يعرض 1 - 10 نتائج من 446 نتيجة بحث عن '"микроРНК"', وقت الاستعلام: 0.94s تنقيح النتائج
  1. 1
    دورية أكاديمية
  2. 2
    دورية أكاديمية
  3. 3
  4. 4
    دورية أكاديمية

    المساهمون: The research was carried out at the expense of a grant from the Russian Science Foundation (grant No. 23-25-10026, https://rscf.ru/project/23-25-10026Test) within the framework of the project 0000005406995998235120582 supported by the Government of the Novosibirsk Region No. r-45, Исследование выполнено за счет гранта Российского научного фонда (грант № 23-25-10026, https://rscf.ru/project/23-25-10026Test) в рамках поддержанного Правительством Новосибирской области проекта 0000005406995998235120582 № р-45

    المصدر: Advances in Molecular Oncology; Том 11, № 1 (2024); 55-78 ; Успехи молекулярной онкологии; Том 11, № 1 (2024); 55-78 ; 2413-3787 ; 2313-805X

    وصف الملف: application/pdf

    العلاقة: https://umo.abvpress.ru/jour/article/view/649/338Test; Ferlay J., Colombet M., Soerjomataram I. et al. Cancer statistics for the year 2020: an overview. Int J Cancer 2021. DOI:10.1002/ijc.33588; Costello A.J. Considering the role of radical prostatectomy in 21st century prostate cancer care. Nat Rev Urol 2020;17(3):177–88. DOI:10.1038/s41585-020-0287-y; D’Amico A.V., Chen M.H., Roehl K.A. et al. Preoperative PSA velocity and the risk of death from prostate cancer after radical prostatectomy. N Engl J Med 2004;351(2):125–35. DOI:10.1056/NEJMoa032975; Porcaro A.B., Corsi P., Inverardi D. et al. Prostate-specific antigen associates with extensive lymph node invasion in high-risk prostate cancer. Tumori 2018;104(4):307–11. DOI:10.1177/0300891618765567; Karakiewicz P.I., Benayoun S., Kattan M.W. et al. Development and validation of a nomogram predicting the outcome of prostate biopsy based on patient age, digital rectal examination and serum prostate specific antigen. J Urol 2005;173(6):1930–4. DOI:10.1097/01.ju.0000158039.94467.5d; Bai X., Jiang Y., Zhang X. et al. The value of prostate-specific antigen-related indexes and imaging screening in the diagnosis of prostate cancer. Cancer Manag Res 2020;12:6821–6. DOI:10.2147/CMAR.S257769; Pashaei E., Pashaei E., Ahmady M. et al. Meta-analysis of miRNA expression profiles for prostate cancer recurrence following radical prostatectomy. PLoS One 2017;12(6):e0179543. DOI:10.1371/journal.pone.0179543; Zhao Z., Stephan C., Weickmann S. et al. Tissue-based microRNAs as predictors of biochemical recurrence after radical prostatectomy: what can we learn from past studies? Int J Mol Sci 2017;18(10):2023. DOI:10.3390/ijms18102023; Szilágyi M., Pös O., Márton É. et al. Circulating cell-free nucleic acids: main characteristics and clinical application. Int J Mol Sci 2020;21(18):6827. DOI:10.3390/ijms21186827; Chen M., Zhao H. Next-generation sequencing in liquid biopsy: cancer screening and early detection. Hum Genomics 2019;13(1):34. DOI:10.1186/s40246-019-0220-8; Wang J., Ni J., Beretov J. et al. Exosomal microRNAs as liquid biopsy biomarkers in prostate cancer. Crit Rev Oncol Hematol 2020;145:102860. DOI:10.1016/j.critrevonc.2019.102860; Zedan A.H., Hansen T.F., Assenholt J. et al. Circulating miRNAs in localized/locally advanced prostate cancer patients after radical prostatectomy and radiotherapy. Prostate 2019;79(4):425–32. DOI:10.1002/pros.23748; Konoshenko M.Y., Bryzgunova O.E., Lekchnov E.A. et al. The influence of radical prostatectomy on the expression of cell-free MiRNA. Diagnostics (Basel) 2020;10(8):600. DOI:10.3390/diagnostics10080600; Bryzgunova O.E., Zaripov M.M., Skvortsova T.E. et al. Comparative study of extracellular vesicles from the urine of healthy individuals and prostate cancer patients. PLoS One 2016;11(6):e0157566. DOI:10.1371/journal.pone.0157566; Koppers-Lalic D., Hackenberg M., de Menezes R. et al. Non-invasive prostate cancer detection by measuring miRNA variants (isomiRs) in urine extracellular vesicles. Oncotarget 2016;7(16):22566–78. DOI:10.18632/oncotarget.8124; Konoshenko M.Y., Laktionov P.P. MiRNAs and radical prostatectomy: Current data, bioinformatic analysis and utility as predictors of tumour relapse. Andrology 2021;9(4):1092–107. DOI:10.1111/andr.12994; Abramovic I., Ulamec M., Katusic Bojanac A. et al. miRNA in prostate cancer: challenges toward translation. Epigenomics 2020;12(6):543–58. DOI:10.2217/epi-2019-0275; Casanova-Salas I., Rubio-Briones J., Fernández-Serra A. et al. miRNAs as biomarkers in prostate cancer. Clin Transl Oncol 2012;14(11):803–11. DOI:10.1007/s12094-012-0877-0; Filella X., Foj L. miRNAs as novel biomarkers in the management of prostate cancer. Clin Chem Lab Med 2017;55(5):715–36. DOI:10.1515/cclm-2015-1073; Konoshenko M.Y., Lekchnov E.A., Bryzgunova O.E. et al. Isolation of extracellular vesicles from biological fluids via the aggregationprecipitation approach for downstream mirnas detection. Diagnostics (Basel) 2021;11(3):384. DOI:10.3390/diagnostics11030384; Lekchnov E.A., Zaporozhchenko I.A., Morozkin E.S. et al. Protocol for miRNA isolation from biofluids. Anal Biochem 2016;499:78–84. DOI:10.1016/j.ab.2016.01.025; Boeri M., Verri C., Conte D. et al. MicroRNA signatures in tissues and plasma predict development and prognosis of computed tomography detected lung cancer. Proc Natl Acad Sci USA 2011;108(9):3713–8. DOI:10.1073/pnas.1100048108; Landoni E., Miceli R., Callari M. et al. Proposal of supervised data analysis strategy of plasma miRNAs from hybridisation array data with an application to assess hemolysis-related deregulation. BMC Bioinformatics 2015;16:388. DOI:10.1186/s12859-015-0820-9; Zheng H., Guo Z., Zheng X. et al. MicroRNA-144-3p inhibits cell proliferation and induces cell apoptosis in prostate cancer by targeting CEP55. Am J Transl Res 2018;10(8):2457–68.; Rana S., Valbuena G.N., Curry E. et al. MicroRNAs as biomarkers for prostate cancer prognosis: a systematic review and a systematic reanalysis of public data. Br J Cancer 2022;126(3):502–13. DOI:10.1038/s41416-021-01677-3; Katz B., Reis S.T., Viana N.I. et al. Comprehensive study of gene and microRNA expression related to epithelial-mesenchymal transition in prostate cancer. PLoS One 2014;9(11):e113700. DOI:10.1371/journal.pone.0113700; Konoshenko M.Y., Lekchnov E.A., Bryzgunova O.E. et al. The panel of 12 cell-free microRNAs as potential biomarkers in prostate neoplasms. Diagnostics (Basel) 2020;10(1):38. DOI:10.3390/diagnostics10010038; Lieb V., Weigelt K., Scheinost L. et al. Serum levels of miR-320 family members are associated with clinical parameters and diagnosis in prostate cancer patients. Oncotarget 2017;9(12):10402–16. DOI:10.18632/oncotarget.23781; Guo Z., Lu X., Yang F. et al. The Expression of miR-205 in prostate carcinoma and the relationship with prognosis in patients. Comput Math Methods Med 2022;2022:1784791. DOI:10.1155/2022/1784791; Ottman R., Levy J., Grizzle W.E. et al. The other face of miR-17-92a cluster, exhibiting tumor suppressor effects in prostate cancer. Oncotarget 2016;7(45):73739–53. DOI:10.18632/oncotarget.12061; Zheng X.M., Zhang P., Liu M.H. et al. MicroRNA-30e inhibits adhesion, migration, invasion and cell cycle progression of prostate cancer cells via inhibition of the activation of the MAPK signaling pathway by downregulating CHRM3. Int J Oncol 2019;54(2):443–54. DOI:10.3892/ijo.2018.4647; Nitusca D., Marcu A., Seclaman E. et al. Diagnostic value of microRNA-375 as future biomarker for prostate cancer detection: a meta-analysis. Medicina (Kaunas) 2022;58(4):529. DOI:10.3390/medicina58040529; Sun X.B., Chen Y.W., Yao Q.S. et al. MicroRNA-144 suppresses prostate cancer growth and metastasis by targeting EZH2. Technol Cancer Res Treat 2021;20:1533033821989817. DOI:10.1177/1533033821989817; Rode M.P., Silva A.H., Cisilotto J. et al. miR-425-5p as an exosomal biomarker for metastatic prostate cancer. Cell Signal 2021;87:110113. DOI:10.1016/j.cellsig.2021.110113; Chen Q.G., Zhou W., Han T. et al. MiR-378 suppresses prostate cancer cell growth through downregulation of MAPK1 in vitro and in vivo. Tumour Biol 2016;37(2):2095–103. DOI:10.1007/s13277-015-3996-8; Sun D., Lee Y.S., Malhotra A. et al. miR-99 family of microRNAs suppresses the expression of prostate-specific antigen and prostate cancer cell proliferation. Cancer Res 2011;71(4):1313–24. DOI:10.1158/0008-5472.CAN-10-1031; Samami E., Pourali G., Arabpour M. et al. The potential diagnostic and prognostic value of circulating microRNAs in the assessment of patients with prostate cancer: rational and progress. Front Oncol 2022;11:716831. DOI:10.3389/fonc.2021.716831; Shi X.B., Xue L., Ma A.H. et al. miR-125b promotes growth of prostate cancer xenograft tumor through targeting pro-apoptotic genes. Prostate 2011;71(5):538–49. DOI:10.1002/pros.21270; Gorur A., Bayraktar R., Ivan C. et al. ncRNA therapy with miRNA-22-3p suppresses the growth of triple-negative breast cancer. Mol Ther Nucleic Acids 2021;23:930–43. DOI:10.1016/j.omtn.2021.01.016; Abbas M.A., El Sayed I.E.T., Kamel Abdu-Allah A.M. et al. Expression of MiRNA-29b and MiRNA-31 and their diagnostic and prognostic values in Egyptian females with breast cancer. Noncoding RNA Res 2022;7(4):248–57. DOI:10.1016/j.ncrna.2022.09.003; Ai C., Ma G., Deng Y. et al. Nm23-H1 inhibits lung cancer bonespecific metastasis by upregulating miR-660-5p targeted SMARCA5. Thorac Cancer 2020;11(3):640–50. DOI:10.1111/1759–7714.13308; https://umo.abvpress.ru/jour/article/view/649Test

  5. 5
    دورية أكاديمية

    المصدر: Obstetrics, Gynecology and Reproduction; Online First ; Акушерство, Гинекология и Репродукция; Online First ; 2500-3194 ; 2313-7347

