2021. Available at: https://ginasthma.org/wp-content/uploads/2021/05/GINA-Main-Report-2021-V2-WMS.pdfTest; Bui R.H., Molinaro G.A., Kettering J.D. et al. Virus-specific IgE and IgG4 antibodies in serum of children infected with respiratory syncytial virus. J. Pediatr. 1987; 110 (1): 87–90. DOI:10.1016/s0022-3476(87)80295-0.; Oliver B.G., Robinson P., Peters M., Black J. Viral infections and asthma: an inflammatory interface? Eur. Respir. J. 2014; 44 (6): 1666–1681. DOI:10.1183/09031936.00047714.; Richardson S, Hirsch J.S., Narasimhan M. et al. Presenting characteristics, comorbidities, and outcomes among 5700 patients hospitalized with COVID-19 in the New York City Area. JAMA. 2020; 323 (20): 2052–2059. DOI:10.1001/jama.2020.6775.; Venkatesan P. NICE guideline on long COVID. Lancet Respir. Med. 2021; 9 (2): 129. DOI:10.1016/S2213-2600(21)00031-X.; Министерство здравоохранения РФ. Бронхиальная астма: Клинические рекомендации. 2021. Доступно на: https://cr.minzdrav.gov.ru/schema/359_2Test/; Teichtahl H., Buckmaster N., Pertnikovs E. The incidence of respiratory tract infection in adults requiring hospitalization for asthma. Chest 1997; 112 (3): 591–596. DOI:10.1378/chest.112.3.591.; Kusel M.M., de Klerk N.H., Kebadze T. et al. Early-life respiratory viral infections, atopic sensitization, and risk of subsequent development of persistent asthma. J. Allergy Clin. Immunol. 2007; 119 (5): 1105–1110. DOI:10.1016/j.jaci.2006.12.669.; Martorano L.M., Grayson M.H. Respiratory viral infections and atopic development: From possible mechanisms to advances in treatment. Eur. J. Immunol. 2018; 48 (3): 407–414. DOI:10.1002/eji.201747052.; Chuchalin A.G., Khaltaev N., Antonov N.S. et al. Chronic respiratory diseases and risk factors in 12 regions of the Russian Federation. Int. J. Chron. Obstruct. Pulmon. Dis. 2014; 9: 963–974. DOI:10.2147/COPD.S67283.; Nicholson K.G., Kent J., Ireland D.C. Respiratory viruses and exacerbations of asthma in adults. BMJ. 1993; 307 (6910): 982–986. DOI:10.1136/bmj.307.6910.982.; Karakioulaki M., Papakonstantinou E., Goulas A., Stolz D. The role of atopy in COPD and asthma. Front. Med. 2021; 8: 674742. DOI:10.3389/fmed.2021.674742.; Архипов В.В., Григорьева Е.В., Гавришина Е.В. Контроль над бронхиальной астмой в России: результаты многоцентрового наблюдательного исследования НИКА. Пульмонология. 2011; (6): 87–93. DOI:10.18093/0869-0189-2011-0-6-87-93; Hakim A., Usmani O.S. Structure of the lower respiratory tract. In: Reference Module in Biomedical Sciences. Elsevier; 2014. DOI:10.1016/B978-0-12-801238-3.00215-4.; Cramer J.A., Roy A., Burrell A. et al. Medication compliance and persistence: terminology and definitions. Value Health, 2008; 11 (1): 44–47. DOI:10.1111/j.1524-4733.2007.00213.; Bisgaard, H., O’Callaghan, C., Smaldone, G.C. Drug Delivery to the Lung. 1st Edn. CRC Press; 1999. DOI:10.1201/b14022.; https://journal.pulmonology.ru/pulm/article/view/4132Test

  10. 10
    دورية أكاديمية

    المساهمون: 1

    المصدر: Russian Journal of Infection and Immunity; Vol 12, No 6 (2022); 1113-1122 ; Инфекция и иммунитет; Vol 12, No 6 (2022); 1113-1122 ; 2313-7398 ; 2220-7619

    وصف الملف: application/pdf