يعرض 1 - 10 نتائج من 1,133 نتيجة بحث عن '"плацента"', وقت الاستعلام: 1.09s تنقيح النتائج
  1. 1
    دورية أكاديمية
  2. 2
    دورية أكاديمية
  3. 3
    دورية أكاديمية
  4. 4
    دورية أكاديمية

    المصدر: SCIENTIFIC JOURNAL OF APPLIED AND MEDICAL SCIENCES; Vol. 3 No. 6 (2024): AMALIY VA TIBBIYOT FANLARI ILMIY JURNALI; 577-583 ; НАУЧНЫЙ ЖУРНАЛ ПРИКЛАДНЫХ И МЕДИЦИНСКИХ НАУК; Том 3 № 6 (2024): AMALIY VA TIBBIYOT FANLARI ILMIY JURNALI; 577-583 ; 2181-3469

    مصطلحات موضوعية: инфекция, плацента

    وصف الملف: application/pdf

  5. 5
    دورية أكاديمية

    المؤلفون: Токар, П.Ю.

    المصدر: Bukovinian Medical Herald; Vol. 28 No. 1 (109) (2024); 80-87 ; Буковинский медицинский вестник; Том 28 № 1 (109) (2024); 80-87 ; Буковинський медичний вісник; Том 28 № 1 (109) (2024); 80-87 ; 2413-0737 ; 1684-7903

    وصف الملف: application/pdf

  6. 6
    دورية أكاديمية

    المصدر: Neonatology, Surgery and Perinatal Medicine; Vol. 14 No. 1(51) (2024): NEONATOLOGY, SURGERY AND PERINATAL MEDICINE; 76-83 ; Неонатология, хирургия и перинатальная медицина; Том 14 № 1(51) (2024): НЕОНАТОЛОГІЯ, ХІРУРГІЯ ТА ПЕРИНАТАЛЬНА МЕДИЦИНА; 76-83 ; Неонатологія, хірургія та перинатальна медицина; Том 14 № 1(51) (2024): НЕОНАТОЛОГІЯ, ХІРУРГІЯ ТА ПЕРИНАТАЛЬНА МЕДИЦИНА; 76-83 ; 2413-4260 ; 2226-1230

    وصف الملف: application/pdf

  7. 7
    دورية أكاديمية
  8. 8
    دورية أكاديمية

    المساهمون: The study was not sponsored, Исследование проведено без финансовой поддержки

    المصدر: Obstetrics, Gynecology and Reproduction; Vol 18, No 2 (2024); 167-179 ; Акушерство, Гинекология и Репродукция; Vol 18, No 2 (2024); 167-179 ; 2500-3194 ; 2313-7347

    وصف الملف: application/pdf

    العلاقة: https://www.gynecology.su/jour/article/view/1966/1197Test; Филиппов О.С., Гусева Е.В. Материнская смертность в Российской Федерации в 2019 г. Проблемы репродукции. 2020;26(6–2):8–26. doi:10.17116/repro2020260628.; Сидорова И.С., Никитина Н.А., Филиппов О.С. и др. Решенные и нерешенные вопросы преэклампсии по результатам анализа материнской смертности за последние 10 лет. Акушерство и гинекология. 2021;(4):64–74. doi:10.18565/aig.2021.4.64-74.; Aldridge S., Teichmann S.A. Single cell transcriptomics comes of age. Nat Commun. 2020;11(1):4307. doi:10.1038/s41467-020-18158-5.; Gong S., Gaccioli F., Dopierala J. et al. The RNA landscape of the human placenta in health and disease. Nat Commun. 2021;12(1):2639. doi:10.1038/s41467-021-22695-y.; Клинические рекомендации – Преэклампсия. Эклампсия. Отеки, протеинурия и гипертензивные расстройства во время беременности, в родах и послеродовом периоде – 2021-2022-2023 (24. 06. 2021). М.: Министерство здравоохранения Российской Федерации, 2021. 54 с. Режим доступа: http://disuria.ru/_ld/10/1046_kr21O10O16MZ.pdfTest. [Дата обращения: 25. 12. 2023].; Howe C.G., Foley H.B., Kennedy E.M. et al. Extracellular vesicle microRNA in early versus late pregnancy with birth outcomes in the MADRES study. Epigenetics. 2022;17(3):269–85. doi:10.1080/15592294.2021.1899887.; Kuokkanen S., Chen B., Ojalvo L. et al. Genomic profiling of microRNAs and messenger RNAs reveals hormonal regulation in microRNA expression in human endometrium. Biol Reprod. 2010;82(4):791–801. doi:10.1095/biolreprod.109.081059.; Cai J.L., Liu L.L., Hu Y. et al. Polychlorinated biphenyls impair endometrial receptivity in vitro via regulating mir-30d expression and epithelial mesenchymal transition. Toxicology. 2016;365:25–34. doi:10.1016/j.tox.2016.07.017.; Zhao Y., He D., Zeng H. et al. Expression and significance of miR-30d-5p and SOCS1 in patients with recurrent implantation failure during implantation window. Reprod Biol Endocrinol. 2021;19(1):138. doi:10.1186/s12958-021-00820-2.; Balaguer N., Moreno I., Herrero M. et al. MicroRNA-30d deficiency during preconception affects endometrial receptivity by decreasing implantation rates and impairing fetal growth. Am J Obstet Gynecol. 2019;221(1):46. e1–46.e16. doi:10.1016/j.ajog.2019.02.047.; Zhang L., Li K., Tian S. et al. Down-regulation of microRNA-30d-5p is associated with gestational diabetes mellitus by targeting RAB8A. J Diabetes Complications. 2021;35(8):107959. doi:10.1016/j.jdiacomp.2021.107959.; Sun Y., Bilan P.J., Liu Z., Klip A. Rab8A and Rab13 are activated by insulin and regulate GLUT4 translocation in muscle cells. Proc Natl Acad Sci U S A. 2010;107(46):19909–14. doi:10.1073/pnas.1009523107.; Ishikura S., Bilan P.J., Klip A. Rabs 8A and 14 are targets of the insulin-regulated Rab-GAP AS160 regulating GLUT4 traffic in muscle cells. Biochem Biophys Res Commun. 2007;353(4):1074–9. doi:10.1016/j.bbrc.2006.12.140.; Wall A.A., Luo L., Hung Y. et al. Small GTPase Rab8a-recruited phosphatidylinositol 3-kinase γ regulates signaling and cytokine outputs from endosomal toll-like receptors. J Biol Chem. 2017;292(11):4411–22. doi:10.1074/jbc.M116.766337.; Nakajo A., Yoshimura S., Togawa H. et al. EHBP1L1 coordinates Rab8 and Bin1 to regulate apical-directed transport in polarized epithelial cells. J Cell Biol. 2016;212(3):297–306. doi:10.1083/jcb.201508086.; Wright K.R., Mitchell B., Santanam N. Redox regulation of microRNAs in endometriosis-associated pain. Redox Biol. 2017;12:956–66. doi:10.1016/j.redox.2017.04.037.; Cai H., Zhou H., Miao Y. et al. MiRNA expression profiles reveal the involvement of miR-26a, miR-548l and miR-34a in hepatocellular carcinoma progression through regulation of ST3GAL5. Lab Invest. 2017;97(5):530–42. doi:10.1038/labinvest.2017.12.; Liu C., Yang H., Xu Z. et al. microRNA-548l is involved in the migration and invasion of non-small cell lung cancer by targeting the AKT1 signaling pathway. J Cancer Res Clin Oncol. 2015;141(3):431–41. doi:10.1007/s00432-014-1836-7.; Cheng B., Li J.Y., Li X.C. et al. MiR-323b-5p acts as a novel diagnostic biomarker for critical limb ischemia in type 2 diabetic patients. Sci Rep. 2018;8(1):15080. doi:10.1038/s41598-018-33310-4.; Hedley P.L., Larsen S.O., Wøjdemann K.R. et al. First trimester maternal serum microRNA expression profile differentiates between uncomplicated pregnancies, and pregnancies which develop pre-eclampsia. medRxiv. 2023;23289708. doi:10.1101/2023.05.09.23289708.; https://www.gynecology.su/jour/article/view/1966Test

