يعرض 1 - 10 نتائج من 576 نتيجة بحث عن '"метформин"', وقت الاستعلام: 0.93s تنقيح النتائج
  1. 1
    دورية أكاديمية

    المصدر: Meditsinskiy sovet = Medical Council; № 23 (2023); 192-200 ; Медицинский Совет; № 23 (2023); 192-200 ; 2658-5790 ; 2079-701X

    وصف الملف: application/pdf

    العلاقة: https://www.med-sovet.pro/jour/article/view/8018/7110Test; Дедов ИИ, Шестакова МВ, Майоров АЮ. (ред.). Алгоритмы специализированной медицинской помощи больным сахарным диабетом. М.; 2023. 234 с. Режим доступа: https://webmed.irkutsk.ru/doc/pdf/algosd.pdfTest.; Дедов ИИ, Шестакова МВ, Галстян ГР. Распространенность сахарного диабета 2-го типа у взрослого населения России (исследование NATION). Сахарный диабет. 2016;19(2):104–112. https://doi.org/10.14341/DM2004116-17Test.; Stratton IM, Adler AI, Neil HA, Matthews DR, Manley SE, Cull CA et al. Association of glycaemia with macrovascular and microvascular complications of type 2 diabetes (UKPDS 35): prospective observational study. BMJ. 2000;321(7258):405–412. https://doi.org/10.1136/bmj.321.7258.405Test.; Effect of intensive blood-glucose control with metformin on complications in overweight patients with type 2 diabetes (UKPDS 34). UK Prospective Diabetes Study (UKPDS) Group. Lancet. 1998;352(9131):854–865. Available at: https://pubmed.ncbi.nlm.nih.gov/9742977Test.; Бирюкова ЕВ, Шинкин МВ, Соловьева ИВ. Современная практика самоконтроля гликемии: основы эффективного управления сахарным диабетом. Клинический разбор в общей медицине. 2023;4(2):60–67 https://doi.org/10.47407/kr2023.4.2.00205Test.; Светлова ОВ, Гурьева ИВ. Инновационные технологии в управлении сахарным диабетом: предупреждение гипогликемии. Медицинский совет. 2023;17(9):89–95. https://doi.org/10.21518/ms2023-167Test.; Светлова ОВ, Гурьева ИВ, Савченко ЛС. Современные возможности самоконтроля: Новая эра эффективного управления сахарным диабетом. Медицинский совет. 2019;(4):30–33. https://doi.org/10.21518/2079701X-2019-4-30-33Test.; Моргунова ТБ, Глинкина ИВ, Пешева ЕД, Зорина АА, Фадеев ВВ. Место метформина в современных клинических рекомендациях по лечению сахарного диабета 2-го типа. Медицинский совет. 2023;17(13):122–129. https://doi.org/10.21518/ms2023-211Test.; Моргунов ЛЮ. Сиофор: плейотропные эффекты в реальной клинической практике. Эффективная фармакотерапия. Эндокринология. 2014;(5):46. Режим доступа: https://umedp.ru/articles/siofor_pleyotropnye_effekty_v_realnoy_klinicheskoy_praktike.html?forgot_password=yes&%2Farticles%2Fsiofor_pleyotropnye_effekty_v_realnoy_klinicheskoy_praktike_htmlTest.; Sanchez-Rangel E, Inzucchi SE. Metformin: clinical use in type 2 diabetes. Diabetologia. 2017;60(9):1586–1593. https://doi.org/10.1007/s00125-017-336-xTest.; Introduction: Standards of Medical Care in Diabetes-2018. Diabetes Care. 2018;41(1):1–2. https://doi.org/10.2337/dc18-Sint01Test.; Bonnet F, Scheen A. Understanding and overcoming metformin gastrointestinal intolerance. Diabetes Obes Metab. 2017;19(4):473–481. https://doi.org/10.1111/dom.12854Test.; Bailey CJ, Day C. Traditional plant medicines as treatments for diabetes. Diabetes Care. 1989;12(8):553–564. https://doi.org/10.2337/diacare.12.8.553Test.; Sivitz WI, Phillips LS, Wexler DJ, Fortmann SP, Camp AW, Tiktin M. et al. Optimization of Metformin in the GRADE Cohort: Effect on Glycemia and Body Weight. Diabetes Care. 2020;43(5):940–947. https://doi.org/10.2337/dc19-1769Test.; Walker EA, Gonzalez JS, Tripputi MT, Dagogo-Jack S, Matulik MJ, Montez MG et al. Group. Long-term metformin adherence in the Diabetes Prevention Program Outcomes Study. BMJ Open Diabetes Res Care. 2020;8(1):e001537. https://doi.org/10.1136/bmjdrc-2020-001537Test.; Garber AJ, Handelsman Y, Grunberger G, Einhorn D, Abrahamson MJ, Barzilay JI et al. Consensus statement by the American association of clinical endocrinologists and American college of endocrinology on the comprehensive type 2 diabetes management algorithm – 2020. Endocr Pract. 2020;26(1):107–139. https://doi.org/10.4158/CS-2019-0472Test.; Patel-Sanchez N, Perito E, Tsai P, Raymond-Flesch M, Lodish M, Sarkar M. Prevalence of nonalcoholic fatty liver disease increased with type 2 diabetes mellitus in overweight/obese youth with polycystic ovary syndrome. J Pediatr Endocrinol Metab. 