يعرض 1 - 10 نتائج من 36 نتيجة بحث عن '"муцины"', وقت الاستعلام: 1.19s تنقيح النتائج
  1. 1
    دورية أكاديمية
  2. 2
    دورية أكاديمية

    المصدر: Pelvic Surgery and Oncology; Том 9, № 2 (2019); 16-22 ; Тазовая хирургия и онкология; Том 9, № 2 (2019); 16-22 ; 2686-7435 ; 10.17650/2220-3478-2019-9-2

    وصف الملف: application/pdf

    العلاقة: https://ok.abvpress.ru/jour/article/view/287/240Test; Melis M., Hernandez J., Siegel E.M. et al. Gene expression profiling of colorectal mucinous adenocarcinomas. Dis Colon Rectum. 2010;53(6):936—43. DOI:10.1007/DCR.0b013e3181d320c4.; Park J.S., Huh J.W., Park Y.A. et al. Prognostic comparison between mucinous and nonmucinous adenocarcinoma in colorectal cancer. Medicine (Baltimore) 2015;94(15):e658. DOI:10.1097/MD.0000000000000658; Pai R.K., Jayachandran P., Koong A.C. et al. BRAF-mutated, microsatellite-stable adenocarcinoma of the proximal colon: an aggressive adenocarcinoma with poor survival, mucinous differentiation, and adverse morphologic features. Am J Surg Pathol 2012;36(5):744—52. DOI:10.1097/PAS.0b013e31824430d.; Yoon Y.S., Kim J., Hong S.M. et al. Clinical implications of mucinous components correlated with microsatellite instability in patients with colorectal cancer. Colorectal Dis 2015;17(8):O161—7. DOI:10.1111/codi.13027.; Wang M.J., Ping J., Li Y. et al. Prognostic significance and molecular features of colorectal mucinous adenocarcinomas: a strobe-compliant study. Medicine (Baltimore) 2015;94(51):e2350. DOI:10.1097/MD.0000000000002350.; Maeda Y., Sadahiro S., Suzuki T. et al. Significance of the mucinous component in the histopathological classification of colon cancer. Surg Today 2016;46(3):303—8. DOI:10.1007/s00595-015-1150-2.; Verhulst J., Ferdinande L., Demetter P., Ceelen W. Mucinous subtype as prognostic factor in colorectal cancer: a systematic review and meta-analysis. J Clin Pathol 2012;65(5):381 —8. DOI:10.1136/jclin-path-2011-200340.; Leopoldo S., Lorena B., Cinzia A. et al. Two subtypes of mucinous adenocarcinoma of the colorectum: clinicopathological and genetic features. Ann Surg Oncol 2008;15(5):1429—39. DOI:10.1245/s10434-007-9757-1.; Papadopoulos V.N., Michalopoulos A., Netta S. et al. Prognostic significance of mucinous component in colorectal carcinoma. Tech Coloproctol 2004;8(suppl 1): s123—5.; Adell R., Marcote E., Segarra M.A. et al. Is mucinous colorectal adenocarcinoma a distinct entity? Gastroenterol Hepatol 2002;25(9):534—40.; Lin J.K., Shen M.Y., Lin T.C. et al. Distribution of a single nucleotide polymorphism of insulin-like growth factor-1 in colorectal cancer patients and its association with mucinous adenocarcinoma. Int J Biol Markers 2010;25(4):195—9.; Arfaoui Toumi A., Kriaa Ben Mahmoud L., Khiari M. et al. Epidemiological study, pathologic evaluation and prognostic factors of colorectal mucinous vs non-mucinous adenocarcinoma (a series of 196 patients). Tunis Med 2010;88(1):12—7.; Byrd J.C., Bresalier R.S. Mucins and mucin binding proteins in colorectal cancer. Cancer Metastasis Rev 2004;23(1—2): 77-99.; Ionila M., Margaritescu C., Pirici D., Mogoanta S.S. Mucinous adenocarcinoma of the colon — a histochemical study. Rom J Morphol Embryol 2011;52(3): 783—90.; Park E.T., Oh H.K., Gum J.R.Jr. et al. HATH1 expression in mucinous cancers of the colorectum and related lesions. Clin Cancer Res 2006;12(18):5403—10.; Du W., Mah J.T., Lee J. et al. Incidence and survival of mucinous adenocarcinoma of the colorectum: a population-based study from an Asian country. Dis Colon Rectum 2004;47(1):78—85.; Buisine M.P., Devisme L., Savidge T.C. et al. Mucin gene expression in human embryonic and fetal intestine. Gut 1998;43(4):519—24.; Reid C.J., Harris A. Developmental expression of mucin genes in the human gastrointestinal system. Gut 1998;42(2):220 —6.; Kazama Y., Watanabe T., Kanazawa T. et al. Mucinous carcinomas of the colon and rectum show higher rates of microsatellite instability and lower rates of chromosomal instability: a study matched for T classification and tumor location. Cancer 2005;103(10):2023—9.; Kakar S., Aksoy S., Burgart L.J., Smyrk T.C. Mucinous carcinoma of the colon: correlation of loss of mismatch repair enzymes with clinicopathologic features and survival. Mod Pathol 2004;17(6):696—700.; Barresi