  9. 9
    دورية أكاديمية

    المصدر: Meditsinskiy sovet = Medical Council; № 1 (2024); 269–275 ; Медицинский Совет; № 1 (2024); 269–275 ; 2658-5790 ; 2079-701X

    وصف الملف: application/pdf

    العلاقة: https://www.med-sovet.pro/jour/article/view/8105/7163Test; Saeed NK, Al-Beltagi M, Bediwy AS, El-Sawaf Y, Toema O. Gut microbiota in various childhood disorders: Implication and indications. World J Gastroenterol. 2022;28(18):1875–1901. https://doi.org/10.3748/wjg.v28.i18.1875Test.; Rutayisire E, Huang K, Liu Y, Tao F. The mode of delivery affects the diversity and colonization pattern of the gut microbiota during the first year of infants’ life: a systematic review. BMC Gastroenterol. 2016;16(1):86. https://doi.org/10.1186/s12876-016-0498-0Test.; Barrett E, Ross RP, O’Toole PW, Fitzgerald GF, Stanton C. γ-Aminobutyric acid production by culturable bacteria from the human intestine. J Appl Microbiol. 2012;113(2):411–417. https://doi.org/10.1111/j.1365-2672.2012.05344.xTest.; Смирнова НН, Новикова ВП, Куприенко НБ, Прокопьева НЭ, Хавкин АИ. Влияние микробиома репродуктивного тракта женщины на внутриутробное и постнатальное развитие ребенка. Вопросы гинекологии, акушерства и перинатологии. 2022;21(6):107–112. https://doi.org/10.20953/1726-1678-2022-6-107-112Test.; Koren O, Goodrich JK, Cullender TC, Spor A, Laitinen K, Bäckhed HK et al. Host remodeling of the gut microbiome and metabolic changes during pregnancy. Cell. 2012;150(3):470–480. https://doi.org/10.1016/j.cell.2012.07.008Test.; Беляева ИА, Бомбардирова ЕП, Митиш МД, Потехина ТВ, Харитонова НА. Онтогенез и дизонтогенез микробиоты кишечника у детей раннего возраста: триггерный механизм нарушений детского здоровья. Вопросы современной педиатрии. 2017;16(1):29–38. https://doi.org/10.15690/vsp.v16i1.1692Test.; Ragusa A, Svelato A, Santacroce C, Catalano P, Notarstefano V, Carnevali O et al. Plasticenta: First evidence of microplastics in human placenta. Environ Int. 2021;146:106274. https://doi.org/10.1016/j.envint.2020.106274Test.; Nuriel-Ohayon M, Neuman H, Koren O. Microbial Changes during Pregnancy, Birth, and Infancy. Front Microbiol. 2016;7:1031. https://doi.org/10.3389/fmicb.2016.01031Test.; Jiménez E, Marín ML, Martín R, Odriozola JM, Olivares M, Xaus J et al. Is meconium from healthy newborns actually sterile? Res Microbiol. 2008;159(3):187–193. https://doi.org/10.1016/j.resmic.2007.12.007Test.; Turunen J, Tejesvi MV, Paalanne N, Hekkala J, Lindgren O, Kaakinen M et al. Presence of distinctive microbiome in the first-pass meconium of newborn infants. Sci Rep. 2021;11(1):19449. https://doi.org/10.1038/s41598-021-98951-4Test.; Collado MC, Rautava S, Aakko J, Isolauri E, Salminen S. Human gut colonisation may be initiated in utero by distinct microbial communities in the placenta and amniotic fluid. Sci Rep. 2016;6:23129. https://doi.org/10.1038/srep23129Test.; Ardissone AN, de la Cruz DM, Davis-Richardson AG, Rechcigl KT, Li N, Drew JC, Murgas-Torrazza R et al. Meconium microbiome analysis identifies bacteria correlated with premature birth. PLoS ONE. 2014;9(3):e90784. https://doi.org/10.1371/journal.pone.0090784Test.; Aagaard K, Ma J, Antony KM, Ganu R, Petrosino J, Versalovic J. The placenta harbors a unique microbiome. Sci Transl Med. 2014;6(237):237ra65. https://doi.org/10.1126/scitranslmed.3008599Test.; Fardini Y, Wang X, Témoin S, Nithianantham S, Lee D, Shoham M, Han YW. Fusobacterium nucleatum adhesin FadA binds vascular endothelial cadherin and alters endothelial integrity. Mol Microbiol. 2011;82(6):1468–1480. https://doi.org/10.1111/j.1365-2958.2011.07905.xTest.; Stout MJ, Conlon B, Landeau M, Lee I, Bower C, Zhao Q et al. Identification of intracellular bacteria in the basal plate of the human placenta in term and preterm gestations. Am J Obstet Gynecol. 2013;208(3):226.e1-7. https://doi.org/10.1016/j.ajog.2013.01.018Test.; Шипицына ЕВ. Микробиом плаценты: сдвиг парадигмы или несовершенство методологии. Вестник Российской академии медицинских наук. 2021;76(5):436–448. https://doi.org/10.15690/vramn1489Test.; Kim H, Sitarik AR, Woodcroft K, Johnson CC, Zoratti E. Birth Mode, Breastfeeding, Pet Exposure, and Antibiotic Use: Associations With the Gut Microbiome and Sensitization in Children. Curr Allergy Asthma Rep. 2019;19(4):22. https://doi.org/10.1007/s11882-019-0851-9Test.; Backhed F, Roswall J, Peng Y, Feng Q, Jia H, Kovatcheva-Datchary P et al. Dynamics and stabilization of the human gut microbiome during the first year of life. Cell Host Microbe. 2015;17(6):852. https://doi.org/10.1016/j.chom.2015.05.012Test.; Николаева ИВ. Формирование кишечной микрофлоры ребенка и факторы, влияющие на этот процесс. Детские инфекции. 2011;(3):39–42. Режим доступа: https://cyberleninka.ru/article/n/formirovanie-kishechnoymikroflory-rebenka-i-faktory-vliyayuschie-na-etot-protsessTest.; Dominguez-Bello MG, De Jesus-Laboy KM, Shen N, Cox LM, Amir A, Gonzalez A et al. Partial restoration of the microbiota of cesarean-born infants via vaginal microbial transfer. Nat Med. 2016;22:250–253. https://doi.org/10.1038/nm.4039Test.; Rautava S, Luoto R, Salminen S, Isolauri E. Microbial contact during pregnancy, intestinal colonization and human disease. Nat Rev Gastroenterol Hepatol. 2012;9(10):565–576. https://doi.org/10.1038/nrgastro.2012.144Test.; Victora CG, Bahl R, Barros AJ, França GV, Horton S, Krasevec J et al. Lancet Breastfeeding Series Group. Breastfeeding in the 21st century: epidemiology, mechanisms, and lifelong effect. Lancet. 2016;387(10017):475–490. https://doi.org/10.1016/S0140-6736Test(15)01024-7.; Pannaraj PS, Li F, Cerini C, Bender JM, Yang S, Rollie A et al. Association between breast milk bacterial communities and establishment and development of the infant gut microbiome. JAMA Pediatr. 2017;171:647–654. https://doi.org/10.1001/jamapediatrics.2017.0378Test.; Ho NT, Li F, Lee-Sarwar KA, Tun HM, Brown BP, Pannaraj PS et al. Meta-analysis of effects of exclusive breastfeeding on infant gut microbiota across populations. Nat Commun. 2018;9(1):4169. https://doi.org/10.1038/s41467-018-06473-xTest.; Gopalakrishna KP, Hand TW. Influence of Maternal Milk on the Neonatal Intestinal Microbiome. Nutrients. 2020;12(3):823. https://doi.org/10.3390/nu12030823Test.; Łoniewski I, Skonieczna-Żydecka K, Stachowska L, Fraszczyk-Tousty M, Tousty P, Łoniewska B. Breastfeeding Affects Concentration of Faecal Short Chain Fatty Acids During the First Year of Life: Results of the Systematic Review and Meta-Analysis. Front Nutr. 2022;9:939194. https://doi.org/10.3389/fnut.2022.939194Test.; Chen K, Liu C, Li H, Lei Y, Zeng C, Xu S et al. Infantile Colic Treated With Bifidobacterium longum CECT7894 and Pediococcus pentosaceus CECT8330: A Randomized, Double-Blind, Placebo-Controlled Trial. Front Pediatr. 2021;9:635176. https://doi.org/10.3389/fped.2021.635176Test.; Astó E, Huedo P, Altadill T, Aguiló García M, Sticco M, Perez M, Espadaler-Mazo J. Probiotic Properties of Bifidobacterium longum KABP042 and Pediococcus pentosaceus KABP041 Show Potential to Counteract Functional Gastrointestinal Disorders in an Observational Pilot Trial in Infants. Front Microbiol. 2022;12:741391. https://doi.org/10.3389/fmicb.2021.741391Test.; Navarro-Tapia E, Sticco M, Astó E, Aguilo M, Vallefuoco F, Espadaler J. Patient characteristics influencing infant colic amelioration under probiotic treatment. Ann.Nutr.Metab. 2019;74(Suppl. 1):1–31. https://doi.org/10.1159/000496759Test.; https://www.med-sovet.pro/jour/article/view/8105Test