2023;36(5):441–446. https://doi.org/10.1515/jpem-2022-0527Test.; Stedman M, Rea R, Duff CJ, Livingston M, McLoughlin K, Wong L et al. People with Type Diabetes Mellitus (T1DM) self-reported views on their own condition management reveal links to potentially improved outcomes and potential areas for service improvement. Diabetes Res Clin Pract. 2020;170:108479. https://doi.org/10.1016/j.diabres.2020.108479Test.; Дедов ИИ, Шестакова МВ, Викулова ОК, Железнякова АВ, Исаков МА. Эпидемиологические характеристики сахарного диабета в Российской Федерации: клинико-статистический анализ по данным регистра сахарного диабета на 01.01.2021. Сахарный диабет. 2021;24(3):204–221. https://doi.org/10.14341/DM12759Test.; Kautzky-Willer A, Michael Leutner M, Jürgen Harreiter J. Sex differences in type 2 diabetes. Diabetologia. 2023;66(6):986–1002. https://doi.org/10.1007/s00125-023-05891-xTest.; Hong SH, Sung YA, Hong YS, Song DK, Jung H, Jeong K et al. Non-alcoholic fatty liver disease is associated with hyperandrogenism in women with polycystic ovary syndrome. Sci Rep. 2023;13(1):13397. https://doi.org/10.1038/s41598-023-39428-4Test.; Abu-Freha N, Cohen B, Weissmann S, Hizkiya R, Abu-Hammad R, Gadeer Taha G, Gordon M. Comorbidities and Outcomes among Females with Non-Alcoholic Fatty Liver Disease Compared to Males. Biomedicines. 2022;10(11):2908. https://doi.org/10.3390/biomedicines10112908Test.; Chang SH, Wu LS, Chiou MJ, Liu JR, Yu KH, Kuo CF et al. Association of metformin with lower atrial fibrillation risk among patients with type 2 diabetes mellitus: a population-based dynamic cohort and in vitro studies. Cardiovasc Diabetol. 2014;13:123. https://doi.org/10.1186/s12933-014-0123-xTest.; DiStefano JK. The Role of Choline, Soy Isoflavones, and Probiotics as Adjuvant Treatments in the Prevention and Management of NAFLD in Postmenopausal Women. Nutrients. 2023;15(12):2670. https://doi.org/10.3390/nu15122670Test.; Соколова АВ, Климова АВ, Драгунов ДО, Арутюнов ГП. Оценка влияния терапии метформином на величину мышечной массы и мышечной силы у больных с и без сахарного диабета. Метаанализ 15 исследований. Российский кардиологический журнал. 2021;26(3):4331. https://doi.org/10.15829/1560-4071-2021-4331Test.; Григорьева ИИ, Раскина ТА, Летаева МВ, Малышенко ОС, Аверкиева ЮВ, Масенко ВЛ, Коков АН. Саркопения: особенности патогенеза и диагностики. Фундаментальная и клиническая медицина. 2019;4(4):105–116. https://doi.org/10.23946/2500-0764-2019-4-4-105-116Test.; Rodriguez Moctezuma JR, Robles López G, López Carmona JM, Gutiérrez- Rosas MJ. Effects of metformin on the body composition in subjects with risk factors for type 2 diabetes. Diabetes Obes Metab. 2005;7(2):189–192. https://doi.org/10.1111/j.1463-1326.2004.00385.xTest.; Chen LK, Woo J, Assantachai P, Auyeung TW, Chou MY, Iijima K et al. Asian Working Group for Sarcopenia: 2019 Consensus Update on Sarcopenia Diagnosis and Treatment. J Am Med Dir Assoc. 2020;21(3):300–307. https://doi.org/10.1016/j.jamda.2019.12.012Test.; Matthews DR, Paldánius PM, Proot P, Chiang Y, Stumvoll M, Del Prato S. Glycaemic durability of an early combination therapy with vildagliptin and metformin versus sequential metformin monotherapy in newly diagnosed type 2 diabetes (VERIFY): a 5-year, multicentre, randomised, double-blind trial. Lancet. 2019;394(10208):1519–1529. https://doi.org/10.1016/s0140-6736Test(19)32131-2.; Wee AKH, Sultana R. Determinants of vitamin B12 deficiency in patients with type-2 diabetes mellitus – A primary-care retrospective cohort study. BMC Prim Care. 2023;24(1):102. https://doi.org/10.1186/s12875-023-02057-xTest.; Schwartz S, Fonseca V, Berner B, Cramer M, Chiang YK, Lewin A. Efficacy, tolerability, and safety of a novel once-daily extended-release metformin in patients with type 2 diabetes. Diabetes Care. 2006;29(4):759–764. https://doi.org/10.2337/diacare.29.04.06.dc05-1967Test.; Rathis TS, Ranganathan RS, Solai Raja M, Srivastav PSS. Prevalence of Vitamin B12 Deficiency in Type 2 Diabetes Mellitus Patients on Metformin Therapy. Cureus. 2023;15(4):e37466. https://doi.org/10.7759/Cureus.37466Test.; Kim J, Ahn CW, Fang S, Lee HS, Park JS. Association between metformin dose and vitamin B12 deficiency in patients with type 2 diabetes. Medicine (Baltimore). 2019;98(46):e17918. https://doi.org/10.1097MD.0000000000017918Test.; https://www.med-sovet.pro/jour/article/view/8018Test

