يعرض 1 - 10 نتائج من 264 نتيجة بحث عن '"немелкоклеточный рак лёгкого"', وقت الاستعلام: 1.17s تنقيح النتائج
  1. 1
    دورية أكاديمية

    المصدر: Research and Practical Medicine Journal; Том 11, № 1 (2024); 19-28 ; Research'n Practical Medicine Journal; Том 11, № 1 (2024); 19-28 ; 2410-1893 ; 10.17709/2410-1893-2024-11-1

    وصف الملف: application/pdf

    العلاقة: https://www.rpmj.ru/rpmj/article/view/984/609Test; https://www.rpmj.ru/rpmj/article/downloadSuppFile/984/909Test; https://www.rpmj.ru/rpmj/article/downloadSuppFile/984/911Test; Cостояние онкологической помощи населению России в 2022 г. Под ред. Каприна А. Д., Старинского В. В., Шахзадовой А. О. М., 2023. Доступно по: https://oncology-association.ru/wp-content/uploads/2023/08/sop-2022-el.versiya_compressed.pdfTest. Дата обращения: 19.02.2024.; Клинические рекомендации Министерство здравоохранения Российской Федерации «Злокачественное новообразование бронхов и легкого». М., 2021. Доступно по: https://oncology-association.ru/wp-content/uploads/2021/02/rak-legkogo-2021.pdfTest. Дата обращения: 19.02.2024.; Aupérin A, Le Péchoux C, Rolland E, Curran WJ, Furuse K, Fournel P, et al. Meta-analysis of concomitant versus sequential radiochemotherapy in locally advanced non-small-cell lung cancer. J Clin Oncol. 2010 May 1;28(13):2181–2190. https://doi.org/10.1200/jco.2009.26.2543Test; Деньгина Н. В. Оптимальные схемы химиолучевого лечения немелкоклеточного рака легкого III стадии. Поволжский онкологический вестник. 2015;2:74–79.; McMillan MT, Ojerholm E, Verma V, Higgins KA, Singhal S, Predina JD, et al. Radiation Treatment Time and Overall Survival in Locally Advanced Non-small Cell Lung Cancer. Int J Radiat Oncol Biol Phys. 2017 Aug 1;98(5):1142–1152. https://doi.org/10.1016/j.ijrobp.2017.04.004Test; Nielson CM, Bylsma LC, Fryzek JP, Saad HA, Crawford J. Relative Dose Intensity of Chemotherapy and Survival in Patients with Advanced Stage Solid Tumor Cancer: A Systematic Review and Meta-Analysis. Oncologist. 2021 Sep;26(9):e1609–e1618. https://doi.org/10.1002/onco.13822Test; Crawford J, Denduluri N, Patt D, Jiao X, Morrow PK, Garcia J, et al. Relative dose intensity of first-line chemotherapy and overall survival in patients with advanced non-small-cell lung cancer. Support Care Cancer. 2020 Feb;28(2):925–932. https://doi.org/10.1007/s00520-019-04875-1Test; Luciani A, Bertuzzi C, Ascione G, Di Gennaro E, Bozzoni S, Zonato S, Ferrari D, Foa P. Dose intensity correlate with survival in elderly patients treated with chemotherapy for advanced non-small cell lung cancer. Lung Cancer. 2009 Oct;66(1):94–96. https://doi.org/10.1016/j.lungcan.2008.12.019Test; Деньгина Н. В., Митин Т. В., Черных М. В. Химиолучевая терапия немелкоклеточного рака легкого: наиболее частые осложнения лечения и методы борьбы с ними. Медицинский алфавит. 2019;2(17):43–48. https://doi.org/10.33667/2078-5631-2019-2-17Test(392)-43-48; Havrilesky LJ, Reiner M, Morrow PK, Watson H, Crawford J. A review of relative dose intensity and survival in patients with metastatic solid tumors. Crit Rev Oncol Hematol. 2015 Mar;93(3):203–210. https://doi.org/10.1016/j.critrevonc.2014.10.006Test; https://www.rpmj.ru/rpmj/article/view/984Test

  2. 2
    دورية أكاديمية
  3. 3
    دورية أكاديمية
  4. 4
    دورية أكاديمية

    المساهمون: The study was carried out within the framework of the basic budget financing projects of the Ministry of Education and Science of Russia (No. 121030200173-6) and the Ministry of Health of Russia (No. 121031300227-2)., Исследование выполнено в рамках проектов базового бюджетного финансирования Минобрнауки России (№ 121030200173-6) и Минздрава России (№ 121031300227-2).

    المصدر: Advances in Molecular Oncology; Том 10, № 2 (2023); 78-89 ; Успехи молекулярной онкологии; Том 10, № 2 (2023); 78-89 ; 2413-3787 ; 2313-805X ; 10.17650/2313-805X-2023-10-2