    وصف الملف: application/pdf

    العلاقة: https://www.gynecology.su/jour/article/view/2077/1210Test; Кузнецов К.О., Шарипова Э.Ф., Низаева А.С. и др. Роль микроРНК в норме и при патологии эндометрия. Российский вестник акушера-гинеколога. 2023;23(4):27–34. https://doi.org/10.17116/rosakush20232304127Test.; Адамян Л.В., Андреева Е.Н. Эндометриоз и его глобальное влияние на организм женщины. Проблемы репродукции. 2022;28(1):54–64. https://doi.org/10.17116/repro20222801154Test.; Дубровина С.О., Берлим Ю.Д., Александрина А.Д. и др. Современные представления о диагностике и лечении эндометриоза. Акушерство и гинекология. 2023;(2):146–53. https://doi.org/10.18565/aig.2023.43Test.; Ye L., Whitaker L.H.R., Mawson R.L., Hickey M. Endometriosis. BMJ. 2022;379:e068950. https://doi.org/10.1136/bmj-2021-068950Test.; Адамян Л.В., Шаров М.Н., Мурватов К.Д. и др. Возможности повышения эффективности комплексной терапии эндометриоза и хронической тазовой боли у пациенток репродуктивного возраста. Проблемы репродукции. 2023;29(3):91–7. https://doi.org/10.17116/repro20232903191Test.; Хамадьянова А.У., Загидулина А.Р., Загретдинова Д.Р. и др. Перспективы исследования микробиома организма человека для лучшего понимания патогенеза рака яичников. Российский вестник акушера-гинеколога. 2023;23(1):39–46. https://doi.org/10.17116/rosakush20232301139Test.; Самойлова А.В., Гунин А.Г., Сидоров А.Е. и др. Современные направления изучения этиологии и патогенеза эндометриоза (обзор литературы). Проблемы репродукции. 2020;26(5):118–32. https://doi.org/10.17116/repro202026051118Test.; Houshdaran S., Oke A.B., Fung J.C. et al. Steroid hormones regulate genome-wide epigenetic programming and gene transcription in human endometrial cells with marked aberrancies in endometriosis. PLoS Genet. 2020;16(6):e1008601. https://doi.org/10.1371/journal.pgen.1008601Test.; Wilson M.R., Reske J.J., Chandler R.L. AP-1 subunit JUNB promotes invasive phenotypes in endometriosis. Reprod Sci. 2022;29(11):3266–77. https://doi.org/10.1007/s43032-022-00974-3Test.; Lu J., Xu J., Li J. et al. FACER: comprehensive molecular and functional characterization of epigenetic chromatin regulators. Nucleic Acids Res. 2018;46(19):10019–33. https://doi.org/10.1093/nar/gky679Test.; Егорова Д.А., Дерезина В.В., Чебанян М.В. и др. Роль эпигенетики в мужском и женском бесплодии. Акушерство, Гинекология и Репродукция. 2024;18(1):68–82. https://doi.org/10.17749/2313-7347/ob.gyn.rep.2024.474Test.; Fyodorov D.V., Zhou B.-R., Skoultchi A.I., Bai Y. Emerging roles of linker histones in regulating chromatin structure and function. Nat Rev Mol Cell Biol. 2018;19(3):192–206. https://doi.org/10.1038/nrm.2017.94Test.; Ding L., Yang L., Ren C. et al. A review of aberrant DNA methylation and epigenetic agents targeting DNA methyltransferases in endometriosis. Curr Drug Targets. 2020;21(11):1047–55. https://doi.org/10.2174/1389450121666200228112344Test.; Пономаренко И.В., Полоников А.В., Верзилина И.Н., Чурносов М.И. Молекулярно-генетические детерминанты развития эндометриоза. Вопросы гинекологии, акушерства и перинатологии. 2019;18(1):82–6. https://doi.org/10.20953/1726-1678-2019-1-82-86Test.; Mulholland C.B., Traube F.R., Ugur E. et al. Distinct and stage-specific contributions of TET1 and TET2 to stepwise cytosine oxidation in the transition from naive to primed pluripotency. Sci Rep. 2020;10(1):12066. https://doi.org/10.1038/s41598-020-68600-3Test.; Тихончук Е.Ю., Непша О.С., Адамян Л.В., Кузнецова М.В. Омиксные технологии в исследовании патогенеза эндометриоза (обзор литературы). Проблемы репродукции. 2016;22(5):110–22. https://doi.org/10.17116/repro2016225110-122Test.; Stirzaker C., Song J.Z., Ng W. et al. Methyl-CpG-binding protein MBD2 plays a key role in maintenance and spread of DNA methylation at CpG islands and shores in cancer. Oncogene. 2017;36:1328–38. https://doi.org/10.1038/onc.2016.297Test.; Wang L., Zhao J., Li Y. et al. Genome-wide analysis of DNA methylation in endometriosis using Illumina Human Methylation 450 K BeadChips. Mol Reprod Dev. 2019;86(5):491–501. https://doi.org/10.1002/mrd.23127Test.; Baumann C., Olson M., Wang K. et al. Arginine methyltransferases mediate an epigenetic ovarian response to endometriosis. Reproduction. 2015;150(4):297–310. https://doi.org/10.1530/REP-15-0212Test.; Wu X., Miao J., Jiang J., Liu F. Analysis of methylation profiling data of hyperplasia and primary and metastatic endometrial cancers. Eur J Obstet Gynecol Reprod Biol. 2017;217:161–6. https://doi.org/10.1016/j.ejogrb.2017.08.036Test.; Zhao J., Wang L., Li Y. et al. Hypomethylation of the GSTM1 promoter is associated with ovarian endometriosis. Hum Reprod. 2019;34(5):804–12. https://doi.org/10.1093/humrep/dez039Test.; Cухих Г.Т., Осипьянц А.И., Мальцева Л.И. и др. Аномальное гиперметилирование генов HOXА10 и HOXА11 при бесплодии, ассоциированном с хроническим эндометритом. Акушерство и гинекология. 2015;(12):69–74.; Barjaste N., Shahhoseini M., Afsharian P. et al. Genome-wide DNA methylation profiling in ectopic and eutopic of endometrial tissues. J Assist Reprod Genet. 2019;36(8):1743–52. https://doi.org/10.1007/s10815-019-01508-8Test.; Greville G., Llop E., Howard J. et al. 5-AZA-dC induces epigenetic changes associated with modified glycosylation of secreted glycoproteins and increased EMT and migration in chemo-sensitive cancer cells. Clin Epigenetics. 2021;13(1):34. https://doi.org/10.1186/s13148-021-01015-7Test.; Gibson D.A., Simitsidellis I., Collins F., Saunders P.T.K. Androgens, oestrogens and endometrium: a fine balance between perfection and pathology. J Endocrinol. 2020;246(3):R75–R93. https://doi.org/10.1530/JOE-20-0106Test.; Zelenko Z., Aghajanova L., Irwin J.C., Giudice L.C. Nuclear receptor, coregulator signaling, and chromatin remodeling pathways suggest involvement of the epigenome in the steroid hormone response of endometrium and abnormalities in endometriosis. Reprod Sci. 2012;19(2):152–62. https://doi.org/10.1177/1933719111415546Test.; Clemenza S., Capezzuoli T., Eren E. et al. Progesterone receptor ligands for the treatment of endometriosis. Minerva Obstet Gynecol. 2023;75(3):288–97. https://doi.org/10.23736/S2724-606X.22.05157-0Test.; Bulun S.E., Yildiz S., Adli M., Wei J.J. Adenomyosis pathogenesis: insights from next-generation sequencing. Hum Reprod Update. 2021;27(6):1086–97. https://doi.org/10.1093/humupd/dmab017Test.; Rocha C.V., Da Broi M.G., Miranda-Furtado C.L. et al. Progesterone receptor B (PGR-B) is partially methylated in eutopic endometrium from infertile women with endometriosis. Reprod Sci. 2019;26(12):1568–74. https://doi.org/10.1177/1933719119828078Test.; MacLean J.A., Hayashi K. Progesterone actions and resistance in gynecological disorders. Cells. 2022;11(4):647. https://doi.org/10.3390/cells11040647Test.; Nguyen T.V., Lister R. Genomic targeting of TET activity for targeted demethylation using CRISPR/Cas9. Methods Mol Biol. 2021;2272:181–94. https://doi.org/10.1007/978-1-0716-10.1007/s10815-024-03026-81294-1_10Test.; Roca F.J., Loomans H.A., Wittman A.T. et al. Ten-eleven translocation genes are downregulated in endometriosis. Curr Mol Med. 2016;16(3):288–98. https://doi.org/10.2174/1566524016666160225153844Test.; Adamczyk M., Rawłuszko-Wieczorek A.A., Wirstlein P. et al. Assessment of TET1 gene expression, DNA methylation and H3K27me3 level of its promoter region in eutopic endometrium of women with endometriosis and infertility. Biomed Pharmacother. 2022;150:112989. https://doi.org/10.1016/j.biopha.2022.112989Test.; Szczepańska M., Wirstlein P., Zawadzka M. et al. Alternation of ten-eleven translocation 1, 2, and 3 expression in eutopic endometrium of women with endometriosis-associated infertility. Gynecol Endocrinol. 2018;34(12):1084–90. https://doi.org/10.1080/09513590.2018.1490403Test.; Hada A., Hota S.K., Luo J. et al. Histone octamer structure is altered early in ISW2 ATP-dependent nucleosome remodeling. Cell Rep. 2019;28(1):282–94. https://doi.org/10.1016/j.celrep.2019.05.106Test.; Kaleem A., Hoessli D.C., Ahmad I. et al. Immediate-early gene regulation by interplay between different post-translational modifications on human histone H3. J Cell Biochem. 2008;103(3):835–51. https://doi.org/10.1002/jcb.21454Test.; Taing L., Dandawate A., L'Yi S. et al. Cistrome Data Browser: integrated search, analysis and visualization of chromatin data. Nucleic Acids Res. 2024;52(D1):D61–D66. https://doi.org/10.1093/nar/gkad1069Test.; Singh W., Quinn D., Moody T.S., Huang M. Reaction mechanism of histone demethylation in αKG-dependent non-heme iron enzymes. J Phys Chem B. 2019;123(37):7801–11. https://doi.org/10.1021/acs.jpcb.9b06064Test.; Colón-Caraballo M., Monteiro J.B., Flores I. H3K27me3 is an epigenetic mark of relevance in endometriosis. Reprod Sci. 2015;22(9):1134–42. https://doi.org/10.1177/1933719115578924Test.; Colón-Caraballo M., Torres-Reverón A., Soto-Vargas J.L. et al. Effects of histone methyltransferase inhibition in endometriosis†. Biol Reprod. 2018;99(2):293–307. https://doi.org/10.1093/biolre/ioy030Test.; Zhao S., Zhong Y., Fu X. et al. H3K4 methylation regulates LPS-induced proinflammatory cytokine expression and release in macrophages. Shock. 2019;51(3):401–6. https://doi.org/10.1097/SHK.0000000000001141Test.; Gujral P., Mahajan V., Lissaman A.C., Ponnampalam A.P. Histone acetylation and the role of histone deacetylases in normal cyclic endometrium. Reprod Biol Endocrinol. 2020;18(1):84. https://doi.org/10.1186/s12958-020-00637-5Test.; Adamczyk M., Wender-Ozegowska E., Kedzia M. Epigenetic factors in eutopic endometrium in women with endometriosis and infertility. Int J Mol Sci. 2022;23(7):3804. https://doi.org/10.3390/ijms23073804Test.; Mai H., Liao Y., Luo S. et al. Histone deacetylase HDAC2 silencing prevents endometriosis by activating the HNF4A/ARID1A axis. J Cell Mol Med. 2021;25:9972–82. https://doi.org/10.1111/jcmm.16835Test.; Samartzis E.P., Noske A., Samartzis N. et al. The expression of histone deacetylase 1, but not other class I histone deacetylases, is significantly increased in endometriosis. Reprod Sci. 2013;20(12):1416–22. https://doi.org/10.1177/1933719113488450Test.; Kim T.H., Yoo J.-Y., Choi K.-C. et al. Loss of HDAC3 results in nonreceptive endometrium and female infertility. Sci Transl Med. 2019;11(474):eaaf7533. https://doi.org/10.1126/scitranslmed.aaf7533Test.; Bedrick B.S., Courtright L., Zhang J. et al. Systematic review of epigenetics of endometriosis. F S Rev. 2024;5(1):100070. https://doi.org/10.1016/j.xfnr.2024.01.003Test.; Seto E., Yoshida M. Erasers of histone acetylation: the histone deacetylase enzymes. Cold Spring Harb Perspect Biol. 2014;6(4):a018713. https://doi.org/10.1101/cshperspect.a018713Test.; Kim H.I., Seo S.K., Chon S.J. et al. Changes in the expression of TBP-2 in response to histone deacetylase inhibitor treatment in human endometrial cells. Int J Mol Sci. 2021;22(3):1427. https://doi.org/10.3390/ijms22031427Test.; Malvezzi H., Dobo C., Filippi R.Z. et al. Altered p16Ink4a, IL-1β, and Lamin b1 protein expression suggest cellular senescence in deep endometriotic lesions. Int J Mol Sci. 2022;23(5):2476. https://doi.org/10.3390/ijms23052476Test.; Kapoor R., Stratopoulou C.A., Dolmans M.-M. Pathogenesis of endometriosis: new insights into prospective therapies. Int J Mol Sci. 2021;22(21):11700. https://doi.org/10.3390/ijms222111700Test.; Arvindekar S., Jackman M.J., Low J.K.K. et al. Molecular architecture of nucleosome remodeling and deacetylase sub-complexes by integrative structure determination. Protein Sci. 2022;31(9):e4387. https://doi.org/10.1002/pro.4387Test.; Sahu R.K., Singh S., Tomar R.S. The mechanisms of action of chromatin remodelers and implications in development and disease. Biochem Pharmacol. 2020;180:114200. https://doi.org/10.1016/j.bcp.2020.114200Test.; Wiegand K.C., Lee A.F., Al-Agha O.M. et al. Loss of BAF250a (ARID1A) is frequent in high-grade endometrial carcinomas. J Pathol. 2011;224(3):328–33. https://doi.org/10.1002/path.2911Test.; Ярмолинская М.И., Самошкин Н.Г., Полякова В.О., Нетреба Е.А. Экспрессия ARID1A, синтазы простагландина Е2 и рецептора простагландина Е2 у больных с наружным генитальным эндометриозом. Проблемы репродукции. 2019;25(3):34–9. https://doi.org/10.17116/repro20192503134Test.; Kawahara N., Yamada Y., Kobayashi H. CCNE1 is a putative therapeutic target for ARID1A-mutated ovarian clear cell carcinoma. Int J Mol Sci. 2021;22(11):5869. https://doi.org/10.3390/ijms22115869Test.; Murawski M., Jagodziński A., Bielawska-Pohl A., Klimczak A. Complexity of the genetic background of oncogenesis in ovarian cancer-genetic instability and clinical implications. Cells. 2024;13(4):345. https://doi.org/10.3390/cells13040345Test.; Marquardt R.M., Kim T.H., Yoo J. et al. Endometrial epithelial ARID1A is critical for uterine gland function in early pregnancy establishment. FASEB J. 2021;35(2):e21209. https://doi.org/10.1096/fj.202002178RTest.; Wilson M.R., Reske J.J., Holladay J. et al. ARID1A mutations promote P300-dependent endometrial invasion through super-enhancer hyperacetylation. Cell Rep. 2020;33(6):108366. https://doi.org/10.1016/j.celrep.2020.108366Test.; Kim H.I., Kim T.H., Yoo J.-Y. et al. ARID1A and PGR proteins interact in the endometrium and reveal a positive correlation in endometriosis. Biochem Biophys Res Commun. 2021;550:151–7. https://doi.org/10.1016/j.bbrc.2021.02.144Test.; Бейлерли О.А., Гареев И.Ф. Длинные некодирующие РНК: какие перспективы? Профилактическая медицина. 2020;23(2):124–8. https://doi.org/10.17116/profmed202023021124Test.; Ghafouri-Fard S., Shoorei H., Taheri M. Role of non-coding RNAs in the pathogenesis of endometriosis. Front Oncol. 2020;10:1370. https://doi.org/10.3389/fonc.2020.01370Test.; Zhang L., Yu Z., Qu Q. et al. Exosomal lncRNA HOTAIR promotes the progression and angiogenesis of endometriosis via the miR-761/HDAC1 axis and activation of STAT3-mediated inflammation. Int J Nanomed. 2022;17:1155–70. https://doi.org/10.2147/IJN.S354314Test.; Bao Q., Zheng Q., Wang S. et al. LncRNA HOTAIR regulates cell invasion and migration in endometriosis through miR-519b-3p/PRRG4 pathway. Front Oncol. 2022;12:953055. https://doi.org/10.3389/fonc.2022.953055Test.; Liu Z., Liu L., Zhong Y. et al. LncRNA H19 over-expression inhibited Th17 cell differentiation to relieve endometriosis through miR-342-3p/IER3 pathway. Cell Biosci. 2019;9:84. https://doi.org/10.1186/s13578-019-0346-3Test.; Huan Q., Cheng S.-C., Du Z.-H. et al. LncRnA AFAP1-AS1 regulates proliferation and apoptosis of endometriosis through activating STAT3/TGF-β/Smad signaling via miR-424-5p. J Obstet Gynaecol Res. 2021;47(7):2394–405. https://doi.org/10.1111/jog.14801Test.; Li Y., Liu Y.-D., Chen S.-L. et al. Down-regulation of long non-coding RNA MALAT1 inhibits granulosa cell proliferation in endometriosis by up-regulating P21 via activation of the ERK/MAPK pathway. Mol Hum Reprod. 2019;25(1):17–29. https://doi.org/10.1093/molehr/gay045Test.; Cai H., Zhu X., Li Z. et al. lncRNA/mRNA profiling of endometriosis rat uterine tissues during the implantation window. Int J Mol Med. 2019;44(6):2145–60. https://doi.org/10.3892/ijmm.2019.4370Test.; Tatone C., Di Emidio G., Barbonetti A. et al. Sirtuins in gamete biology and reproductive phys- iology: emerging roles and therapeutic potential in female and male infertility. Hum Reprod Update. 2018;24(3):267–89. https://doi.org/10.1093/humupd/dmy003Test.; Taguchi A., Wada-Hiraike O., Kawana K. et al. Resveratrol suppresses inflammatory responses in endometrial stromal cells derived from endometriosis: a possible role of the sirtuin 1 pathway. J Obstet Gynaecol Res. 2014;40(3):770–8. https://doi.org/10.1111/jog.12252Test.; Rezk N.A., Lashin M.B., Sabbah N.A. MiRNA 34-a regulate SIRT-1 and Foxo-1 expression in endometriosis. Noncoding RNA Res. 2021;6(1):35–41. https://doi.org/10.1016/j.ncrna.2021.02.002Test.; Takebayashi K., Nasu K., Okamoto M. et al. hsa-miR-100-5p, an overexpressed miRNA in human ovarian endometriotic stromal cells, promotes invasion through attenuation of SMARCD1 expression. Reprod Biol Endocrinol. 2020;18(1):31. https://doi.org/10.1186/s12958-020-00590-3Test.; Li X., Xiong W., Long X. et al. Inhibition of METTL3/m6A/ miR126 promotes the migration and invasion of endometrial stromal cells in endometriosis. Biol Reprod. 2021;105(5):1221–33. https://doi.org/10.1093/biolre/ioab152Test.; Sahin C., Mamillapalli R., Yi K.W., Taylor H.S. microRNA Let-7b: a novel treatment for endometriosis. J Cell Mol Med. 2018;22(11):5346–53. https://doi.org/10.1111/jcmm.13807Test.; Liu A., Jin M., Xie L. et al. Loss of miR-29a impairs decidualization of endometrial stromal cells by TET3 mediated demethylation of Col1A1 promoter. iScience. 2021;24(9):103065. https://doi.org/10.1016/j.isci.2021.103065Test.; https://www.gynecology.su/jour/article/view/2077Test