  2. 2
    دورية أكاديمية

    المساهمون: Работа выполнена при поддержке Российского научного фонда, грант № 22-15-00048. Исследование механизмов формирования артериальной гипертензии при МетС выполнено в рамках государственного задания 122020300042-4. В работе было использовано оборудование Центра коллективного пользования «Медицинская геномика» ФГБНУ «Томский национальный исследовательский медицинский центр Российской академии наук».

    المصدر: Acta Biomedica Scientifica; Том 9, № 1 (2024); 222-232 ; 2587-9596 ; 2541-9420

    وصف الملف: application/pdf

    العلاقة: https://www.actabiomedica.ru/jour/article/view/4616/2749Test; Maslov LN, Naryzhnaia NV, Tsibulnikov SY, Kolar F, Zhang Y, Wang H, et al. Role of endogenous opioid peptides in the infarct size-limiting effect of adaptation to chronic continuous hypoxia. Life Sci. 2013; 93(9-11): 373-379. doi:10.1016/j.lfs.2013.07.018; Mukhomedzyanov AV, Sirotina MA, Logvinov SV, Naryzhnaya NV. Remote postconditioning of myocardium: Mechanisms, efficacy in metabolic syndrome in experimental and clinical studies (review). Siberian Journal of Clinical and Experimental Medicine 2023; 38(1): 37–45. doi:10.29001/2073-8552-2023-38-1-37-45; Zhou JJ, Wei Y, Zhang L, Zhang J, Guo LY, Gao C, et al. Chronic intermittent hypobaric hypoxia prevents cardiac dysfunction through enhancing antioxidation in fructose-fed rats. Can J Physiol Pharmacol. 2013; 91(5): 332-337. doi:10.1139/cjpp-2012-0059; Naryzhnaya NV, Derkachev IA, Kurbatov BK, Sirotina MA, Kilin M, Maslov LN. Decrease in infarct-limiting effect of the chronic normobaric hypoxia in rats with diet induced metabolic syndrome is associated with disturbance of carbohydrate and lipid metabolism. Bulletin of Experimental Biology and Medicine. 2022; 174(12): 692-697. doi:10.47056/0365-9615-2022-174-12-692-697; Nedvedova I, Kolar D, Neckar J, Kalous M, Pravenec M, Šilhavý J, et al. Cardioprotective regimen of adaptation to chronic hypoxia diversely alters myocardial gene expression in SHR and SHR-mtBN conplastic rat strains. Front Endocrinol. 2019; 9: 809. doi:10.3389/fendo.2018.00809; Birulina JG, Ivanov VV, Buyko EE, Bykov VV, Dzyuman AN, Nosarev АV, et al. Morphological changes in the heart and aorta of rats with diet-induced metabolic syndrome. Bulletin of Siberian Medicine. 2022; 21(3): 13-21. doi:10.20538/1682-0363-2022-3-13-21; Donner D, Headrick JP, Peart JN, Du Toit EF. Obesity improves myocardial ischaemic tolerance and RISK signalling in insulin-insensitive rats. Dis Model Mech. 2013; 6: 457-466. doi:10.1242/dmm.010959; Penna C, Andreadou I, Aragno M, Beauloye C, Bertrand L, Lazou A, et al. Effect of hyperglycaemia and diabetes on acute myocardial ischaemia-reperfusion injury and cardioprotection by ischaemic conditioning protocols. Br J Pharmacol. 2020; 177(23): 5312-5335. doi:10.1111/bph.14993; Okatan EN, Olgar Y, Tuncay E, Turan B. Azoramide improves mitochondrial dysfunction in palmitate-induced insulin resistant H9c2 cells. Mol Cell Biochem. 2019; 461(1-2): 65-72. doi:10.1007/s11010-019-03590-z; Mansor LS, Mehta K, Aksentijevic D, Carr CA, Lund T, Cole MA, et al. Increased oxidative metabolism following hypoxia in the type 2 diabetic heart, despite normal hypoxia signalling and metabolic adaptation. J Physiol. 2016; 594(2): 307-320. doi:10.1113/JP271242; Zuo A, Zhao X, Li T, Li J, Lei S, Chen J, et al. CTRP9 knockout exaggerates lipotoxicity in cardiac myocytes and high‐fat diet‐induced cardiac hypertrophy through inhibiting the LKB1/AMPK pathway. J Cell Mol Med. 2020; 24(4): 2635-2647. doi:10.1111/jcmm.14982; Zhang H, Liu B, Li T, Zhu Y, Luo G, Jiang Y, et al. AMPK activation serves a critical role in mitochondria quality control via modulating mitophagy in the heart under chronic hypoxia. Int J Mol Med. 2018; 41(1): 69-76. doi:10.3892/ijmm.2017.3213; Sumneang N, Oo TT, Singhanat K, Maneechote