    وصف الملف: application/pdf

    العلاقة: https://umo.abvpress.ru/jour/article/view/543/302Test; Sung H., Ferlay J., Siegel R.L. et al. Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 2021;71(3):209–49. DOI:10.3322/caac.21660; Eberhardt W.E., Pöttgen C., Gauler T.C. et al. Phase III study of surgery versus definitive concurrent chemoradiotherapy boost in patients with resectable stage IIIA(N2) and selected IIIB non-small-cell lung cancer after induction chemotherapy and concurrent chemoradiotherapy (ESPATUE). J Clin Oncol 2015;33(35):4194–201. DOI:10.1200/JCO.2015.62.6812; Chang K., Wang H. The cancer genome atlas pan-cancer analysis project. Nat Genet 2013;45(10):1113–20. DOI:10.3779/j.issn.1009-3419.2015.04.02; Sempere L.F., Azmi A.S., Moore A. microRNA-based diagnostic and therapeutic applications in cancer medicine. Wiley Interdiscip Rev RNA 2021;12(6):e1662. DOI:10.1002/wrna.1662; Dhawan A., Scott J.G., Harris A.L., Buffa F.M. Pan-cancer characterisation of microRNA across cancer hallmarks reveals microRNA-mediated downregulation of tumour suppressors. Nat Commun 2018;9(1):5228. DOI:10.1038/s41467-018-07657-1; He B., Zhao Z., Cai Q. et al. miRNA-based biomarkers, therapies, and resistance in cancer. Int J Biol Sci 2020;16(14):2628–47. DOI:10.7150/ijbs.4720; Fredsøe J., Rasmussen A.K.I., Thomsen A.R. et al. Diagnostic and prognostic microRNA biomarkers for prostate cancer in cell-free urine. Eur Urol Focus 2018;4(6):825–33. DOI:10.1016/j.euf.2017.02.018; Hu C., Meiners S., Lukas C. et al. Role of exosomal microRNAs in lung cancer biology and clinical applications. Cell Prolif 2020;53(6):e12828. DOI:10.1111/cpr.12828; Yi M., Liao Z., Deng L. et al. High diagnostic value of miRNAs for NSCLC: quantitative analysis for both single and combined miRNAs in lung cancer. Ann Med 2021;53(1):2178–93. DOI:10.1080/07853890.2021.2000634; Gao S., Guo W., Liu T. et al. Plasma extracellular vesicle microRNA profiling and the identification of a diagnostic signature for stage I lung adenocarcinoma. Cancer Sci 2022;113(2):648–59. DOI:10.1111/cas.15222; Osipov I.D., Zaporozhchenko I.A., Bondar A.A. et al. Cell-free miRNA-141 and miRNA-205 as prostate cancer biomarkers. Adv Exp Med Biol 2016;924:9–12. DOI:10.1007/978-3-319-42044-8_2; Zaporozhchenko I.A., Morozkin E.S., Ponomaryova A.A. et al. Profiling of 179 miRNA expression in blood plasma of lung cancer patients and cancer-free individuals. Sci Rep 2018;8(1):6348. DOI:10.1038/s41598-018-24769-2; Li C., Yin Y., Liu X. et al. Non-small cell lung cancer associated microRNA expression signature: integrated bioinformatics analysis, validation and clinical significance. Oncotarget 2017;8(15):24564–78. DOI:10.18632/oncotarget.15596; Huang W., Huang W., Hu J. et al. Two microRNA panels to discriminate three subtypes of lung carcinoma in bronchial brushing specimens. Am J Respir Crit Care Med 2012;186(11):1160–7. DOI:10.1164/rccm.201203-0534OC; Wu C., Cao Y., He Z. et al. Serum levels of miR-19b and miR-146a as prognostic biomarkers for non-small cell lung cancer. Tohoku J Exp Med 2014;232(2):85–95. DOI:10.1620/tjem.232.85; Boeri M., Verri C., Conte D. et al. MicroRNA signatures in tissues and plasma predict development and prognosis of computed tomography detected lung cancer. Proc Natl Acad Sci USA 2011;108(9):3713–8. DOI:10.1073/pnas.1100048108; Zhou X., Wen W., Shan X. et al. A six-microRNA panel in plasma was identified as a potential biomarker for lung adenocarcinoma diagnosis. Oncotarget 2016;8(4):6513–25. DOI:10.18632/oncotarget.14311; Liu M., Gao J., Huang Q. et al. Downregulating microRNA-144 mediates a metabolic shift in lung cancer cells by regulating GLUT1 expression. Oncol Lett 2016;11(6):3772–6. DOI:10.3892/ol.2016.4468; Pan H.L., Wen Z.S., Huang Y.C. et al. Down-regulation of microRNA-144 in air pollution-related lung cancer. Sci Rep 2015;5:14331. DOI:10.1038/srep14331; Zhang G., An H., Fang X. MicroRNA-144 regulates proliferation, invasion, and apoptosis of cells in malignant solitary pulmonary nodule via zinc finger E-box-binding homeobox 1. Int J Clin Exp Pathol 2015;8(5):5960–7.; Ling B., Wang G.X., Long G. et al. Tumor suppressor miR-22 suppresses lung cancer cell progression through post-transcriptional regulation of ErbB3. J Cancer Res Clin Oncol 2012;138(8):1355–61. DOI:10.1007/s00432-012-1194-2; Xin M., Qiao Z., Li J. et al. miR-22 inhibits tumor growth and metastasis by targeting ATP citrate lyase: evidence in osteosarcoma, prostate cancer, cervical cancer and lung cancer. Oncotarget 2014;7(28):44252–65. DOI:10.18632/oncotarget.10020; Hosseini S.A., Seidi M., Yaghoobi H. Designed miR-19a/b sponge induces apoptosis in lung cancer cells through the PI3K-PTEN-Akt pathway regulation. Mol Biol Rep 2022;49(9):8485–93. DOI:10.1007/s11033-022-07670-0; Zhang X., Wang X., Chai B. et al. Downregulated miR-18a and miR-92a synergistically suppress non-small cell lung cancer via targeting Sprouty 4. Bioengineered 2022;13(4):11281–95. DOI:10.1080/21655979.2022.2066755; Reis P.P., Drigo S.A., Carvalho R.F. et al. Circulating miR-16-5p, miR-92a-3p, and miR-451a in plasma from lung cancer patients: potential application in early detection and a regulatory role in tumorigenesis pathways. Cancers 2020;12(8):2071. DOI:10.3390/cancers12082071; Wang Z., Pan L., Yang L. et al. Long non-coding RNA GATA6-AS1 sponges miR-324-5p to inhibit lung cancer cell proliferation and invasion. Onco Targets Ther 2020;13:9741–51. DOI:10.2147/OTT.S256336; Zhang Y., Xu H. Serum exosomal miR-378 upregulation is associated with poor prognosis in non-small-cell lung cancer patients. J Clin Lab Anal 2020;34(6):e23237. DOI:10.1002/jcla.23237; Ji K.X., Cui F., Qu D. et al. MiR-378 promotes the cell proliferation of non-small cell lung cancer by inhibiting FOXG1. Eur Rev Med Pharmacol Sci 2018;22(4):1011–9. DOI:10.26355/eurrev_201802_14383; Cao X., Zhong W., Guo S. et al. Low expression of miR-27b in serum exosomes of non-small cell lung cancer facilitates its progression by affecting EGFR. Open Med (Wars) 2022;17(1):816–25. DOI:10.1515/med-2022-0472; Zhong S., Golpon H., Zardo P. et al. miRNAs in lung cancer. A systematic review identifies predictive and prognostic miRNA candidates for precision medicine in lung cancer. Transl Res 2021;230:164–96. DOI:10.1016/j.trsl.2020.11.012; Konoshenko M.Y., Lekchnov E.A., Bryzgunova O.E. et al. Isolation of extracellular vesicles from biological fluids via the aggregation-precipitation approach for downstream miRNAs detection. Diagnostics 2012;11(3):384. DOI:10.3390/diagnostics11030384; Lekchnov E.A., Zaporozhchenko I.A., Morozkin E.S. et al. Protocol for miRNA isolation from biofluids. Anal Biochem 2016;499:78–84. DOI:10.1016/j.ab.2016.01.025; Konoshenko M.Y., Lekchnov E.A., Bryzgunova O.E. et al. The panel of 12 cell-Free microRNAs as potential biomarkers in prostate neoplasms. Diagnostics 2020;10(1):38. DOI:10.3390/diagnostics10010038; Landoni E., Miceli R., Callari M. et al. Proposal of supervised data analysis strategy of plasma miRNAs from hybridisation array data with an application to assess hemolysis-related deregulation. BMC Bioinformatics 2015;16:388. DOI:10.1186/s12859-015-0820-9; Bryzgunova O.E., Zaporozhchenko I.A., Lekchnov E.A. et al. Data analysis algorithm for the development of extracellular miRNA-based diagnostic systems for prostate cancer. PLoS One 2019;14(4):e0215003. DOI:10.1371/journal.pone.0215003; Bryzgunova O.E., Konoshenko M.Y., Zaporozhchenko I.A. et al. Isolation of cell-free miRNA from biological fluids: influencing factors and methods. Diagnostics (Basel) 2021;11(5):865. DOI:10.3390/diagnostics11050865; Dejima H., Iinuma H., Kanaoka R. et al. Exosomal microRNA in plasma as a non-invasive biomarker for the recurrence of non-small cell lung cancer. Oncol Lett 2017;13(3):1256–63. DOI:10.3892/ol.2017.5569; Kanaoka R., Iinuma H., Dejima H. et al. Usefulness of plasma exosomal microRNA-451a as a noninvasive biomarker for early prediction of recurrence and prognosis of non-small cell lung cancer. Oncology 2018;94(5):311–23. DOI:10.1159/000487006; Liu Q., Yu Z., Yuan S. et al. Circulating exosomal microRNAs as prognostic biomarkers for non-small-cell lung cancer. Oncotarget 2017;8(8):13048–58. DOI:10.18632/oncotarget.14369; Munagala R., Aqil F., Gupta R.C. Exosomal miRNAs as biomarkers of recurrent lung cancer. Tumor Biol 2016;37(8):10703–14. DOI:10.1007/s13277-016-4939-8; Silva J., García V., Zaballos Á. et al. Vesicle-related microRNAs in plasma of nonsmall cell lung cancer patients and correlation with survival. Eur Respir J 2011;37(3):617–23. DOI:10.1183/09031936.00029610; Zhuang L., Shou T., Li K. et al. MicroRNA-30e-5p promotes cell growth by targeting PTPN13 and indicates poor survival and recurrence in lung adenocarcinoma. J Cell Mol Med 2017;21(11):2852–62. DOI:10.1111/jcmm.13198; Li W., Yang P., Zhong C. et al. The circ-PITX1 promotes non-small cell lung cancer development via the miR-30e-5p/ITGA6 axis. Cell Cycle 