    الإتاحة: https://doi.org/10.17749/2313-7347/ob.gyn.rep.2024.52410.17116/rosakush2023230412710.17116/repro2022280115410.18565/aig.2023.4310.1136/bmj-2021-06895010.17116/repro2023290319110.17116/rosakush2023230113910.17116/repro20202605111810.1371/journal.pgen.100860110.1007/s43032-022-00974-310.1093/nar/gky67910.17749/2313-7347/ob.gyn.rep.2024.47410.1038/nrm.2017.9410.2174/138945012166620022811234410.20953/1726-1678-2019-1-82-8610.1038/s41598-020-68600-310.17116/repro2016225110-12210.1038/onc.2016.29710.1002/mrd.2312710.1530/REP-15-021210.1016/j.ejogrb.2017.08.03610.1093/humrep/dez03910.1007/s10815-019-01508-810.1186/s13148-021-01015-710.1530/JOE-20-010610.1177/193371911141554610.23736/S2724-606X.22.05157-010.1093/humupd/dmab01710.1177/193371911982807810.3390/cells1104064710.1007/978-1-0716-10.1007/s10815-024-03026-81294-1_1010.2174/156652401666616022515384410.1016/j.biopha.2022.11298910.1080/09513590.2018.149040310.1016/j.celrep.2019.05.10610.1002/jcb.2145410.1093/nar/gkad106910.1021/acs.jpcb.9b0606410.1177/193371911557892410.1093/biolre/ioy03010.1097/SHK.000000000000114110.1186/s12958-020-00637-510.3390/ijms2307380410.1111/jcmm.1683510.1177/193371911348845010.1126/scitranslmed.aaf753310.1016/j.xfnr.2024.01.00310.1101/cshperspect.a01871310.3390/ijms2203142710.3390/ijms2305247610.3390/ijms22211170010.1002/pro.438710.1016/j.bcp.2020.11420010.1002/path.291110.17116/repro2019250313410.3390/ijms2211586910.3390/cells1304034510.1096/fj.202002178R10.1016/j.celrep.2020.10836610.1016/j.bbrc.2021.02.14410.3389/fonc.2020.0137010.2147/IJN.S35431410.3389/fonc.2022.95305510.1186/s13578-019-0346-310.1111/jog.1480110.1093/molehr/gay04510.3892/ijmm.2019.437010.1093/humupd/dmy00310.1111/jog.1225210.1016/j.ncrna.2021.02.00210.1186/s12958-020-00590-310.1093/biolre/ioab15210.1111/jcmm.1380710.1016/j.isci.2021.103065Test
    https://www.gynecology.su/jour/article/view/2077Test

  6. 6
    دورية أكاديمية

    المصدر: Obstetrics, Gynecology and Reproduction; Online First ; Акушерство, Гинекология и Репродукция; Online First ; 2500-3194 ; 2313-7347

