يعرض 1 - 10 نتائج من 380 نتيجة بحث عن '"полифенолы"', وقت الاستعلام: 0.95s تنقيح النتائج
  1. 1
    دورية أكاديمية

    المصدر: Vegetable crops of Russia; № 2 (2024); 58-64 ; Овощи России; № 2 (2024); 58-64 ; 2618-7132 ; 2072-9146

    وصف الملف: application/pdf

    العلاقة: https://www.vegetables.su/jour/article/view/2369/1543Test; The Tomato Genome Consortium. The tomato genome sequences provides insights into fleshy fruit evolution. Nature. 2012;(485):635-641. doi:10.1038/nature11119.; Tieman D., Zhu G., Resende M.F.R. Jr., Lin T., Nguyen C., Bies D., Rambla J.L., Beltran K., Taylor M., Zhang B., Ikeda H., Liu Z., Fisher J., Zemach I., Monforte A., Zamir D., Granell A., Kirst M., Huang S., Klee H. A chemical genetic roadmap to improved tomato flavor. Science. 2017;(355):391–394. doi:10.1126/science.aal1556.; Mata-Nicolas E., Montero-Pau J., Gimeno-Paez E., Garsia-Carpinero V., Ziarsolo P., Menda N., Mueller L.K., Blanca J., Caňizares J., van der Knaap E., Diez M.J. Exploiting the diversity of tomato: the development of a phenotypicalyy and genetically detailed germplasm collection. Horticulture Research. 2020;7:66. doi:10.1038/s41438-020-0291-7.; Rosa-Martínez E., Bovy A., Plazas M., Tikunov Y., Prohens J., Pereira-Dias L. Genetics and breeding of phenolic content in tomato, eggplant and pepper fruits. Front Plant Sciences. 2023;14:1135237. doi:10.3389/fpls.2023.1135237.; Alonge M., Wang X., Benoit M., Soyk S., Pereira L., Zhang L., Suresh H., Ramakrishnan S., Maumus F., Ciren D., Levy Y., Hai Harel T., Shalev-Schlosser G., Amsellem Z., Razifard H., Caicedo A.L., Tieman D.M., Klee H., Kirsche M., Aganezov S., Ranallo-Benavidez T.R., Lemmon Z.H., Kim J., Robitaille G., Kramer M., Goodwin S., McCombie W.R., Hutton S., Van Eck J., Gillis J., Eshed Y., Sedlazeck F.J., van der Knaap E., Schatz M.C., Lippman Z.B. Major impacts of widespread structural variation on gene expression and crop improvement in tomato. Cell. 2020;182:145-161. doi:10.1016/j.cell.2020.05.021.; Petrović I., Marjanović M., Pećinar I., Savić S., Jovanović Z., Stikić R. Chemical Characterization of Different Colored Tomatoes: Application of Biochemical and Spectroscopic Tools. Biol. Life Sci. Forum. 2022;16(1):32. doi:10.3390/IECHo2022-12482.; Fernandez-Moreno J.-P., Tzfadia O., Forment J., Presa S., Rogachev I., Meir S., Orzaez D., Aharoni A., Granell A. Characterization of a New Pink-Fruited Tomato Mutant Results in the Identification of a Null Allele of the SlMYB12 Transcription Factor. Plant Physiology. 2016;171(3):1821-1836. doi:10.1104/pp.16.00282.; Kang S.-I., Hwang I., Goswami G., Jung H.-J., Kumar N. U., Yoo H.-J., Lee J. M., Nou I. S. Molecular Insights Reveal Psy1, SGR, and SlMYB12 Genes are Associated with Diverse Fruit Color Pigments in Tomato (Solanum lycopersicum L.). Molecules. 2017;22(12):2180. doi:10.3390/molecules22122180.; Chattopadhyay T., Hazra P., Akhtar S., Maurya D., Mukherjee A., Roy S. Skin colour, carotenogenesis and chlorophyll degradation mutant alleles: genetic orchestration behind the fruit colour variation in tomato. Plant Cell Rep. 2021May;40(5):767-782. doi:10.1007/s00299-020-02650-9.; Ballester A.-R., Molthoff J., de Vos R., Hekkert B.T., Orzaez D., Fernández-Moreno J.-P., Tripodi P., Grandillo S., Martin C., Heldens J., Ykema M., Granell A., Bovy A. Biochemical and molecular analysis of pink tomatoes: deregulated expression of the gene encoding transcription factor SlMYB12 leads to pink tomato fruit color. Plant Physiol. 2010Jan;152(1):71-84. doi:10.1104/pp.109.147322.; Szuvandzsiev P., Helyes L., Lugasi A., Szanto C., Baranowski P., Pek Z. Estimation of antioxidant components of tomato using VIS-NIP reflectance data by handheld portable spectrometer. International Agrophysics. 2014;28:521-527. doi:10.2478/intag-2014-0042.; Shan S., Wang Z., Pu H., Duan W., Song H., Li J., Zhang Z., Xu X. DNA methylation mediated by melatonin was involved in ethylene signal transmission and ripening of tomato fruit. Scientia Horticulturae. 2022;(291):110566. doi:10.21203/rs.3.rs-180786/v1.; Zhu F., Wen W., Cheng Y., Fernie A. R. The metabolic changes that effect fruit quality during tomato fruit ripening. Molecular Horticulture. 2022;(2):2. doi:10.1186/s43897-022-00024-1.; Kondratyeva I.Yu., Molchanova A.V. Effect of ripening on biochemical characteristics of tangerine tomatoes (Solanum lycopersicum L.). Vegetables crops of Russia. 2022;(6):72-78. doi:10.18619/2072-9146-2022-6-72-78. EDN: SASVDC.; Guidelines for the breeding of cultivars and hybrids of tomato for fields and greenhouse. Moscow. 1986. [in Russ.]; Maximova T.V., Nikulina I.N., Pakhomov V.P., Shkarina E.I., Chumakova Z.V., Arzamastsev A.P. Method for determination of antioxidant activity. Description of the invention for the patent of the Russian Federation. М. 2001. RU2170930 С1. [in Russ.].; Golubkina N.A., Kekina E.G., Molchanova A.V., Antoshkina M.S., Nadezhkin S.M., Soldatenko A.V. Antioxidants of plants and methods for their determination. Moscow, 2020. Infra-M. [in Russ.].; Ermakov A.I., Arasimovich V.V., Yarosch N.P., Peruansky U.A., Lukovnikova G.A., Ikonnikova M.I. Methods of biochemical research. L., Agropromizdat. 1987; 430. [in Russ.].; Andryushchenko V.K. Methods of optimization of biochemical selection of vegetable crops. Kishinev, "Stiinza". 1981;30-34. [in Russ.].; Determination of sugars in vegetables, berries and fruits. Cyanide method of determination of sugars in plants. Practicum on agrochemistry, ed. by V.V. Kidin. Moscow, publishing house "Kolos". 2008;236-240. [in Russ.].; Navez B.; Letard M.; Graselly D.; Jost J. Tomatoes: criteria for quality. Infos CTIFL. 1999;(155):41–47.; Misin V.M., Klimenko I.V., Zhuravleva T.S. On the suitability of gallic acid as a standard for an antioxidant formulation. Competency (Russia). 2014;7(118):46-51. EDN: SNHHYF. [in Russ.].; Rodriguez-Amaya D.B. A guide to carotenoid analysis in foods. 2001, Washington, OMNI Research. 65.; Golubkina N.A., Mоlchanova A.V., Tareeva M.M., Baback O.G., Nekrashevich N.A., Kondratyeva I.Yu. Quantitative thing layer chromatography for evaluation of carotenoid composition of tomatoes Solanum lycopersicum. Vegetable crops of Russia. 2017;(5):96-99. (In Russ.) doi:10.18619/2072-9146-2017-5-96-99. EDN: ORXRVH.; Glen S. "Duncan’s Multiple Range Test (MRT)". StatisticsHowTo.com: Elementary Statistics for the rest of us! 2023. https://www.statisticshowto.com/duncans-multiple-range-testTest/.; Kurina A.B., Solovieva A.E., Khrapalova I.A., Artemyeva A.M. Biochemical composition of tomato fruits of various colors. Vavilov journal of genetics and breeding. 2021;25(5):514-527. doi:10.18699/VJ21.058. EDN: MQKXGF.; Ignatova S.I., Babak O.G., Bagirova S.F. Development of high-lycopene tomato hybrids using conventional breeding techniques and molecular markers. Vegetable crops of Russia. 2020;(5):22-28. (In Russ.) doi:10.18619/2072-9146-2020-5-22-28. EDN: AVQFUJ.; Marti R., Rosello S., Cebolla-Cornejo J. Tomato as a source of carotenoids and polyphenols targeted to cancer prevention. Cancers. 2016;(8):58. doi:10.3390/cancers8060058.; Batziakas K.G., Singh S., Stanley H., Brecht J.K., Rivard C.L., Pliakoni E.D. An innovative approach for maintaining the quality of pink tomatoes stored at optimum and above-optimum temperatures using a microporous membrane patch. Food Packaging and Shelf Life. 2022;(34):100981. doi:10.1016/j.fpsl.2022.100981.; Anton D., Bender I., Kaart T., Roasto M., Heinon M., Luik A., Püssa T. Changes in polyphenols contents and antioxidant capacities of organically and conventionally cultivated tomato (Solanum lycopersicum L.) fruits during ripening. International Journal of Analytical Chemistry. 2017;(10):2367453. doi:10.1155/2017/2367453.; https://www.vegetables.su/jour/article/view/2369Test

  2. 2
    دورية أكاديمية

    المصدر: Drug development & registration; Том 13, № 1 (2024); 149-158 ; Разработка и регистрация лекарственных средств; Том 13, № 1 (2024); 149-158 ; 2658-5049 ; 2305-2066