2022;21(3):304–21. DOI:10.1080/15384101.2021.2020041; Dong W., Zhang H., Dai Y. et al. circRNA circFAT1(e2) Elevates the development of non-small-cell lung cancer by regulating miR-30e-5p and USP22. BioMed Res Int 2021;2021:6653387. DOI:10.1155/2021/6653387; Gao W., Shen H., Liu L. et al. MiR-21 overexpression in human primary squamous cell lung carcinoma is associated with poor patient prognosis. J Cancer Res Clin Oncol 2011;137(4):557–66. DOI:10.1007/s00432-010-0918-4; Ning Z.Q., Lu H.L., Chen C. et al. MicroRNA-30e reduces cell growth and enhances drug sensitivity to gefitinib in lung carcinoma. Oncotarget 2017;8(3):4572–81. DOI:10.18632/oncotarget.13944; Turchinovich A., Burwinkel B. Distinct AGO1 and AGO2 associated miRNA profiles in human cells and blood plasma. RNA Biol 2012;9(8):1066–75. DOI:10.4161/rna.21083; Lunavat T.R., Lesley C., Dae-Kyum K. et al. Small RNA deep sequencing discriminates subsets of extracellular vesicles released by melanoma cells – evidence of unique microRNA cargos. RNA Biol 2015;12(8):810–23. DOI:10.1080/15476286.2015.1056975; Huang X., Tiezheng Y., Tschannen M. et al. Characterization of human plasma-derived exosomal RNAs by deep sequencing. BMC Genomics 2013;14:319. DOI:10.1186/1471-2164-14-319; Markou A., Sourvinou I., Vorkas P.A. et al. Clinical evaluation of microRNA expression profiling in non small cell lung cancer. Lung Cancer 2013;81(3):388–96. DOI:10.1016/j.lungcan.2013.05.007; Cui Y., Zhao L., Zhao S. et al. MicroRNA-30e inhibits proliferation and invasion of non-small cell lung cancer via targeting SOX9. Human Cell 2019;32(3):326–33. DOI:10.1007/s13577-018-0223-0; Xu G., Cai J., Wang L. et al. MicroRNA-30e-5p suppresses non-small cell lung cancer tumorigenesis by regulating USP22-mediated Sirt1/JAK/STAT3 signaling. Exp Cell Res 2018;362(2):268–78. DOI:10.1016/j.yexcr.2017.11.027; He J., Jin S., Zhang W. et al. Long non-coding RNA LOC554202 promotes acquired gefitinib resistance in non-small cell lung cancer through upregulating miR-31 expression. J Cancer 2019;10(24):6003–13. DOI:10.7150/jca.35097; Liu X., Sempere L.F., Ouyang H. et al. MicroRNA-31 functions as an oncogenic microRNA in mouse and human lung cancer cells by repressing specific tumor suppressors. J Clin Invest 2010;120(4):1298–309. DOI:10.1172/JCI39566; Zhu C., Wang S., Zheng M. et al. miR-31-5p modulates cell progression in lung adenocarcinoma through TNS1/p53 axis. Strahlenther Onkol 2022;198(3):304–14. DOI:10.1007/s00066-021-01895-x; Hou C., Sun B., Jiang Y. et al. MicroRNA-31 inhibits lung adenocarcinoma stem-like cells via down-regulation of MET-PI3K-Akt signaling pathway. Anticancer Agents Med Chem 2016;16(4):501–18. DOI:10.2174/1871520615666150824152353; Zhang J., Li D., Zhang Y. et al. Integrative analysis of mRNA and miRNA expression profiles reveals seven potential diagnostic biomarkers for non-small cell lung cancer. Oncol Rep 2020;43(1):99–112. DOI:10.3892/or.2019.7407; Cheng X., Sha M., Jiang W. et al. LINC00174 suppresses non-small cell lung cancer progression by up-regulating LATS2 via sponging miR-31-5p. Cell J 2022;24(3):140–7. DOI:10.22074/cellj.2022.7991; Wang Y., Shang S., Yu K. et al. miR-224, miR-147b and miR-31 associated with lymph node metastasis and prognosis for lung adenocarcinoma by regulating PRPF4B, WDR82 or NR3C2. Peer J 2020;8:e9704. DOI:10.7717/peerj.9704; Meng W., Ye Z., Cui R. et al. MicroRNA-31 predicts the presence of lymph node metastases and survival in patients with lung adenocarcinoma. Clin Cancer Res 2013;19(19):5423–33. DOI:10.1158/1078-0432.CCR-13-0320; Zeng X., Liu D., Peng G. et al. MiroRNA-31-3p promotes the invasion and metastasis of non-small-cell lung cancer cells by targeting forkhead Box 1 (FOXO1). Comput Math Methods Med 2022;2022:4597087. DOI:10.1155/2022/4597087; Sun X., Zhang S., Ma X. Prognostic value of microRNA-125 in various human malignant neoplasms: a meta-analysis Clin Lab 2015;61(11):1667–74. DOI:10.7754/clin.lab.2015.150408; Kazempour Dizaji M., Farzanegan B., Bahrami N. et al. Expression of miRNA1, miRNA133, miRNA191, and miRNA24, as good biomarkers, in non-small cell lung cancer using real-time PCR method. Asian Pac J Cancer Prev 2022;23(5):1565–70. DOI:10.31557/APJCP.2022.23.5.1565; Liu S., Chen J., Zhang T. et al. MicroRNA-133 inhibits the growth and metastasis of the human lung cancer cells by targeting epidermal growth factor receptor. J BUON 2012;24(3):929–35.; Liu G., Li Y.I., Gao X. Overexpression of microRNA-133b sensitizes non-small cell lung cancer cells to irradiation through the inhibition of glycolysis. Oncol Lett 2016;11(4):2903–8. DOI:10.3892/ol.2016.4316; Wei G., Xu Y., Peng T. et al. miR-133 involves in lung adenocarcinoma cell metastasis by targeting FLOT2. Artif Cells Nanomed Biotechnol 2018;46(2):224–30. DOI:10.1080/21691401.2017.1324467; Xiao B., Liu H., Gu Z. et al. Expression of microRNA-133 inhibits epithelial-mesenchymal transition in lung cancer cells by directly targeting FOXQ1. Arch Bronconeumol 2016;52(10):505–11. DOI:10.1016/j.arbres.2015.10.016; Xu M., Wang Y.Z. miR-133a suppresses cell proliferation, migration and invasion in human lung cancer by targeting MMP-14. Oncol Rep 2013;30(3):1398–404. DOI:10.3892/or.2013.2548; Peinado P., Andrades A., Martorell-Marugán J. et al. The SWI/SNF complex regulates the expression of miR-222, a tumor suppressor microRNA in lung adenocarcinoma. Human Mol Gen 2021;30(23):2263–71. DOI:10.1093/hmg/ddab187; Wu Q., Yu L., Lin X. et al. Combination of serum miRNAs with serum exosomal miRNAs in early diagnosis for non-small-cell lung cancer. Cancer Manag Res 2020;12:485–95. DOI:10.2147/CMAR.S232383; Chen W., Li X. MiR-222-3p promotes cell proliferation and inhibits apoptosis by targeting PUMA (BBC3) in non-small cell lung cancer. Technol Cancer Res Treat 2020;19:1533033820922558. DOI:10.1177/1533033820922558; Garofalo M., Romano G., Di Leva G. et al. EGFR and MET receptor tyrosine kinase-altered microRNA expression induces tumorigenesis and gefitinib resistance in lung cancers. Nat Med 2011;18:74–82. DOI:10.1038/nm.2577; Mao K.P., Zhang W.N., Liang X.M. et al. MicroRNA-222 expression and its prognostic potential in non-small cell lung cancer. Sci World J 2014;908326. DOI:10.1155/2014/908326; Zhong C., Ding S., Xu Y. et al. MicroRNA-222 promotes human non-small cell lung cancer H460 growth by targeting p27. Int J Clin Exp Med 2015;8(4):5534–40.; Sun Q., Jiang C.W., Tan Z.H. et al. MiR-222 promotes proliferation, migration and invasion of lung adenocarcinoma cells by targeting ETS1. Eur Rev Med Pharmacol Sci 2017;21(10):2385–91.; Hetta H.F., Zahran A.M., El-Mahdy R.I. et al. Assessment of circulating miRNA-17 and miRNA-222 expression profiles as non-invasive biomarkers in egyptian patients with non-small-cell lung cancer. Asian Pac J Cancer Prev 2019;20(6):1927–33. DOI:10.31557/APJCP.2019.20.6.1927; Kim Y., Sim J., Kim H. et al. MicroRNA-374a expression as a prognostic biomarker in lung adenocarcinoma. J Pathol Transl Med 2019;53(6):354–60. DOI:10.4132/jptm.2019.10.01; Wang G., Ji X., Li P. et al. Human bone marrow mesenchymal stem cell-derived exosomes containing microRNA-425 promote migration, invasion and lung metastasis by down-regulating CPEB1. Regen Ther 2022;20:107–16. DOI:10.1016/j.reth.2022.03.007; Guo Z., Ye H., Zheng X. et al. Extracellular vesicle-encapsulated microRNA-425-derived from drug-resistant cells promotes non-small-cell lung cancer progression through DAPK1-medicated PI3K/AKT pathway. J Cell Physiol 2021;236(5):3808–20. DOI:10.1002/jcp.30126; Zhou J.S., Yang Z.S., Cheng S.Y. et al. miRNA-425-5p enhances lung cancer growth via the PTEN/PI3K/AKT signaling axis. BMC Pulm Med 2020;20(1):223. DOI:10.1186/s12890-020-01261-0; Jiang L., Ge W., Geng J. miR-425 regulates cell proliferation, migration and apoptosis by targeting AMPH-1 in non-small-cell lung cancer. Pathol Res Pract 2019;215(12):152705. DOI:10.1016/j.prp.2019.152705.; Fu Y., Li Y., Wang X. et al. Overexpression of miR-425-5p is associated with poor prognosis and tumor progression in non-small cell lung cancer. Cancer Biomark 2020;27(2):147–56. DOI:10.3233/cbm-190782; Yuwen D., Ma Y., Wang D. et al. Prognostic role of circulating exosomal miR-425-3p for the response of NSCLC to platinum-based chemotherapy. Cancer Epidemiol Biomark Prevent 2019;28(1):163–73. DOI:10.1158/1055-9965.epi-18-0569; Fortunato O., Boeri M., Moro M. et al. Mir-660 is downregulated in lung cancer patients and its replacement inhibits lung tumorigenesis by targeting MDM2-p53 interaction. Cell Death Dis 2014;5(12):e1564. DOI:10.1038/cddis.2014.507; Qi Y., Zha W., Zhang W. Exosomal miR-660-5p promotes tumor growth and metastasis in non-small cell lung cancer. J BUON 2019;24(2):599–607.; Moro M., Di Paolo D., Milione M. et al. Coated cationic lipid-nanoparticles entrapping miR-660 inhibit tumor growth in patient-derived xenografts lung cancer models. J Control Release 2019;308:44–56. DOI:10.1016/j.jconrel.2019.07.006; https://umo.abvpress.ru/jour/article/view/543Test