C, Arunsak B, Nawara W, et al. Inhibition of myeloid differentiation factor 2 attenuates cardiometabolic impairments via reducing cardiac mitochondrial dysfunction, inflammation, apoptosis and ferroptosis in prediabetic rats. Biochim Biophys Acta Mol Basis Dis. 2022; 1868(2): 166301. doi:10.1016/j.bbadis.2021.166301; Kravchuk E, Grineva E, Bairamov A, Galagudza M, Vlasov T. The effect of metformin on the myocardial tolerance to ischemiareperfusion injury in the rat model of diabetes mellitus type II. Exp Diabetes Res. 2011; 2011: 10-15. doi:10.1155/2011/907496; Ren C, Yi W, Jiang B, Gao E, Liang J, Zhang B, et al. Diminished adipoR1/APPL1 interaction mediates reduced cardioprotective actions of adiponectin against myocardial ischemia/reperfusion injury in type-2 diabetic mice. Stem Cells Int. 2023; 2023: 1-8. doi:10.1155/2023/7441367; Van Berendoncks AM, Stensvold D, Garnier A, Fortin D, Sente T, Vrints CJ, et al. Disturbed adiponectin – AMPK system in skeletal muscle of patients with metabolic syndrome. Eur J Prevent Cardiol. 2015; 22(2): 203-205. doi:10.1177/2047487313508034; Lochner A, Genade S, Genis A, Marais E, Salie R. Long-chain free fatty acids inhibit ischaemic preconditioning of the isolated rat heart. Mol Cell Biochem. 2020; 473(1-2): 111-132. doi:10.1007/s11010-020-03812-9; Semenza GL. Angiogenesis ischemic and neoplastic disorders. Ann Rev Med. 2003; 54(1): 17-28. doi:10.1146/annurev.med.54.101601.152418; Liu T, Wu Z, Liu J, Lv Y, Li W. Metabolic syndrome and its components reduce coronary collateralization in chronic total occlusion: An observational study. Cardiovasc Diabetol. 2021; 20(1): 104. doi:10.1186/s12933-021-01297-4; Zeng Y, Liu H, Kang K, Wang Z, Hui G, Zhang X, et al. Hypoxia inducible factor-1 mediates expression of miR-322: Potential role in proliferation and migration of pulmonary arterial smooth muscle cells. Sci Rep. 2015; 5(1): 12098. doi:10.1038/srep12098; Dong W, Dong C, Zhu J, Zheng Y, Weng J, Liu L, et al. HIF‐1α‐ induced upregulated miR‐322 forms a feedback loop by targeting Smurf2 and Smad7 to activate Smad3/β‐catenin/HIF‐1α, thereby improving myocardial ischemia‐reperfusion injury. Cell Biol Int. 2023; 47(5): 894-906. doi:10.1002/cbin.11954; Marchand A, Atassi F, Mougenot N, Clergue M, Codoni V, Berthuin J, et al. miR-322 regulates insulin signaling pathway and protects against metabolic syndrome-induced cardiac dysfunction in mice. Biochim Biophys Acta (BBA) Mol Basis Dis. 2016; 1862(4): 611-621. doi:10.1016/j.bbadis.2016.01.010; Lefebvre P, Fruchart J, Staels B, Lefebvre P, Chinetti G, Fruchart J, et al. Sorting out the roles of PPAR a in energy metabolism and vascular homeostasis. J Clin Invest 2006; 116(3): 571-580. doi:10.1172/JCI27989.symptoms; Barger PM, Kelly DP. PPAR signaling in the control of cardiac energy metabolism. Trends Cardiovasc Med. 2000; 10(6): 238- 245. doi:10.1016/S1050-1738(00)00077-3; Sánchez-Aguilar M, Ibarra-Lara L, Cano-Martínez A, Soria-Castro E, Castrejón-Téllez V, Pavón N, et al. PPAR alpha activation by clofibrate alleviates ischemia/reperfusion injury in metabolic syndrome rats by decreasing cardiac inflammation and remodeling and by regulating the atrial natriuretic peptide compensatory response. Int J Mol Sci. 2023; 24(6): 5321. doi:10.3390/ijms24065321; Rajlic S, Surmann L, Zimmermann P, Weisheit CK, Bindila L, Treede H, et al. Fatty acid amide hydrolase deficiency is associated with deleterious cardiac effects after myocardial ischemia and reperfusion in mice. Int J Mol Sci. 2022; 23(20): 12690. doi:10.3390/ijms232012690; Yan J, Song K, Bai Z, Ge R-L. WY14643 improves left ventricular myocardial mitochondrial and systolic functions in obese rats under chronic persistent hypoxia via the PPARα pathway. Life Sci. 2021; 266: 118888. doi:10.1016/j.lfs.2020.118888; https://www.actabiomedica.ru/jour/article/view/4616Test