    وصف الملف: application/pdf

    العلاقة: https://www.gynecology.su/jour/article/view/2076/1209Test; Scholien R.R., Hopman M.T., Sweep F.C. et al. Co-occurrence of cardiovascular and prothrombotic risk factors in women with a history of preeclampsia. Obstet Gynecol. 2013;121(1):97–105. https://doi.org/10.1097/aog.0b013e318273764bTest.; Белокриницкая Т.Е., Фролова Н.И., Анохова Л.И. Молекулярно-генетические предикторы осложнений беременности. Новосибирск: Наука, 2019. 188 с.; The global strategy for women’s, children’s and adolescents’ health (2016-2030). New York: United Nations, 2015. 108 p. Режим доступа: https://www.who.int/docs/default-source/child-health/the-global-strategy-for-women-s-children-s-and-adolescents-health-2016-2030.pdfTest. [Дата доступа: 20.04.2024].; Mészáros B., Kukor Z., Valent S. Recent advances in the prevention and screening of preeclampsia. J Clin Med. 2023;12(18):6020. https://doi.org/10.3390/jcm12186020Test.; ACOG Practice Bulletin No. 202: Gestational Hypertension and Preeclampsia. Obstet Gynecol. 2019;133(1):1. https://doi.org/10.1097/AOG.0000000000003018Test.; Tiruneh S.A., Vu T.T.T., Moran L.J. et al. Externally validated prediction models for pre-eclampsia: systematic review and meta-analysis. Ultrasound Obstet Gynecol. 2024;63(5):592–604. https://doi.org/10.1002/uog.27490Test.; Danielli M., Thomas R.C., Gillies C.L. et al. Blood biomarkers to predict the onset of pre-eclampsia: a systematic review and meta-analysis. Heliyon. 2022;8(11):e11226. https://doi.org/10.1016/j.heliyon.2022.e11226Test.; Roberts J.M., Rich-Edwards J.W., McElrath T.F. et al; Global Pregnancy Collaboration. Subtypes of preeclampsia: recognition and determining clinical usefulness. Hypertension. 2021;77(5):1430–41. https://doi.org/10.1161/HYPERTENSIONAHA.120.14781Test.; Xie G., Chen H., He C. et al. The dysregulation of miRNAs in epilepsy and their regulatory role in inflammation and apoptosis. Funct Integr Genomics. 2023;23(3):287. https://doi.org/10.1007/s10142-023-01220-yTest.; Redman C.W.G., Staff A.C., Roberts J.M. Syncytiotrophoblast stress in preeclampsia: the convergence point for multiple pathways. Am J Obstet Gynecol. 2022;226(2S):S907–S927. https://doi.org/10.1016/j.ajog.2020.09.047Test.; Гареев И.Ф., Бейлерли О.А. Циркулирующие микроРНК как биомаркеры: какие перспективы? Профилактическая медицина. 2018;21(6):142–50. https://doi.org/10.17116/profmed201821061142Test.; Клинические рекомендации – Преэклампсия. Эклампсия. Отеки, протеинурия и гипертензивные расстройства во время беременности, в родах и послеродовом периоде – 2021-2022-2023 (24.06.2021). М.: Министерство здравоохранения Россиийской Федерации, 2021. 54 с. Режим доступа: https://cr.minzdrav.gov.ru/recomend/637_1Test. [Дата доступа: 20.04.2024].; Laasanen J., Romppanen E.L., Hiltunen M. et al. Two exonic single nucleotide polymorphisms in the microsomal epoxide hydrolase gene are jointly associated with preeclampsia. Eur J Hum Genet. 2002;10(9):569–73. https://doi.org/10.1038/sj.ejhg.5200849Test.; Timofeeva A.V., Gusar V.A., Kan N.E. et al. Identification of potential early biomarkers of preeclampsia. Placenta. 2018;61:61–71. https://doi.org/10.1016/j.placenta.2017.11.011Test.; Iacobelli S., Bonsante F., Robillard P.-V. Comparison of risk factors and perinatal outcomes in early onset and late onset preeclampsia: a cohort based study in Reunion Island. J Reprod Immunol. 2017;123:12–6. https://doi.org/10.1016/j.jri.2017.08.005Test.; Jardim L., Rios D., Perucci L. et al. Is the imbalance between pro-angiogenic and anti-angiogenic factors associated with preeclampsia? Clini Chim Acta. 2015;447:34–8. https://doi.org/10.1016/j.cca.2015.05.004Test.; Panaitescu A., Syngelaki A., Prodan N. et al. Chronic hypertension and adverse pregnancy outcome: a cohort study. Ultrasound Obstet Gynecol. 2017;50(2):228–35. https://doi.org/10.1002/uog.17554Test.; Donker R.B., Mouillet J.-F., Nelson D.M., Sadovsky Y. The expression of Argonaute2 and related microRNA biogenesis proteins in normal and hypoxic trophoblasts. Mol Hum Reprod. 2007;13(4):273–9. https://doi.org/10.1093/molehr/gam006Test.; Ji L., Brkić J., Liu M. et al. Placental trophoblast cell differentiation: physiological regulation and pathological relevance to preeclampsia. Mol Asp Med. 2013;34(5):981–1023. https://doi.org/10.1016/j.mam.2012.12.008Test.; Seitz H., Royo H., Bortolin M.-L. et al. A large imprinted microRNA gene cluster at the mouse Dlk1-Gtl2 domain. Genome Res. 2004;14(9):1741–8. https://doi.org/10.1101/gr.2743304Test.; Yin Y., Liu M., Yu H. et al. Circulating microRNAs as biomarkers for diagnosis and prediction of preeclampsia: a systematic review and meta-analysis. Eur J Obstet Gynecol Reprod Biol. 2020;253:121–32. https://doi.org/10.1016/j.ejogrb.2020.08.016Test.; Lu Q., Ma Z., Ding Y. et al. Circulating miR-103a-3p contributes to angiotensin II-induced renal inflammation and fibrosis via a SNRK/NF-κB/p65 regulatory axis. Nat Commun. 2019;10(1):2145. https://doi.org/10.1038/s41467-019-10116-0Test.; Zhang C., Zhang C., Wang H. et al. Effects of miR-103a-3p on the autophagy and apoptosis of cardiomyocytes by regulating Atg5. Int J Mol Med. 2019;43(5):1951–60. https://doi.org/10.3892/ijmm.2019.4128Test.; He L., Xu J., Bai Y. et al. MicroRNA-103a regulates the calcification of vascular smooth muscle cells by targeting runt-related transcription factor 2 in high phosphorus conditions. Exp Ther Med. 2021;22(3):1036. https://doi.org/10.3892/etm.2021.10468Test.; Пакин В.С., Вашукова Е.С., Капустин Р.В. и др. Оценка уровня микроРНК в плаценте при тяжелом гестозе на фоне гестационного сахарного диабета. Журнал акушерства и женских болезней. 2017;66(3):110–5. https://doi.org/10.17816/JOWD663110-115Test.; Li T., Mo X., Fu L. et al. Molecular mechanisms of long noncoding RNAs on gastric cancer. Oncotarget. 2016;7(8):8601–12. https://doi.org/10.18632/oncotarget.6926Test.; Madsen H., Ditzel J. Blood-oxygen transport in first trimester of diabetic pregnancy. Acta Obstet Gynecol Scand. 1984;63(4):317–20. https://doi.org/10.3109/00016348409155523Test.; Ishibashi O., Ohkuchi A., Ali M.M. et al. Hydroxysteroid (17-β) dehydrogenase 1 is dysregulated by miR-210 and miR-518c that are aberrantly expressed in preeclamptic placentas: a novel marker for predicting preeclampsia. Hypertension. 2012;59(2):265–73. https://doi.org/10.1161/HYPERTENSIONAHA.111.180232Test.; Timofeeva A.V., Fedorov I.S., Sukhova Y.V. et al. Prediction of early- and late-onset pre-eclampsia in the preclinical stage via placenta-specific extracellular miRNA profiling. Int J Mol Sci. 2023;24(9):8006. https://doi.org/10.3390/ijms24098006Test.; Inno R., Kikas T., Lillepea K., Laan M. Coordinated expressional landscape of the human placental miRNome and transcriptome. Front Cell Dev Biol. 2021;9:697947. https://doi.org/10.3389/fcell.2021.697947Test.; https://www.gynecology.su/jour/article/view/2076Test

  7. 7
    دورية أكاديمية
  8. 8
    دورية أكاديمية

    المصدر: Vavilov Journal of Genetics and Breeding; Том 28, № 2 (2024); 228-238 ; Вавиловский журнал генетики и селекции; Том 28, № 2 (2024); 228-238 ; 2500-3259 ; 10.18699/vjgb-24-15