  5. 5
    دورية أكاديمية

    المصدر: Meditsinskiy sovet = Medical Council; № 11 (2023); 18-25 ; Медицинский Совет; № 11 (2023); 18-25 ; 2658-5790 ; 2079-701X

    وصف الملف: application/pdf

    العلاقة: https://www.med-sovet.pro/jour/article/view/7664/6798Test; Koivunen J.P., Mermel C., Zejnullahu K., Murphy C., Lifshits E., Holmes A.J. et al. EML4-ALK fusion gene and efficacy of an ALK kinase inhibitor in lung cancer. Clin Cancer Res. 2008;14(13):4275–4283. https://doi.org/10.1158/1078-0432.ccr-08-0168Test.; Kris M.G., Johnson B.E., Berry L.D., Kwiatkowski D.J., Iafrate A.J., Wistuba I.I. et al. Using multiplexed assays of oncogenic drivers in lung cancers to select targeted drugs. JAMA. 2014;311(19):1998–2006. https://doi.org/10.1001/jama.2014.3741Test.; Takeuchi K., Choi Y.L., Soda M., Inamura K., Togashi Y., Hatano S. et al. Multiplex reverse transcription-PCR screening for EML4-ALK fusion transcripts. Clin Cancer Res. 2008;14(20):6618–6624. https://doi.org/10.1158/1078-0432.CCR-08-1018Test.; Takeuchi K., Soda M., Togashi Y., Suzuki R., Sakata S., Hatano S. et al. RET, ROS1 and ALK fusions in lung cancer. Nat Med. 2012;18(3):378–381. https://doi.org/10.1038/nm.2658Test.; Solomon B.J., Mok T., Kim D.W., Wu Y.L., Nakagawa K., Mekhail T. et al. Firstline crizotinib versus chemotherapy in ALK-positive lung cancer. N Engl J Med. 2014;371(23):2167–2177. https://doi.org/10.1056/NEJMoa1408440Test.; Kim D.W., Tiseo M., Ahn M.J., Reckamp K.L., Hansen K.H., Kim S.W. et al. Brigatinib in Patients With Crizotinib-Refractory Anaplastic Lymphoma Kinase-Positive Non-Small-Cell Lung Cancer: A Randomized, Multicenter Phase II Trial. J Clin Oncol. 2017;35(22):2490–2498. https://doi.org/10.1200/JCO.2016.71.5904Test.; Peters S., Camidge D.R., Shaw A.T., Gadgeel S., Ahn J.S., Kim D.W. et al. Alectinib versus Crizotinib in Untreated ALK-Positive Non-Small-Cell Lung Cancer. N Engl J Med. 2017;377(9):829–838. https://doi.org/10.1056/NEJMoa1704795Test.; Soria J.C., Tan D.S.W., Chiari R., Wu Y.L., Paz-Ares L., Wolf J. et al. First-line ceritinib versus platinum-based chemotherapy in advanced ALK-rearranged non-small-cell lung cancer (ASCEND-4): a randomised, open-label, phase 3 study. Lancet. 2017;389(10072):917–929. https://doi.org/10.1016/S0140-6736Test(17)30123-X.; Лактионов К.К., Артамонова Е.В., Бредер В.В., Горбунова В.А., Демидова И.А., Деньгина Н.В. и др. Практические рекомендации по лекарственному лечению немелкоклеточного рака легкого. Злокачественные опухоли. 2022;12(3s2-1):41–59. https://doi.org/10.18027/2224-5057-2022-12-3s2-41-59Test.; Schinkel A.H. P-Glycoprotein, a gatekeeper in the blood-brain barrier. Adv Drug Deliv Rev. 1999;36(2-3):179–194. https://doi.org/10.1016/s0169-409xTest(98)00085-4.; Katayama R., Shaw A.T., Khan T.M., Mino-Kenudson M., Solomon B.J., Halmos B. et al. Mechanisms of acquired crizotinib resistance in ALK-rearranged lung Cancers. Sci Transl Med. 2012;4(120):120ra17. https://doi.org/10.1126/scitranslmed.3003316Test.; Shaw A.T., Gandhi L., Gadgeel S., Riely G.J., Cetnar J., West H. et al. Alectinib in ALK-positive, crizotinib-resistant, non-small-cell lung cancer: a singlegroup, multicentre, phase 2 trial. Lancet Oncol. 2016;17(2):234–242. https://doi.org/10.1016/S1470-2045Test(15)00488-X.; Shaw A.T., Kim D.W., Mehra R., Tan D.S., Felip E., Chow L.Q. et al. Ceritinib in ALK-rearranged non-small-cell lung cancer. N Engl J Med. 2014;370(13):1189–1197. https://doi.org/10.1056/NEJMoa1311107Test.; Gainor J.F., Dardaei L., Yoda S., Friboulet L., Leshchiner I., Katayama R. et al. Molecular Mechanisms of Resistance to First- and Second-Generation ALK Inhibitors in ALK-Rearranged Lung Cancer. Cancer Discov. 2016;6(10):1118–1133. https://doi.org/10.1158/2159-8290.CD-16-0596Test.; Johnson T.W., Richardson P.F., Bailey S., Brooun A., Burke B.J., Collins M.R. et al. Discovery of (10R)-7-amino-12-fluoro-2,10,16-trimethyl-15-oxo-10,15,16,17-tetrahydro-2H-8,4-(metheno)pyrazolo[4,3-h][2,5,11]-benzoxadiazacyclotetradecine-3-carbonitrile (PF-06463922), a macrocyclic inhibitor of anaplastic lymphoma kinase (ALK) and c-ros oncogene 1 (ROS1) with preclinical brain exposure and broad-spectrum potency against ALK-resistant mutations. J Med Chem. 2014;57(11):4720–4744. https://doi.org/10.1021/jm500261qTest.; Shaw A.T., Felip E., Bauer T.M., Besse B., Navarro A., Postel-Vinay S. et al. Lorlatinib in non-small-cell lung cancer with ALK or ROS1 rearrangement: an international, multicentre, open-label, single-arm first-in-man phase 1 trial. Lancet Oncol. 2017;18(12):1590–1599. https://doi.org/10.1016/S1470-2045Test(17)30680-0.; Solomon B.J., Besse B., Bauer T.M., Felip E., Soo R.A., Camidge D.R. et al. Lorlatinib in patients with ALK-positive non-small-cell lung cancer: results from a global phase 2 study. Lancet Oncol. 2018;19(12):1654–1667. https://doi.org/10.1016/S1470-2045Test(18)30649-1.; Bauer T.M., Felip E., Solomon B.J., Thurm H., Peltz G., Chioda M.D., Shaw A.T. Clinical Management of Adverse Events Associated with Lorlatinib. Oncologist. 2019;24(8):1103–1110. https://doi.org/10.1634/theoncologist.2018-0380Test.; Neuvonen P.J., Niemi M., Backman J.T. Drug interactions with lipidlowering drugs: mechanisms and clinical relevance. Clin Pharmacol Ther. 2006;80(6):565–581. https://doi.org/10.1016/j.clpt.2006.09.003Test.; Reiner Z., Catapano A.L., De Backer G., Graham I., Taskinen M.R., Wiklund O. et al. ESC/EAS Guidelines for the management of dyslipidaemias: the Task Force for the management of dyslipidaemias of the European Society of Cardiology (ESC) and the European Atherosclerosis Society (EAS). Eur Heart J. 2011;32(14):1769–1818. https://doi.org/10.1093/eurheartj/ehr158Test.; Емелина Е.И. Ведение больных с отечным синдромом. РМЖ. 2015;(5):259–266. Режим доступа: https://www.rmj.ru/articles/kardiologiya/Vedenie_bolynyh_s_otechnym_sindromomTest/.; Shaw A.T., Bauer T.M., de Marinis F., Felip E., Goto Y., Liu G. et al. FirstLine Lorlatinib or Crizotinib in Advanced ALK-Positive Lung Cancer. N Engl J Med. 2020;383(21):2018–2029. https://doi.org/10.1056/NEJMoa2027187Test.; https://www.med-sovet.pro/jour/article/view/7664Test

  6. 6
    دورية أكاديمية

    المصدر: Doklady of the National Academy of Sciences of Belarus; Том 67, № 4 (2023); 300-306 ; Доклады Национальной академии наук Беларуси; Том 67, № 4 (2023); 300-306 ; 2524-2431 ; 1561-8323 ; 10.29235/1561-8323-2023-67-4