    وصف الملف: application/pdf

    العلاقة: https://www.pharmjournal.ru/jour/article/view/1744/1248Test; https://www.pharmjournal.ru/jour/article/downloadSuppFile/1744/2087Test; Bernardini S., Tiezzi A., Laghezza Masci V., Ovidi E. Natural products for human health: an historical overview of the drug discovery approaches. Natural Product Research. 2018;32(16):1926–1950. DOI:10.1080/14786419.2017.1356838.; Balandrin M. F., Klocke J. A., Wurtele E. S., Bollinger W. H. Natural plant chemicals: Sources of industrial and medicinal materials. Science. 1985;228(4704):1154–1160. DOI:10.1126/science.3890182.; Lahlou M. Screening of natural products for drug discovery. Expert Opinion on Drug Discovery. 2007;2(5):697–705. DOI:10.1517/17460441.2.5.697.; Уэйли А. К., Понкратова А. О., Теслов Л. С., Лужанин В. Г. Обзор вторичных метаболитов морошки и их биологической активности. Медико-фармацевтический журнал «Пульс». 2020;22(7):50–59.; Kähkönen M., Kylli P., Ollilainen V., Salminen J.-P., Heinonen M. Antioxidant activity of isolated ellagitannins from red raspberries and cloudberries. Journal of Agricultural and Food Chemistry. 2012;60(5):1167–1174. DOI:10.1021/jf203431g.; Jaakkola M., Korpelainen V., Hoppula K., Virtanen V. Chemical composition of ripe fruits of Rubus chamaemorus L. grown in different habitats. Journal of the science of food and agriculture. 2012;92(6):1324–1330. DOI:10.1002/jsfa.4705.; Faleva A. V., Ul’yanovskii N. V., Onuchina A. A., Falev D. I., Kosyakov D. S. Comprehensive characterization of secondary metabolites in fruits and leaves of cloudberry (Rubus chamaemorus L.). Metabolites. 2023;13(5):598. DOI:10.3390/metabo13050598.; Puupponen-Pimiä R., Nohynek L., Suvanto J., Salminen J.-P., Seppänen-Laakso T., Tähtiharju J., Honkapää K., Oksman-Caldentey K.-M. Natural antimicrobials from cloudberry (Rubus chamaemorus) seeds by sanding and hydrothermal extraction. ACS Food Science & Technology. 2021;1(5):917–927. DOI:10.1021/acsfoodscitech.0c00109.; Määttä-Riihinen K. R., Kamal-Eldin A., Törrönen A. R. Identification and quantification of phenolic compounds in berries of Fragaria and Rubus species (Family Rosaceae). Journal of Agricultural and Food Chemistry. 2004;52(20):6178–6187. DOI:10.1021/jf049450r.; Thiem B. Rubus chamaemorus L. – a boreal plant rich in biologically active metabolites: A review. Biological Letters. 2003;40(1):3–13.; Mcdougall G. J., Martinussen I., Junttila O., Verrall S., Stewart D. Assessing the influence of genotype and temperature on polyphenol composition in cloudberry (Rubus chamaemorus L.) using a novel mass spectrometric method. Journal of Agricultural and Food Chemistry. 2011;59(20):10860–10868. DOI:10.1021/jf202083b.; Rocabado G. O., Bedoya L. M., Abad M. J., Bermejo P. Rubus – A review of its phytochemical and pharmacological profile. Natural Product Communications. 2008;3(3):423–436. DOI:10.1177/1934578x0800300319.; Махлаюк В. П. Лекарственные растения в народной медицине. Саратов: Приволжское книжное издательство; 1991. 544 с.; De Luca Luigi M., Norum Kaare R. Scurvy and Cloudberries: A chapter in the history of nutritional sciences. The journal of Nutrition. 2011;141(12):2101–2105.; Afrin S., Giampieri F., Gasparrini M., Forbes-Hernandez T., Varela-Lopez A., Quiles J., Mezzetti B., Battino M. Chemopreventive and therapeutic effects of edible berries: A focus on colon cancer prevention and treatment. Molecules. 2016;21(2):169. DOI:10.3390/molecules21020169.; McDougall G. J., Ross H. A., Ikeji M., Stewart D. Berry extracts exert different antiproliferative effects against cervical and colon cancer cells grown in vitro. Journal of Agricultural and Food Chemistry. 2008;56(9):3016–3023. DOI:10.1021/jf073469n.; Barbui T., De Stefano V., Falanga A., Finazzi G., Martinelli I., Rodeghiero F., Vannucchi A. M., Barosi G. Addressing and proposing solutions for unmet clinical needs in the management of myeloproliferative neoplasm-associated thrombosis: A consensus-based position paper. Blood Cancer Journal. 2019;9(8):61. DOI:10.1038/s41408-019-0225-5.; Whaley A. K., Ponkratova A. O., Orlova A. A., Serebryakov E. B., Smirnov S. N., Proksh P., Ionov N. S., Poroikov V. V., Luzhanin V. G. Phytochemical analysis of polyphenol secondary metabolites in cloudberry (Rubus chamaemorus L.) Leaves. Pharmaceutical Chemistry Journal. 2021;55:253–258.; Миронов А. Н., Бунатян Н. Д. и др. Руководство по проведению доклинических исследований лекарственных средств. Часть 1. М.: Гриф и К; 2012. 944 с.; Born G. G. V. Aggregation of blood platelets by adenosine diphosphate and its reversal. Nature. 1962;194:927–929. DOI:10.1038/194927b0.; Hai Y., Zhang Y., Liang Y., Ma X., Qi X., Xiao J., Xue W., Luo Y., Yue T. Advance on the absorption, metabolism, and efficacy exertion of quercetin and its important derivatives. Food Frontiers. 2020;1:420–434. DOI:10.1002/fft2.50.; https://www.pharmjournal.ru/jour/article/view/1744Test

  3. 3
    دورية أكاديمية
  4. 4
    دورية أكاديمية
  5. 5
    دورية أكاديمية
  6. 6
    دورية أكاديمية

    المساهمون: This work was supported by the grant of the Russian Science Foundation (No. 23-21-00154 “Development of methods for predicting the properties of pharmacological preparations by their molecular structure using the theory of topological analysis of chemographs”), Federal Research Center “Informatics and Management”, RAS., Работа выполнена при поддержке гранта Российского научного фонда (проект № 23-21-00154 «Разработка методов прогноза свойств фармакологических препаратов по их молекулярной структуре с помощью теории топологического анализа хемографов»), ФИЦ «Информатика и управление» РАН.

    المصدر: FARMAKOEKONOMIKA. Modern Pharmacoeconomics and Pharmacoepidemiology; Vol 16, No 1 (2023); 105-124 ; ФАРМАКОЭКОНОМИКА. Современная фармакоэкономика и фармакоэпидемиология; Vol 16, No 1 (2023); 105-124 ; 2070-4933 ; 2070-4909