    وصف الملف: application/pdf

    العلاقة: https://vavilov.elpub.ru/jour/article/view/4093/1830Test; Abdel-Rahman O. Death from Alzheimer’s disease among cancer survivors: a population-based study. Curr. Med. Res. Opin. 2020;36(5): 835-841. DOI 10.1080/03007995.2020.1734921; Ando K., Nagaraj S., Kucukali F., de Fisenne M.A., Kosa A.C., Doeraene E., Gutierrez L.L., Brion J.P., Leroy K. PICALM and Alzheimer’s disease: An update and perspectives. Nutrients. 2022; 14(3):539. DOI 10.3390/nu14030539; Baeken M.W., Moosmann B., Hajieva P. Retrotransposon activation by distressed mitochondria in neurons. Biochem. Biophys. Res. Commun. 2020;525(3):570-575. DOI 10.1016/j.bbrc.2020.02.106; Barak B., Shvarts-Serebro I., Modai S., Gilam A., Okun E., Michaelson D.M., Mattson M.P., Shomron N., Ashery U. Opposing actions of environmental enrichment and Alzheimer’s disease on the expression of hippocampal microRNA in mouse models. Transl. Psychiatry. 2013;3(9):e304. DOI 10.1038/tp.2013.77; Barros-Viegas A.T., Carmona V., Ferreiro E., Guedes J., Cardoso A.M., Cunha P., de Almeida L.P., de Oliveira C.R., de Magalhães J.P., Peça J., Cardoso A.L. miRNA-31 improves cognition and abolis hes amyloid-β pathology by targeting APP and BACE1 in an animal model of Alzheimer’s disease. Mol. Ther. Nucleic. Acids. 2020;19: 1219-1236. DOI 10.1016/j.omtn.2020.01.010; Behbahanipour M., Peymani M., Salari M., Hashemi M.S., Nasr-Esfahani M.H., Ghaedi K. Expression profiling of blood microRNAs 885, 361, and 17 in the patients with the Parkinson’s disease: integrating interatction data to uncover the possible triggering agerelated mechanisms. Sci. Rep. 2019;9:13759. DOI 10.1038/s41598-019-50256-3; Boese A.S., Saba R., Campbell K., Majer A., Medina S., Burton L., Booth T.F., Chong P., Westmacott G., Dutta S.M., Saba J.A., Booth S.A. MicroRNA abundance is altered in synaptoneurosomes during prion disease. Mol. Cell. Neurosci. 2016;71:13-24. DOI 10.1016/j.mcn.2015.12.001; Cai Y., Sun Z., Jia H., Luo H., Ye X., Wu Q., Xiong Y., Zhang W., Wan J. Rpph1 upregulates CDC42 expression and promotes hippocampal neuron dendritic spine formation by competing with miR-330-5p. Front. Mol. Neurosci. 2017;10:27. DOI 10.3389/fnmol.2017.00027; Chanda K., Mukhopadhyay D. LncRNA Xist, X-chromosome instability and Alzheimer’s disease. Curr. Alzheimer Res. 2020;17(6):499-507. DOI 10.2174/1567205017666200807185624; Cheng Y., Saville L., Gollen B., Isaac C., Belay A., Mehla J., Patel K., Thakor N., Mohajerani M.H., Zovoilis A. Increased processing of SINE B2 ncRNAs unveils a novel type of transcriptome deregulation in amyloid beta neuropathology. eLife. 2020;9:e61265. DOI 10.7554/eLife.61265; Cho J.H., Dimri M., Dimri G.P. MicroRNA-31 is a transcriptional target of histone deacetylase inhibitors and a regulator of cellular senescence. J. Biol. Chem. 2015;290(16):10555-10567. DOI 10.1074/jbc.M114.624361; Cosin-Tomas M., Antonell A., Llado A., Alcoelea D., Fortea J., Ezquerra M., Lleo A., Marti M.J., Pallas M., Sanchez-Valle R.S., Molinue vo J.L., Sanfeliu C., Kaliman P. Plasma miR-545-3p as early biomarkers of Alheimer’s disease: potential and limitations. Mol. Neurobiol. 2017;54(7):5550-5562. DOI 10.1007/s12035-016-0088-8; Dakterzada F., Benítez I.D., Targa A., Lladó A., Torres G., Romero L., de Gonzalo-Calvo D., Moncusí-Moix A., Tort-Merino A., Huerto R., Sánchez-de-la-Torre M., Barbé F., Piñol-Ripoll G. Reduced levels of miR-342-5p in plasma are associated with worse cognitive evolution in patients with mild Alzheimer’s disease. Front. Aging Neurosci. 2021;13:705989. DOI 10.3389/fnagi.2021.705989; Dellago H., Preschitz-Kammerhofer B., Terlecki-Zaniewicz L., Schreiner C., Fortschegger K., Chang M.W., Hackl M., Monteforte R., Kuhnel H., Schosserer M., Gruber F., Tschachler E., Scheideler M., Grillari-Voglauer R., Grillari J., Wieser M. High levels of oncomiR-21 contribute to the senescence-induced growth arrest in normal human cells and its knock-down increases the replicative lifespan. Aging Cell. 2013;12(3):446-458. DOI 10.1111/acel.12069; Di Palo A.D., Siniscalchi C., Crescente G., Leo I.D., Fiorentino A., Pacifico S., Russo A., Potenza N. Effect of cannabidiolic acid, N- trans-caffeoyltyramine and cannabisin B from hemp seeds on microRNA expression in human neural cells. Curr. Issues Mol. Biol. 2022;44(10):5106-5116. DOI 10.3390/cimb44100347; Dong H., Li J., Huang L., Chen X., Li D., Wang T., Hu C., Xu J., Zhang C., Zen K., Xiao S., Yan Q., Wang C., Zhang C.Y. Serum microRNA profiles serve as novel biomarkers for the diagnosis of Alzheimer’s disease. Dis. Markers. 2015;2015:625659. DOI 10.1155/2015/625659; Dong Z., Gu H., Guo Q., Liang S., Xue J., Yao F., Liu X., Li F., Liu H., Sun L., Zhao K. Profiling of serum exosome miRNA reveals the potential of a miRNA panel as diagnostic biomarker for Alzhei mer’s disease. Mol. Neurobiol. 2021;58(7):3084-3094. DOI 10.1007/s12035-021-02323-y; El Hajjar J., Chatoo W., Hanna R., Nkanza P., Tétreault N., Tse Y.C., Wong T.P., Abdouh M., Bernier G. Heterochromatic genome instability and neurodegeneration sharing similarities with Alzheimer’s disease in old Bmi1+/− mice. Sci. Rep. 2019;9(1):594. DOI 10.1038/s41598-018-37444-3; Eysert F., Coulon A., Boscher E., Vreulx A.C., Flaig A., Mendes T., Kilinc D., Lambert J., Chapuis J. Alzheimer’s genetic risk factor FERMT2 (Kindlin-2) controls axonal growth and synaptic plasticity in an APP-dependent manner. Mol. Psychiatry. 2021;26(10):5592-5607. DOI 10.1038/s41380-020-00926-w; Fagone P., Mangano K., Martino G., Quattropani M.C., Pennisi M., Bella R., Fisicaro F., Nicoletti F., Petralia M.C. Characterization of altered molecular pathways in the entorhinal cortex of Alzheimer’s disease patients and in silico prediction of potential repurposable drugs. Genes (Basel). 2022;13(4):703. DOI 10.3390/genes13040703; Fan C., Wu Q., Ye X., Luo H., Yan D., Xiong D., Xiong Y., Zhu H., Diao Y., Zhang W., Wan J. Role of miR-211 in neuronal differentiation and viability: implications to pathogenesis of Alzheimer’s disease. Front. Aging Neurosci. 2016;8:166. DOI 10.3389/fnagi.2016.00166; Flamier A., El Hajjar J., Adjaye J., Fernandes K.J., Abdouh M., Bernier G. Modeling late-onset sporadic Alzheimer’s disease through BMI1 deficiency. Cell Rep. 2018;23(9):2653-2666. DOI 10.1016/j.celrep.2018.04.097; Gatz M., Reynolds C.A., Fratiglioni L., Johansson B., Mortimer J.A., Berg S., Fiske A., Pedersen N.L. Role of genes and environments for explaining Alzheimer disease. Arch. Gen. Psychiatry. 2006;63(2): 168-174. DOI 10.1001/archpsyc.63.2.168; GNS H.S., Marise V.L.P., Satish K.S., Yergolkar A.V., Krishnamurthy M., Rajalekshmi G.S., Radhika K., Burri R.R. Untangling huge literature to disinter genetic underpinnings of Alzheimer’s disease: A systematic review and meta-analysis. Ageing Res. Rev. 2021;71: 101421. DOI 10.1016/j.arr.2021.101421; Goate A. Segregation of a missense mutation in the amyloid beta-protein precursor gene with familial Alzheimer’s disease. J. Alzheimers Dis. 2006;9(3 Suppl.):341-347. DOI 10.3233/jad-2006-9s338; Grundman J., Spencer B., Sarsoza F., Rissman R.A. Transcriptome analyses reveal tau isoform-driven changes in transposable element and gene expression. PLoS One. 2021;16(9):e0251611. DOI 10.1371/journal.pone.0251611; Guerreiro R., Wojtas A., Bras J., Carrasquillo M., Rogaeva E., Majounie E., Cruchaga C., Sassi C., Kauwe J.S., Younkin S., Hazrati L., Collinge J., Pocock J., Lashley T., Williams J., Lambert J.C., Amouyel P., Goate A., Rademakers R., Morgan K., Powell J., St. George-Hyslop P., Singleton A., Hardy J., Alzheimer Genetic Analysis Group. TREM2 variants in Alzheimer’s disease. N. Engl. J. Med. 2013;368(2):117-127. DOI 10.1056/NEJMoa1211851; Guo C., Jeong H.H., Hsieh Y.C., Klein H.U., Bennett D.A., De Jager P.L., Liu Z., Shulman J.M. Tau activates transposable elements in Alzheimer’s disease. Cell Rep. 2018;23(10):2874-2880. DOI 10.1016/j.celrep.2018.05.004; Guo D., Ye Y., Qi J., Tan X., Zhang Y., Ma Y., Li Y. Age and sex diffe rences in microRNAs expression during the process of thymus aging. Acta Biochim. Biophys. Sin. (Shanghai). 2017;49(5):409-419. DOI 10.1093/abbs/gmx029; Guo R., Fan G., Zhang J., Wu C., Du Y., Ye H., Li Z., Wang L., Zhang Z., Zhang L., Zhao Y., Lu Z. A 9-microRNA signature in serum serves as a noninvasive biomarker in early diagnosis of Alzheimer’s disease. J. Alzheimers Dis. 2017;60(4):1365-1377. DOI 10.3233/JAD-170343; Hajjari S.N., Sadigh-Eteghad S., Shanehbandi D., Teimourian S., Shahbazi A., Mehdizadeh M. MicroRNA-4422-5p as a negative regulator of amyloidogenic secretases: A potential biomarker for Alzheimer’s disease. Neuroscience. 2021;463:108-115. DOI 10.1016/j.neuroscience.2021.03.028; Hanna R., Flamier A., Barabino A., Bernier G. G-quadruplexes originating from evolutionary conserved L1 elements interfere with neuronal gene expression in Alzheimer’s disease. Nat. Commun. 2021; 12(1):1828. DOI 10.1038/s41467-021-22129-9; Harold D., Abraham R., Hollingworth P., Sims R., Gerrish A., Hamshere M.L., Pahwa J.S., Moskvina V., Dowzell K., Williams A., Jones N., Thomas C., Stretton A., Morgan A.R., Loveston S., Po well J., Proitsi P., Klopp N., Wichmann H.E., Carrasquillo M.M., Pan kratz V.S., Yonkin S.G., Holmans P.A., O’Donovan M., Owen M.J., Williams J. Genome-wide association study identifies variants at CLU and PICALM associated with Alzheimer’s disease. Nat. Genet. 2009; 41(10):1088-1093. DOI 10.1038/ng.440; Henriques A.D., Machado-Silva W., Leite R.E.P., Suemoto C.K., Leite K.R.M., Srougi M., Pereira A.C., Jacob-Filho W., Brazilian Aging Brain Study Group. Genome-wide profiling and predicted significance of post-mortem brain microRNA in Alzheimer’s disease. Mech. Ageing Dev. 2020;191:111352. DOI 10.1016/j.mad.2020.111352; Hong H., Li Y., Su B. Identification of circulating miR-125b as a potential biomarker of Alzheimer’s disease in APP/PS1 transgenic mouse. J. Alzheimers Dis. 2017;59(4):1449-1458. DOI 10.3233/JAD-170156; Hou Y., Song H., Croteau D.L., Akbari M., Bohr V.A. Genome instability in Alzheimer disease. Mech. Ageing Dev. 2017;161(Pt. A):83-94. DOI 10.1016/j.mad.2016.04.005; Hu L., Zhang R., Yuan Q., Gao Y., Yang M.Q., Zhang C., Huang J., Sun Y., Yang W., Yang J.Y., Min Z., Cheng J., Deng Y., Hu X. The emerging role of microRNA-4487/6845-3p in Alzherimer’s disease pathologies is induced by Aβ25-35 triggered in SH-SY5Y cell. BMC Syst. Biol. 2018;12(Suppl. 7):119. DOI 10.1186/s12918-018-0633-3; Ipson B.R., Fletcher M.B., Espinoza S.E., Fisher A.L. Identifying exo some-derived microRNAs as candidate biomarkers of frailty. J. Frailty Aging. 2018;7(2):100-103. DOI 10.14283/jfa.2017.45; Jia Y.M., Zhu C.F., She Z.Y., Wu M.M., Wu Y.Y., Zhou B.Y., Zhang N. Effects on autophagy of moxibustion at governor vessel acupoints in APP/PS1double-Transgenic Alzheimer’s Disease Mice through the lncRNA Six3os1/miR-511-3p/AKT3 Molecular Axis. Evid. Based Complement. Alternat. Med. 2022;2022:3881962. DOI 10.1155/2022/3881962; Kunkle B.W., Jaworski J., Barral S., Bardarajan B., Beecham G.W., Haines J.L., Pericak-Vance M. Genome-wide linkage analyses of non-Hispanic white families identify novel loci for familial late- onset Alzheimer’s disease. Alzheimer’s Dement. 2016;12(1):2-10. DOI 10.1016/j.jalz.2015.05.020; Lambert J.C., Heath S., Even G., Campion D., Sleegers K., Hiltunen M., Combarros O., Zelenika D., Bullido M.J., Tavernier B., Letenneur L., Bettens K., Berr C., Pasquier F., Fievet N., BarbeergerGateau P., Engelborghs S., Deyn P.D., Mateo I., Franck A., Helisalmi S., Tzourio C., Gut I., Van Broeckhoven C., Alperovitch A., Lathrop M., Amouyel P. Genome-wide association study identifies variants at CLU and CR1 associated with Alzheimer’s disease. Nat. Genet. 2009;41(10):1094-1099. DOI 10.1038/ng.439; Lanni C., Masi M., Racchi M., Govoni S. Cancer and Alzheimer’s disease inverse relationship: an age-associated diverging derailment of shared pathways. Mol. Psychiatry. 2021;26(1):280-295. DOI 10.1038/s41380-020-0760-2; Larsen P.A., Lutz M.W., Hunnicutt K.E., Mihovilovic M., Saunders A.M., Yoder A.D., Roses A.D. The Alu neurodegeneration hypothesis: A primate-specific mechanism for neuronal transcription noise, mitochondrial dysfunction, and manifestation of neurodegenerative disease. Alzheimer’s Dement. 2017;13(7):828-838. DOI 10.1016/j.jalz.2017.01.017; Lee B.P., Buric I., George-Pandeth A., Flurkey K., Harrison D.E., Yuan R., Peters L.L., Kuchel G.A., Melzer D., Harries L.W. MicroRNAs miR-203-3p, miR-664-3p and miR-708-5p are associated with median strain lifespan in mice. Sci. Rep. 2017;7:44620. DOI 10.1038/srep44620; Levy-Lahad E., Wasco W., Poorkaj P., Romano D.M., Oshima J., Pettingell W.H., Yu C.E., Jondro P.D., Schmidt S.D., Wang K. Candidate gene for the chromosome 1 familial Alzheimer’s disease locus. Science. 