V., Reggiani Bonetti L., Ieni A. et al. Prognostic significance of grading based on the counting of poorly differentiated clusters in colorectal mucinous adenocarcinoma. Hum Pathol 2015;46(11):1722—9. DOI:10.1016/j.humpath.2015.07.013.; Lee M.S., Menter D.G., Kopetz S. Right versus left colon cancer biology: integrating the consensus molecular subtypes. J Natl Compr Canc Netw 2017;15(3):411—9.; Perez-Villamil B., Romera-Lopez A., Hernandez-Prieto S. et al. Colon cancer molecular subtypes identified by expression profiling and associated to stroma, mucinous type and different clinical behavior. BMC Cancer 2012;12:260. DOI:10.1186/1471-2407-12-260.; Eyking A., Reis H., Frank M. et al. MiR-205 and MiR-373 Are Associated with Aggressive Human Mucinous Colorectal Cancer. PLoS One 2016;11(6):e0156871. DOI:10.1371/jour-nal.pone.0156871.; Kim K., Castro E.J.T., Shim H. et al. Differences Regarding the Molecular Features and Gut Microbiota Between Right and Left Colon Cancer. Ann Coloproctol 2018;34(6):280—5. DOI:10.3393/ac.2018.12.17.; Волкова О.В., Пекарский М.И. Эмбриогенез и возрастная гистология внутренних органов человека. М.: Медицина, 1976. 414 с.; Морозова Е.Н., Морозов В.Н., Кузьмачук Д.О., Моргун Ю.А. Взгляд на морфогенез пейеровых бляшек тонкой кишки крыс. Вестник проблем биологии и медицины 2013;2(2):101.; Карпочева И.Г., Галеева Э.Н. Анатомофункциональная характеристика лимфоидной системы и ее становление в пренатальном онтогенезе. Современные проблемы науки и образования 2017;2:86.; Peaudecerf L., Rocha B. Role of the gut as a primary lymphoid organ. Immunol Lett 2011;140(1-2):1—6. DOI:10.1016/j.im-let.2011.05.009.; Gordon J.I., Hooper L.V., McNevin M.S. et al. Epithelial cell growth and differentiation. III. Promoting diversity in the intestine: conversations between the microflora, epithelium, and diffuse GALT. Am J Physiol 1997;273(3 Pt 1):G565—70.; Neumann P.A., Koch S., Hilgarth R.S. et al. Gut commensal bacteria and regional Wnt gene expression in the proximal versus distal colon. Am J Pathol 2014;184(3):592—9. DOI:10.1016/j.ajpath.2013.11.029.; Гусейнов Т.С., Гусейнова С.Т. Дискуссионные вопросы анатомии пейеровых бляшек тонкой кишки. Саратовский научно-медицинский журнал 2012;8(3):687—91.; Merlano M.C., Granetto C., Fea E. et al. Heterogeneity of colon cancer: from bench to bedside. ESMO Open 2017;2(3):e000218. DOI:10.1136/esmoo-pen-2017-000218.; Kashtanova D.A., Popenko A.S., Tkacheva O.N. et al. Association between the gut microbiota and diet: Fetal life, early childhood, and further life. Nutrition 2016;32(6): 620-7. DOI:10.1016/j.nut.2015.12.037.; Kosumi K., Hamada T., Koh H. et al. The Amount of Bifidobacterium Genus in Colorectal Carcinoma Tissue in Relation to Tumor Characteristics and Clinical Outcome. Am J Pathol 2018;188(12): 2839-52. DOI:10.1016/j.aj-path.2018.08.015.; Wu M., Wu Y., Li J. et al. The dynamic changes of gut microbiota in Muc2 deficient mice. Int J Mol Sci 2018;19(9). PII: E2809. DOI:10.3390/ijms19092809.; Kamphuis J.B.J., Mercier-Bonin M., Eutamene H., Theodorou V. Mucus organisation is shaped by colonic content; a new view. Sci Rep 2017;7(1):8527. DOI:10.1038/s41598-017-08938-3.; Koliarakis I., Psaroulaki A., Nikolouzakis T.K. et al. Intestinal microbiota and colorectal cancer: a new aspect of research. CJ BUON 2018;23(5):1216—34.; Hattori N., Niwa T., Ishida T. et al. Antibiotics suppress colon tumorigenesis through inhibition of aberrant DNA methylation in an azoxymethane and dextran sulfate sodium colitis model. Cancer Sci 2019;110(1): 147—56. DOI:10.1111/cas.13880.; Mima K., Nishihara R., Qian Z.R. et al. Fusobacterium nucleatum in colorectal carcinoma tissue and patient prognosis. Gut 2016;65(12):1973—80. DOI:10.1136/gutjnl-2015-310101.; Mima K., Sukawa Y., Nishihara R. et al. Fusobacterium nucleatum and T Cells in Colorectal Carcinoma. JAMA Oncol 2015;1(5):653—61. DOI:10.1001/jamaon-col.2015.1377.; Gao Z., Guo B., Gao R. et al. Microbiota disbiosis is associated with colorectal cancer. Front Microbiol 2015;6:20. DOI:10.3389/fmicb.2015.00020.; Flemer B., Lynch D.B., Brown J.M. et al. Tumour-associated and non-tumour-associated microbiota in colorectal cancer. Gut 2017;66(4):633—43. DOI:10.1136/gutjnl-2015-309595.; https://ok.abvpress.ru/jour/article/view/287Test