    وصف الملف: application/pdf

    العلاقة: https://doklady.belnauka.by/jour/article/view/1141/1140Test; Zhang, L. Epigenetics in health and disease / L. Zhang, Q. Lu, C. Chang // Adv. Exp. Med. Biol. – 2020. – Vol. 1253. – P. 3–55. https://doi.org/10.1007/978-981-15-3449-2_1Test; Bump hunting to identify differentially methylated regions in epigenetic epidemiology studies / A. E. Jaffe [et al.] // Int. J. Epidemiol. – 2012. – Vol. 41, N 1. – P. 200–209. https://doi.org/10.1093/ije/dyr238Test; A novel epigenetic signature for early diagnosis in lung cancer / A. Diaz-Lagares [et al.] // Clin. Cancer Res. – 2016. – Vol. 22, N 13. – P. 3361–3371. https://doi.org/10.1158/1078-0432.ccr-15-2346Test; Pan-cancer predictions of transcription factors mediating aberrant DNA methylation / D. Detilleux [et al.] // Epigenetics and Chromatin. – 2022. – Vol. 15, N 1. https://doi.org/10.1186/s13072-022-00443-wTest; Fukushige, S. DNA methylation in cancer: a gene silencing mechanism and the clinical potential of its biomarkers / S. Fukushige, A. Horii // Tohoku J. Exp. Med. – 2013. – Vol. 229, N 3. – P. 173–185. https://doi.org/10.1620/tjem.229.173Test; Differentially methylated regions within lung cancer risk loci are enriched in deregulated enhancers / M. Laplana [et al.] // Epigenetics. – 2021. – Vol. 17, N 2. – P. 117–132. https://doi.org/10.1080/15592294.2021.1878723Test; Methylation profiling defines an extensive field defect in histologically normal prostate tissues associated with prostate cancer / B. Yang [et al.] // Neoplasia. – 2013. – Vol. 15, N 4. – P. 399–408. https://doi.org/10.1593/neo.13280Test; A Panel of Novel Detection and Prognostic Methylated DNA Markers in Primary Non–Small Cell Lung Cancer and Serum DNA / A. Ooki [et al.] // Clin. Cancer Res. – 2017. – Vol. 23, N 22. – P. 7141–7152. https://doi.org/10.1158/1078-0432.ccr-17-1222Test; Epigenome-wide scan identifies differentially methylated regions for lung cancer using pre-diagnostic peripheral blood / Naisi Zhao [et al.] // Epigenetics. – 2022. – Vol. 17, N 4. – P. 460–472. https://doi.org/10.1080/15592294.2021.1923615Test; Methylation-associated inactivation of JPH3 and its effect on prognosis and cell biological function in HCC / Yi Huang [et al.] // Mol. Med. Rep. – 2022. – Vol. 25, N 4. – Art. 124. https://doi.org/10.3892/mmr.2022.12640Test; DNA hypermethylation and decreased mRNA expression of MAL, PRIMA1, PTGDR and SFRP1 in colorectal adenoma and cancer / A. Kalmar [et al.] // BMC Cancer. – 2015. – Vol. 15, N 1. – Art. 736. https://doi.org/10.1186/s12885-015-1687-xTest; Pradhan, M. P. Systems biology approach to stage-wise characterization of epigenetic genes in lung adenocarcinoma / M. P. Pradhan, A. Desai, M. J. Palakal // BMC Syst. Biol. – 2013. – Vol. 7, N 1. – Art. 141. https://doi.org/10.1186/1752-0509-7-141Test; Epigenetically induced ectopic expression of UNCX impairs the proliferation and differentiation of myeloid cells / G. Daniele [et al.] // Haematologica. – 2017. – Vol. 102, N 7. – P. 1204–1214. https://doi.org/10.3324/haematol.2016.163022Test; The prognostic value of homeobox A9 (HOXA9) methylation in solid tumors: a systematic review and meta-analysis / H. Cai [et al.] // Transl. Cancer Res. – 2021. – Vol. 10, N 10. – P. 4347–4354. https://doi.org/10.21037/tcr-21-765Test; Methylation of HOXA9 and ISL1 Predicts Patient Outcome in High-Grade Non-Invasive Bladder Cancer / M. O. Kitchen [et al.] // PLoS One. – 2015. – Vol. 10, N 9. – Art. e0137003. https://doi.org/10.1371/journal.pone.0137003Test; https://doklady.belnauka.by/jour/article/view/1141Test

  7. 7
    دورية أكاديمية

    المصدر: Advances in Molecular Oncology; Том 9, № 2 (2022); 79-88 ; Успехи молекулярной онкологии; Том 9, № 2 (2022); 79-88 ; 2413-3787 ; 2313-805X ; 10.17650/2313-805X-2022-9-2

    وصف الملف: application/pdf

    العلاقة: https://umo.abvpress.ru/jour/article/view/441/263Test; Bai R., Lv Z., Xu D., Cui J. Predictive biomarkers for cancer immunotherapy with immune checkpoint inhibitors. Biomark Res 2020;8:34. DOI:10.1186/s40364-020-00209-0.; Pourmir I., Gazeau B., de Saint Basile H., Fabre E. Biomarkers of resistance to immune checkpoint inhibitors in non-small-cell lung cancer: myth or reality? Cancer Drug Resist 2020;3:276–86. DOI:10.20517/cdr.2020.14.; Möller M., Turzer S., Schütte W. et al. Blood immune cell biomarkers in patient with lung cancer undergoing treatment with checkpoint blockade. J Immunother 2020;43(2):57–66. DOI:10.1097/CJI.0000000000000297.; Salmaninejad A., Valilou S.F., Shabgah A.G. et al. PD-1/PD-L1 pathway: basic biology and role in cancer immunotherapy. J Cell Physiol 2019;234(10):16824–37. DOI:10.1002/jcp.28358.; Reck M., Rodríguez-Abreu D., Robinson A.G. et al. Pembrolizumab versus chemotherapy for PD-L1 – positive non–small-cell lung cancer. N Engl J Med 2016;375(19):1823–33. DOI:10.1056/NEJMoa1606774.; Duchemann B., Remon J., Naigeon M. et al. Integrating circulating biomarkers in the immune checkpoint inhibitor treatment in lung cancer. Cancers (Basel) 2020;12(12):3625. DOI:10.3390/cancers12123625.; Wang L., Hu Y., Wang S. et al. Biomarkers of immunotherapy in non-small cell lung cancer. Oncol Lett 2020;20(5):139. DOI:10.3892/ol.2020.11999.; Prelaj A., Tay R., Ferrara R. et al. Predictive biomarkers of response for immune checkpoint inhibitors in non-small-cell lung cancer. Eur J Cancer 2019;106:144–59. DOI:10.1016/j.ejca.2018.11.002.; Zhang H., Cui B., Zhou Y. et al. B2M overexpression correlates with malignancy and immune signatures in human gliomas. Sci Rep 2021;11:5045. DOI:10.1038/s41598-021-84465-6.; Xie J., Wang Y., Freeman M.E. et al. β2-microglobulin as a negative regulator of the immune system: high concentrations of the protein inhibit in vitro generation of functional dendritic cells. Blood 2003;101(10):4005–12. DOI:10.1182/blood-2002-11-3368.; Melichar B., Spisarová M., Bartoušková et al. Neopterin as a biomarker of immune response in cancer patients. Ann Transl Med 2017;5(13):280. DOI:10.21037/atm.2017.06.29.; Keegan A., Ricciuti B., Garden P. et al. Plasma IL-6 changes correlate to PD-1 inhibitor responses in NSCLC. J Immunother Cancer 2020;8:e000678. DOI:10.1136/jitc-2020-000678.; Hussaini S., Chehade R., Boldt R.G. et al. Association between immune-related side effects and efficacy and benefit of immune checkpoint inhibitors – A systematic review and meta-analysis. Cancer Treat Rev 2021;92:102134. DOI:10.1016/j.ctrv.2020.102134.; Basak E.A., van der Meer J.W.M., Hurkmans D.P. et al. Overt thyroid dysfunction and anti-thyroid antibodies predict response to anti-PD-1 immunotherapy in cancer patients. Thyroid 2020;30(7):966–73. DOI:10.1089/thy.2019.0726.; https://umo.abvpress.ru/jour/article/view/441Test

  8. 8
    دورية أكاديمية

    المساهمون: The studied compound was synthesized as part of implementation of the SSC RAS State task No. 01201354239, with financial support of the Ministry of Science and Higher Education of the Russian Federation (State task in science, project No. 0852-2020-0031). Studies in vivo were performed as part of the State task No. 121031100253-3 “Study of antitumor activity of pharmacological substances in vivo and in vitro”., Синтез исследуемого соединения осуществляли в рамках реализации Государственного задания ЮНЦ РАН № 01201354239 при финансовой поддержке Министерства науки и высшего образования Российской Федерации (Государственное задание в области научной деятельности, проект № 0852-2020-0031). Исследования in vivo проводили в рамках государственного задания № 121031100253-3 «Изучение противоопухолевой активности фармакологических субстанций in vivo и in vitro».