  10. 10
    دورية أكاديمية

    المساهمون: Работа поддержана государственной программой поисковых научных исследований № 1022040700815-2-3.2.2, 3.1.3-1-11 (FGWN- 2023-0006)

    المصدر: Medical Immunology (Russia); Том 26, № 3 (2024); 425-448 ; Медицинская иммунология; Том 26, № 3 (2024); 425-448 ; 2313-741X ; 1563-0625

    وصف الملف: application/pdf

    العلاقة: https://www.mimmun.ru/mimmun/article/view/2877/1918Test; https://www.mimmun.ru/mimmun/article/view/2877/1932Test; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2877/12631Test; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2877/12632Test; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2877/12633Test; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2877/12634Test; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2877/12635Test; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2877/12636Test; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2877/12637Test; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2877/12638Test; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2877/12639Test; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2877/12640Test; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2877/12641Test; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2877/12642Test; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2877/12643Test; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2877/12644Test; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2877/12966Test; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2877/13498Test; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2877/13536Test; Айламазян Э.К., Степанова О.И., Сельков С.А., Соколов Д.И. Клетки иммунной системы матери и клетки трофобласта: «Конструктивное сотрудничество» ради достижения совместной цели // Вестник Российской академии медицинских наук, 2013. Т. 68, № 11. С. 12-21.; Богданова И.М., Болтовская М.Н. Функциональная и фенотипическая характеристика классических (М1) и альтернативно активированных (М2) макрофагов и их роль в течении нормальной и патологической беременности (обзор литературы) // Проблемы репродукции, 2019. Т. 25, № 5. C. 110-118.; Вишнякова П.А., Ельчанинов А.В., Киселева В.В., Муминова К.Т., Ходжаева З.С., Еремина И.З., Фатхудинов Т.Х. Роль плацентарных макрофагов при физиологической беременности и преэклампсии // Акушерство и гинекология, 2022. № 4. С. 5-12.; Соколов Д.И., Сельков С.А. Децидуальные макрофаги: роль в иммунологическом диалоге матери и плода // Иммунология, 2014. Т. 35, № 2. С. 113-117.; Abel A.M., Yang C., Thakar M.S., Malarkannan S. Natural killer cells: development, maturation, and clinical utilization. Front. Immunol., 2018, Vol. 9, 1869. doi:10.3389/fimmu.2018.01869.; Abrahams V.M., Mor G. Toll-like receptors and their role in the trophoblast. Placenta, 2005, Vol. 26, no. 7, pp. 540-547.; Aldo P.B., Racicot K., Craviero V., Guller S., Romero R., Mor G. Trophoblast induces monocyte differentiation into CD14+/CD16+ macrophages. Am. J. Reprod. Immunol., 2014, Vol. 72, no. 3, pp. 270-284.; Alvarez-Breckenridge C.A., Yu J., Kaur B., Caligiuri M.A., Chiocca E.A. Deciphering the multifaceted relationship between oncolytic viruses and natural killer cells. Adv. Virol., 2012, Vol. 2012, 702839. doi:10.1155/2012/702839.; Antmen E., Vrana N.E., Hasirci V. The role of biomaterials and scaffolds in immune responses in regenerative medicine: macrophage phenotype modulation by biomaterial properties and scaffold architectures. Biomater. Sci., 2021, Vol. 9, no. 24, pp. 8090-8110.; Auwerx J. The human leukemia cell line, THP-1: a multifacetted model for the study of monocytemacrophage differentiation. Experientia, 1991, Vol. 47, no. 1, pp. 22-31.; Bellora F., Castriconi R., Dondero A., Reggiardo G., Moretta L., Mantovani A., Moretta A., Bottino C. The interaction of human natural killer cells with either unpolarized or polarized macrophages results in different functional outcomes. Proc. Natl Acad. Sci. USA, 2010, Vol. 107, no. 50, pp. 21659-21664.; Berezhna V.A., Mamontova T.V., Gromova A.M. Cd68+ M1 macrophages is associated with placental insufficiency under fetal growth restriction. Wiadomości Lekarskie, 2021, Vol. 74, no. 2, pp. 213-219.; Bhattacharya S., Aggarwal A. M2 macrophages and their role in rheumatic diseases. Rheumatol. Int., 2019, Vol. 39, no. 5, pp. 769-780.; Binatti E., Gerussi A., Barisani D., Invernizzi P. The role of macrophages in liver fibrosis: new therapeutic opportunities. Int. J. Mol. Sci., 2022, Vol. 23, no. 12, 6649. doi:10.3390/ijms23126649.; Biswas S.K., Mantovani A. Macrophage plasticity and interaction with lymphocyte subsets: cancer as a paradigm. Nat. Immunol., 2010, Vol. 11, no. 10, pp. 889-896.; Brown M.B., von Chamier M., Allam A.B., Reyes L. M1/M2 macrophage polarity in normal and complicated pregnancy. Front. Immunol., 2014, Vol. 5, 606. doi:10.3389/fimmu.2014.00606.; Camille N., Dealtry G. Regulation of M1/M2 macrophage polarization by Sutherlandia frutescens via NFkB and MAPK signaling pathways. South African J. Botany, 2018, Vol. 116, pp. 42-51.; Capobianco A., Rovere-Querini P. Endometriosis, a disease of the macrophage. Front. Immunol., 2013, Vol. 4, 