1995;269(5226):973-977. DOI 10.1126/science.7638622; Liu Q.Y., Chang M.N.V., Lei J.X., Koukiekolo R., Smith B., Zhang D., Ghribi O. Identification of microRNAs involved in Alzheimer’s progression using a rabbit model of the disease. Am. J. Neurodegener. Dis. 2014;3(1):33-44; Lu L., Dai W., Zhu X., Ma T. Analysis of serum miRNAs in Alzheimer’s disease. Am. J. Alzheimers Dis. Other Demen. 2021;36: 15333175211021712. DOI 10.1177/15333175211021712; Ma F.C., Wang H.F., Cao X.P., Tan C.C., Tan L., Yu J.T. Meta-analysis of the association between variants in ABCA7 and Alzheimer’s disease. J. Alzheimers Dis. 2018;63(4):1261-1267. DOI 10.3233/JAD-180107; Macciardi F., Bacalini M.G., Miramontes R., Boattini A., Taccioli C., Modenini G., Malhas R., Anderlucci L., Gusev Y., Gross T.J., Padilla R.M., Fiandaca M.S., Head E., Guffanti G., Federoff H.J., Mapstone M. A retrotransposon storm marks clinical phenoconversion to late-onset Alzheimer’s disease. Geroscience. 2022;44(3):15251550. DOI 10.1007/s11357-022-00580-w; Majumder P., Chanda K., Das D., Singh B.K., Charkrabarti P., Jana N.R., Mukhopadhyay D. A nexus of miR-1271, PAX4 and ALK/RYK influences the cytoskeletal architectures in Alzheimer’s disease and type 2 diabetes. Biochem. J. 2021;478(17):3297-3317. DOI 10.1042/BCJ20210175; Marioni R.E., Harris S.E., Zhang Q., McRae A.F., Hagenaars S.P., Hill W.D., Davies G., Ritchie C.W., Gale C.R., Starr J.M., Goate A.M., Porteous D.J., Yang J., Evans K.L., Deary I.J., Wray N.R., Viss cher P.M. GWAS on family history of Alzheimer’s disease. Transl. Psychiatry. 2018;8(1):99. DOI 10.1038/s41398-018-0150-6; Mustafin R.N. The relationship between transposons and transcription factors in the evolution of eukaryotes. Zhurnal Evolyutsionnoi Biokhimii i Fiziologii = Journal of Evolutionary Biochemistry and Physiology. 2019;55(1):14-22. DOI 10.1134/S004445291901008X (in Russian); Mustafin R.N., Khusnutdinova E.K. Non-coding parts of genomes as the basis of epigenetic heredity. Vavilovskii Zhurnal Genetiki i Selektsii = Vavilov Journal of Genetics and Breeding. 2017;21(6):742-749. DOI 10.18699/VJ17.30-o (in Russian); Niu H., Alvarez-Alvarez I., Guillen-Grima F., Aguinaga-Ontoso I. Prevalence and incidence of Alzheimer’s disease in Europe: A metaanalysis. Neurologia. 2017;32(8):523-532. DOI 10.1016/j.nrl.2016.02.016; Noren Hooten N., Fitzpatrick M., Wood W.H. 3rd, De S., Ejiogu N., Zhang Y., Mattison J.A., Becker K.G., Zonderman A.B., Evans M.K. Age-related changes in microRNA levels in serum. Aging (Albany N. Y.). 2013;5(10):725-740. DOI 10.18632/aging.100603; Pan W., Hu Y., Wang L., Li J. Circ_0003611 acts as a miR-885-5p sponge to aggravate the amyloid-β-induced neuronal injury in Alzheimer’s disease. Metab. Brain Dis. 2022;37(4):961-971. DOI 10.1007/s11011-022-00912-x; Pascarella G., Hon C.C., Hashimoto K., Busch A., Luginbuhl J., Parr C., Yip W.H., Abe K., Kratz A., Bonetti A., Agostini F., Severin J., Murayama S., Suzuki Y., Gustincich S., Frith M., Carninci P. Recombination of repeat elements generates somatic complexity in human genomes. Cell. 2022;185(16):3025-3040.e6. DOI 10.1016/j.cell.2022.06.032; Patel H., Dobson R.J.B., Newhouse S.J. A meta-analysis of Alzheimer’s disease brain transcriptomic data. J. Alzheimers Dis. 2019; 68(4):1635-1656. DOI 10.3233/JAD-181085; Protasova M.S., Andreeva T.V., Rogaev E.I. Factors regulating the activity of LINE1 retrotransposons. Genes (Basel). 2021;12(10):1562. DOI 10.3390/genes12101562; Qin Z., Han X., Ran J., Guo S., Lv L. Exercise-mediated alteration of miR-192-5p is associated with cognitive improvement in Alzheimer’s disease. Neuroimmunomodulation. 2022;29(1):36-43. DOI 10.1159/000516928; Raheja R., Regev K., Healy B.C., Mazzola M.A., Beynon V., Glehn F.V., Paul A., Diaz-Cruz C., Gholipour T., Glanz B.I., Kivisakk P., Chitnis T., Weiner H.L., Berry J.D., Gandhi R. Correlating serum microRNAs and clinical parameters in amyotrophic lateral sclerosis. Muscle Nerve. 2018;58(2):261-269. DOI 10.1002/mus.26106; Rahman M.R., Islam T., Turanli B., Zaman T., Faruquee H.M., Rahman M.M., Mollah M.N.H., Nanda R.K., Arga K.Y., Gov E., Moni M.A. Network-based approach to identify molecular signatures and therapeutic agents in Alzheimer’s disease. Comput. Biol. Chem. 2019;78:431-439. DOI 10.1016/j.compbiolchem.2018.12.011; Rahman M.R., Islam T., Zaman T., Shahjaman M., Karim M.R., Huq F., Quinn J.M.W., Holsinger R.M.D., Gov E., Moni M.A. Identification of molecular signatures and pathways to identify novel therapeutic targets in Alzheimer’s disease: Insights from a systems biomedicine perspective. Genomics. 2020;112(2):1290-1299. DOI 10.1016/j.ygeno.2019.07.018; Raihan O., Brishti A., Molla M.R., Li W., Zhang Q., Xu P., Khan M.I., Zhang J., Liu Q. The age-dependent elevation of miR-335-3p leads to reduced cholesterol and impaired memory in brain. Neuroscience. 2018;390:160-173. DOI 10.1016/j.neuroscience.2018.08.003; Ramirez P., Zuniga G., Sun W., Beckmann A., Ochoa E., DeVos S., Hyman B., Chiu G., Roy E.R., Cao W., Orr M., Buggia-Prevot V., Ray W.J., Frost B. Pathogenic tau accelerates aging-associated activation of transposable elements in the mouse central nervous system. Prog. Neurobiol. 2022;208:102181. DOI 10.1016/j.pneurobio.2021.102181; Ravel-Godreuil C., Zhaidi R., Bonnifet T., Joshi R.L., Fuchs J. Transposable elements as new players in neurodegenerative diseases. FEBS Lett. 2021;595(22):2733-2755. DOI 10.1002/1873-3468.14205; Robinson M., Lee B.Y., Hane F.T. Recent progress in Alzheimer’s disease research. Part 2: genetics and epidemiology. J. Alzheimers Dis. 2017;57(2):317-330. DOI 10.3233/JAD-161149; Rogaev E.I., Lukiw W.J., Lavrushina O., Rogaeva E.A., St. GeorgeHyslop P.H. The upstream promoter of the β-amyloid precursor protein gene (APP) shows differential patterns of methylation in human brain. Genomics. 1994;22(2):340-347. DOI 10.1006/geno.1994.1393; Samadian M., Gholipour M., Hajiesmaeili M., Taheri M., GhafouriFard S. The eminent role of microRNAs in the pathogenesis of Alz heimer’s disease. Front. Aging Neurosci. 2021;13:641080. DOI 10.3389/fnagi.2021.641080; Sataranatarajan K., Feliers D., Mariappan M.M., Lee H.J., Lee M.J., Day R.T., Bindu H., Yalamanchili H.B., Choudhury G.G., Barnes J.L., Remmen H.V., Richardson A., Kasinath B.S. Molecular events in matrix protein metabolism in the aging kidney. Aging Cell. 2012;11(6):1065-1073. DOI 10.1111/acel.12008; Satoh J.I., Kino Y., Niida S. MicroRNA-seq data analysis pipeline to identify blood biomarkes for Alzheimer’s disease from public data. Biomark. Insights. 2015;10:21-31. DOI 10.4137/BMI.S25132; Schwartzentruber J., Cooper S., Liu J.Z., Barrio-Hernandez I., Bello E., Kumasaka N., Young A.M.H., Franklin R.J.M., Johnson T., Estrada K., Gaffney D.J., Beltrao P., Bassett A. Genome-wide metaanalysis, fine-mapping and integrative prioritization implicate new Alzheimer’s disease risk genes. Nat. Genet. 2021;53(3):392-402. DOI 10.1038/s41588-020-00776-w; Serrano-Pozo A., Das S., Hyman B.T. APOE and Alzheimer’s disease: advances in genetics, pathophysiology, and therapeutic approaches. Lancet Neurol. 2021;20(1):68-80. DOI 10.1016/S1474-4422(20)30412-9; Sherrington R., Rogaev E.I., Liang Y., Rogaeva E.A., Levesque G., Ikeda M., Chi H., Lin C., Li G., Holman K., Tsuda T., Mar L., Foncin J.F., Bruni A.C., Montesi M.P., Sorbi S., Rainero I., Pinessi L., Nee L., Chumakov I., Pollen D., Brookes A., Sanseau P., Polinsky R.J., Wasco W., Da Silva H.A., Haines J.L., Perkicak-Vance M.A., Tanzi R.E., Roses A.D., Fraser P.E., Rommens J.M., St. George-Hyslop P.H. Cloning of a gene bearing missense mutations in early-onset familial Alzheimer’s disease. Nature. 1995;375(6534):754-760. DOI 10.1038/375754a0; Sierksma A., Lu A., Salta E., Eynden E.V., Callaerts-Vegh Z., D’Hooge R., Blum D., Buee L., Fiers M., Stooper B.D. Deregulation of neuronal miRNAs induced by amyloid-β or TAU pathology. Mol. Neurodegener. 2018;13(1):54. DOI 10.1186/s13024-018-0285-1; Smith R.G., Pishva E., Shireby G., Smith A.R., Roubroeks J.A.Y., Hannon E., Wheildon G., Mastroeni D., Gasparoni G., Riemenschneider M., Giese A., Sharp A.J., Schalkwyk L., Haroutunian V., Viechtb auer W., van den Hove D.L.A., Weedon M., Brokaw D., Francis P.T., Thomas A.J., Love S., Morgan K., Walter J., Coleman P.D., Bennett D.A., De Jager P.L., Mill J., Lunnon K. A meta-analysis of epigenome-wide association studies in Alzheimer’s disease highlights novel differentially methylated loci across cortex. Nat. Commun. 2021;12(1):3517. DOI 10.1038/s41467-021-23243-4; Smith-Vikos T., Liu Z., Parsons C., Gorospe M., Ferrucci L., Gill T.M., Slack F.J. A serum miRNA profile of human longevity: findings from the Baltimore Longitudinal Study of Aging (BLSA). Aging (Albany N.Y.). 2016;8(11):2971-2987. DOI 10.18632/aging.101106; Sun W., Samimi H., Gamez M., Zare H., Frost B. Pathogenic tau-induced piRNA depletion promotes neuronal death through transposable element dysregulation in neurodegenerative tauopathies. Nat. Neurosci. 2018;21(8):1038-1048. DOI 10.1038/s41593-018-0194-1; Swarbrick S., Wragg N., Ghosh S., Stolzing A. Systematic review of miRNA as biomarkers in Alzheimer’s disease. Mol. Neurobiol. 2019;56(9):6156-6167. DOI 10.1007/s12035-019-1500-y; Tan L., Yu J.T., Tan M.S., Liu Q.Y., Wang H.F., Zhang W., Jiang T., Tan L. Genome-wide serum microRNA expression profiling identifies serum biomarkers for Alzheimer’s disease. J. Alzheimers Dis. 2014;40(4):1017-1027. DOI 10.3233/JAD-132144; Tan X., Luo Y., Pi D., Xia L., Li Z., Tu Q. MiR-340 reduces the accumulation of amyloid-β through targeting BACE1 (β-site amyloid precursor protein cleaving enzyme 1) in Alzheimer’s disease. Curr. Neurovasc. Res. 2020;17(1):86-92. DOI 10.2174/1567202617666200117103931; Ukai T., Sato M., Akutsu H., Umezawa A., Mochida J. MicroRNA-199a-3p, microRNA-193b, and microRNA-320c are correlated to aging and regulate human cartilage metabolism. J. Orthop. Res. 2012;30(12):1915-1922. DOI 10.1002/jor.22157; Van Meter M., Kashyap M., Rezazadeh S., Geneva A.J., Morello T.D., Seluanov A., Gorbunova V. SIRT6 represses LINE1 retrotransposons by ribosylating KAP1 but this repression fails with stress and age. Nat. Commun. 2014;5:5011. DOI 10.1038/ncomms6011; Wang D., Fei Z., Wang H. MiR-335-5p inhibits β-amyloid (Aβ) accumulation to attenuate cognitive deficits through targeting c-junN-terminal kinase 3 in Alzheimer’s disease. Curr. Neurovasc. Res. 2020;17(1):93-101. DOI 10.2174/1567202617666200128141938; Watcharanurak P., Mutirangura A. Human RNA-directed DNA-methylation methylates high-mobility group box 1 protein-produced DNA gaps. Epigenomics. 2022;14(12):741-756. DOI 10.2217/epi-20220022; Wei G., Qin S., Li W., Chen L., Ma F. MDTE DB: a database for microRNAs derived from Transposable element. IEEE/ACM Trans. Conflict of interest. The authors declare no conflict of interest. Comput. Biol. Bioinform. 2016;13:1155-1160. DOI 10.1109/TCBB.2015.2511767; Wong N.W., Chen Y., Chen S., Wang X. OncomiR: and online resource for exploring pan-cancer microRNA dysregulation. Bioinformatics. 2018;34(4):713-715. DOI 10.1093/bioinformatics/btx627; Wood J.G., Helfand S.L. Chromatin structure and transposable elements in organismal aging. Front. Genet. 2013;4:274. DOI 10.3389/fgene.2013.00274; Xu X., Gu D., Xu B., Yang C., Wang L. Circular RNA circ_0005835 promotes neural stem cells proliferation and differentiate to neuron and inhibits inflammatory cytokines levels through miR-576-ep in Alz heimer’s disease. Environ. Sci. Pollut. Res. Int. 2022;29(24): 35934-35943. DOI 10.1007/s11356-021-17478-3; Yurov Y.B., Vorsanova S.G., Iourov I.Y. FISHing for crhomosome instability and aneuploidy in the Alzheimer’s disease brain. Methods Mol. Biol. 2023;2561:191-204. DOI 10.1007/978-1-0716-2655-9_10; Zhang H., Yang H., Zhang C., Jing Y., Wang C., Liu C., Zhang R., Wang J., Zhang J., Zen K., Zhang C., Li D. Investigation of microRNA expression in human serum during the aging process. J. Gerontol. A Biol. Sci. Med. Sci. 2015;70(1):102-109. DOI 10.1093/Gerona/glu145; Zhang T., Brinkley T.E., Liu K., Feng X., Marsh A.P., Kritchevsky S., Zhou X., Nicklas B.J. Circulating miRNAs as biomarkers of gait speed responses to aerobic exercise training in obese older adults. Aging (Albany N.Y.). 2017;9(3):900-913. DOI 10.18632/aging.101199; Zhao X., Wang S., Sun W. Expression of miR-28-3p in patients with Alzheimer’s disease before and after treatment and its clinical value. Exp. Ther. Med. 2020;20(3):2218-2226. DOI 10.3892/etm.2020.8920; Zheng D., Sabbagh J.J., Blair L.J., Darling A.L., Wen X., Dickey C.A. MicroRNA-511 binds to FKBP5 mRNA, which encodes a chaperone protein, and regulates neuronal differentiation. J. Biol. Chem. 2016;291(34):17897-17906. DOI 10.1074/jbc.M116.727941; https://vavilov.elpub.ru/jour/article/view/4093Test