    المصدر: Research and Practical Medicine Journal; Том 9, № 2 (2022); 50-64 ; Research'n Practical Medicine Journal; Том 9, № 2 (2022); 50-64 ; 2410-1893 ; 2409-2231 ; 10.17709/2410-1893-2022-9-2

    وصف الملف: application/pdf

    العلاقة: https://www.rpmj.ru/rpmj/article/view/743/482Test; https://www.rpmj.ru/rpmj/article/downloadSuppFile/743/532Test; https://www.rpmj.ru/rpmj/article/downloadSuppFile/743/533Test; Кит О. И., Франциянц Е. М., Меньшенина А. П., Моисеенко Т. И., Ушакова Н. Д., Попова Н. Н. и др. Роль плазмофереза и ксенонтерапии в коррекции острых последствий хирургической менопаузы у больных раком шейки матки. Политематический сетевой электронный научный журнал Кубанского государственного аграрного университета. 2016;(117):472–486.; Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018 Nov;68(6):394–424. https://doi.org/10.3322/caac.21492Test; National Cancer Institute. Cancer Stat Facts: Lung and Bronchus Cancer. 2019. Доступно по: https://seer.cancer.gov/statfacts/html/lungb.htmlTest, Дата обращения: 23.03.2022.; Gonzalez‑Rajal A, Hastings JF, Watkins DN, Croucher DR, Burgess A. Breathing New Life into the Mechanisms of Platinum Resistance in Lung Adenocarcinoma. Front Cell Dev Biol. 2020;8:305. https://doi.org/10.3389/fcell.2020.00305Test; Бурнашева Е. В., Шатохин Ю. В., Снежко И. В., Мацуга А. А. Поражение почек при противоопухолевой терапии. Нефрология. 2018;22(5):17–24. https://doi.org/10.24884/1561Test‑6274‑2018‑22‑5‑17‑24; Kit OI, Shikhlyarova AI, Maryanovskaya GY, Barsukova LP, Kuzmenko TS, Zhukova GV, et al. Theory of health: successful translation into the real life. General biological prerequisites. Cardiometry. 2015;(7):11–17. https://doi.org/10.12710/cardiometry.2015.7.1117Test; Haney SL, Allen C, Varney ML, Dykstra KM, Falcone ER, Colligan SH, et al. Novel tropolones induce the unfolded protein response pathway and apoptosis in multiple myeloma cells. Oncotarget. 2017 Sep 29;8(44):76085–76098. https://doi.org/10.18632/oncotarget.18543Test; Zhang G, He J, Ye X, Zhu J, Hu X, Shen M, et al. β‑Thujaplicin induces autophagic cell death, apoptosis, and cell cycle arrest through ROS‑mediated Akt and p38/ERK MAPK signaling in human hepatocellular carcinoma. Cell Death Dis. 2019 Mar 15;10(4):255. https://doi.org/10.1038/s41419Test‑019‑1492‑6; Maldonado EN, Patnaik J, Mullins MR, Lemasters JJ. Free tubulin modulates mitochondrial membrane potential in cancer cells. Cancer Res. 2010 Dec 15;70(24):10192–10201. https://doi.org/10.1158/0008Test‑5472.CAN‑10‑2429; Kurek J, Kwaśniewska‑Sip P, Myszkowski K, Cofta G, Barczyński P, Murias M, et al. Antifungal, anticancer, and docking studies of colchiceine complexes with monovalent metal cation salts. Chem Biol Drug Des. 2019 Sep;94(5):1930–1943. https://doi.org/10.1111/cbdd.13583Test; Ido Y, Muto N, Inada A, Kohroki J, Mano M, Odani T, et al. Induction of apoptosis by hinokitiol, a potent iron chelator, in teratocarcinoma F9 cells is mediated through the activation of caspase‑3. Cell Prolif. 1999 Feb;32(1):63–73. https://doi.org/10.1046/j.1365Test‑2184.1999.3210063.x; Патент РФ. RU 2741311 C1. Заявка № 2020123736 от 17.07.20 г. Минкин В. И., Кит О. И., Гончарова А. С., Лукбанова Е. А., Саяпин Ю. А., Гусаков Е. А. и др. Средство, обладающее цитотоксической активностью в отношении культуры клеток немелкоклеточного рака легких А 549. Доступно по: https://patenton.ru/patent/RU2741311C1.pdfTest, Дата обращения: 23.03.2022.; Li L‑H, Wu P, Lee J‑Y, Li P‑R, Hsieh W‑Y, Ho C‑C, et al. Hinokitiol induces DNA damage and autophagy followed by cell cycle arrest and senescence in gefitinib‑resistant lung adenocarcinoma cells. PLoS One. 2014;9(8):e104203. https://doi.org/10.1371/journal.pone.0104203Test; Патент RU № 2712916, опубл. 03.02.2020, Бюл. № 4. Колесников Е. Н., Лукбанова Е. А., Ванжа Л. В., Максимов А. Ю., Кит С. О., Гончарова А. С. и др. Способ проведения наркоза у мышей Balb/c Nude при оперативных вмешательствах. Доступно по: https://patenton.ru/patent/RU2712916C1.pdfTest, Дата обращения: 23.03.2022.; Трещалина Е. М., Жукова О. С., Герасимова Г. К., Андронова Н. В., Гарин А. М. Методические указания по изучению противоопухолевой активности фармакологических веществ. В кн.: Руководство по экспериментальному (доклиническому) изучению новых фармакологических веществ. Под ред. Хабриева Р. У. М: Медицина, 2005, 637–651 с.; Чибуновский В. А. Интерпретация результатов клинико‑биохимических лабораторных исследований. Алматы, 1998.; Лукбанова Е. А., Заикина Е. В., Саяпин Ю. А., Гусаков Е. А., Филиппова С. Ю., Златник Е. Ю. и др. Оценка противоопухолевого эффекта 2‑(6,8‑диметил‑5‑нитро‑4‑хлорхинолин‑2‑ил)‑5,6,7‑трихлор‑1,3‑трополона на подкожных ксенографтах культуры опухолевых клеток А‑549. Альманах клинической медицины. 2021;49(6):396–404. https://doi.org/10.18786/2072Test‑0505‑2021‑49‑021; Заборовский А. В., Кокорев А. В., Бродовская Е. П., Фирстов С. А., Минаева О. В., Куликов О. А. и др. Направленная доставка доксорубицина с помощью экзогенных биосовместимых нановекторов при экспериментальных неоплазиях. Вестник Мордовского университета. 2017;27(1):93–107. https://doi.org/10.15507/0236Test‑2910.027.201701.093‑107; Chen S‑M, Wang B‑Y, Lee C‑H, Lee H‑T, Li J‑J, Hong G‑C, et al. Hinokitiol up‑regulates miR‑494‑3p to suppress BMI1 expression and inhibits self‑renewal of breast cancer stem/progenitor cells. Oncotarget. 2017 Sep 29;8(44):76057–76068. https://doi.org/10.18632/oncotarget.18648Test; Lee Y‑S, Choi K‑M, Kim W, Jeon Y‑S, Lee Y‑M, Hong J‑T, et al. Hinokitiol inhibits cell growth through induction of S‑phase arrest and apoptosis in human colon cancer cells and suppresses tumor growth in a mouse xenograft experiment. J Nat Prod. 2013 Dec 27;76(12):2195–2202. https://doi.org/10.1021/np4005135Test; Seo JS, Choi YH, Moon JW, Kim HS, Park S‑H. Hinokitiol induces DNA demethylation via DNMT1 and UHRF1 inhibition in colon cancer cells. BMC Cell Biol. 2017 Feb 27;18(1):14. https://doi.org/10.1186/s12860Test‑017‑0130‑3; https://www.rpmj.ru/rpmj/article/view/743Test

  9. 9
    دورية أكاديمية

    المساهمون: This work was supported by grant number 20-015-00023 RFBR «Study of the role of human papillomavirus (HPV) in the carcinogenesis of non-small cell lung cancer»., Работа поддержана грантом РФФИ № 20-015-00023 «Исследование роли вируса папилломы человека (ВПЧ) в канцерогенезе немелкоклеточного рака легкого».