9. doi:10.3389/fimmu.2013.00009.; Chanput W., Peters V., Wichers H., Verhoeckx K., Cotter P., López-Expósito I., Kleiveland C., Lea T., Mackie A., Requena T., Swiatecka D. THP-1 and U937 Cells. In: The Impact of Food Bioactives on Health: in vitro and ex vivo models [Internet]. Cham (CH): Springer; 2015. Chapter 14. pp. 147-159.; Choi Y.H., Lim E.J., Kim S.W., Moon Y.W., Park K.S., An H.J. IL-27 enhances IL-15/IL-18-mediated activation of human natural killer cells. J. Immunother. Cancer, 2019, Vol. 7, no. 1, 168. doi:10.1186/s40425-019-0652-7.; Co E.C., Gormley M., Kapidzic M., Rosen D.B., Scott M.A., Stolp H.A., McMaster M., Lanier L.L., Barcena A., Fisher S.J. Maternal decidual macrophages inhibit NK cell killing of invasive cytotrophoblasts during human pregnancy. Biol. Reprod., 2013, Vol. 88, no. 6, 155. doi:10.1095/biolreprod.112.099465.; Corvino D., Kumar A., Bald T. Plasticity of NK cells in Cancer. Front. Immunol., 2022, Vol. 13, 888313. doi:10.3389/fimmu.2022.888313.; Daigneault M., Preston J.A., Marriott H.M., Whyte M.K., Dockrell D.H. The identification of markers of macrophage differentiation in PMA-stimulated THP-1 cells and monocyte-derived macrophages. PLoS One, 2010, Vol. 5, no. 1, e8668. doi:10.1371/journal.pone.0008668.; Dante G., Vaccarо V., Facchinetti F. Use of progestagens during early pregnancу. Facts Views Vis. Obgyn, 2013, Vol. 5, no. 1, pp. 66-71.; Dekel N., Gnainsky Y., Granot I., Mor G. Inflammation and implantation. Am. J. Reprod. Immunol., 2010, Vol. 63, no. 1, pp. 17-21.; Deng L., Jian Z., Xu T., Li F., Deng H., Zhou Y., Lai S., Xu Z., Zhu L. Macrophage polarization: an important candidate regulator for lung diseases. Molecules, 2023, Vol. 28, no. 5, 2379. doi:10.3390/molecules28052379.; Ding J., Yang C., Cheng Y., Wang J., Zhang S., Yan S., He F., Yin T., Yang J. Trophoblast-derived IL-6 serves as an important factor for normal pregnancy by activating Stat3-mediated M2 macrophages polarization. Int. Immunopharmacol., 2021, Vol. 90, 106788. doi:10.1016/j.intimp.2020.106788.; Ding J., Yang C., Zhang Y., Wang J., Zhang S., Guo D., Yin T., Yang J. M2 macrophage-derived G-CSF promotes trophoblasts EMT, invasion and migration via activating PI3K/Akt/Erk1/2 pathway to mediate normal pregnancy. J. Cell. Mol. Med., 2021, Vol. 25, no. 4, pp. 2136-2147.; Faas M.M., de Vos P. Uterine NK cells and macrophages in pregnancy. Placenta, 2017, Vol. 56, pp. 44-52.; Faas M.M., Spaans F., de Vos P. Monocytes and macrophages in pregnancy and pre-eclampsia. Front. Immunol., 2014, Vol. 5, 298. doi:10.3389/fimmu.2014.00298; Ferrante C.J., Pinhal-Enfield G., Elson G., Cronstein B.N., Hasko G., Outram S., Leibovich S.J. The adenosine-dependent angiogenic switch of macrophages to an M2-like phenotype is independent of interleukin-4 receptor alpha (IL-4Ralpha) signaling. Inflammation, 2013, Vol. 36, no. 4, pp. 921-931.; Gatto F., Cagliani R., Catelani T., Guarnieri D., Moglianetti M., Pompa P.P., Bardi G. PMA-induced THP-1 macrophage differentiation is not impaired by citrate-coated platinum nanoparticles. Nanomaterials (Basel), 2017, Vol. 7, no. 10, 332. doi:10.3390/nano7100332.; Geissmann F., Manz M.G., Jung S., Sieweke M.H., Merad M., Ley K. Development of monocytes, macrophages, and dendritic cells. Science, 2010, Vol. 327, no. 5966, pp. 656-661.; Genin M., Clement F., Fattaccioli A., Raes M., Michiels C. M1 and M2 macrophages derived from THP-1 cells differentially modulate the response of cancer cells to etoposide. BMC Cancer, 2015, Vol. 15, 577. doi:10.1186/s12885-015-1546-9.; Gomez-Lopez N., Garcia-Flores V., Chin P.Y., Groome H.M., Bijland M.T., Diener K.R., Romero R., Robertson S.A. Macrophages exert homeostatic actions in pregnancy to protect against preterm birth and fetal inflammatory injury. JCI Insight, 2021, Vol. 6, no. 19, e146089. doi:10.1172/jci.insight.146089.; Grasso E., Paparini D., Hauk V., Salamone G., Leiros C.P., Ramhorst R. Differential migration and activation profile of monocytes after trophoblast interaction. PLoS One, 2014, Vol. 9, no. 5, e97147. doi:10.1371/journal.pone.0097147.; Hamza T., Barnett J.B., Li B. Interleukin 12 a key immunoregulatory cytokine in infection applications. Int. J. Mol. Sci., 2010, Vol. 11, no. 3, pp. 789-806.; Huang C., Bi J. Expression regulation and function of T-Bet in NK cells. Front. Immunol., 2021, Vol. 12, 761920. doi:10.3389/fimmu.2021.761920.; Huang H.L., Yang H.L., Lai Z.Z., Yang S.L., Li M.Q., Li D.J. Decidual IDO(+) macrophage promotes the proliferation and restricts the apoptosis of trophoblasts. J. Reprod. Immunol., 2021, Vol. 148, 103364. doi:10.1016/j.jri.2021.103364.; Huber R., Pietsch D., Gunther J., Welz B., Vogt N., Brand K. Regulation of monocyte differentiation by specific signaling modules and associated transcription factor networks. Cell. Mol. Life Sci., 2014, Vol. 71, no. 1, pp. 63-92.; Huntington N.D., Legrand N., Alves N.L., Jaron B., Weijer K., Plet A., Corcuff E., Mortier E., Jacques Y., Spits H., Di Santo J.P. IL-15 trans-presentation promotes human NK cell development and differentiation in vivo. J. Exp. Med., 2009, Vol. 206, no. 1, pp. 25-34.; Jena M.K., Nayak N., Chen K., Nayak N.R. Role of macrophages in pregnancy and related