    وصف الملف: application/pdf

    العلاقة: https://www.pharmacoeconomics.ru/jour/article/view/778/454Test; https://www.pharmacoeconomics.ru/jour/article/view/778/456Test; Торшин И.Ю., Громова О.А. Микронутриенты против коронавирусов. М.: ГЭОТАР-Медиа; 2020: 112 с.; Торшин И.Ю., Громова О.А., Чучалин А.Г., Журавлев Ю.И. Хемореактомный скрининг воздействия фармакологических препаратов на SARS-CoV-2 и виром человека как информационная основа для принятия решений по фармакотерапии COVID-19. ФАРМАКОЭКОНОМИКА. Современная фармакоэкономика и фармакоэпидемиология. 2021; 14 (2): 191–211. https://doi.org/10.17749/2070-4909/farmakoekonomika.2021.078Test.; Торшин И.Ю., Громова О.А., Стаховская Л.В. и др. Анализ 19,9 млн публикаций базы данных PubMed/MEDLINE методами искусственного интеллекта: подходы к обобщению накопленных данных и феномен “fake news”. ФАРМАКОЭКОНОМИКА. Современная фармакоэкономика и фармакоэпидемиология. 2020; 13 (2): 146–63. https://doi.org/10.17749/2070-4909/farmakoekonomika.2020.021Test.; Sudre C.H., Murray B., Varsavsky T., et al. Attributes and predictors of long COVID. Nat Med. 2021; 27 (4): 626–31. https://doi.org/.1038/s41591-021-01292-yTest.; Bao M., Ma Y., Liang M., et al. Research progress on pharmacological effects and new dosage forms of baicalin. Vet Med Sci. 2022; 8 (6): 2773–84. https://doi.org/10.1002/vms3.960Test.; Yang J., Yang X., Li M. Baicalin, a natural compound, promotes regulatory T cell differentiation. BMC Complement Altern Med. 2012; 12: 64. https://doi.org/10.1186/1472-6882-12-64Test.; An H.J., Lee J.Y., Park W. Baicalin modulates inflammatory response of macrophages activated by LPS via calcium-CHOP pathway. Cells. 2022; 11 (19): 3076. https://doi.org/10.3390/cells11193076Test.; Kim S.J., Lee S.M. Effect of baicalin on toll-like receptor 4-mediated ischemia/reperfusion inflammatory responses in alcoholic fatty liver condition. Toxicol Appl Pharmacol. 2012; 258 (1): 43–50. https://doi.org/10.1016/j.taap.2011.10.005Test.; He C.X., Yu W.J., Yang M., et al. Baicalin inhibits LPS/IFN-γ-induced inflammation via TREM2/TLR4/NF-κB pathway in BV2 cells. Zhongguo Zhong Yao Za Zhi. 2022; 47 (6): 1603–10 (на кит. яз.). https://doi.org/10.19540/j.cnki.cjcmm.20211103.401Test.; Yang S., Zhang J., Chen D., et al. Quercetin supplement to aspirin attenuates lipopolysaccharide-induced pre-eclampsia-like impairments in rats through the NLRP3 inflammasome. Drugs R D. 2022; 22 (4): 271–9. https://doi.org/10.1007/s40268-022-00402-6Test.; Zhang M., Lin J.M., Li X.S., Li J. Quercetin ameliorates LPS-induced inflammation in human peripheral blood mononuclear cells by inhibition of the TLR2-NF-κB pathway. Genet Mol Res. 2016; 15 (2). https://doi.org/10.4238/gmr.15028297Test.; Haidari F., Heybar H., Jalali M.T., et al. Hesperidin supplementation modulates inflammatory responses following myocardial infarction. J Am Coll Nutr. 2015; 34 (3): 205–11. https://doi.org/10.1080/07315724.2014.891269Test.; Kadasa N.M., Abdallah H., Afifi M., Gowayed S. Hepatoprotective effects of curcumin against diethyl nitrosamine induced hepatotoxicity in albino rats. Asian Pac J Cancer Prev. 2015; 16 (1): 103–8. https://doi.org/10.7314/apjcp.2015.16.1.103Test.; Tabrizi R., Vakili S., Akbari M., et al. The effects of curcumin-containing supplements on biomarkers of inflammation and oxidative stress: a systematic review and meta-analysis of randomized controlled trials. Phytother Res. 2019; 33 (2): 253–62. https://doi.org/10.1002/ptr.6226Test.; Bao S., Cao Y., Fan C., et al. Epigallocatechin gallate improves insulin signaling by decreasing toll-like receptor 4 (TLR4) activity in adipose tissues of high-fat diet rats. Mol Nutr Food Res. 2014; 58 (4): 677–86. https://doi.org/10.1002/mnfr.201300335Test.; Dong S.J., Zhong Y.Q., Lu W.T., et al. Baicalin inhibits lipopolysaccharide-induced inflammation through signaling NF-κB pathway in HBE16 airway epithelial cells. Inflammation. 2015; 38 (4): 1493–501. https://doi.org/10.1007/s10753-015-0124-2Test.; Hao D., Li Y., Shi J., Jiang J. Baicalin alleviates chronic obstructive pulmonary disease through regulation of HSP72-mediated JNK pathway. Mol Med. 2021; 27 (1): 53. https://doi.org/10.1186/s10020-021-00309-zTest.; Chen W., Padilla M.T., Xu X., et al. Quercetin inhibits multiple pathways involved in interleukin 6 secretion from human lung fibroblasts and activity in bronchial epithelial cell transformation induced by benzo[a]pyrene diol epoxide. Mol Carcinog. 2016; 55 (11): 1858–66. https://doi.org/10.1002/mc.22434Test.; Huang R., Zhong T., Wu H. Quercetin protects against lipopolysaccharide-induced acute lung injury in rats through suppression of inflammation and oxidative stress. Arch Med Sci. 2015; 11 (2): 427–32. https://doi.org/10.5114/aoms.2015.50975Test.; Sordillo P.P., Helson L. Curcumin suppression of cytokine release and cytokine storm. A potential therapy for patients with Ebola and other severe viral infections. In Vivo. 2015; 29 (1): 1–4.; Avasarala S., Zhang F., Liu G., et al. Curcumin modulates the inflammatory response and inhibits subsequent fibrosis in a mouse model of viral-induced acute respiratory distress syndrome. PLoS One. 2013; 8 (2): e57285. https://doi.org/10.1371/journal.pone.0057285Test.; Feng H., Zhang K., Zhang K., et al. Antiviral activity and underlying mechanisms of baicalin against avian infectious bronchitis virus in vitro. Avian Pathol. 2022; 51 (6): 574–89. https://doi.org/10.1080/03079457.2022.2109453Test.; Li X., Liu Y., Wu T., et al. The antiviral effect of baicalin on enterovirus 71 in vitro. Viruses. 2015; 7 (8): 4756–71. https://doi.org/10.3390/v7082841Test.; Rahman M.A., Shorobi F.M., Uddin M.N., et al. Quercetin attenuates viral infections by interacting with target proteins and linked genes in chemicobiological models. In Silico Pharmacol. 2022; 10 (1): 17. https://doi.org/10.1007/s40203-022-00132-2Test.; Ruansit W., Charerntantanakul W. Oral supplementation of quercetin in PRRSV-1 modified-live virus vaccinated pigs in response to HP-PRRSV-2 challenge. Vaccine. 2020; 38 (19): 3570–81. https://doi.org/10.1016/j.vaccine.2020.03.019Test.; Veckenstedt A., Pusztai R. Mechanism of antiviral action of quercetin against cardiovirus infection in mice. Antiviral Res. 1981; 1 (4): 249–61. https://doi.org/10.1016/0166-3542Test(81)90015-2.; Suebsaard P., Charerntantanakul W. Rutin, α-tocopherol, and l-ascorbic acid up-regulate type I interferon-regulated gene and type I and II interferon expressions in monocyte-derived macrophages infected with highly pathogenic porcine virus. Vet Immunol Immunopathol. 2021; 235: 110231. https://doi.org/10.1016/j.vetimm.2021.110231Test.; Šudomová M., Hassan S.T.S. Nutraceutical curcumin with promising protection against herpesvirus infections and their associated inflammation: mechanisms and pathways. Microorganisms. 2021; 9 (2): 292. https://doi.org/10.3390/microorganisms9020292Test.; Li H., Li Y., Hu J., et al. Epigallocatechin-3-gallate inhibits EBV lytic replication via targeting LMP1-mediated MAPK. Oncol Res. 2021; 28 (7): 763–78. https://doi.org/10.3727/096504021X16135618512563Test.; Isaacs C.E., Wen G.Y., Xu W., et al. Epigallocatechin gallate inactivates clinical isolates of herpes simplex virus. Antimicrob Agents Chemother. 2008; 52 (3): 962–70. https://doi.org/10.1128/AAC.00825-07Test.; Ho H.Y., Cheng M.L., Weng S.F., et al. Antiviral effect of epigallocatechin gallate on enterovirus 71. J Agric Food Chem. 2009; 57 (14): 6140–7. https://doi.org/10.1021/jf901128uTest.; Reshamwala D., Shroff S., Sheik Amamuddy O., et al. Polyphenols epigallocatechin gallate and resveratrol, and polyphenol-functionalized nanoparticles prevent enterovirus infection. Pharmaceutics. 2021; 13 (8): 1182. https://doi.org/10.3390/pharmaceutics13081182Test.; Geng P., Zhu H., Zhou W., et al. Baicalin inhibits influenza a virus infection via promotion of M1 macrophage polarization. Front Pharmacol. 2020; 11: 01298. https://doi.org/10.3389/fphar.2020.01298Test.; Shi H., Ren K., Lv B., et al. Baicalin from Scutellaria baicalensis blocks respiratory syncytial virus (RSV) infection and reduces inflammatory cell infiltration and lung injury in mice. Sci Rep. 2016; 6: 35851. https://doi.org/10.1038/srep35851Test.; Qin S., Huang X., Qu S. Baicalin induces a potent innate immune response to inhibit RSV replication via regulating viral non-structural 1 and matrix RNA. Front Immunol. 