  3. 3
    دورية أكاديمية

    وصف الملف: application/pdf

    العلاقة: Уральский медицинский журнал. 2018. Т. 157, № 2.; Дуб, А. А. Муцины и уровень экспрессии цитокератинов AE1/ AE3 и D2-40 при АМАСR-позитивном фенотипе атипической мелкоацинарной пролиферации и аденокарциноме предстательной железы / А. А. Дуб, И. Р. Четер, Д. Д. Воропаев. – Текст: электронный // Уральский медицинский журнал. - 2018. – Т. 157, № 2. - С. 52-56.; http://elib.usma.ru/handle/usma/11825Test

  4. 4
  5. 5
    دورية أكاديمية

    وصف الملف: application/pdf

    العلاقة: Уральский медицинский журнал. 2016. T. 136, № 3.; Дуб, А. А. Роль муцинов и панцитокератинов АЕ1/АЕЗ и D2-40 в дифференциальной диагностике атипичной мелкоацинарной пролиферации и аденокарциномы предстательной железы высокой и низкой степени дифференцировки / А. А. Дуб, И. P. Юсупова. – Текст: электронный // Уральский медицинский журнал. - 2016. – T. 136, № 3. – С. 77-81.; http://elib.usma.ru/handle/usma/13877Test

  6. 6
    دورية أكاديمية

    المصدر: Medical Visualization; № 5 (2015); 45-51 ; Медицинская визуализация; № 5 (2015); 45-51 ; 2408-9516 ; 1607-0763