complications. Arch. Immunol. Ther. Exp. (Warsz), 2019, Vol. 67, no. 5, pp. 295-309.; Jones R.L., Hannan N.J., Kaitu’u T.J., Zhang J., Salamonsen L.A. Identification of chemokines important for leukocyte recruitment to the human endometrium at the times of embryo implantation and menstruation. J. Clin. Endocrinol. Metab., 2004, Vol. 89, no. 12, pp. 6155-6167.; Kamoshida G., Matsuda A., Sekine W., Mizuno H., Oku T., Itoh S., Irimura T., Tsuji T. Monocyte differentiation induced by co-culture with tumor cells involves RGD-dependent cell adhesion to extracellular matrix. Cancer Lett., 2012, Vol. 315, no. 2, pp. 145-152.; Kapellos T.S., Bonaguro L., Gemund I., Reusch N., Saglam A., Hinkley E.R., Schultze J.L. Human monocyte subsets and phenotypes in major chronic inflammatory diseases. Front. Immunol., 2019, Vol. 10, 2035. doi:10.3389/fimmu.2019.02035.; Kim J.S., Romero R., Cushenberry E., Kim Y.M., Erez O., Nien J.K., Yoon B.H., Espinoza J., Kim C.J. Distribution of CD14+ and CD68+ macrophages in the placental bed and basal plate of women with preeclampsia and preterm labor. Placenta, 2007, Vol. 28, no. 5-6, pp. 571-576.; Kim Y., Nurakhayev S., Nurkesh A., Zharkinbekov Z., Saparov A. Macrophage polarization in cardiac tissue repair following myocardial infarction. Int. J. Mol. Sci., 2021, Vol. 22, no. 5, 2715. doi:10.3390/ijms22052715.; Krasselt M., Baerwald C., Wagner U., Rossol M. CD56+ monocytes have a dysregulated cytokine response to lipopolysaccharide and accumulate in rheumatoid arthritis and immunosenescence. Arthritis Res. Ther., 2013, Vol. 15, no. 5, R139. doi:10.1186/ar4321.; Krneta T., Gillgrass A., Poznanski S., Chew M., Lee A.J., Kolb M., Ashkar A.A. M2-polarized and tumorassociated macrophages alter NK cell phenotype and function in a contact-dependent manner. J. Leukoc. Biol., 2017, Vol. 101, no. 1, pp. 285-295.; Lasch M., Sudan K., Paul C., Schulz C., Kolben T., Dorp J.V., Eren S., Beyer S., Siniscalchi L., Mahner S., Jeschke U., Meister S. Isolation of decidual macrophages and hofbauer cells from term placenta-comparison of the expression of CD163 and CD80. Int. J. Mol. Sci., 2022, Vol. 23, no. 11, 6113. doi:10.3390/ijms23116113.; Lavoie P.M., Levy O. The mononuclear phagocyte system. In Fetal and Neonatal Physiology. 5. Chapter 125. Elsevier; 2016. pp. 1208-1216.; Lawrence T., Natoli G. Transcriptional regulation of macrophage polarization: enabling diversity with identity. Nat. Rev. Immunol., 2011, Vol. 11, no. 11, pp. 750-761.; Lee S.-Y. Phellinus linteus extract regulates macrophage polarization in human THP-1 Cells. J. Life Sci., 2000, Vol. 30, pp. 113-121.; Leong J.W., Wagner J.A., Ireland A.R., Fehniger T.A. Transcriptional and post-transcriptional regulation of NK cell development and function. Clin. Immunol., 2017, Vol. 177, pp. 60-69.; Liu Y., Gao S., Zhao Y., Wang H., Pan Q., Shao Q. Decidual natural killer cells: a good nanny at the maternalfetal interface during early pregnancy. Front. Immunol., 2021, Vol. 12, 663660. doi:10.3389/fimmu.2021.663660.; Liu Y.C., Zou X.B., Chai Y.F., Yao Y.M. Macrophage polarization in inflammatory diseases. Int. J. Biol. Sci., 2014, Vol. 10, no. 5, pp. 520-529.; Luu T., AlSubki L., Wolf K., Thees A., Ganieva U., Dambaeva S., Beaman K., Kwak-Kim J. Natural killer cell-mediated immunopathology in recurrent pregnancy losses. Explor. Immunol., 2022, Vol. 2, no. 5, pp. 693-722.; Macklin P.S., McAuliffe J., Pugh C.W., Yamamoto A. Hypoxia and HIF pathway in cancer and the placenta. Placenta, 2017, Vol. 56, pp. 8-13.; Male V., Sharkey A., Masters L., Kennedy P.R., Farrell L.E., Moffett A. The effect of pregnancy on the uterine NK cell KIR repertoire. Eur. J. Immunol., 2011, Vol. 41, no. 10, pp. 3017-3027.; Mattiola I., Pesant M., Tentorio P.F., Molgora M., Marcenaro E., Lugli E., Locati M., Mavilio D. Priming of human resting NK cells by autologous M1 macrophages via the engagement of IL-1beta, IFN-beta, and IL-15 Pathways. J. Immunol., 2015, Vol. 195, no. 6, pp. 2818-2828.; Michel T., Hentges F., Zimmer J. Consequences of the crosstalk between monocytes/macrophages and natural killer cells. Front. Immunol., 2012, Vol. 3, 403. doi:10.3389/fimmu.2012.00403.; Mikhailova V.A., Bazhenov D.O., Belyakova K.L., Selkov S.A., Sokolov D.I. Differentiation of NK cells. A look through the prism of transcription factors and intracellular messengers. Medical Immunology (Russia), 2019, Vol. 21, no. 1, pp. 21-38. doi:10.15789/1563-0625-2019-1-21-38.; Mikhailova V.A., Grebenkina P.V., Tyshchuk E.V., Davydova A.A., Zagaynova V.A., Kogan I.Y., Selkov S.A., Sokolov D.I. Phenotypic profile of peripheral blood NK cells under culturing with trophoblast cells and IL-15 and IL-18 cytokines. Medical Immunology (Russia), 2021, Vol. 23, no. 6, pp. 1383-1388. doi:10.15789/1563-0625-ppo-2403.; Mohamed M.E., Gamal R.M., El-Mokhtar M.A., Hassan A.T., Abozaid H.S.M., Ghandour A.M., Abdelmoez A.I.S., H A.Y., E H.E.