2022; 13: 907047. https://doi.org/10.3389/fimmu.2022.907047Test.; Saha R.K., Takahashi T., Suzuki T. Glucosyl hesperidin prevents influenza a virus replication in vitro by inhibition of viral sialidase. Biol Pharm Bull. 2009; 32 (7): 1188–92. https://doi.org/10.1248/bpb.32.1188Test.; Zhao X., Tang Z., Yue C., et al. hesperidin regulates Jagged1/Notch1 pathway to promote macrophage polarization and alleviate lung injury in mice with bronchiolitis. Zhongguo Yi Xue Ke Xue Yuan Xue Bao. 2022; 44 (5): 777–84 (на кит. яз.). https://doi.org/10.3881/j.issn.1000-503X.14888Test.; Ding Z., Sun G., Zhu Z. Hesperidin attenuates influenza A virus (H1N1) induced lung injury in rats through its anti-inflammatory effect. Antivir Ther. 2018; 23 (7): 611–5. https://doi.org/10.3851/IMP3235Test.; Wu W., Li R., Li X., et al. Quercetin as an antiviral agent inhibits influenza A virus (IAV) entry. Viruses. 2015; 8 (1): 6. https://doi.org/10.3390/v8010006Test.; Tiboc-Schnell C.N., Filip G.A., Man S.C., et al. Quercetin attenuates naso-sinusal inflammation and inflammatory response in lungs and brain on an experimental model of acute rhinosinusitis in rats. J Physiol Pharmacol. 2020; 71 (4). https://doi.org/10.26402/jpp.2020.4.03Test.; Singh A., Mishra A. Leucoefdin a potential inhibitor against SARS CoV-2 Mpro. J Biomol Struct Dyn. 2021; 39 (12): 4427–32. https://doi.org/10.1080/07391102.2020.1777903Test.; George T.K., Joy A., Divya K., Jisha M.S. In vitro and in silico docking studies of antibacterial compounds derived from endophytic Penicillium setosum. Microb Pathog. 2019; 131: 87–97. https://doi.org/10.1016/j.micpath.2019.03.033Test.; da Silva-Júnior E.F., Silva L.R. Multi-target approaches of epigallocatechin-3-O-gallate (EGCG) and its derivatives against influenza viruses. Curr Top Med Chem. 2022; 22 (18): 1485–500. https://doi.org/10.2174/1568026622666220127112056Test.; Matsuura R., Kawamura A., Matsumoto Y., et al. Epigallocatechin gallate stabilized by cyclodextrin inactivates influenza virus and human coronavirus 229E. Microorganisms. 2022; 10 (9): 1796. https://doi.org/10.3390/microorganisms10091796Test.; Obata K., Kojima T., Masaki T., et al. Curcumin prevents replication of respiratory syncytial virus and the epithelial responses to it in human nasal epithelial cells. PLoS One. 2013; 8 (9): e70225. https://doi.org/10.1371/journal.pone.0070225Test.; Han S., Xu J., Guo X., Huang M. Curcumin ameliorates severe influenza pneumonia via attenuating lung injury and regulating macrophage cytokines production. Clin Exp Pharmacol Physiol. 2018; 45 (1): 84–93. https://doi.org/10.1111/1440-1681.12848Test.; Samadizadeh S., Arabi M.S., Yasaghi M., et al. Anti-inflammatory effects of curcumin-loaded niosomes on respiratory syncytial virus infection in a mice model. J Med Microbiol. 2022; 71 (4). https://doi.org/10.1099/jmm.0.001525Test.; Gordon D.E., Jang G.M., Bouhaddou M., et al. A SARS-CoV-2 protein interaction map reveals targets for drug repurposing. Nature. 2020; 583 (7816): 459–68. https://doi.org/10.1038/s41586-020-2286-9Test.; Hong S., Seo S.H., Woo S.J., et al. Epigallocatechin gallate inhibits the uridylate-specific endoribonuclease Nsp15 and efficiently neutralizes the SARS-CoV-2 strain. J Agric Food Chem. 2021; 69 (21): 5948–54. https://doi.org/10.1021/acs.jafc.1c02050Test.; Zandi K., Musall K., Oo A., et al. Baicalein and baicalin inhibit SARS-CoV-2 RNA-dependent-RNA polymerase. Microorganisms. 2021; 9 (5): 893. https://doi.org/10.3390/microorganisms9050893Test.; Rizzuti B., Grande F., Conforti F., et al. Rutin is a low micromolar inhibitor of SARS-CoV-2 main protease 3CLpro: implications for drug design of quercetin analogs. Biomedicines. 2021; 9 (4): 375. https://doi.org/10.3390/biomedicines9040375Test.; Manjunath S.H., Thimmulappa R.K. Antiviral, immunomodulatory, and anticoagulant effects of quercetin and its derivatives: potential role in prevention and management of COVID-19. J Pharm Anal. 2022; 12 (1): 29–34. https://doi.org/10.1016/j.jpha.2021.09.009Test.; Gasmi A., Mujawdiya P.K., Lysiuk R., et al. Quercetin in the prevention and treatment of coronavirus infections: a focus on SARS-CoV-2. Pharmaceuticals (Basel). 2022; 15 (9): 1049. https://doi.org/10.3390/ph15091049Test.; Di Pierro F., Iqtadar S., Khan A., et al. Potential clinical benefits of quercetin in the early stage of COVID-19: results of a second, pilot, randomized, controlled and open-label clinical trial. Int J Gen Med. 2021; 14: 2807–16. https://doi.org/10.2147/IJGM.S318949Test.; Di Pierro F., Derosa G., Maffioli P., et al. Possible therapeutic effects of adjuvant quercetin supplementation against early-stage COVID-19 infection: a prospective, randomized, controlled, and open-label study. Int J Gen Med. 2021; 14: 2359–66. https://doi.org/10.2147/IJGM.S318720Test.; Shohan M., Nashibi R., Mahmoudian-Sani M.R., et al. The therapeutic efficacy of quercetin in combination with antiviral drugs in hospitalized COVID-19 patients: a randomized controlled trial. Eur J Pharmacol. 2022; 914: 174615. https://doi.org/10.1016/j.ejphar.2021.174615Test.; Dupuis J., Laurin P., Tardif J.C., et al. Fourteen-day evolution of COVID-19 symptoms during the third wave in nonvaccinated subjects and effects of hesperidin therapy: a randomized, double-blinded, placebo-controlled study. Evid Based Complement Alternat Med. 2022; 2022: 3125662. https://doi.org/10.1155/2022/3125662Test.; Mokra D., Adamcakova J., Mokry J. Green tea polyphenol (-)-epigallocatechin-3-gallate (EGCG): a time for a new player in the treatment of respiratory diseases? Antioxidants (Basel). 2022; 11 (8): 1566. https://doi.org/10.3390/antiox11081566Test.; Park R., Jang M., Park Y.I., et al. Epigallocatechin gallate (EGCG), a green tea polyphenol, reduces coronavirus replication in a mouse model. Viruses. 2021; 13 (12): 2533. https://doi.org/10.3390/v13122533Test.; Saeedi-Boroujeni A., Mahmoudian-Sani M.R., Bahadoram M., Alghasi A. COVID-19: a case for inhibiting NLRP3 inflammasome, suppression of inflammation with curcumin? Basic Clin Pharmacol Toxicol. 2021; 128 (1): 37–45. https://doi.org/10.1111/bcpt.13503Test.; Marín-Palma D., Tabares-Guevara J.H., Zapata-Cardona M.I., et al. Curcumin inhibits in vitro SARS-CoV-2 infection in vero E6 cells through multiple antiviral mechanisms. Molecules. 2021; 26 (22): 6900. https://doi.org/10.3390/molecules26226900Test.; Vahedian-Azimi A., Abbasifard M., Rahimi-Bashar F., et al. Effectiveness of curcumin on outcomes of hospitalized COVID-19 patients: a systematic review of clinical trials. Nutrients. 2022; 14 (2): 256. https://doi.org/10.3390/nu14020256Test.; Громова О.А., Торшин И.Ю., Тетруашвили Н.К. Систематический обзор экспериментальных и клинических исследований по фармакологии глицирризина и его производных. Акушерство и гинекология. 2022; 4: 34–46. https://dx.doi.org/10.18565/aig.2022.4.34-46Test.; Zhang N., Lv H., Shi B.H., et al. Inhibition of IL-6 and IL-8 production in LPS-stimulated human gingival fibroblasts by glycyrrhizin via activating LXRα. Microb Pathog. 2017; 110: 135–9. https://doi.org/10.1016/j.micpath.2017.06.021Test.; van de Sand L., Bormann M., Alt M., et al. Glycyrrhizin effectively inhibits SARS-CoV-2 replication by inhibiting the viral main protease. Viruses. 2021; 13 (4): 609. https://doi.org/10.3390/v13040609Test.; Gomaa A.A., Mohamed H.S., Abd-Ellatief R.B., et al. Advancing combination treatment with glycyrrhizin and boswellic acids for hospitalized patients with moderate COVID-19 infection: a randomized clinical trial. Inflammopharmacology. 2022; 30 (2): 477–86. https://doi.org/10.1007/s10787-022-00939-7Test.; Askari G., Sahebkar A., Soleimani D., et al. The efficacy of curcumin-piperine co-supplementation on clinical symptoms, duration, severity, and inflammatory factors in COVID-19 outpatients: a randomized double-blind, placebo-controlled trial. Trials. 2022; 23 (1): 472. https://doi.org/10.1186/s13063-022-06375-wTest.; Pawar K.S., Mastud R.N., Pawar S.K., Pet al. Oral curcumin with piperine as adjuvant therapy for the treatment of COVID-19: a randomized clinical trial. Front Pharmacol. 2021; 12: 669362. https://doi.org/10.3389/fphar.2021.669362Test.; Khan A., Iqtadar S., Mumtaz S.U., et al. Oral co-supplementation of curcumin, quercetin, and vitamin D3 as an adjuvant therapy for mild to moderate symptoms of COVID-19 – results from a pilot open-label, randomized controlled trial. Front Pharmacol. 2022; 13: 898062. https://doi.org/10.3389/fphar.2022.898062Test.; Zhao F.Q., Wang G.F., Xu D., et al. Glycyrrhizin mediated liver-targeted alginate nanogels delivers quercetin to relieve acute liver failure. Int J Biol Macromol. 2021; 168: 93–104. https://doi.org/10.1016/j.ijbiomac.2020.11.204Test.; https://www.pharmacoeconomics.ru/jour/article/view/778Test