    وصف الملف: application/pdf

    العلاقة: https://medvis.vidar.ru/jour/article/view/229/230Test; Terada T., Mitsui T., Nakanuma Y. et al. Intrahepatic biliary papillomatosis arising in nonobstructive intrahepatic biliary dilatations confined to the hepatic left lobe. Am. J. Gastroenterol. 1991; 86 (10): 1523-1526.; Shibahara H., Tamada S., Goto M. et al. Prognostic features of mucin-producing bile duct tumors. Two histopathologic categories as counterparts of pancreatic intraductal papillary-mucinous neoplasms. Am. J. Surg. Pathol. 2004; 28 (3): 327-338.; Kuo C., Changchien C., Wu K. et al. Mucin-producing cholangiocarcinoma: clinical experience of 24 cases in 16 years. Scand. J. Gastroenterol. 2005; 40 (4): 455-459.; Yeh T., Tseng J., Chiu C. et al. Cholangiographic spectrum of intraductal papillary mucinous neoplasm of the bile ducts. Ann. Surg. 2006; 244 (2): 248-253.; Bosman F.T. WHO Classification of tumors of the digestive system. Lyon, 2010. 417 p.; Rocha F.G., Lee H., Katabi N. et al. Intraductal papillary neoplasm of the bile duct: a biliary equivalent to intraductal papillary mucinous neoplasm of the pancreas? Hepatology. 2012; 56 (4): 1352-1360.; Wan X.-S., Xu Y.-Y., Qian J.-Y. Intraductal papillary neoplasm of the bile duct. Wld J. Gastroenterol. 2013; 19 (46): 8595-8604.; Kuwatani M., Kawakami H., Zen Y. et al. Difference from bile duct cancer and relationship between bile duct wall thickness and serum IgG/IgG4 levels in IgG4-related sclerosing cholangitis. Hepato-Gastroenterology. 2014; 61: 1852-1856.; Kitano M., Kamata K., Imai H. Contrast-enhanced harmonic endoscopic ultrasonography for pancreatobiliary diseases. Dig. Endosc. 2015; 27: 60-67.; Lee S.S., Kim M., Lee S.K. et al. Clinicopathologic review of 58 patients with biliary papillomatosis. Cancer. 2004; 100 (4): 783-793.; Yoon H.J., Kim Y.K., Jang K.T. et al. Intraductal papillary neoplasm of the bile ducts: description of MRI and added value of diffusion-weighted MRI. Abdom. Imaging. 2013; 38 (5): 1082-1090.; Chung Y.E., Kim M.J., Park Y.N. et al. Varying appearances of cholangiocarcinoma: radiologic-pathologic correlation. Radiographics. 2009; 29: 683-700.; Kim K.M., Lee J.K., Shin J.U. et al. Clinicopathologic features of intraductal papillary neoplasm of the bile duct according to histologic subtype. Am. J. Gastroenterol. 2012; 107: 118-125.; Song F., Zhou J., Shi Y. et al. Value of MR imaging in the diagnosis of intraductal papillary neoplasm of the bile duct. Zhonghua Zhong Liu Za Zhi. 2015; 37: 57-62.; Wolf H.K., Garcia J.A., Bossen E.H. Oncocytic differentiation in intrahepatic biliary cystadenocarcinoma. Mod. Pathol. 1992; 5: 665-668.; Martin R.C., Klimstra D.S., Schwartz L. et al. Hepatic intraductal oncocytic papillary carcinoma. Cancer. 2002; 95: 2180-2187.; Spector S.A., Bejarano P.A., Amortegui J.D. et al. Intraductaloncocytic papillary neoplasm of the extrahepatic biliary tree: first report. Am. Surg. 2004; 70 (1): 55-58.; Terada T., Taniguchi M. Intraductal oncocytic papillary neoplasm of the liver. Pathol. Internat. 2004; 54: 116-123.; Tabibian J.H., Lassman C.R., Margolis D.J. et al. Intraductaloncocytic papillary neoplasm of the liver: case and review of a rare variant. Ann. Hepatol. 2008; 7: 168-173.; Lee S., Kim Y.S., Lee W.J. et al. Intraductaloncocytic papillary neoplasm of the bile duct: ultrasonography and CT findings with pathological correlations. Clin. Radiol. 2009; 64: 841-844.; Nakanishi Y., Zen Y., Hirano S. et al. Intraductaloncocytic papillary neoplasm of the bile duct: the first case of peribiliary gland origin. J. Hepatobil. Pancreat. Surg. 2009; 16: 869-873.; Tanaka M., Fukushima N., Noda N. et al. Intraductaloncocytic papillary neoplasm of the bile duct: clinicopathologic and immunohistochemical characteristics of 6 cases. Hum. Pathol. 2009; 40: 1543-1552.; Cocieru A., Kesha K., El-Fanek H. et al. Hepatic intraductaloncocytic papillary carcinoma. Am. J. Surg. 2010; 199: e57-58.; Watanabe A., Suzuki H., Kubo N. An Oncocytic Variant of Intraductal Papillary Neoplasm of the Bile Duct that Formed a Giant Hepatic Cyst. Rare Tumors. 2013; 5 (3): e30.; https://medvis.vidar.ru/jour/article/view/229Test