    المصدر: Drug development & registration; Том 11, № 4 (2022); 253-260 ; Разработка и регистрация лекарственных средств; Том 11, № 4 (2022); 253-260 ; 2658-5049 ; 2305-2066

    وصف الملف: application/pdf

    العلاقة: https://www.pharmjournal.ru/jour/article/view/1384/1059Test; https://www.pharmjournal.ru/jour/article/downloadSuppFile/1384/1442Test; Duma N., Santana-Davila R., Molina J. R. Non–small cell lung cancer: epidemiology, screening, diagnosis, and treatment. Mayo Clinic Proceedings. 2019;94(8):1623–1640. DOI:10.1016/j.mayocp.2019.01.013.; Brandt W. S., Yan W., Zhou J., Tan K. S., Montecalvo J., Park B. J., Adusumilli P. S., Huang J., Bott M. J., Rusch V. W., Molena D., Travis W. D., Kris M. G., Chaft J. E., Jones D. R. Outcomes after neoadjuvant or adjuvant chemotherapy for cT2-4N0-1 non–small cell lung cancer: a propensity-matched analysis. The Journal of Thoracic and Cardiovascular Surgery. 2019;157(2):743–753. DOI:10.1016/j.jtcvs.2018.09.098.; Maclean M., Luo X., Wang S., Kernstine K., Gerber D. E., Xie Y. Outcomes of neoadjuvant and adjuvant chemotherapy in stage 2 and 3 non-small cell lung cancer: an analysis of the National Cancer Database. Oncotarget. 2018;9(36):24470–24479. DOI:10.18632/oncotarget.25327.; Pisters K., Kris M. G., Gralla R. J., Zaman M. B., Heelan R. T., Martini N. Pathologic complete response in advanced non-small-cell lung cancer following preoperative chemotherapy: implications for the design of future non-small-cell lung cancer combined modality trials. Journal of Clinical Oncology. 1993;11(9):1757–1762. DOI:10.1200/JCO.1993.11.9.1757.; Roth J. A., Fossella F., Komaki R., Ryan M. B., Putnam Jr. J., Lee J. S., Dhingra H., De Caro L., Chasen M., McGavran M., Atkinson E. N., Hong W. K. A randomized trial comparing perioperative chemotherapy and surgery with surgery alone in resectable stage IIIA non-small-cell lung cancer. JNCI: Journal of the National Cancer Institute. 1994;86(9):673–680. DOI:10.1093/jnci/86.9.673.; Rosell R., Gomez-Codina J., Camps C., Maestre J., Padille J., Canto A., Mate J. L., Li S., Roig J., Olazabal A., Canela M., Ariza A., Skacel Z., Morera-Prat J., Abad A. A randomized trial comparing preoperative chemotherapy plus surgery with surgery alone in patients with non-small-cell lung cancer. New England Journal of Medicine. 1994;330(3):153–158. DOI:10.1056/NEJM199401203300301.; Douillard J.-Y., Rosell R., De Lena M., Carpagnano F., Ramlau R., Gonzáles-Larriba J. L., Grodzki T., Pereira J. R., Le Groumellec A., Lorusso V., Clary C., Torres A. J., Dahabreh J., Souquet P.-J., Astudillo J., Fournel P., Artal-Cortes A., Jassem J., Koubkova L., His P., Riggi M., Hurteloup P. Adjuvant vinorelbine plus cisplatin versus observation in patients with completely resected stage IB–IIIA non-small-cell lung cancer (Adjuvant Navelbine International Trialist Association [ANITA]): a randomised controlled trial. The lancet oncology. 2006;7(9):719–727. DOI:10.1016/S1470-2045(06)70804-X.; Pirker R., Filipits M. Adjuvant therapy in patients with completely resected non–small-cell lung cancer: current status and perspectives. Clinical lung cancer. 2019;20(1):1–6. DOI:10.1016/j.cllc.2018.09.016.; Litviakov N. V., Cherdyntseva N. V., Tsyganov M. M., Denisov E. V., Garbukov E. Y., Merzliakova M. K., Volkomorov V. V., Vtorushin S. V., Zavyalova M. V., Slonimskaya E. M., Perelmuter V. M. Changing the expression vector of multidrug resistance genes is related to neoadjuvant chemotherapy response. Cancer chemotherapy and pharmacology. 2013;71(1):153–163. DOI:10.1007/s00280-012-1992-x.; Slonimskaya E. M., Kazantseva P. V., Litviakov N. V., Tsyganov M. M., Ibragimova M. K., Doroshenko A. V., Vernadsky R. U., Vostrikova M. A., Lushnikova N. A. Experience of personalized appointment of neoadjuvant chemotherapy for patient with breast cancer: a prospective study. Farmateka. 2018;7:64–70. (In Russ.); Đanić M., Mikov M. Biotransformation of Xenobiotics in Living Systems—Metabolism of Drugs: Partnership of Liver and Gut Microflora. Pharmaceutical Biocatalysis. 2020;1(1):129–166.; Vtorushin S., Khristenko K., Zavyalova M., Perelmuter V., Litviakov N., Denisov E., Dulesova A., Cherdyntseva N. The phenomenon of multi-drug resistance in the treatment of malignant tumors. Experimental Oncology. 2014;36(3):144–156.; Schwartz G. F., Hortobagyi G. N. Proceedings of the consensus conference on neoadjuvant chemotherapy in carcinoma of the breast, April 26–28, 2003, Philadelphia, Pennsylvania. Cancer. 2004;100(4):2512–2532. DOI:10.1002/cncr.20298.; Pfaffl M. W. A new mathematical model for relative quantification in real-time RT–PCR. Nucleic acids research. 2001;29(9):e45. DOI:10.1093/nar/29.9.e45.; Robey R. W., Pluchino K. M., Hall M. D., Fojo A. T., Bates S. E., Gottesman M. M. Revisiting the role of ABC transporters in multidrug-resistant cancer. Nature Reviews Cancer. 2018;18(7):452–464. DOI:10.1038/s41568-018-0005-8.; Fung S. W., Cheung P. F.-Y., Yip C. W., Ng L. W.-C., Cheung T. T., Chong C. C.-N., Lee C., Bo-San Lai P., Chan A. W.-H., Tsao G. S.-W., Wong C.-H., Chan S. L., Lo K. W., Cheung S. T. The ATP-binding cassette transporter ABCF1 is a hepatic oncofetal protein that promotes chemoresistance, EMT and cancer stemness in hepatocellular carcinoma. Cancer letters. 2019;457:98–109. DOI:10.1016/j.canlet.2019.05.010.; Bruckmueller H., Cascorbi I. ABCB1, ABCG2, ABCC1, ABCC2, and ABCC3 drug transporter polymorphisms and their impact on drug bioavailability: what is our current understanding? Expert opinion on drug metabolism & toxicology. 2021;17(4):369–396. DOI:10.1080/17425255.2021.1876661.; Zawadzka I., Jeleń A., Pietrzak J., Żebrowska-Nawrocka M., Michalska K., Szmajda-Krygier D., Mirowski M., Łochowski M., Kozak J., Balcerczak E. The impact of ABCB1 gene polymorphism and its expression on non-small-cell lung cancer development, progression and therapy – preliminary report. Scientific reports. 2020;10(1). DOI:10.1038/s41598-020-63265-4.; Yao S., Sucheston L. E., Zhao H., Barlow W. E., Zirpoli G., Liu S., Moore H. C. F., Budd G. T., Hershman D. L., Davis W. Ciupak G. L., Stewart J. A., Isaacs C., Hobday T. J., Salim M., Hortobagyi G. N., Gralow J. R., Livingston R. B., Albain K. S., Hayes D. F., Ambrosone C. B. Germline genetic variants in ABCB1, ABCC1 and ALDH1A1, and risk of hematological and gastrointestinal toxicities in a SWOG Phase III trial S0221 for breast cancer. The pharmacogenomics journal. 2014;14(3):241–247. DOI:10.1038/tpj.2013.32.; Vesel M., Rapp J., Feller D., Kiss E., Jaromi L., Meggyes M., Miskei G., Duga B., Smuk G., Laszlo T., Karner I., Pongracz J. E. ABCB1 and ABCG2 drug transporters are differentially expressed in non-small cell lung cancers (NSCLC) and expression is modified by cisplatin treatment via altered Wnt signaling. Respiratory research. 2017;18(1). DOI:10.1186/s12931-017-0537-6.; Han J.-Y., Lim H.-S., Yoo Y.-K., Shin E. S., Park Y. H., Lee S. Y., Lee J.-E., Lee D. H., Kim H. T., Lee J. S., Associations of ABCB1, ABCC2, and ABCG2 polymorphisms with irinotecan-pharmacokinetics and clinical outcome in patients with advanced non-small cell lung cancer. Cancer. 2007;110(1):138–147. DOI:10.1002/cncr.22760.; https://www.pharmjournal.ru/jour/article/view/1384Test

  10. 10
    دورية أكاديمية

    المصدر: Meditsinskiy sovet = Medical Council; № 22 (2022); 12-20 ; Медицинский Совет; № 22 (2022); 12-20 ; 2658-5790 ; 2079-701X