  7. 7
    دورية أكاديمية

    المساهمون: The investigation has not been sponsored.

    المصدر: Neurology, Neuropsychiatry, Psychosomatics; Vol 15 (2023): (Suppl. 1); 65-70 ; Неврология, нейропсихиатрия, психосоматика; Vol 15 (2023): (Suppl. 1); 65-70 ; 2310-1342 ; 2074-2711 ; 10.14412/2074-2711-2023-0

    وصف الملف: application/pdf

    العلاقة: https://nnp.ima-press.net/nnp/article/view/2081/1577Test; Vidal-Jordana A, Montalban X. Multiple Sclerosis: Epidemiologic, Clinical, and Therapeutic Aspects. Neuroimaging Clin N Am. 2017 May;27(2):195-204. doi:10.1016/j.nic.2016.12.001; MFIS. Atlas of MS 2020 – Epidemyology report. 2020.; Nourbakhsh B, Mowry EM. Multiple Sclerosis Risk Factors and Pathogenesis. Continuum (Minneap Minn). 2019;25(3):596-610. doi:10.1212/CON.0000000000000725; Alfredsson L, Olsson T. Lifestyle and Environmental Factors in Multiple Sclerosis. Cold Spring Harb Perspect Med. 2019 Apr 1;9(4):a028944. doi:10.1101/cshperspect.a028944; Teter B, Agashivala N, Kavak K, et al. Characteristics influencing therapy switch behavior after suboptimal response to first-line treatment in patients with multiple sclerosis. Mult Scler. 2014;20(7):830-6. doi:10.1177/1352458513513058; Hyun JW, Kim SH, Jeong IH, et al. Utility of the rio score and modified rio score in korean patients with multiple sclerosis. PLoS One. 2015 May 26;10(5):e0129243. doi:10.1371/journal.pone.0129243; Лопатина АВ, Кукушкина АД, Мельников МВ, Роговский ВС. Перспективы применения полифенолов при рассеянном склерозе. Журнал неврологии и психиатрии им. С.С. Корсакова. 2022;122(7-2):36-43. doi:10.17116/jnevro202212207236; Grafeneder J, Derhaschnig U, Eskandary F, et al. Micellar Curcumin: Pharmacokinetics and Effects on Inflammation Markers and PCSK-9 Concentrations in Healthy Subjects in a Double-Blind, Randomized, Active-Controlled, Crossover Trial. Mol Nutr Food Res. 2022 Nov;66(22):e2200139. doi:10.1002/mnfr.202200139. Epub 2022 Sep 13.; Hussain Y, Alam W, Ullah H, et al. Antimicrobial Potential of Curcumin: Therapeutic Potential and Challenges to Clinical Applications. Antibiotics (Basel). 2022 Feb 28;11(3):322. doi:10.3390/antibiotics11030322; Banerjee S, Ji C, Mayfield JE, et al. Ancient drug curcumin impedes 26S proteasome activity by direct inhibition of dual-specificity tyrosineregulated kinase 2. Proc Natl Acad Sci U S A. 2018 Aug 7;115(32):8155-60. doi:10.1073/pnas.1806797115. Epub 2018 Jul 9.; Lu HC, Kim S, Steelman AJ, et al. STAT3 signaling in myeloid cells promotes pathogenic myelin-specific T cell differentiation and autoimmune demyelination. Proc Natl Acad Sci U S A. 2020 Mar 10;117(10):5430-41. doi:10.1073/pnas.1913997117. Epub 2020 Feb 24.; Mohamadian M, Bahrami A, Moradi Binabaj M, et al. Molecular Targets of Curcumin and Its Therapeutic Potential for Ovarian Cancer. Nutr Cancer. 2022;74(8):2713-30. doi:10.1080/01635581.2022.2049321. Epub 2022 Mar 10.; Zhao G, Liu Y, Yi X, et al. Curcumin inhibiting Th17 cell differentiation by regulating the metabotropic glutamate receptor-4 expression on dendritic cells. Int Immunopharmacol. 2017 May;46:80-6. doi:10.1016/j.intimp.2017.02.017; Balasa R, Barcutean L, Balasa A, et al. The action of TH17 cells on blood brain barrier in multiple sclerosis and experimental autoimmune encephalomyelitis. Hum Immunol. 2020 May;81(5):237-43. doi:10.1016/j.humimm.2020.02.009. Epub 2020 Feb 28.; Gao Y, Zhuang Z, Lu Y, et al. Curcumin Mitigates Neuro-Inflammation by Modulating Microglia Polarization Through Inhibiting TLR4 Axis Signaling Pathway Following Experimental Subarachnoid Hemorrhage. Front Neurosci. 2019 Nov 15;13:1223. doi:10.3389/fnins.2019.01223. eCollection 2019.; Jin M, Park SY, Shen Q, et al. Anti-neuroinflammatory effect of curcumin on Pam3CSK4-stimulated microglial cells. Int J Mol Med. 2018 Jan;41(1):521-30. doi:10.3892/ijmm.2017.3217. Epub 2017 Oct 27.; Peng Y, Ao M, Dong B, et al. Anti-Inflammatory Effects of Curcumin in the Inflammatory Diseases: Status, Limitations and Countermeasures. Drug Des Devel Ther. 2021 Nov 2;15:4503-25. doi:10.2147/DDDT.S327378. eCollection 2021.; Bernardo A, Plumitallo C, De Nuccio C, et al. Curcumin promotes oligodendrocyte differentiation and their protection against TNFalpha through the activation of the nuclear receptor PPAR-gamma. Sci Rep. 2021 Mar 2;11(1):4952. doi:10.1038/s41598-021-83938-y; Askarizadeh A, Barreto GE, Henney NC, et al. Neuroprotection by curcumin: A review on brain delivery strategies. Int J Pharm. 2020 Jul 30;585:119476. doi:10.1016/j.ijpharm.2020.119476. Epub 2020 May 27.; Qureshi M, Al-Suhaimi EA, Wahid F, et al. Therapeutic potential of curcumin for multiple sclerosis. Neurol Sci. 2018 Feb;39(2):207-14. doi:10.1007/s10072-017-3149-5. Epub 2017 Oct 27.; Stohs SJ, Chen O, Ray SD, et al. Highly Bioavailable Forms of Curcumin and Promising Avenues for Curcumin-Based Research and Application: A Review. Molecules. 2020 Mar 19;25(6):1397. doi:10.3390/molecules25061397; Burapan S, Kim M, Han J. Curcuminoid Demethylation as an Alternative Metabolism by Human Intestinal Microbiota. J Agric Food Chem. 2017 Apr 26;65(16):3305-10. doi:10.1021/acs.jafc.7b00943. Epub 2017 Apr 14.; Dei Cas M, Ghidoni R. Dietary Curcumin: Correlation between Bioavailability and Health Potential. Nutrients. 2019 Sep 8;11(9):2147. doi:10.3390/nu11092147; Schiborr C, Kocher A, Behnam D, et al. The oral bioavailability of curcumin from micronized powder and liquid micelles is significantly increased in healthy humans and differs between sexes. Mol Nutr Food Res. 2014 Mar;58(3):516-27. doi:10.1002/mnfr.201300724. Epub 2014 Jan 9.; Ma P, Zeng Q, Tai K, et al. Development of stable curcumin nanoemulsions: effects of emulsifier type and surfactant-to-oil ratios. J Food Sci Technol. 2018 Sep;55(9):3485-97. doi:10.1007/s13197-018-3273-0. Epub 2018 Jun 19.; Aziz ZAA, Mohd-Nasir H, Ahmad A, et al. Role of Nanotechnology for Design and Development of Cosmeceutical: Application in Makeup and Skin Care. Front Chem. 2019 Nov 13;7:739. doi:10.3389/fchem.2019.00739. eCollection 2019.; Роговский ВС, Мельников МВ, Матюшин АИ, Шимановский НЛ. Влияние полифенолов и стероидов на продукцию интерлейкина-6 опухолевыми клеточными линиями HeLa и K562. Экспериментальная и клиническая фармакология. 2022; 85(11):14-8. doi:10.30906/0869-2092-2022-85-11-14-18; Kocher A, Bohnert L, Schiborr C, Frank J. Highly bioavailable micellar curcuminoids accumulate in blood, are safe and do not reduce blood lipids and inflammation markers in moderately hyperlipidemic individuals. Mol Nutr Food Res. 2016 Jul;60(7):1555-63. doi:10.1002/mnfr.201501034. Epub 2016 May 23.; Sun M, Liu N, Sun J, et al. Curcumin regulates anti-inflammatory responses by AXL/JAK2/STAT3 signaling pathway in experimental autoimmune encephalomyelitis. Neurosci Lett. 2022 Sep 14;787:136821. doi:10.1016/j.neulet.2022.136821. Epub 2022 Jul 28.; ELBini-Dhouib I, Manai M, Neili NE, et al. Dual Mechanism of Action of Curcumin in Experimental Models of Multiple Sclerosis. Int J Mol Sci. 2022 Aug 4;23(15):8658. doi:10.3390/ijms23158658; Torkildsen O, Brunborg LA, Myhr KM, Bo L. The cuprizone model for demyelination. Acta Neurol Scand Suppl. 2008;188:72-6. doi:10.1111/j.1600-0404.2008.01036.x; Feng J, Tao T, Yan W, et al. Curcumin inhibits mitochondrial injury and apoptosis from the early stage in EAE mice. Oxid Med Cell Longev. 2014;2014:728751. doi:10.1155/2014/728751. Epub 2014 Apr 27.; Khadka S, Omura S, Sato F, et al. Curcumin beta-D-Glucuronide Modulates an Autoimmune Model of Multiple Sclerosis with Altered Gut Microbiota in the Ileum and Feces. Front Cell Infect Microbiol. 2021 Dec 3;11:772962. doi:10.3389/fcimb.2021.772962. eCollection 2021.; Hegde M, Girisa S, BharathwajChetty B, et al. Curcumin Formulations for Better Bioavailability: What We Learned from Clinical Trials Thus Far? ACS Omega. 2023 Mar 13;8(12):10713-46. doi:10.1021/acsomega.2c07326; Dolati S, Ahmadi M, Rikhtegar R, et al. Changes in Th17 cells function after nanocurcumin use to treat multiple sclerosis. Int Immunopharmacol. 2018 Aug;61:74-81. doi:10.1016/j.intimp.2018.05.018. Epub 2018 May 28.; Dolati S, Babaloo Z, Ayromlou H, et al. Nanocurcumin improves regulatory T-cell frequency and function in patients with multiple sclerosis. J Neuroimmunol. 2019 Feb 15;327:15-21. doi:10.1016/j.jneuroim.2019.01.007. Epub 2019 Jan 17.; Petracca M, Quarantelli M, Moccia M, et al. ProspeCtive study to evaluate efficacy, safety and tOlerability of dietary supplemeNT of Curcumin (BCM95) in subjects with Active relapsing MultIple Sclerosis treated with subcutaNeous Interferon beta 1a 44 mcg TIW (CONTAIN): A randomized, controlled trial. Mult Scler Relat Disord. 2021 Nov;56:103274. doi:10.1016/j.msard.2021.103274. Epub 2021 Sep 21.; https://nnp.ima-press.net/nnp/article/view/2081Test

  8. 8
    دورية أكاديمية

    المصدر: Food systems; Vol 6, No 1 (2023); 80-94 ; Пищевые системы; Vol 6, No 1 (2023); 80-94 ; 2618-7272 ; 2618-9771 ; 10.21323/2618-9771-2023-6-1