  7. 7
    دورية أكاديمية

    المصدر: Acta Biomedica Scientifica; № 3 (2015); 62-69 ; 2587-9596 ; 2541-9420

    وصف الملف: application/pdf

    العلاقة: https://www.actabiomedica.ru/jour/article/view/73/74Test; Лахтин М.В. Варианты изотипирования компонента С4 комплемента человека: автореф. дис. . канд. биол. наук. - М., 2008. - 22 с; Лахтин В.М., Афанасьев С.С., Алешкин В.А., Несвижский Ю.В., Поспелова В.В., Лахтин М.В., Воропаева Е.А., Черепанова Ю.В., Агапова Ю.В. Стратегические аспекты конструирования пробиотиков будущего // Вестник РАМН. - 2008. - № 2. - С. 33-44; ахтин М.В., Афанасьев С.С., Лахтин В.М., Алешкин В.А., Караулов А.В., Алешкин А.В., Несвижский Ю.В., Байракова А.Л., Афанасьев М.С., Воропаева Е.А. Влияние лектинов пробиотических бактерий на условно-патогенный и пробиотический компартменты микробиоценоза биотопа человека // Астраханский медицинский журнал. - 2014. - Т. 9, № 2. - С. 51-58; Лахтин В.М., Афанасьев С.С., Лахтин М.В., Алешкин В.А., Несвижский Ю.В., Поспелова В.В. Нанотехнологии и перспективы их использования в медицине и биотехнологии // Вестник РАМН. - 2008. -№ 4. - C. 50-55; Лахтин В.М., Афанасьев С.С., Лахтин М.В., Байракова А.Л., Алешкин В.А. Диагностика дестабилизирующих упорядоченность биотопа условно патогенных штаммов пациента в присутствии пробиотикоподобного пула бактерий из того же популяционного биотопа // Инфекционные болезни. - 2014. - Т. 12; Прил. № 1. - С. 171-172; Лахтин М.В., Караулов А.В., Лахтин В.М., Алешкин В.А., Афанасьев С.С., Несвижский Ю.В., Афанасьев М.С., Воропаева Е.А., Алешкин А.В. Лектин гликоконъюгатные системы в организме человека // Иммунопатология, аллергология, инфектология. - 2012. - № 1. - С. 27-36; Лахтин М.В., Козлов Л.В., Лахтин В.М., Дьяков В.Л. Выявление дефицитов изотипов C4A и C4B компонентов комплемента человека изоэлектрофокусированием и по различию в химической реакционной способности активированных форм // Биоорганическая химия. - 2007. - Т. 33. - С. 464-469; Лахтин М.В., Лахтин В.М., Алешкин В.А., Афанасьев С.С., Алешкин А.В. Лектины и ферменты в биологии и медицине. - М.: Династия, 2010. - 496 с; Лахтин М.В., Лахтин В.М., Афанасьев С.С., Алешкин В.А., Корсун В.Ф., Афанасьев М.С. Лектины: в растворах и сорбированные, активные и латентные, системные и сетевые, флюоресцентные и хемилю-минесцентные, в регуляции сборок и деградации, синергистические и синбиотические // Здоровье и образование в XXI веке. - 2014. - Т. 16, № 3. - С. 64-68; Лахтин М.В., Лахтин В.М., Черепанова Ю.В., Поспелова В.В., Афанасьев С.С., Алешкин В.А. Ранжирование качеств производственных ингредиентных пробиотических штаммов бифидобактерий и лактобацилл человека для прогнозирования новых пробиотических формул // Сб. материалов междунар. науч.-техн. конф. «Современные достижения биотехнологии» и международного научно-практического семинара «Феномен молочной сыворотки: синтез науки, теории и практики» (г. Ставрополь, 21-23 июня, 2011). - М.: НОУ «Образовательный научнотехнический центр молочной промышленности», 2011. - Ч. 2. - С. 49-51; Bergstrom KSB, Xia L (2013). Mucin-type O-glycans and their roles in intestinal homeostasis. Glycobiol-ogy, 23 (9), 1026-1037; Crouzier T, Jang H, Ahn J, Stocker R, Ribbeck K (2013). Cell patterning with mucin biopolymers. Biomacromolecules, 14 (9), 3010-3016; Domino SE, Hurd EA, Thomsson KA, Karnak DM, Larsson JMH, Thomsson E, Bäckström M, Hansson GC (2009). Cervical mucins carry a(1,2) fucosylated glycans that partly protect from experimental vaginal candidiasis. Glycoconjugate J., 26 (9), 1125-1134; Jakobsson HE, Rodri'guez-Pineiro AM, Schütte A, Ermund A, Boysen P, Bemark M, Sommer F, Bäckhed F, Hansson GC, Johansson MEV (2015). The composition of the gut microbiota shapes the colon mucus barrier. EMBO Reports, 16 (2), 164-177; Kavanaugh NL, Zhang AQ, Nobile CJ, Johnson AD, Ribbeck K (2014). Mucins suppress virulence traits of Candida albicans. mBio, 5 (6), e01911-14; Lakhtin M, Aleshkin V, Lakhtin V, Afanasiev S, Pozhalostina L, Pospelova V (2010). Probiotic lactobacillus and bifidobacterial lectins against Candida albicans and Staphylococcus aureus clinical strains: New class of pathogen biofilm destructors. Probiotics and Antimicrobial Proteins, 2, 186-196; Lakhtin V, Lakhtin M, Aleshkin V (2011). Lectins of living organisms. Anaerobe, 17, 452-455; Lakhtin MV, Lakhtin VM, Aleshkin VA (2011). Lectin and enzyme relationships in microbiology. International Journal of Molecular and Clinical Microbiology, 1, 9-14; Lakhtin M, Lakhtin V, Aleshkin V, Afanasiev S (2011). Lectins of beneficial microbes: system organization, functioning and functional superfamily. Beneficial Microbes, 2, 155-165; Lakhtin MV, Lakhtin VM, Aleshkin AV, Afanasiev SS, Aleshkin VA (2013). Differences and similarities between new probiotic bifidobacterial and lactobacillus lectin systems interacting to glycoconjugates. Glycoconjugate J., 30, 375-376; Lakhtin MV, Lakhtin VM, Aleshkin AV, Afanasiev SS, Aleshkin VA (2013). Functional similarities and differences between new lectin systems in human organism: protein hormone and probiotic bacterial. Glycoconjugate J., 30, 370; Lakhtin M, Lakhtin V, Aleshkin A, Bajrakova A, Afanasiev S, Aleshkin V (2012). Lectin systems imitating probiotics: Potential for biotechnology and medical microbiology. Probiotics, 417-432; Lakhtin VM, Lakhtin MV, Bajrakova AL, Afanasiev SS, Aleshkin VA (2013). Candida albicans: new aspects of pathogenicity, interaction to antifungals, biofilms and preventive anti-candida strategies. Candida albicans: Symptoms, causes and treatment options, 145-152; Lakhtin MV, Lakhtin VM, Afanasiev SS, Bajrakova AL, Aleshkin VA, Afanasiev MS, Karaulov AV, Korsun VF (2014). Human healthy status supported by probiotic systems recognizing glycoconjugates: one more strategy of supporting healthy biotope. European Science and Technology: materials of the IX international research and practice conference (Munich, December 24-25,2014); Lazaris AC, Chatzigianni EB, Paraskeva-kou H, Tseleni-Balafouta S, Davaris PS (2000). Lectin histochemistry as a predictor of dysplasia grade in colorectal adenomas. Pathol. Oncol. Res., 6 (4), 265-271; Mukherjee S, Vaishnava S, Hooper LV (2008). Multilayered regulation of intestinal antimicrobial defense. Cell Mol. Life Sci., 65 (19), 3019-3027; Van Tassell ML, Miller MJ (2011). Lactobacillus adhesion to mucus. Nutrients, 3, 613-636; Zeller G, Tap J, Voigt AY, Sunagawa S, Kultima JR, Costea PI et al. (2014). Potential of fecal microbiota for early-stage detection of colorectal cancer. Molecular Systems Biology, 10, 766; https://www.actabiomedica.ru/jour/article/view/73Test