  9. 9
    دورية أكاديمية

    المساهمون: This research was funded by the Russian Scientific Foundation (grant No. 22-15-00373), Работа выполнена при финансовой поддержке Российского научного фонда (грант № 22-15-00373)

    المصدر: Advances in Molecular Oncology; Том 11, № 1 (2024); 113-123 ; Успехи молекулярной онкологии; Том 11, № 1 (2024); 113-123 ; 2413-3787 ; 2313-805X

    وصف الملف: application/pdf

    العلاقة: https://umo.abvpress.ru/jour/article/view/654/343Test; Raposo G., Stahl P.D. Extracellular vesicles – on the cusp of a new language in the biological sciences. Extracell Vesicles Circ Nucleic Acids 2023;4(2):240–54. DOI:10.20517/evcna.2023.18; Kalluri R., LeBleu V.S. The biology, function, and biomedical applications of exosomes. Science 2020;367(6478):eaau6977. DOI:10.1126/science.aau6977; Liu Y.-J., Wang C. A review of the regulatory mechanisms of extracellular vesicles-mediated intercellular communication. Cell Commun Signal 2023;21(1):77. DOI:10.1186/s12964-023-01103-6; Xu R., Rai A., Chen M. et al. Extracellular vesicles in cancer – implications for future improvements in cancer care. Nat Rev Clin Oncol 2018;15(10):617–38. DOI:10.1038/s41571-018-0036-9; Logozzi M., Mizzoni D., Di Raimo R., Fais S. Exosomes: a source for new and old biomarkers in cancer. Cancers 2020;12(9):2566. DOI:10.3390/cancers12092566; Staicu C.E., Predescu D.V., Rusu C.M. et al. Role of microRNAs as clinical cancer biomarkers for ovarian cancer: a short overview. Cells 2020;9(1):169. DOI:10.3390/cells9010169; Meng X., Müller V., Milde-Langosch K. et al. Diagnostic and prognostic relevance of circulating exosomal miR-373, miR-200a, miR-200b and miR-200c in patients with epithelial ovarian cancer. Oncotarget 2016;7(13):16923–35. DOI:10.18632/oncotarget.7850; Pan C., Stevic I., Müller V. et al. Exosomal microRNAs as tumor markers in epithelial ovarian cancer. Mol Oncol 2018;12(11):1935–48. DOI:10.1002/1878-0261.12371; Théry C., Witwer K.W., Aikawa E. et al. Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines. J Extracell Vesicles 2018;7(1):1535750. DOI:10.1080/20013078.2018.1535750; Salmond N., Williams K.C. Isolation and characterization of extracellular vesicles for clinical applications in cancer – time for standardization? Nanoscale Adv 2021;3(7):1830–52. DOI:10.1039/d0na00676a; Skryabin G.O., Komelkov A.V., Zhordania K.I. et al. Extracellular vesicles from uterine aspirates represent a promising source for screening markers of gynecologic cancers. Cells 2022;11(7):1064. DOI:10.3390/cells11071064; Kramer F. Stem-Loop RT-qPCR for miRNAs. Curr Protoc Mol Biol 2011;Chapter 15:Unit15.10. DOI:10.1002/0471142727.mb1510s95; Skryabin G.O., Komelkov A.V., Galetsky S.A. et al. Stomatin is highly expressed in exosomes of different origin and is a promising candi-date as an exosomal marker. J Cell Biochem 2021;122(1):100–15. DOI:10.1002/jcb.29834; Burdiel M., Jiménez J., Rodríguez-Antolín C. et al. MiR-151a: a robust endogenous control for normalizing small extracellular vesicle cargo in human cancer. Biomark Res 2023;11(1): 94. DOI:10.1186/s40364-023-00526-0; Xie F., Wang J., Zhang B. RefFinder: a web-based tool for comprehensively analyzing and identifying reference genes. Funct Integr Genomics 2023;23(2):125. DOI:10.1007/s10142-023-01055-7; Wang X., Huang J., Chen W. et al. The updated role of exosomal proteins in the diagnosis, prognosis, and treatment of cancer. Exp Mol Med 2022;54(9):1390–400. DOI:10.1038/s12276-022-00855-4; Zhang J., Li S., Li L. et al. Exosome and exosomal microRNA: trafficking, sorting, and function. Genomics Proteomics Bioinformatics 2015;13(1):17–24. DOI:10.1016/j.gpb.2015.02.001; Liu Q.-W., He Y., Xu W.W. Molecular functions and therapeutic applications of exosomal noncoding RNAs in cancer. Exp Mol Med 2022;54(3):216–25. DOI:10.1038/s12276-022-00744-w; Skryabin G.O., Vinokurova S.V., Elkina N.V. et al. Comparison of methods for microRNA isolation from extracellular vesicles obtained from ascitic fluids. Biochemistry 2022;87(11):1354–66. DOI:10.1134/S0006297922110141; Koutsaki M., Libra M., Spandidos D.A., Zaravinos A. The miR-200 family in ovarian cancer. Oncotarget 2017;8(39):66629–40. DOI:10.18632/oncotarget.18343; Liu X., Li J., Qin F., Dai S. miR-152 as a tumor suppressor microRNA: target recognition and regulation in cancer. Oncol Lett 2016;11(6):3911–6. DOI:10.3892/ol.2016.4509; Xuan J., Liu Y., Zeng X., Wang H. Sequence requirements for miR-424-5p regulating and function in cancers Int J Mol Sci 2022;23(7):4037. DOI:10.3390/ijms23074037; Timofeeva A.V., Fedorov I.S., Asaturova A.V. et al. Blood plasma small non-coding RNAs as diagnostic molecules for the progesterone-receptor-negative phenotype of serous ovarian tumors. Int J Mol Sci 2023;24(15):12214. DOI:10.3390/ijms241512214; Gadducci A., Sergiampietri C., Lanfredini N., Guiggi I. MicroRNAs and ovarian cancer: the state of art and perspectives of clinical research. Gynecol Endocrinol 2014;30(4):266–71. DOI:10.3109/09513590.2013.871525; Jiang Y., Shi Y., Lyu T. et al. Identification and functional validation of differentially expressed microRNAs in ascites-derived ovarian cancer cells compared with primary tumour tissue. Cancer Manag Res 2021;13:6585–97. DOI:10.2147/CMAR.S320834; Wang J., Zhang R., Zhang B. et al. MiR-135b improves proliferation and regulates chemotherapy resistance in ovarian cancer. J Mol Histol 2022;53(4):699–712. DOI:10.1007/s10735-022-10080-y; Chen H., Mao M., Jiang J.D. et al. Circular RNA CDR1as acts as a sponge of miR-135b-5p to suppress ovarian cancer progression. OncoTargets Ther 2019;12:3869–79. DOI:10.2147/OTT.S207938; Yu S., Yu M., Chen J. et al. Circ_0000471 suppresses the progression of ovarian cancer through mediating mir-135b-5p/dusp5 axis. Am J Reprod Immunol 2023;89(4):e13651. DOI:10.1111/aji.13651; Cao Y., Shen T., Zhang C. et al. MiR-125a-5p inhibits EMT of ovarian cancer cells by regulating TAZ/EGFR signaling pathway. Eur Rev Med Pharmacol Sci 2019;23(19):8249–56. DOI:10.26355/eurrev_201910_19134; Lee M., Kim E.J., Jeon M.J. MicroRNAs 125a and 125b inhibit ovarian cancer cells through post-transcriptional inactivation of EIF4EBP1. Oncotarget 2015;7(8):8726–42. DOI:10.18632/oncotarget.6474; Yang J., Li G., Zhang K. MiR-125a regulates ovarian cancer proliferation and invasion by repressing GALNT14 expression. Biomed Pharmacother 2016;80:381–7. DOI:10.1016/j.biopha.2015.12.027; Wang Y., Li N., Zhao J., Dai C. MiR-193a-5p serves as an inhibitor in ovarian cancer cells through RAB11A. Reprod Toxicol 2022;110:105–12. DOI:10.1016/j.reprotox.2022.04.003; Zhang S., Liu J., He J., Yi N. MicroRNA-193a-5p exerts a tumor suppressive role in epithelial ovarian cancer by modulating RBBP6. Mol Med Rep 2021;24(2):582. DOI:10.3892/mmr.2021.12221; Khordadmehr M., Shahbazi R., Sadreddini S., Baradaran B. miR-193: a new weapon against cancer. J Cell Physiol 2019;234(10): 6861–72. DOI:10.1002/jcp.28368; Eitan R., Kushnir M., Lithwick-Yanai G. et al. Tumor microRNA expression patterns associated with resistance to platinum based chemotherapy and survival in ovarian cancer patients. Gynecol Oncol 2009;114(2):253–9. DOI:10.1016/j.ygyno.2009.04.024; Wambecke A., Ahmad M., Morice P.M. et al. The lncRNA ‘UCA1’ modulates the response to chemotherapy of ovarian cancer through direct binding to miR-27a-5p and control of UBE2N levels. Mol Oncol 2021;15(12):3659–78. DOI:10.1002/1878-0261.13045; Che X., Jian F., Chen C. et al. PCOS serum-derived exosomal miR-27a-5p stimulates endometrial cancer cells migration and invasion. J Mol Endocrinol 2020;64(1):1–12. DOI:10.1530/JME-19-0159; Regis S., Caliendo F., Dondero A. et al. TGF-β1 downregulates the expression of CX3CR1 by inducing miR-27a-5p in primary human NK cells. Front Immunol 2017;8. Available at: https://www.frontiersin.org/articles/10.3389/fimmu.2017.00868Test; Huldani H., Malviya J., Rodrigues P. et al. miR-495–3p as a promising tumor suppressor in human cancers. Pathol Res Pract 2023;248:154610. DOI:10.1016/j.prp.2023.154610; Chen H., Wang X., Bai J., He A. Expression, regulation and function of miR-495 in healthy and tumor tissues. Oncol Lett 2017;13(4):2021–6. DOI:10.3892/ol.2017.5727; Liu S., Xi X. LINC01133 contribute to epithelial ovarian cancer metastasis by regulating miR-495-3p/TPD52 axis. Biochem Biophys Res Commun 2020;533(4):1088–94. DOI:10.1016/j.bbrc.2020.09.074; Zhu J., Luo J.E., Chen Y., Wu Q. Circ_0061140 knockdown inhibits tumorigenesis and improves PTX sensitivity by regulating miR-136/ CBX2 axis in ovarian cancer. J Ovarian Res 2021;14(10):136. DOI:10.1186/s13048-021-00888-9; Zhao H., Liu S., Wang G. et al. Expression of miR-136 is associated with the primary cisplatin resistance of human epithelial ovarian cancer. Oncol Rep 2015;33(2):591–8. DOI:10.3892/or.2014.3640; Ling S., Ruiqin M., Guohong Z., Ying W. Expression and prognostic significance of microRNA-451 in human epithelial ovarian cancer. Eur J Gynaecol Oncol 2015;36(4):463–8.; Zhu H., Wu H., Liu X. et al. Role of microRNA miR-27a and miR451 in the regulation of MDR1/P-glycoprotein expression in human cancer cells. Biochem Pharmacol 2008;76(5):582–8. DOI:10.1016/j.bcp.2008.06.007; Bagnoli M., Canevari S., Califano D. et al. Development and validation of a microRNA-based signature (MiROvaR) to predict early relapse or progression of epithelial ovarian cancer: a cohort study. Lancet Oncol 2016;17(8):1137–46. DOI:10.1016/S1470-2045(16)30108-5; De Cecco L., Bagnoli M., Chiodini P. et al. Prognostic evidence of the miRNA-based ovarian cancer signature MiROvaR in independent datasets. Cancers 2021;13(7):1544. DOI:10.3390/cancers13071544; Pucci M., Reclusa Asiáin P., Duréndez Sáez E. et al. Extracellular vesicles as miRNA nano-shuttles: dual role in tumor progression. Target Oncol 2018;13(2):175–87. DOI:10.1007/s11523-018-0551-8; Guduric-Fuchs J., O’Connor A., Camp B. et al. Selective extracellular vesicle-mediated export of an overlapping set of microRNAs from multiple cell types. BMC Genomics 2012;13:357. DOI:10.1186/1471-2164-13-357; Ohshima K., Inoue K., Fujiwara A. et al. Let-7 microRNA family is selectively secreted into the extracellular environment via exosomes in a metastatic gastric cancer cell line. PLoS One 2010;5(10): DOI:10.1371/journal.pone.0013247; Bordanaba-Florit G., Madarieta I., Olalde B. et al. 3D cell cultures as prospective models to study extracellular vesicles in cancer. Cancers 2021;13(2):307. DOI:10.3390/cancers13020307; Kusuma G.D., Li A., Zhu D. et al. Effect of 2D and 3D culture microenvironments on mesenchymal stem cell-derived extracellular vesicles potencies. Front Cell Dev Biol 2022;10:819726. DOI:10.3389/fcell.2022.819726; Rocha S., Carvalho J., Oliveira P. et al. 3D cellular architecture affects microRNA and protein cargo of extracellular vesicles. Adv Sci Weinh Baden-Wurtt Ger 2019;6(4):1800948. DOI:10.1002/advs.201800948; Thippabhotla S., Zhong C., He M. 3D cell culture stimulates the secretion of in vivo like extracellular vesicles. Sci Rep 2019;9(1):13012. DOI:10.1038/s41598-019-49671-3; https://umo.abvpress.ru/jour/article/view/654Test