    وصف الملف: application/pdf

    العلاقة: https://www.med-sovet.pro/jour/article/view/7241/6484Test; Horn L., Spigel D.R., Vokes E.E., Holgado E., Ready N., Steins M. et al. Nivolumab Versus Docetaxel in Previously Treated Patients With Advanced Non-Small-Cell Lung Cancer: Two-Year Outcomes From Two Randomized, Open-Label, Phase III Trials (CheckMate 017 and CheckMate 057). J Clin Oncol. 2017;35(35):3924-3933. https://doi.org/10.1200/JCO.2017.74.3062Test.; Antonia SJ., Borghaei H., Ramalingam S.S., Horn L., De Castro Carpeno J., Pluzanski A. et al. Four-year survival with nivolumab in patients with previously treated advanced non-small-cell lung cancer: a pooled analysis. Lancet Oncol. 2019;20(10):1395-1408. https://doi.org/10.1016/S1470-2045Test(19)30407-3.; Herbst R.S., Baas P., Kim D.W., Felip E., Perez-Gracia J.L., Han J.Y. et al. Pembrolizumab versus docetaxel for previously treated, PD-L1-positive, advanced non-small-cell lung cancer (KEYNOTE-010): a randomised controlled trial. Lancet. 2016;387(10027):1540-1550. https://doi.org/10.1016/S0140-6736Test(15)01281-7.; Rittmeyer A., Barlesi F., Waterkamp D., Park K., Ciardiello F., von Pawel J. et al. Atezolizumab versus docetaxel in patients with previously treated non-small-cell lung cancer (OAK): a phase 3, open-label, multicentre randomised controlled trial. Lancet. 2017;389(10066):255-265. https://doi.org/10.1016/S0140-6736Test(16)32517-X.; Goldstraw P., Chansky K., Crowley J., Rami-Porta R., Asamura H., Eberhardt W.E. et al. The IASLC Lung Cancer Staging Project: Proposals for Revision of the TNM Stage Groupings in the Forthcoming (Eighth) Edition of the TNM Classification for Lung Cancer. J Thorac Oncol. 2016;11(1):39-51. https://doi.org/10.1016/j.jtho.2015.09.009Test.; Jazieh A.R., Onal H.C., Tan D.S.W., Soo R.A., Prabhash K., Kumar A. et al. Real-World Treatment Patterns and Clinical Outcomes in Patients With Stage III NSCLC: Results of KINDLE, a Multicountry Observational Study. J Thorac Oncol. 2021;16(10):1733-1744. https://doi.org/10.1016/j.jtho.2021.05.003Test.; Faivre-Finn C., Vicente D., Kurata T., Planchard D., Paz-Ares L., Vansteenkiste J.F. et al. Four-Year Survival With Durvalumab After Chemoradiotherapy in Stage III NSCLC-an Update From the PACIFIC Trial. J Thorac Oncol. 2021;16(5):860-867. https://doi.org/10.1016/j.jtho.2020.12.015Test.; Spigel D., Faivre-Finn C., Gray J., Vicente D., Planchard D., Paz-Ares L. et al. Five-year survival outcomes with durvalumab after chemoradiotherapy in unresectable stage III NSCLC: An update from the PACIFIC trial. J Clin Oncol. 2021;39(Suppl. 15):8511. https://doi.org/10.1200/JCO.2021.39.15_suppl.8511Test.; Лактионов К.К., Артамонова Е.В., Борисова Т.Н., Бредер В.В., Бычков Ю.М., Владимирова Л.Ю. и др. Злокачественное новообразование бронхов и легкого: клинические рекомендации. М.; 2021. Режим доступа: https://cr.minzdrav.gov.ru/recomend/30_3Test.; Eisenhauer E.A., Therasse P., Bogaerts J., Schwartz L.H., Sargent D., Ford R. et al. New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1). Eur J Cancer. 2009;45(2):228-247. https://doi.org/10.1016/j.ejca.2008.10.026Test.; Юкальчук Д.Ю., Пономаренко Д.М., Дворниченко В.В., Новопашин А.М. Опыт применения дурвалумаба при III нерезектабельной стадии немелкоклеточного рака легкого в Иркутской области. Медицинский алфавит. 2019;(28):5-8. Режим доступа: https://www.med-alphabet.com/jour/article/view/1193Test.; Сакаева Д.Д., Ручкин В.В., Гончарова О.В., Аббасова Р.Р., Муфазалов Ф.Ф. Дурвалумаб в терапии местно-распространенного немелкоклеточного рака легкого после химиолучевого лечения в реальной практике. Современная онкология. 2019;(3):21-25. https://doi.org/10.26442/18151434.2019.3.190679Test.; Garassino M.C., Mazieres J., Reck M., Chouaid C., Bischoff H., Reinmuth N. et al. Safety and efficacy outcomes with durvalumab after sequential chemoradiotherapy (sCRT) in Stage III, unresectable NSCLC (PACIFIC-6). Ann Oncol. 2022;33(Suppl. 2):S81-S82. https://doi.org/10.1016/annonc.2022.02.135Test.; Girard N., Smit H.J.M., Sibille A., McDonald F., Mornex F., Garassino M.C.C. et al. 1171MO PACIFIC-R real-world study: Treatment duration and interim analysis of progression-free survival in unresectable stage III NSCLC patients treated with durvalumab after chemoradiotherapy. Ann Oncol. 2021;32(5):S939-S940. https://doi.org/10.1016/annonc.2021.08.1774Test.; Bradley J.D., Hu C., Komaki R.R., Masters G.A., Blumenschein G.R., Schild S.E. et al. Long-Term Results of NRG Oncology RTOG 0617: Standard-Versus High-Dose Chemoradiotherapy With or Without Cetuximab for Unresectable Stage III Non-Small-Cell Lung Cancer. J Clin Oncol. 2020;38(7):706-714. https://doi.org/10.1200/JCO.19.01162Test.; O'Rourke N., Roque I. Figuls M., Farre Bernado N., Macbeth F. Concurrent chemoradiotherapy in non-small cell lung cancer. Cochrane Database Syst Rev. 2010;(6):CD002140. https://doi.org/10.1002/14651858.CD002140.pub3Test.; Auperin A., Le Pechoux C., Rolland E., Curran W.J., Furuse K., Fournel P. et al. Metaanalysis of concomitant versus sequential radiochemotherapy in locally advanced non-small-cell lung cancer. J Clin Oncol. 2010;28(13):2181-2190. https://doi.org/10.1200/JCO.2009.26.2543Test.; Faehling M., Schumann C., Christopoulos P., Hoffknecht P., Alt J., Horn M. et al. Durvalumab after definitive chemoradiotherapy in locally advanced unresectable non-small cell lung cancer (NSCLC): Real-world data on survival and safety from the German expanded-access program (EAP). Lung Cancer. 2020;150:114-122. https://doi.org/10.1016/j.lungcan.2020.10.006Test.; Park S.E., Noh J.M., Kim Y.J., Lee H.S., Cho J.H., Lim S.W. et al. EGFR Mutation Is Associated with Short Progression-Free Survival in Patients with Stage III Non-squamous Cell Lung Cancer Treated with Concurrent Chemoradiotherapy. Cancer Res Treat. 2019;51(2):493-501. https://doi.org/10.4143/crt.2018.125Test.; Aredo J.V., Mambetsariev I., Hellyer J.A., Amini A., Neal J.W., Padda S.K. et al. Durvalumab for Stage III EGFR-Mutated NSCLC After Definitive Chemoradiotherapy. J Thorac Oncol. 2021;16(6):1030-1041.https://doi.org/10.1016/j.jtho.2021.01.1628Test.; Jung H.A., Noh J.M., Sun J.M., Lee S.H., Ahn J.S., Ahn M.J. et al. Real world data of durvalumab consolidation after chemoradiotherapy in stage III non-smallcell lung cancer. Lung Cancer. 2020;146:23-29. https://doi.org/10.1016/j.lungcan.2020.05.035Test.; Taugner J., Kasmann L., Eze C., Ruhle A., Tufman A., Reinmuth N. et al. Real-world prospective analysis of treatment patterns in durvalumab maintenance after chemoradiotherapy in unresectable, locally advanced NSCLC patients. Invest New Drugs. 2021;39(4):1189-1196. https://doi.org/10.1007/s10637-021-01091-9Test.; Grangeon M., Tomasini P., Chaleat S., Jeanson A., Souquet-Bressand M., Khobta N. et al. Association Between Immune-related Adverse Events and Efficacy of Immune Checkpoint Inhibitors in Non-small-cell Lung Cancer. Clin Lung Cancer. 2019;20(3):201-207. https://doi.org/10.1016/j.cllc.2018.10.002Test.; https://www.med-sovet.pro/jour/article/view/7241Test