  8. 8
    دورية أكاديمية

    المصدر: Acta Biomedica Scientifica; № 5 (2015); 113-122 ; 2587-9596 ; 2541-9420

    وصف الملف: application/pdf

    العلاقة: https://www.actabiomedica.ru/jour/article/view/126/127Test; Алешкин В.А., Афанасьев С.С., Караулов А.В. Микробиоценозы и здоровье человека. - М.: Династия, 2015.-548 с.; Лахтин M.B., Афанасьев C.C., Лахтин B.M., Алешкин В.А., Караулов А.В., Алешкин А.В., Несвижский Ю.В., Байракова А.Л., Афанасьев М.С., Воропаева Е.А. Влияние лектинов пробиотических бактерий на условно-патогенный и пробиотический компартменты микробиоценоза биотопа человека // Астраханский медицинский журнал. - 2014. - Т. 9, №2.-С. 51-58.; Лахтин M.B., Караулов А.В., Лахтин B.M., Алешкин В.А., Афанасьев С.С., Несвижский Ю.В., Афанасьев М.С., Воропаева Е.А., Алешкин А.В. Лектин- гликоконъюгатные системы в организме человека // Иммунопатология, аллергология, инфектология. - 2012.-№1,-С. 27-36.; Лахтин M.B., Козлов Л.В., Лахтин В.М., Дьяков В.Л. Выявление дефицитов изотипов С4А и С4В компонентов комплемента человека изоэлектрофокусированием и по различию в химической реакционной способности активированных форм // Биоор- ганическая химия. - 2007. - Т. 33. - С. 464-469.; Лахтин M.B., Лахтин B.M., Афанасьев C.C., Алешкин В.А. Мукозальный иммунитет против патогенов и опухолей с участием системы «Лектины пробиотиков - Гликополимеры» // Бюллетень ВСНЦ СО РАМН. - 2015. - № 3. - С. 62-69.; Лахтин M.B., Лахтин B.M., Афанасьев C.C. Алешкин B.A., Корсун В.Ф., Афанасьев М.С. Лектины: в растворах и сорбированные, активные и латентные, системные и сетевые, флюоресцентные и хемилюминесцентные, в регуляции сборок и деградации, синергистические и синбиотические // Журнал научных статей «Здоровье и образование в XXI веке».- 2014.-Т. 16, № З.-С. 64-68.; Antoni L, NudingS, Wehkamp J, Stange EF (2014). Intestinal barrier in inflammatory bowel disease. WorldJ. Gastroenterol, 20,1165-1179.; Ashman RB, Papadimitriou JM, Fulurija A, Drysdale KE, Farah CS, Naidoo O, Gotjamanos T (2003). Role of complement C5 and Tlymphocytes in pathogenesis of disseminated and mucosal candidiasis in susceptible DBA/2 mice. Microb. Pathol., 34,103-113.; Brandtzaeg P (2010). Update on mucosal immunoglobulin A in gastrointestinal disease. Curr. Opin. Gastroenterol, 26, 554-563.; Camacho ZT, Turner MA, Barry MA, Weaver EA (2014). CD46-mediated transduction of a species D adenovirus vaccine improves mucosal vaccine efficacy. Hum. Gene Ther., 25, 364-374.; Datta PK, Rappaport J (2006). HIV and complement: hijacking an immune defense. Biomed Pharmaco- ther., 60, 561-568.; Degn SE, Thiel S (2013). Humoral pattern recognition and the complement system. Scand.J. Immunol, 78 (2), 181-93.; Deguchi Y, Andoh A, Inatomi 0, Araki Y, Hata K, Tsujikawa T, Kitoh K, Fujiyama Y (2005). Development of dextran sulfate sodium-induced colitis is aggravated in mice genetically deficient for complement C5. Int.J. Mol. Med., 16,605-608.; Elvington M, Schepp-Berglind J, Tomlinson S (2015). Regulation of the alternative pathway of complement modulates injury and immunity in a chronic model of dextran sulphate sodium-induced colitis. Clin. Exp. Immunol, 179, 500-508.; Elvington М, Blichmann Р, Qiao F, Scheiber М, Wadsworth С, Luzinov I, Lucero J, Vertegel A, Tomlinson S [2014]. A novel protocol allowing oral delivery of a protein complement inhibitor that subsequently targets to inflamed colon mucosa and ameliorates murine colitis. Clin. Exp. Immunol, 177, 500-508.; GunputST, LigtenbergAJ, Terlouw B, Brouwer M, Veerman EC, Wouters D [2015]. Complement activation by salivary agglutinin is secretor status dependent. Biol. Chem., 396, 35-43.; Gruber A, Lell