  10. 10
    دورية أكاديمية

    المساهمون: The work was performed without external funding, Работа выполнена без спонсорской поддержки

    المصدر: Advances in Molecular Oncology; Том 11, № 1 (2024); 22-30 ; Успехи молекулярной онкологии; Том 11, № 1 (2024); 22-30 ; 2413-3787 ; 2313-805X

    وصف الملف: application/pdf

    العلاقة: https://umo.abvpress.ru/jour/article/view/646/335Test; Уфимцева М.А., Шубина А.С., Струин Н.Л. и др. Алгоритм оказания медико-профилактической помощи пациентам групп риска по развитию злокачественных опухолей кожи. Здравоохранение Российской Федерации 2017;61(5):257–62. DOI:10.18821/0044-197Х-2017-61-5-257-262; Saginala K., Barsouk A., Aluru J.S. et al. Epidemiology of melanoma. Med Sci (Basel) 2021;9(4):63. DOI:10.3390/medsci9040063 Рыбкина В.Л., Азизова Т.В., Адамова Г.В. Факторы риска развития злокачественных новообразований кожи. Клиническая дерматология и венерология 2019;18(5):548–55. DOI:10.17116/klinderma201918051548; Karimkhani C., Green A.C., Nijsten T. et al. The global burden of melanoma: results from the Global Burden of Disease Study 2015. Br J Dermatol 2017;177(1):134–40. DOI:10.1111/bjd.15510; Abrahamian C., Grimm C. Endolysosomal cation channels and MITF in melanocytes and melanom. Biomolecules 2021;11(7):1021. DOI:10.3390/biom11071021; Fesenko D.O., Abramov I.S., Shershov V.E. et al. Multiplex assay to evaluate the genetic risk of developing human melanoma. Mol Biol (Mosk) 2018;52(6):997–1005. DOI:10.1134/S0026898418060071; Sabag N., Yakobson A., Retchkiman M. et al. Novel biomarkers and therapeutic targets for melanoma. Int J Mol Sci 2022;23(19):11656. DOI:10.3390/ijms231911656; Newton-Bishop J., Bishop D.T., Harland M. Melanoma genomics. Acta Derm Venereol 2020;100(11):adv00138. DOI:10.2340/00015555-3493; Lavoie H., Sahmi M., Maisonneuve P. et al. MEK drives BRAF activation through allosteric control of KSR proteins. Nature 2018;554(7693):549–53. DOI:10.1038/nature25478; Lattmann E., Levesque M.P. The role of extracellular vesicles in melanoma progression. Cancers (Basel) 2022;14(13):3086. DOI:10.3390/cancers14133086; Thatikonda S., Pooladanda V., Tokala R. et al. Niclosamide inhibits epithelial-mesenchymal transition with apoptosis induction in BRAF/ NRAS mutated metastatic melanoma cells. Toxicol In Vitro 2023;89:105579. DOI:10.1016/j.tiv.2023.105579; Liu L., Wu Y., Bian C. et al. Heme oxygenase 1 facilitates cell proliferation via the B-Raf-ERK signaling pathway in melanoma. Cell Commun Signal 2019;17(1):3. DOI:10.1186/s12964-018-0313-3; Zhao J., Benton S., Zhang B. et al. Benign and intermediate-grade melanocytic tumors with BRAF mutations and spitzoid morphology: a subset of melanocytic neoplasms distinct from melanoma. Am J Surg Pathol 2022;46(4):476–85. DOI:10.1097/PAS.0000000000001831; Berwick M., Buller D.B., Cust A. et al. Melanoma epidemiology and prevention. Cancer Treat Res 2016;167:17–49. DOI:10.1007/978-3-319-22539-5_2; Grigalavicius M., Moan J., Dahlback A. et al. Daily, seasonal, and latitudinal variations in solar ultraviolet A and B radiation in relation to vitamin D production and risk for skin cancer. Int J Dermatol 2016;55(1):23–8. DOI:10.1111/ijd.13065; D’Ecclesiis O., Caini S., Martinoli C. et al. Gender-dependent specificities in cutaneous melanoma predisposition, risk factors, somatic mutations, prognostic and predictive factors: a systematic review. Int J Environ Res Public Health 2021;18(15):7945. DOI:10.3390/ijerph18157945; Leonardi G.C., Falzone L., Salemi R. et al. Cutaneous melanoma: from pathogenesis to therapy (Review). Int J Oncol 2018;52(4):1071–80. DOI:10.3892/ijo.2018.4287; Tímár J., Ladányi A. Molecular pathology of skin melanoma: epidemiology, differential diagnostics, prognosis and therapy prediction. Int J Mol Sci 2022;23(10):5384. DOI:10.3390/ijms23105384; Vízkeleti J., Doma L., Barbai V. et al. Genetic progression of malignant melanoma. Cancer Metastasis Rev 2016;35(1):93–107. DOI:10.1007/s10555-016-9613-5; Soura E., Eliades P.J., Shannon K. et al. Hereditary melanoma: update on syndromes and management: genetics of familial atypical multiple mole melanoma syndrome. J Am Acad Dermatol 2016;74(3):395–410. DOI:10.1016/j.jaad.2015.08.038; Wang L., Lu A.P., Yu Z.L. et al. The melanogenesis-inhibitory effect and the percutaneous formulation of ginsenoside Rb1. AAPS PharmSciTech 2014;15(5):1252–62. DOI:10.1208/s12249-014-0138-3; Liu J., Zhang C., Wang J. et al. The regulation of ferroptosis by tumor suppressor p53 and its pathway. Int J Mol Sci 2020;21(21):8387. DOI:10.3390/ijms21218387; Xie X., Koh J.Y., Price S. et al. Atg7 overcomes senescence and promotes growth of BrafV600E-driven melanoma. Cancer Discov 2015;5(4):410–23. DOI:10.1158/2159-8290.CD-14-1473; Liu H., He Z., Simon H.U. Autophagy suppresses melanoma tumorigenesis by inducing senescence. Autophagy 2014;10(2):372–3. DOI:10.4161/auto.27163; Li S., Song Y., Quach C. et al. Transcriptional regulation of autophagy-lysosomal function in BRAF-driven melanoma progression and chemoresistance. Nat Commun 2019;10(1):1693. DOI:10.1038/s41467-019-09634-8; Mei X.L., Wei F.L., Jia L.L. et al. An alternative pathway for cellular protection in BRAF inhibitor resistance in aggressive melanoma type skin cancer. Chem Biol Interact 2020;323:109061. DOI:10.1016/j.cbi.2020.109061; Tang D.Y., Ellis R.A., Lovat P.E. Prognostic impact of autophagy biomarkers for cutaneous melanoma. Front Oncol 2016;6:236. DOI:10.3389/fonc.2016.00236; Ramkumar A., Murthy D., Raja D.A. et al. Classical autophagy proteins LC3B and ATG4B facilitate melanosome movement on cytoskeletal tracks. Autophagy 2017;13(8):1331–47. DOI:10.1080/15548627.2017.1327509; Chen M., Li Q., Chen W. et al. Diagnostic and prognostic value of Beclin 1 expression in melanoma: a meta-analysis. Melanoma Res 2021;31(6):541–9. DOI:10.1097/CMR.0000000000000780; Oliveira R.D., Celeiro S.P., Barbosa-Matos C. et al. Portuguese propolis antitumoral activity in melanoma involves ROS production and induction of apoptosis. Molecules 2022;27(11):3533. DOI:10.3390/molecules27113533; Teixido C., Castillo P., Martinez-Vila C. et al. Molecular markers and targets in melanoma. Cells 2021;10(9):2320. DOI:10.3390/cells10092320; Ellis R.A., Horswell S., Ness T. et al. Prognostic impact of p62 expression in cutaneous malignant melanoma. J Invest Dermatol 2014;134(5):1476–8. DOI:10.1038/jid.2013.497; Armstrong J.L., Hill D.S., McKee C.S. et al. Exploiting cannabinoid-induced cytotoxic autophagy to drive melanoma cell death. J Invest Dermatol 2015;135(6):1629–37. DOI:10.1038/jid.2015.45; Simmons J.L., Pierce C.J., Al-Ejeh F. et al. MITF and BRN2 contribute to metastatic growth after dissemination of melanoma. Sci Rep 2017;7(1):10909. DOI:10.1038/s41598-017-11366-y; Mirzaei H., Gholamin S., Shahidsales S. et al. MicroRNAs as potential diagnostic and prognostic biomarkers in melanoma. Eur J Cancer 2016;53:25–32. DOI:10.1016/j.ejca.2015.10.009; Qi J., Wang W.W., Chen W. et al. Mechanism of miR-137 regulating migration and invasion of melanoma cells by targeting PIK3R3 gene. J Cell Biochem 2019;120(5):8393–400. DOI:10.1002/jcb.28124; Varrone F., Caputo E. The miRNAs role in melanoma and in its resistance to therapy. Int J Mol Sci 2020;21(3):878. DOI:10.3390/ijms21030878; Liu X., Li H., Wu G. et al. miR-182 promotes cell proliferation and invasion by inhibiting APC in melanoma. Int J Clin Exp Pathol 2018;11(4):1900–8.; Qian H., Yang C., Yang Y. MicroRNA-26a inhibits the growth and invasiveness of malignant melanoma and directly targets on MITF gene. Cell Death Discov 2017;3:17028. DOI:10.1038/cddiscovery.2017.28; Noguchi S., Kumazaki M., Mori T. et al. Analysis of microRNA-203 function in CREB/MITF/RAB27a pathway: comparison between canine and human melanoma cells. Vet Comp Oncol 2016;14(4):384–94. DOI:10.1111/vco.12118; Margue C., Philippidou D., Reinsbach S.E. et al. New target genes of MITF-induced microRNA-211 contribute to melanoma cell invasion. PLoS One 2013;8(9):e73473. DOI:10.1371/journal.pone.0073473; Bell R.E., Khaled M., Netanely D. et al. Transcription factor/ microRNA axis blocks melanoma invasion program by miR-211 targeting NUAK1. J Invest Dermatol 2014;134(2):441–51. DOI:10.1038/jid.2013.340.; Arts N., Cané S., Hennequart M. et al. microRNA-155, induced by interleukin-1β, represses the expression of microphthalmia associated transcription factor (MITF-M) in melanoma cells. PLoS One 2015;10(4):e0122517. DOI:10.1371/journal.pone.0122517; Wang Y., Ou Z., Sun Y. et al. Androgen receptor promotes melanoma metastasis via altering the miRNA-539-3p/USP13/MITF/AXLsignals.Oncogene 2017;36(12):1644–54. DOI:10.1038/onc.2016.330; Möller K., Sigurbjornsdottir S., Arnthorsson A.O. et al. MITF has a central role in regulating starvation-induced autophagy in melanoma. Sci Rep 2019;9(1):1055. DOI:10.1038/s41598-018-37522-6; Wang L.X., Wan C., Dong Z.B. et al. Integrative analysis of long noncoding RNA (lncRNA), microRNA (miRNA) and mRNA expression and construction of a competing endogenous RNA (ceRNA) Network in Metastatic Melanoma. Med Sci Monit 2019;25:2896–907. DOI:10.12659/MSM.913881; Wang X., Ren Z., Xu Y. et al. KCNQ1OT1 sponges miR-34a to promote malignant progression of malignant melanoma via upregulation of the STAT3/PD-L1 axis. Environ Toxicol 2023;38(2):368–80. DOI:10.1002/tox.23687; Tian T., Luo B., Shen G. et al. LncRNA MSC-AS1, as an oncogene in melanoma, promotes the proliferation and glutaminolysis by regulating the miR-330-3p/YAP1 axis. Anticancer Drugs 2022;33(10):1012–23. DOI:10.1097/CAD.0000000000001390; Chen G., Yan J. Dysregulation of SNHG16(lncRNA)-Hsa-Let-7b5p(miRNA)-TUBB4A (mRNA) pathway fuels progression of skin cutaneous melanoma. Curr Protein Pept Sci 2022; 23(11):791–809. DOI:10.2174/1389201023666220928120902; Li Y., Gao Y., Niu X. et al. LncRNA BASP1-AS1 interacts with YBX1 to regulate Notch transcription and drives the malignancy of melanoma. Cancer Sci 2021;112(11):4526–42. DOI:10.1111/cas.15140; https://umo.abvpress.ru/jour/article/view/646Test