-H., Y S.M., Abdellatif Awad A. Peripheral cells from patients with systemic sclerosis disease co-expressing M1 and M2 monocyte/macrophage surface markers: Relation to the degree of skin involvement. Hum. Immunol., 2021, Vol. 82, no. 9, pp. 634-639.; Molgora M., Supino D., Mavilio D., Santoni A., Moretta L., Mantovani A.,Garlanda C. The yin-yang of the interaction between myelomonocytic cells and NK cells. Scand. J. Immunol., 2018, Vol. 88, no. 3, e12705. doi:10.1111/sji.12705.; Mor G. Inflammation and pregnancy: the role of toll-like receptors in trophoblast-immune interaction. Ann. N. Y. Acad. Sci., 2008, Vol. 1127, pp. 121-128.; Mor G., Abrahams V.M. Potential role of macrophages as immunoregulators of pregnancy. Reprod. Biol. Endocrinol., 2003, Vol. 1, 119. doi:10.1186/1477-7827-1-119.; Mor G., Cardenas I., Abrahams V., Guller S. Inflammation and pregnancy: the role of the immune system at the implantation site. Ann. N. Y. Acad. Sci., 2011, Vol. 1221, no. 1, pp. 80-87.; Mukherjee C., Hale C., Mukhopadhyay S. A simple multistep protocol for differentiating human induced pluripotent stem cells into functional macrophages. Methods Mol. Biol., 2018, Vol. 1784, pp. 13-28.; Ning F., Liu H., Lash G.E. The Role of decidual macrophages during normal and pathological pregnancy. Am. J. Reprod. Immunol., 2016, Vol. 75, no. 3, pp. 298-309.; Noh J.Y., Yoon S.R., Kim T.D., Choi I., Jung H. Toll-like receptors in natural killer cells and their application for immunotherapy. J. Immunol. Res., 2020, Vol. 2020, 2045860. doi:10.1155/2020/2045860.; Nunez S.Y., Ziblat A., Secchiari F., Torres N.I., Sierra J.M., Raffo Iraolagoitia X.L., Araya R.E., Domaica C.I., Fuertes M.B., Zwirner N.W. Human M2 macrophages limit NK cell effector functions through secretion of TGFbeta and engagement of CD85j. J. Immunol., 2018, Vol. 200, no. 3, pp. 1008-1015.; Ogle M.E., Segar C.E., Sridhar S., Botchwey E.A. Monocytes and macrophages in tissue repair: Implications for immunoregenerative biomaterial design. Exp. Biol. Med. (Maywood), 2016, Vol. 241, no. 10, pp. 1084-1097.; Olmos-Ortiz A., Flores-Espinosa P., Mancilla-Herrera I., Vega-Sanchez R., Diaz L., Zaga-Clavellina V. Innate immune cells and toll-like receptor-dependent responses at the maternal-fetal interface. Int. J. Mol. Sci., 2019, Vol. 20, no. 15, 3654. doi:10.3390/ijms20153654.; Orekhov A.N., Orekhova V.A., Nikiforov N.G., Myasoedova V.A., Grechko A.V., Romanenko E.B., Zhang D., Chistiakov D.A. Monocyte differentiation and macrophage polarization. Vessel Plus, 2019, Vol. 3, 10. doi:10.20517/2574-1209.2019.04; Ozanska A., Szymczak D., Rybka J. Pattern of human monocyte subpopulations in health and disease. Scand. J. Immunol., 2020, Vol. 92, no. 1, pp. e12883. doi:10.1111/sji.12883.; Papak I., Chrusciel E., Dziubek K., Kurkowiak M., Urban-Wojciuk Z., Marjanski T., Rzyman W., MarekTrzonkowska N. What inhibits natural killers’ performance in tumour. Int. J. Mol. Sci., 2022, Vol. 23, no. 13, 7030. doi:10.3390/ijms23137030.; Parasar P., Guru N., Nayak N.R. Contribution of macrophages to fetomaternal immunological tolerance. Hum. Immunol., 2021, Vol. 82, no. 5, pp. 325-331.; Park D.W., Yang K.M. Hormonal regulation of uterine chemokines and immune cells. Clin. Exp. Reprod. Med., 2011, Vol. 38, no. 4, pp. 179-185.; Paul S., Lal G. The Molecular mechanism of natural killer cells function and its importance in cancer immunotherapy. Front. Immunol., 2017, Vol. 8, 1124. doi:10.3389/fimmu.2017.01124.; Peng L.S., Zhang J.Y., Teng Y.S., Zhao Y.L., Wang T.T., Mao F.Y., Lv Y.P., Cheng P., Li W.H., Chen N., Duan M., Chen W., Guo G., Zou Q.M., Zhuang Y. Tumor-Associated Monocytes/Macrophages Impair NK-Cell Function via TGFbeta1 in Human Gastric Cancer. Cancer Immunol. Res., 2017, Vol. 5, no. 3, pp. 248-256.; Piersma S.J., Brizic I. Natural killer cell effector functions in antiviral defense. FEBS J., 2022, Vol. 289, no. 14, pp. 3982-3999.; Platanitis E., Decker T. Regulatory networks involving STATs, IRFs, and NFkappaB in inflammation. Front. Immunol., 2018, Vol. 9, 2542. doi:10.3389/fimmu.2018.02542.; Qin X.Y., Shen H.H., Zhou W.J., Mei J., Lu H., Tan X.F., Zhu R., Zhou W.H., Li D.J., Zhang T., Ye J.F., Li M.Q. Insight of autophagy in spontaneous miscarriage. Int. J. Biol. Sci., 2022, Vol. 18, no. 3, pp. 1150-1170.; Radomska-Lesniewska D.M., Bialoszewska A., Kaminski P. Angiogenic properties of NK cells in cancer and other angiogenesis-dependent diseases. Cells, 2021, Vol. 10, no. 7, 1621. doi:10.3390/cells10071621.; Raghupathy R., Al Mutawa E., Makhseed M., Azizieh F., Szekeres-Bartho J. Modulation of cytokine production by dydrogesterone in lymphocytes from women with recurrent miscarriage. BJOG, 2005, Vol. 112, no. 8, pp. 1096-1101.; Raza A., Rossi G.R., Janjua T.I., Souza-Fonseca-Guimaraes F., Popat A. Nanobiomaterials to modulate natural killer cell responses for effective cancer immunotherapy. Trends Biotechnol., 2023, Vol. 41, no. 1, pp. 77-92.; Renaud S.J., Graham C.H. The role of macrophages in utero-placental interactions during normal and pathological pregnancy. Immunol. Invest., 2008, Vol. 37, no. 5, pp. 535-564.; Robinson D.P., Klein S.L. Pregnancy and pregnancy-associated hormones alter immune responses and disease pathogenesis. Horm. Behav., 2012, Vol. 62, no. 3, pp. 263-271.; Roszer T. Understanding the mysterious M2 macrophage through activation markers and effector mechanisms. Mediators Inflamm., 2015, Vol. 2015, 816460. doi:10.1155/2015/816460.; Sanmarco L.M., Eberhardt