CP, Speth C, Stoiber H, Lass-Florl C, Sonneborn A, ErnstJF, Dierich MP, Wiirzner R [2001]. HIV type 1 Tatbinds to Candida albicans, inducing hyphae but augmenting phagocytosis in vitro. Immunology, 104 [4], 455- 461.; Hu W, Yu Q, Hu N, Byrd D, Amet T, Shikuma C, Shiramizu B, Halperin JA, Qin X [2010]. A high-affinity inhibitor of human CD59 enhances complement-mediated virolysis of HIV-1: implications for treatment of НІѴ-1/ AIDS./. Immunol, 184,359-368.; Ibernon M, Moreso F, Seron D [2014]. Innate immunity in renal transplantation: the role of mannose-binding lectin. Transplant. Rev. (Orlando), 28,21-25.; Jensen TS, Bjprge L, Wollen AL, Ulstein M [1995]. Identification of the complement regulatory proteins CD46, CD55, and CD59 in human fallopian tube, endometrium, and cervical mucosa and secretion. Am. J. Reprod. Immunol, 34,1-9.; Kaiser P, Hardt WD [2011]. Salmonella typh- imurium diarrhea: switching the mucosal epithelium from homeostasis to defense. Curr. Opin. Immunol, 23, 456- 463.; Keizer MP, Wouters D, Schlapbach LJ, Kuijpers TW [2014]. Restoration of MBL-deficiency: redefining the safety, efficacy and viability of MBL-substitution therapy. Mol. Immunol, 61,174-184.; Kim SH, Jung DI, Yang IY, Kim J, Lee KY, Nochi T, Kiyono H, Jang YS [2011]. M cells expressing the complement C5a receptor are efficienttargets for mucosal vaccine delivery. Eur. J. Immunol, 41, 3219-3229.; Khan MA, Nicolls MR, Surguladze B, Saadoun I [2014]. Complementcomponents as potential therapeutic targets for asthma treatment Respir. Med., 108,543-549.; Kopp ZA, Jain U, Van Limbergen J, Stadnyk AW [2015]. Do antimicrobial peptides and complement collaborate in the intestinal mucosa? Front Immunol, 6,17.; Kweon MN [2014]. Recent progress in mucosal immunology and vaccine development Exp. Mol. Med., 46, e86.; Lakhtin M, Lakhtin V, Afanasiev S, Aleshkin V, Afanasiev M, Karaulov A [2014]. Human complement components C4b and C4a subisotypes patterns: resistant visible biomarkers of the system infectious and rheu- matologic diseases. Annals of the Rheumatic Diseases, 73 [2], 821.; Lan J, Yang K, Byrd D, Hu N, Amet T, Shepherd N, Desai M, Gao J, Gupta S, Sun Y, Yu Q [2014]. Provirus activation plus CD59 blockage triggers antibody-dependent complement-mediated lysis of latently HIV-l-infected cells./. Immunol, 193, 3577-3589.; Laursen NS, Gordon N, Hermans S, Lorenz N, Jackson N, Wines B, Spillner E, Christensen JB, Jensen M, Fredslund F, Bjerre M, Sottrup-Jensen L, Fraser JD, Andersen GR [2010]. Structural basis for inhibition of complement C5 by the SSL7 protein from Staphylococcus aureus. Proc. Natl. Acad. Sci. USA, 107,3681-3686.; Lee H, Green DJ, Lai L, Hou YJ,Jensenius JC, Liu D, Cheong C, Park CG, Zhang M [2010]. Early complement factors in the local tissue immunocomplex generated during intestinal ischemia/reperfusion injury. Mol. Immunol., 47,972-981.; Leito JT, Ligtenberg AJ, van Houdt M, van den Berg TK, Wouters D [2011]. The bacteria binding glycoprotein salivary agglutinin [SAG/gp340] activates complement via the lectin pathway. Mol. Immunol., 49, 185-190.; Lorenz N, Clow F, Radcliff FJ, Fraser JD [2013]. Full functional activity of SSL7 requires binding of both complement C5 and IgA. Immunol. Cell Biol, 91, 469-476.; Lu F, Fernandes SM, Davis AE 3rd [2010].The role of the complement and contact systems in the dextran sulfate sodium-induced colitis model: the effect of Cl inhibitor in inflammatory bowel disease. Am J. Physiol. Gastrointest. Liver Physiol., 298, G878-G883.; MasCasullo V, Fam E, Keller MJ, Herald BC [2005]. Role of mucosal immunity in preventing genital herpes infection. Viral Immunol, 18, 595-606.; McGreal