    وصف الملف: application/pdf

    العلاقة: https://www.fsjour.com/jour/article/view/232/220Test; Waźbińska, J. (2002). Sambucus for growers. Szkółkarstwo, 6, 29–30. (In Polish); Vujanović, M., Majkić, T., Zengin, G., Beara, I., Cvetanović, A., Mahomoodally, F. M. et al. (2019). Advantages of contemporary extraction techniques for the extraction of bioactive constituents from black elderberry (Sambucus nigra L.) flowers. Industrial Crops and Products, 136, 93–101. https://doi.org/10.1016/j.indcrop.2019.04.058Test; Gomez Mattson, M. L., Corfield, R., Bajda, L., Pérez, O.E., Schebor, C., Salvatori, D. (2021). Potential bioactive ingredient from elderberry fruit: Process optimization for a maximum phenolic recovery, physicochemical characterization, and bioaccesibility. Journal of Berry Research, 11(1), 51–68. https //doi.org/10.3233/JBR‑200629; Młynarczyk, K., Walkowiak-Tomczak, D., Łysiak, G.P. (2018). Bioactive properties of Sambucus nigra L. As a functional ingredient for food and pharmaceutical industry. Journal of Functional Foods, 40, 377–390. https://doi.org/10.1016/j.jff.2017.11.025Test; Młynarczyk, K., Walkowiak-Tomczak, D., Staniek, H., Kidoń, M., Łysiak, G.P. (2020). The Content of selected minerals, bioactive compounds, and the antioxidant properties of the flowers and fruit of selected cultivars and wildly growing plants of Sambucus nigra L. Molecules, 25, Article 876. https://doi.org/10.3390/molecules25040876Test; Бурак, Л. Ч. (2022). Использование бузины (Sambucus nigra L.) в пищевой промышленности: состояние и дальнейшие перспективы (Обзор). Химия растительного сырья, 3, 49–69. https://doi.org/10.14258/jcprm.20220310937Test; Бурак, Л. Ч., Завалей, А.П. (2021). Технологический процесс производства и оценка качества сока прямого отжима и концентрированного из плодов бузины произрастающей в Республике Беларусь. Пищевая промышленность, 11, 83–87. https://doi.org/10.52653/PPI.2021.11.11.001Test; Abdel-Moneim, A.-M. E., Shehata, A.M., Alzahrani, S.O., Shafi, M.E., Mesalam, N.M., Taha, A.E. et al. (2020). The role of polyphenols in poultry nutrition. Journal of Animal Physiology and Animal Nutrition, 104(6), 1851–1866. https://doi.org/10.1111/jpn.13455Test; Garavand, F., Madadlou, A., Moini, S. (2017). Determination of phenolic profile and antioxidant activity of pistachio hull using high-performance liquid chromatography-diode array detectorelectro-spray ionization — mass spectrometry as affected by ultrasound and microwave. International Journal of Food Properties, 20(1), 19–29. https://doi.org/10.1080/110942912.2015.1099045Test; Garavand, F., Rahaee, S., Vahedikia, N., Jafari, S.M. (2019). Different techniques for extraction and micro/nanoencapsulation of saffron bioactive ingredients. Trends in Food Science and Technology, 89, 26–44. https://doi.org/10.1016/j.tifs.2019.05.005Test; Sobieralska, M., Kurek, M.A. (2019). Beta-glucan as wall material in encapsulation of elderberry (Sambucus nigra) extract. Plant Foods for Human Nutrition, 74(3), 334–341. https://doi.org/10.1007/s11130Test–019–00741-x; Paz, R., Fredes, C. (2015). The encapsulation of anthocyanins from berry-type fruits. Trends in foods. Molecules, 20(4), 5875–5888. https://doi.org/10.3390/molecules20045875Test; Moghaddam, M. H., Bayat, A.-H., Eskandari, N., Abdollahifar, M.-A., Fotouhi, F., Forouzannia, A. et al. (2021). Elderberry diet ameliorates motor function and prevents oxidative stress-induced cell death in rat models of Huntington disease. Brain Research, 1762, Article 147444. https://doi.org/10.1016/j.brainres.2021.147444Test; Mesalam, N.M., Aldhumri, S.A., Gabr, S.A., Ibrahim, M.A., Al-Mokaddem, A.K., Abdel-Moneim, A.-M.E. (2021). Putative abrogation impacts of Ajwa seeds on oxidative damage, liver dysfunction and associated complications in rats exposed to carbon tetrachloride. Molecular Biology Reports, 48(6), 5305–5318. https://doi.org/10.1007/s11033Test–021–06544–1; Vujanovíc, M., Majkíc, T., Zengin, G., Beara, I., Tomovíc, V., Šojić, B. et al. (2020). Elderberry (Sambucus nigra L.) juice as a novel functional product rich in health-promoting compounds. RSC Advances, 10, 44805–44814. https://doi.org/10.1039/d0ra09129dTest; Senica, M., Stampar, F., Veberic, R., Mikulic-Petkovsek, M. (2017). The higher the better? Differences in phenolics and cyanogenic glycosides in Sambucus nigra leaves, flowers and berries from different altitudes. Journal of the Science of Food and Agriculture, 97(8), 2623–2632. https://doi.org/10.1002/jsfa.8085Test; Aliakbarian, B., Paini, M., Casazza, A.A., Perego, P. (2015). Effect of encapsulating agent on physical-chemical characteristics of olive pomace polyphenols-rich extracts. Chemical Engineering Transactions, 43, 97–102. https://doi.org/10.3303/cet1543017Test; Đorđević, V., Balanč, B., Belščak-Cvitanović, A., Lević, S., Trifković, K., Kalušević, A. et al. (2015). Trends in encapsulation technologies for delivery of food bioactive compounds. Food Engineering Reviews, 7(4), 452– 490. https://doi.org/10.1007/s12393Test–014–9106–7; Bakowska-Barczak, A. M., Kolodziejczyk, P. P. (2011). Black currant polyphenols: Their storage stability and microencapsulation. Industrial Crops and Products, 34(2), 1301–1309. https://doi.org/10.1016/j.indcrop.2010.10.002Test; Aguiar, J., Estevinho, B. N., Santos, L. (2016). Microencapsulation of natural antioxidants for food application — The specific case of coffee antioxidants — A review. Trends in Food Science and Technology, 58, 21–39. https://doi.org/10.1016/j.tifs.2016.10.012Test; Wahab, N. A., Rahman, R.A, Ismail, A., Mustafa, S., Hashim, P. (2014). Assessment of antioxidant capacity, anti-collagenase and anti-elastase assays of Malaysian unfermented cocoa bean for cosmetic application. Natural Products Chemistry and Research, 2(3), Article 1000132. https://doi.org/10.4172/2329Test–6836.1000132; Ghimeray, A. K., Jung, U., Lee, H., Kim, Y., Ryu, E., Chang, M. (2015). In vitro antioxidant, collagenase inhibition, and in vivo anti-wrinkle effects of combined formulation containing Punica granatum, Ginkgo biloba, Ficus carica, and Morus alba fruits extract. Clinical, Cosmetic and Investigational Dermatology, 8, 389–396. https://doi.org/10.2147/CCID.S80906Test; Perše, M. (2013). Oxidative stress in the pathogenesis of colorectal cancer: cause or consequence? BioMed Research International, 2013, Article 725710. https://doi.org/10.1155/2013/725710Test; Olejnik, A., Olkowicz, M., Kowalska, K., Rychlik, J., Dembczyński, R., Myszka, K. et al. (2016). Gastrointestinal digested Sambucus nigra L. fruit extract protects in vitro cultured human colon cells against oxidative stress. Food Chemistry, 197(Part A), 648–657. https://doi.org/10.1016/j.foodchem.2015.11.017Test; Sidor, A., Gramza-Michałowska, A. (2015). Advanced research on the antioxidant and health benefit of elderberry (Sambucus nigra) in food–a review. Journal of Functional Foods, 18(Part B), 941–958. https://doi.org/10.1016/j.jff.2014.07.012Test; Hidalgo, M., Oruna-Concha, M.J., Kolida, S., Walton, G.E., Kallithraka, S., Jeremy P. E. Spencer, J.P.E. et al. (2012). Metabolism of anthocyanins by human gut microflora and their influence on gut bacterial growth. Journal of Agricultural and Food Chemistry, 60(15), 3882–3890. https://doi.org/10.1021/jf3002153Test; Lila, M. A., Ribnicky, D.M., Rojo, L.E., Rojas-Silva, P., Oren, A., Havenaar, R., Janle, E.M. et al. (2012). Complementary approaches to gauge the bioavailability and distribution of ingested berry polyphenolics. Journal of Agricultural and Food Chemistry, 60(23), 5763–5771. https://doi.org/10.1021/jf203526hTest; Olejnik A., Kowalska, K., Olkowicz, M., Rychlik, J., Juzwa, W., Myszka, K. et al. (2015). Anti-inflammatory effects of gastrointestinal digested Sambucus nigra L. fruit extract analysed in co-cultured intestinal epithelial cells and lipopolysaccharide-stimulated macrophages. Journal of Functional Foods, 19(Part A), 649–660. https://doi.org/10.1016/j.jff.2015.09.064Test; Frøkiær, H., Henningsen, L., Metzdorff, B.S., Weiss, G., Roller, M., Flanagan, J. et al. (2012). Astragalus root and elderberry fruit extracts enhance the IFN‑β stimulatory effects of Lactobacillus acidophilus in murine-derived dendritic cells. PLoS One, 7(10), Article e47878. https://doi.org/10.1371/journal.pone.0047878Test; Pliszka, B., Wazbinska, J., Puczel, U., Huszcza-Ciołkowska, G. (2005). Biologically active polyphenolic compounds in elderberries of different cultivated varieties and