N., Ponce N.E., Cano R.C., Bonacci G., Aoki M.P. New Insights into the immunobiology of mononuclear phagocytic cells and their relevance to the pathogenesis of cardiovascular diseases. Front. Immunol., 2017, Vol. 8, 1921. doi:10.3389/fimmu.2017.01921.; Shapouri-Moghaddam A., Mohammadian S., Vazini H., Taghadosi M., Esmaeili S.A., Mardani F., Seifi B., Mohammadi A., Afshari J.T., Sahebkar A. Macrophage plasticity, polarization, and function in health and disease. J. Cell. Physiol., 2018, Vol. 233, no. 9, pp. 6425-6440.; Sharkey A.M., Xiong S., Kennedy P.R., Gardner L., Farrell L.E., Chazara O., Ivarsson M.A., Hiby S.E., Colucci F., Moffett A. Tissue-specific education of decidual NK сells. J. Immunol., 2015, Vol. 195, no. 7, pp. 3026-3032.; Shmeleva E.V., Colucci F. Maternal natural killer cells at the intersection between reproduction and mucosal immunity. Mucosal Immunol., 2021, Vol. 14, no. 5, pp. 991-1005.; Simonetta F., Pradier A., Roosnek E. T-bet and eomesodermin in NK cell development, maturation, and function. Front. Immunol., 2016, Vol. 7, 241. doi:10.3389/fimmu.2016.00241.; Socha M.W., Malinowski B., Puk O., Wartega M., Stankiewicz M., Kazdepka-Zieminska A., Wicinski M. The role of NF-kappaB in uterine spiral arteries remodeling, insight into the cornerstone of preeclampsia. Int. J. Mol. Sci., 2021, Vol. 22, no. 2. doi:10.3390/ijms22020704.; Sprangers S., de Vries T.J., Everts V. Monocyte heterogeneity: consequences for monocyte-derived immune cells. J. Immunol. Res., 2016, Vol. 2016, 1475435. doi:10.1155/2016/1475435.; Stojanovic A., Correia M.P., Cerwenka A. The NKG2D/NKG2DL Axis in the crosstalk between lymphoid and myeloid cells in health and disease. Front. Immunol., 2018, Vol. 9, 827. doi:10.3389/fimmu.2018.00827.; Sun F., Wang S., Du M. Functional regulation of decidual macrophages during pregnancy. J. Reprod. Immunol., 2021, Vol. 143, 103264. doi:10.1016/j.jri.2020.103264.; Svensson J., Jenmalm M.C., Matussek A., Geffers R., Berg G., Ernerudh J. Macrophages at the fetal-maternal interface express markers of alternative activation and are induced by M-CSF and IL-10. J. Immunol., 2011, Vol. 187, no. 7, pp. 3671-3682.; Tarannum M., Romee R. Cytokine-induced memory-like natural killer cells for cancer immunotherapy. Stem Cell Res. Ther., 2021, Vol. 12, no. 1, 592. doi:10.1186/s13287-021-02655-5.; Tsai Y.C., Tseng J.T., Wang C.Y., Su M.T., Huang J.Y., Kuo P.L. Medroxyprogesterone acetate drives M2 macrophage differentiation toward a phenotype of decidual macrophage. Mol. Cell. Endocrinol., 2017, Vol. 452, pp. 74-83.; Tsuchiya S., Yamabe M., Yamaguchi Y., Kobayashi Y., Konno T., Tada K. Establishment and characterization of a human acute monocytic leukemia cell line (THP-1). Int. J. Cancer, 1980, Vol. 26, no. 2, pp. 171-176.; Valledor A.F., Comalada M., Santamaria-Babi L.F., Lloberas J., Celada A. Macrophage proinflammatory activation and deactivation: a question of balance. Adv. Immunol., 2010, Vol. 108, pp. 1-20.; van Acker H.H., Capsomidis A., Smits E.L., van Tendeloo V.F. CD56 in the immune system: more than a marker for cytotoxicity? Front. Immunol., 2017, Vol. 8, 892. doi:10.3389/fimmu.2017.00892.; van Furth R., Cohn Z.A., Hirsch J.G., Humphrey J.H., Spector W.G., Langevoort H.L. The mononuclear phagocyte system: a new classification of macrophages, monocytes, and their precursor cells. Bull World Health Organ, 1972, Vol. 46, no. 6, pp. 845-852.; Vishnyakova P., Elchaninov A., Fatkhudinov T., Sukhikh G. Role of the Monocyte-Macrophage System in Normal Pregnancy and Preeclampsia. Int. J. Mol. Sci., 2019, Vol. 20, no. 15, 3695. doi:10.3390/ijms20153695.; Vishnyakova P., Poltavets A., Nikitina M., Midiber K., Mikhaleva L., Muminova K., Potapova A., Khodzhaeva Z., Pyregov A., Elchaninov A., Fatkhudinov T.,Sukhikh G. Expression of Estrogen Receptor alpha by Decidual Macrophages in Preeclampsia. Biomedicines, 2021, Vol. 9, no. 2, 191. doi:10.3390/biomedicines9020191.; Vitale M., Cantoni C., Pietra G., Mingari M.C.,Moretta L. Effect of tumor cells and tumor microenvironment on NK-cell function. Eur. J. Immunol., 2014, Vol. 44, no. 6, pp. 1582-1592.; Vivier E., Raulet D.H., Moretta A., Caligiuri M.A., Zitvogel L., Lanier L.L., Yokoyama W.M., Ugolini S. Innate or adaptive immunity? The example of natural killer cells. Science, 2011, Vol. 331, no. 6013, pp. 44-49.; Wang W., Sung N., Gilman-Sachs A., Kwak-Kim J. T Helper (Th) Cell Profiles in Pregnancy and Recurrent Pregnancy Losses: Th1/Th2/Th9/Th17/Th22/Tfh Cells. Front. Immunol., 2020, Vol. 11, 2025. doi:10.3389/fimmu.2020.02025.; Wang X., Xiong H., Ning Z. Implications of NKG2A in immunity and immune-mediated diseases. Front. Immunol., 2022, Vol. 13, 960852. doi:10.3389/fimmu.2022.960852.; Wang X., Zhao X.Y. Transcription factors associated with IL-15 cytokine signaling during NK cell development. Front. Immunol., 2021, Vol. 12, 610789. doi:10.3389/fimmu.2021.610789.; Wang X.Q., Zhou W.J., Hou X.X., Fu Q., Li D.J. Trophoblast-derived CXCL16 induces M2 macrophage polarization that in turn inactivates NK cells at the maternal-fetal interface. Cell. Mol. Immunol., 2018, Vol. 15, no. 12, pp. 1038-1046.; Wheeler K.C., Jena M.K., Pradhan B.S., Nayak N., Das S., Hsu