EP, Hearne K, Spiller OB [2012]. Off to a slow start: under-developmentof the complement system in term newborns is more substantial following premature birth. Immunobiology, 217,176-186.; Merga Y, Campbell BJ, RhodesJM [2014]. Mucosal barrier, bacteria and inflammatory bowel disease: possibilities for therapy. Dig. Dis., 32,475-483.; Nuutila J, Jalava-Karvinen P, Hohenthal U, Koti- lainen P, Pelliniemi TT, Nikoskelainen J, Lilius EM [2013]. Use of complement regulators, CD35, CD46, CD55, and CD59, on leukocytes as markers for diagnosis of viral and bacterial infections. Hum. Immunol., 74,522-530.; Osthoff M, Trendelenburg M [2013]. Impact of mannose-binding lectin deficiency on radiocontrast-induced renal dysfunction. Biomed. Res. Int., 962695.; Pettengill MA, van Haren SD, Levy 0 [2014]. Soluble mediators regulating immunity in early life. Front. Immunol, 5,457.; Ray TL, Digre KB, Payne CD [1984]. Adherence of Candida species to human epidermal corneocytes and buccal mucosal cells: correlation with cutaneous pathogenicity. /. Invest. Dermatol., 83,37-41.; Reichhardt MP, Loimaranta V, Thiel S, Finne J, Meri S, Jarva H [2012]. The salivary scavenger and agglutinin binds MBL and regulates the lectin pathway of complementin solution and on surfaces. Front. Immunol, 3,205.; Sakaue T, Takeuchi K, Maeda T, Yamamoto Y, Nishi K, Ohkubo I [2010]. Factor H in porcine seminal plasma protects sperm against complement attack in genital tracts./. Biol. Chem., 285,2184-2192.; Sanchez B, Gonzalez-Rodriguez I, Arboleya S, Lopez P, Suarez A, Ruas-Madiedo P, Margolles A, Guei- monde M [2015]. The Effects of Bifidobacterium breve on Immune Mediators and Proteome of HT29 Cells Mono- layers. BioMed Research International, 479140.; Seitz М, Beineke А, Singpiel A, Willenborg J, Du- tow Р, Goethe R, Valentin-Weigand P, Klos A, Baums CG (2014). Role of capsule and suilysin in mucosal infection of complement-deficient mice with Streptococcus suis. Infect. Immun., 82,2460-2471.; Stoermer KA, Morrison ТЕ (2011). Complement and viral pathogenesis. Virology, 411, 362-373.; Stoiber H, Kacani L, Speth C, Wiirzner R, Dier- ich MP (2001). The supportive role of complement in HIV pathogenesis. Immunol Rev., 180,168-176.; Sugihara T, Kobori A, Imaeda H, Tsujikawa T, Amagase K, Takeuchi K, Fujiyama Y,Andoh A (2010). The increased mucosal mRNA expressions of complement C3 and interleukin-17 in inflammatory bowel disease. Clin. Exp. Immunol, 160, 386-393.; Swale A, Miyajima F, Kolamunnage-Dona R, Roberts P, Little M, Beeching NJ, Beadsworth MB, Liloglou T, Pirmohamed M (2014). Serum Mannose-binding lectin concentration, but not genotype, is associated with Clos tridium difficile infection recurrence: A prospective cohort study. Clin. Infect Dis., 59,1429-1436.; Tjomsland V, Ellegard R, Kjolhede P, Wodlin NB, Hinkula J, Lifson JD, Larsson M (2013). Blocking of inte- grins inhibits HIV-1 infection of human cervical mucosa immune cells with free and complement-opsonized virions. Eur. J. Immunol, 43,2361-2372.; WeichhartT, Haidinger M, Horl WH, Saemann MD (2008). Current concepts of molecular defense mechanisms operative during urinaiy tract infection. Eur. J. Clin. Invest., 38 (2), 29-38.; Wende E, Laudeley R, Bleich A, Bleich E, Wet- sel RA, Glage S, Klos A. The complement anaphylatoxin C3a receptor (C3aR) contributes to the inflammatory response in dextran sulfate sodium (DSS)-induced colitis in mice. PLoS One, 8 (4):e62257.; Yamamoto H, Fara AF, Dasgupta P, Kemper C (2013). CD46: the ‘multitasker’ of complement proteins. Int J. Biochem. Cell Biol, 45,2808-2820.; https://www.actabiomedica.ru/jour/article/view/126Test

  9. 9
  10. 10