wild-growing forms. Zeszyty Problemowe Postępów Nauk Rolniczych, 507(2), 443–449. (In Polish); Przybylska-Balcerek, A., Szablewski, T., Szwajkowska-Michałek, L., Świerk, D., Cegielska-Radziejewska, R., Krejpcio, Z. et al. (2021). Sambucus nigra extracts — Natural antioxidants and antimicrobial compounds. Molecules, 26(10), Article 2910. https://doi.org/10.3390/molecules26102910Test; Boroduske, A., Jekabsons, K., Riekstina, U., Muceniece, R., Rostoks, N., Nakurte, I. (2021). Wild Sambucus nigra L. from north-east edge of the species range: A valuable germplasm with inhibitory capacity against SARS-CoV2 S‑protein RBD and hACE2 binding in vitro. Industrial Crops and Products, 165, Article 113438. https://doi.org/10.1016/j.indcrop.2021.113438Test; Gleńsk, M., Gliński, J.A., Włodarczyk, M., Stefanowicz, P. (2014). Determination of ursolic and oleanolic acid in Sambuci fructus. Chemistry and Biodiversity, 11(12), 1939–1944. https://doi.org/10.1002/cbdv.201400118Test; Caroline, H., Mccollum, G.A., Nelson, D., Ballard, L.M., Millar, C., Goldsmith, C. et al. (2010). Antibacterial activity of elder (Sambucus nigra L.) flower or berry against hospital pathogens. Journal of Medicinal Plants Research, 4(17), 1805–1809. https://doi.org/10.5897/JMPR10.147Test; Chatterjee, A., Yasmin, T., Bagchi, D., Stohs, S.J. (2004). Inhibition of Helicobacter pylori in vitro by various berry extracts, with enhanced susceptibility to clarithromycin. Molecular and Cellular Biochemistry, 265(1–2), 19–26. https://doi.org/10.1023/B:MCBI.0000044310.92444.ecTest; Krawitz, C., Mraheil, M.A., Stein, M., Imirzalioglu, C., Domann, E., Pleschka, S. et al. (2011). Inhibitory activity of a standardized elderberry liquid extract against clinically-relevant human respiratory bacterial pathogens and influenza A and B viruses. BMC Complementary and Alternative Medicine, 11(1), Article 16. https://doi.org/10.1186/1472Test–6882–11–16; Chen, C., Zuckerman, D.M., Susanna Brantley, Michka Sharpe, Kevin Childress, Egbert Hoiczyk, et al. (2014). Sambucus nigra extracts inhibit infectious bronchitis virus at an early point during replication. BMC Veterinary Research, 10(1), Article 24. https://doi.org/10.1186/1746Test–6148–10–24; Roschek, Jr. B., Fink, R.C., McMichael, M.D., Li, D., Alberte, R.S. (2009). Elderberry flavonoids bind to and prevent H1N1 infection in vitro. Phytochemistry, 70(10), 1255–1261. https://doi.org/10.1016/j.phytochem.2009.06.003Test; Hawkins, J., Baker, C., Cherry, L., Dunne, E. (2019). Black elderberry (Sambucus nigra) supplementation effectively treats upper respiratory symptoms: A meta-analysis of randomized, controlled clinical trials. Complementary Therapies in Medicine, 42, 361–365. https://doi.org/10.1016/j.ctim.2018.12.004Test; Tiralongo, E., Wee, S. S., Lea, R. A. (2016). Elderberry supplementation reduces cold duration and symptoms in air-travellers: A randomized, double-blind placebo-controlled clinical trial. Nutrients, 8(4), Article 182. https://doi.org/10.3390/nu8040182Test; Zakay-Rones, Z., Varsano, N., Zlotnik, M., Manor, O., Regev, L., Schlesinger, M. et al. (1995). Inhibition of several strains of influenza virus in vitro and reduction of symptoms by an elderberry extract (Sambucus nigra L.) during an outbreak of influenza B Panama. The Journal of Alternative and Complementary Medicine, 1(4), 361–369. https://doi.org/10.1089/acm.1995.1.361Test; Kinoshita, E., Hayashi, K., Katayama, H., Hayashi, T., Obata, A. (2012). Anti-influenza virus effects of elderberry juice and its fractions. Bioscience, Biotechnology, and Biochemistry, 76(9), 1633–1639. https://doi.org/10.1271/bbb.120112Test; Hidari, K. I. P. J., Abe, T., Suzuki, T. (2013). Crabohydrate — related inhibitors of dengue virus entry. Viruses, 5(2), 605–618. https://doi.org/10.3390/v5020605Test; McCutcheon, A. R., Roberts, T.E., Gibbons, E., Ellis, S.M., Babiuk, L.A., Hancock, R.E. et al. (1995). Antiviral screening of British Columbian medicinal plants. Journal of Ethnopharmacology, 49(2), 101–110. https://doi.org/10.1016/0378Test–8741(95)90037–3; Van der Meer, F., de Haan, C.A.M., Schuurman, N.M.P., Haijema, B.J., Verheije, M.H., Bosch, B.J. et al. (2007). The carbohydrate-binding plant lectins and the non-peptidic antibiotic pradimicin A target the glycans of the coronavirus envelope glycoproteins. Journal of Antimicrobial Chemotherapy, 60(4), 741–749. https://doi.org/10.1093/jac/dkm301Test; Graham, D. R. M., Chertova, E., Hilburn, J.M., Arthur, L.O., Hildreth, J.E.K. (2003). Cholesterol depletion of human immunodeficiency virus type 1 and simian immunodeficiency virus with beta-cyclodextrin inactivates and permeabilizes the virions: evidence for virion-associated lipid rafts. Journal of Virology, 77(15), 8237–8248. https://doi.org/10.1128/jvi.77.15.8237Test–8248.2003; Bartak, M., Lange, A., Słońska, A., Cymerys, J. (2020). Antiviral and healing potential of Sambucus nigra extracts. Revista Bionatura, 5(3), 1264–1270. http://dx.doi.org/10.21931/RB/2020.05.03.18Test; Rechenchoski, D. Z., Faccin-Galhardi, L.C., Linhares, R.E.C., Nozawa, C. (2017). Herpesvirus: an underestimated virus. Folia Microbiologica (Praha), 62(2), 151–156. https://doi.org/10.1007/s12223Test–016–0482–7; Harnett, J., Oakes, K., Carè, J., Leach, M., Brown, D., Cramer, H. et al. (2020). The effects of Sambucus nigra berry on acute respiratory viral infections: A rapid review of clinical studies. Advances in Integrative Medicine, 7(4), 240–246. https://doi.org/10.1016/j.aimed.2020.08.001Test; Kronbichler, A., Effenberger, M., Eisenhut, M., Lee, K.H., Shin, J.I. (2020). Seven recommendations to rescue the patients and reduce the mortality from COVID‑19 infection: An immunological point of view. Autoimmunity Reviews, 19(7), Article 102570. https://doi.org/10.1016/j.autrev.2020.102570Test; Silveira, D., Prieto-Garcia, J.M., Boylan, F., Estrada, O., Fonseca-Bazzo, Y.M., Jamal, C.M. et al. (2020). COVID‑19: is there evidence for the use of herbal medicines as adjuvant symptomatic therapy? Frontiers in Pharmacology, 11, Article 581840. 1479. https://doi.org/10.3389/fphar.2020.581840Test; Ho, G. T. T., Kase, E.T., Wangensteen, H., Barsett, H. (2017). Phenolic elderberry extracts, anthocyanins, procyanidins, and metabolites influence glucose and fatty acid uptake in human skeletal muscle cells. Journal of Agricultural and Food Chemistry, 65(13), 2677–2685. https://doi.org/10.1021/acs.jafc.6b05582Test; Manna, P., Jain, S. K. (2015). Obesity, oxidative stress, adipose tissue dysfunction, and the associated health risks: causes and therapeutic strategies. Metabolic Syndrome and Related Disorders, 13(10), 423–444. https://doi.org/10.1089/met.2015.0095Test; Matsuda, M., Shimomura, I. (2013). Increased oxidative stress in obesity: implications for metabolic syndrome, diabetes, hypertension, dyslipidemia, atherosclerosis, and cancer. Obesity Research and Clinical Practice, 7(5), e330-e341. https://doi.org/10.1016/j.orcp.2013.05.004Test; Zielińska-Wasielica, J., Olejnik, A., Kowalska, K., Olkowicz, M., Dembczyński, R. (2019). Elderberry (Sambucus nigra L.) fruit extract alleviates oxidative stress, insulin resistance, and inflammation in hypertrophied 3T3-L1 adipocytes and activated RAW 264.7 macrophages. Foods, 8(8), Article 326. https://doi.org/10.3390/foods8080326Test; Farrell, N. J., Norris, G.H., Ryan, J., Porter, C.M., Jiang, C., Blesso, C.N. (2015). Black elderberry extract attenuates inflammation and metabolic dysfunction in diet-induced obese mice. British Journal of Nutrition, 114(8), 1123–1131. https://doi.org/10.1017/S0007114515002962Test; Salvador, Â. C., Król, E., Lemos, V.C., Santos, S.A.O., Bento, F.P.M.S., Costa, C.P., Almeida, A. et al. (2016). Effect of elderberry (Sambucus nigra L.) extract supplementation in STZ‑induced diabetic rats fed with a high-fat diet. International Journal of Molecular Sciences, 18(1), Article 13. https://doi.org/10.3390/ijms18010013Test; Farrell, N., Norris, G., Lee, S.G., Chun, O.K., Blesso, C.N. (2015). Anthocyanin-rich black elderberry extract improves markers of HDL function and reduces aortic cholesterol in hyperlipidemic mice. Food and Function, 6(4), 1278–1287. https://doi.org/10.1039/c4fo01036aTest; Opris, R., Tatomir, C., Olteanu, D., Moldovan, R., Moldovan, B., David, L. et al. (2017). The effect of Sambucus nigra L. extract and phytosinthesized gold nanoparticles on diabetic rats. Colloids and Surfaces B: Biointerfaces, 150, 