C.D., Wheeler D.S., Chen K., Nayak N.R. VEGF may contribute to macrophage recruitment and M2 polarization in the decidua. PLoS One, 2018, Vol. 13, no. 1, e0191040. doi:10.1371/journal.pone.0191040.; Wong K.L., Yeap W.H., Tai J.J., Ong S.M., Dang T.M., Wong S.C. The three human monocyte subsets: implications for health and disease. Immunol. Res., 2012, Vol. 53, no. 1-3, pp. 41-57.; Wu J., He S., Song Z., Chen S., Lin X., Sun H., Zhou P., Peng Q., Du S., Zheng S., Liu X. Macrophage polarization states in atherosclerosis. Front. Immunol., 2023, Vol. 14, 1185587. doi:10.3389/fimmu.2023.1185587.; Wu M.F., Lin C.A., Yuan T.H., Yeh H.Y., Su S.F., Guo C.L., Chang G.C., Li K.C., Ho C.C., Chen H.W. The M1/ M2 spectrum and plasticity of malignant pleural effusion-macrophage in advanced lung cancer. Cancer Immunol. Immunother., 2021, Vol. 70, no. 5, pp. 1435-1450.; Wu Y., Kuang D.M., Pan W.D., Wan Y.L., Lao X.M., Wang D., Li X.F., Zheng L. Monocyte/macrophageelicited natural killer cell dysfunction in hepatocellular carcinoma is mediated by CD48/2B4 interactions. Hepatology, 2013, Vol. 57, no. 3, pp. 1107-1116.; Wu Y., Tian Z.,Wei H. Developmental and functional control of natural killer cells by cytokines. Front. Immunol., 2017, Vol. 8, 930. doi:10.3389/fimmu.2017.00930.; Wu Z.M., Yang H., Li M., Yeh C.C., Schatz F., Lockwood C.J., Di W., Huang S.J. Pro-inflammatory cytokinestimulated first trimester decidual cells enhance macrophage-induced apoptosis of extravillous trophoblasts. Placenta, 2012, Vol. 33, no. 3, pp. 188-194.; Xia T., Zhang M., Lei W., Yang R., Fu S., Fan Z., Yang Y., Zhang T. Advances in the role of STAT3 in macrophage polarization. Front. Immunol., 2023, Vol. 14, 1160719. doi:10.3389/fimmu.2023.1160719.; Xu Y.Y., Wang S.C., Li D.J., Du M.R. Co-signaling molecules in maternal-fetal immunity. Trends Mol. Med., 2017, Vol. 23, no. 1, pp. 46-58.; Yakupova E.I., Maleev G.V., Krivtsov A.V., Plotnikov E.Y. Macrophage polarization in hypoxia and ischemia/ reperfusion: Insights into the role of energetic metabolism. Exp. Biol. Med. (Maywood), 2022, Vol. 247, no. 11, pp. 958-971.; Yao Y., Xu X.H., Jin L. Macrophage polarization in physiological and pathological pregnancy. Front. Immunol., 2019, Vol. 10, 792. doi:10.3389/fimmu.2019.00792.; Yu S., Ge H., Li S., Qiu H.J. Modulation of macrophage polarization by viruses: turning off/on host antiviral responses. Front. Microbiol., 2022, Vol. 13, 839585. doi:10.3389/fmicb.2022.839585.; Zha Y., Liu H., Lin X., Yu L., Gao P., Li Y., Wu M., Gong X., Bian X., Kang Q., Zhi P., Dang X., Wang J., Feng L., Qiao F., Huang Y., Zeng W. Immune deviation in the decidua during term and preterm labor. Front. Immunol., 2022, Vol. 13, 877314. doi:10.3389/fimmu.2022.877314.; Zhang F., Wang H., Wang X., Jiang G., Liu H., Zhang G., Wang H., Fang R., Bu X., Cai S., Du J. TGFbeta induces M2-like macrophage polarization via SNAIL-mediated suppression of a pro-inflammatory phenotype. Oncotarget, 2016, Vol. 7, no. 32, pp. 52294-52306.; Zhang J., Le Gras S., Pouxvielh K., Faure F., Fallone L., Kern N., Moreews M., Mathieu A.L., Schneider R., Marliac Q., Jung M., Berton A., Hayek S., Vidalain P.O., Marcais A., Dodard G., Dejean A., Brossay L., GhaviHelm Y., Walzer T. Sequential actions of EOMES and T-BET promote stepwise maturation of natural killer cells. Nat. Commun., 2021, Vol. 12, no. 1, 5446. doi:10.1038/s41467-021-25758-2.; Zhang J., Rousseaux N., Walzer T. Eomes and T-bet, a dynamic duo regulating NK cell differentiation. Bioessays, 2022, Vol. 44, no. 3, e2100281. doi:10.1002/bies.202100281.; Zhang L., Mamillapalli R., Habata S., McAdow M., Taylor H.S. Myometrial-derived CXCL12 promotes lipopolysaccharide induced preterm labour by regulating macrophage migration, polarization and function in mice. J. Cell. Mol. Med., 2022, Vol. 26, no. 9, pp. 2566-2578.; Zhang M., Cui D., Yang H. The distributional characteristics of M2 macrophages in the placental chorionic villi are altered among the term pregnant women with uncontrolled type 2 diabetes mellitus. Front. Immunol., 2022, Vol. 13, 837391. doi:10.3389/fimmu.2022.837391.; Zhang Q., Sioud M. Tumor-associated macrophage subsets: shaping polarization and targeting. Int. J. Mol. Sci., 2023, Vol. 24, no. 8, 7493. doi:10.3390/ijms24087493.; Zhang S., Ding J., Zhang Y., Liu S., Yang J., Yin T. Regulation and function of chemokines at the maternalfetal interface. Front. Cell Dev. Biol., 2022, Vol. 10, 826053. doi:10.3389/fcell.2022.826053.; Zhang Y.H., Aldo P., You Y., Ding J., Kaislasuo J., Petersen J.F., Lokkegaard E., Peng G., Paidas M.J., Simpson S., Pal L., Guller S., Liu H., Liao A.H., Mor G. Trophoblast-secreted soluble-PD-L1 modulates macrophage polarization and function. J. Leukoc. Biol., 2020, Vol. 108, no. 3, pp. 983-998.; Zhang Y.H., He M., Wang Y., Liao A.H. Modulators of the balance between M1 and M2 macrophages during pregnancy. Front. Immunol., 2017, Vol. 8, 120. doi:10.3389/fimmu.2017.00120.; Zwirner N.W., Ziblat A. Regulation of NK cell activation and effector functions by the IL-12 family of cytokines: the case of IL-27. Front. Immunol., 2017, Vol. 8, 25. doi:10.3389/fimmu.2017.00025.; https://www.mimmun.ru/mimmun/article/view/2877Test