192–200. https://doi.org/10.1016/j.colsurfb.2016.11.033Test; Karthick, V., Kumar, V.G., Dhas, T.S., Singaravelu, G., Sadiq, A.M., Govindaraju, K. (2014). Effect of biologically synthesized gold nanoparticles on alloxan-induced diabetic rats — an in vivo approach. Colloids and Surfaces B: Biointerfaces, 122, 505–511. https://doi.org/10.1016/j.colsurfb.2014.07.022Test; Badescu, L., Badulescu, O., Badescu, M., Ciocoiu, M. (2012). Mechanism by Sambucus nigra extract improves bone mineral density in experimental diabetes. Evidence-based Complementary and Alternative Medicine, 2012, Article 848269. https://doi.org/10.1155/2012/848269Test; Cutrim, C. S., de Barrosa, R.F., da Costa, P.M., Franco, R.M., Conte-Junior, C.A., Cortez, M.A.S. (2016). Survival of Escherichia coli O157: H7 during manufacture and storage of traditional and low lactose yogurt. LWT, 70, 178–184. https://doi.org/10.1016/j.lwt.2016.02.047Test; Mattila, P., Kumpulainen, J. (2002). Determination of free and total phenolic acids in plant-derived foods by HPLC with diode-array detection. Journal of Agricultural and Food Chemistry, 50 (13), 3660–3667. https://doi.org/10.1021/jf020028pTest; Stanković, M., Maksimović, S., Tadić, V., Arsić, I. (2018). The oil content of wild fruits from different plant species obtained by conventional Soxhlet extraction technique. Acta Facultatis Medicae Naissensis, 35(3), 193–199. https://doi.org/10.2478/afmnaiTest‑2018–0021; Kowalska, G., Wyrostek, J., Kowalski, R., Pankiewicz, U. (2021). Evaluation of glycerol usage for the extraction of anthocyanins from black chokeberry and elderberry fruit. Journal of Applied Research on Medicinal and Aromatic Plants, 22, Article 100296. https://doi.org/10.1016/j.jarmap.2021.100296Test; Gullón, B., Lú-Chau, T.A., Moreira, M.T., Lema, J.M., Eibes, G. (2017). Rutin: A review on extraction, identification and purification methods, biological activities and approaches to enhance its bioavailability. Trends in Food Science and Technology, 67, 220–235. https://doi.org/10.1016/j.tifs.2017.07.008Test; Suwal, S., Marciniak, A. (2018). Technologies for the extraction, separation and purification of polyphenols — A Review. Nepal Journal of Biotechnology, 6(1), 74–91. https://doi.org/10.3126/njb.v6i1.22341Test; Domínguez, R., Zhang, L., Rocchetti, G., Lucini, L., Pateiro, M., Munekata, P.E.S. et al. (2020). Elderberry (Sambucus nigra L.) as potential source of antioxidants. Characterization, optimization of extraction parameters and bioactive properties. Food Chemistry, 330, Article 127266. https://doi.org/10.1016/j.foodchem.2020.127266Test; Salvador, Â. C., Rocha, S.M., Silvestre, A.J.D. (2015). Lipophilic phytochemicals from elderberries (Sambucus nigra L.): Influence of ripening, cultivar and season. Industrial Crops and Products, 71, 15–23. https://doi.org/10.1016/j.indcrop.2015.03.082Test; El Asbahani, A., Miladi, K., Badri, W., Sala, M., Addi, E.H.A., Casabianca, H. et al. (2015). Essential oils: From extraction to encapsulation. International Journal of Pharmaceutics, 483(1–2), 220–43. https://doi.org/10.1016/j.ijpharm.2014.12.069Test; Ağalar, H. G., Demirci, B., Demirci, F., Kırımer, N. (2017). The volatile compounds of the elderflowers extract and the essential oil. Records of Natural Products, 11(5), 491–496. http://doi.org/10.25135/rnp.63.16.08.058Test; Ali Redha, A., Siddiqui, S.A., Ibrahim, S.A. (2021). Advanced extraction techniques for Berberis species phytochemicals: A review. International Journal of Food Science and Technology, 56(11), 5485–5496. https://doi.org/10.1111/ijfs.15315Test; Belwal, T., Bhatt, I.D., Rawal, R.S., Pande, V. (2017). Microwave-assisted extraction (MAE) conditions using polynomial design for improving antioxidant phytochemicals in Berberis asiatica Roxb. ex DC. leaves. Industrial Crops and Products, 95, 393–403. https://doi.org/10.1016/j.indcrop.2016.10.049Test; Mota, A. H., Andrade, J.M., Ntungwe, E.N., Pereira, P., Cebola, M.J., Bernardo-Gil, M.G. et al. (2020). Green extraction of Sambucus nigra L. for potential application in skin nanocarriers. Green Materials, 8(4), 181–193. https://doi.org/10.1680/jgrma.18.00074Test; Wen, L., Zhang, Z., Sun, D.-W., Sivagnanam, S.P., Tiwari, B.K. (2020). Combination of emerging technologies for the extraction of bioactive compounds. Critical Reviews in Food Science and Nutrition, 60(11), 1826–1841. https://doi.org/10.1080/10408398.2019.1602823Test; Rodríguez Madrera, R., Suárez Valles, B. (2021). Analysis of cyanogenic compounds derived from mandelonitrile by ultrasound-assisted extraction and high-performance liquid chromatography in Rosaceae and Sambucus families. Molecules, 26(24), Article 7563. https://doi.org/10.3390/molecules26247563Test; Zhu, Z., Chen, Z., Zhou, Q., Sun, D.-W., Chen, H., Zhao, Y. et al. (2018). Freezing efficiency and quality attributes as affected by voids in plant tissues during ultrasound-assisted immersion freezing. Food and Bioprocess Technology, 11(9), 1615–1626. https://doi.org/10.1007/s11947Test–018–2103–8; Zhu, Z., Sun, D.-W., Zhang, Z., Li, Y., Cheng, L. (2018). Effects of micronano bubbles on the nucleation and crystal growth of sucrose and maltodextrin solutions during ultrasound-assisted freezing process. LWT, 92, 404–411. https://doi.org/10.1016/j.lwt.2018.02.053Test; Kitrytė, V., Povilaitis, D., Kraujalienė, V., Šulniūtė, V., Pukalskas, A., Venskutonis, P.R. (2017). Fractionation of sea buckthorn pomace and seeds into valuable components by using high pressure and enzyme-assisted extraction methods. LWT — Food Science and Technology, 85(Part B), 534–538. https://doi.org/10.1016/j.lwt.2017.02.041Test; Kitrytė, V., Laurinavičienė, A., Syrpas, M., Pukalskas, A., Venskutonis, P.R. (2020). Modeling and optimization of supercritical carbon dioxide extraction for isolation of valuable lipophilic constituents from elderberry (Sambucus nigra L.) pomace. Journal of CO2 Utilization, 35, 225–235. https://doi.org/10.1016/j.jcou.2019.09.020Test; Nadar, S. S., Rao, P., Rathod, V.K. (2018). Enzyme assisted extraction of biomolecules as an approach to novel extraction technology: A review. Food Research International, 108, 309–330. https://doi.org/10.1016/j.foodres.2018.03.006Test; Flores, E. (2017). Antioxidant extraction from elderberries (Sambucus nigra L. Subsp. peruviana) with ultrasound, microwave, enzymes, and maceration to obtain functional juices Informacion Tecnologica, 28(1), 121–132. http://doi.org/10.4067/S0718Test–07642017000100012 (In Spanish); Tamkutė, L., Liepuoniūtė, R., Pukalskienė, M., Venskutonis, P.R. (2020). Recovery of valuable lipophilic and polyphenolic fractions from cranberry pomace by consecutive supercritical CO2 and pressurized liquid extraction. The Journal of Supercritical Fluids, 159, Article 104755. https://doi.org/10.1016/j.supflu.2020.104755Test; Carvalho, I. T., Estevinho, B.N., Santos, L. (2016). Application of microencapsulated essential oils in cosmetic and personal healthcare products — a review. International Journal of Cosmetic Science, 3(2), 109–119. https://doi.org/10.1111/ics.12232Test; Estevinho, B. N., Carlan, I., Blaga, A., Rocha, F. (2016). Soluble vitamins (vitamin B12 and vitamin C) microencapsulated with different biopolymers by a spray drying process. Powder Technology, 289, 71–78. https://doi.org/10.1016/j.powtec.2015.11.019Test; Gonçalves, A., Estevinho, B.N., Rocha, F. (2016). Microencapsulation of vitamin A: A review. Trends in Food Science and Technology, 51, 76–87. https://doi.org/10.1016/j.tifs.2016.03.001Test; Comunian, T. A., Ravanfar, R., Alcaine, S.D., Abbaspourrad, A. (2018). Water-in-oil-in-water emulsion obtained by glass microfluidic device for protection and heat-triggered release of natural pigments. Food Research International, 10, 945–951. https://doi.org/10.1016/j.foodres.2018.02.008Test; Kanha, N., Regenstein, J.M., Surawang, S., Pitchakarn, P., Laokuldilok, T. (2021). Properties and kinetics of the in vitro release of anthocyaninrich microcapsules produced through spray and freeze-drying complex coacervated double emulsions. Food Chemistry, 340, Article 127950. https://doi.org/10.1016/j.foodchem.2020.127950Test; Casati, C. B., Baeza, R., Sánchez, V. (2019). Physicochemical properties and bioactive compounds content in encapsulated freeze-dried powders obtained from blueberry, elderberry, blackcurrant and maqui berry. Journal of Berry Research, 9(3), 431–447. https://doi.org/10.3233/JBRTest‑190409; https://www.fsjour.com/jour/article/view/232Test

  9. 9
  10. 10
    دورية أكاديمية