  3. 3
    دورية أكاديمية
  4. 4
  5. 5
    دورية أكاديمية

    المصدر: Meditsinskiy sovet = Medical Council; № 13 (2023); 122-129 ; Медицинский Совет; № 13 (2023); 122-129 ; 2658-5790 ; 2079-701X

    وصف الملف: application/pdf

    العلاقة: https://www.med-sovet.pro/jour/article/view/7720/6855Test; Дедов И.И., Шестакова М.В., Майоров А.Ю. (ред.). Алгоритмы специализированной медицинской помощи больным сахарным диабетом. 11-й выпуск. М.; 2023. 234 с. Режим доступа: https://webmed.irkutsk.ru/doc/pdf/algosd.pdfTest.; Montvida O., Shaw J., Atherton J.J., Stringer F., Paul S.K. Long-term Trends in Antidiabetes Drug Usage in the U.S.: Real-world Evidence in Patients Newly Diagnosed With Type 2 Diabetes. Diabetes Care. 2018;41(1):69–78. https://doi.org/10.2337/dc17-1414Test.; Maruthur N.M., Tseng E., Hutfless S., Wilson L.M., Suarez-Cuervo C., Berger Z. et al. Diabetes Medications as Monotherapy or Metformin-Based Combination Therapy for Type 2 Diabetes: A Systematic Review and Meta-analysis. Ann Intern Med. 2016;164(11):740–751. https://doi.org/10.7326/M15-2650Test.; Fang M., Wang D., Coresh J., Selvin E. Trends in Diabetes Treatment and Control in U.S. Adults, 1999–2018. N Engl J Med. 2021;384(23):2219–2228. https://doi.org/10.1056/NEJMsa2032271Test.; Hadden D.R. Goat’s rue – French lilac – Italian fitch – Spanish sainfoin: gallega officinalis and metformin: the Edinburgh connection. J R Coll Physicians Edinb. 2005;35(3):258–260. Available at: https://pubmed.ncbi.nlm.nih.gov/16402501Test.; Keeler R.F., Baker D.C., Evans J.O. Individual animal susceptibility and its relationship to induced adaptation or tolerance in sheep to Galega officinalis L. Vet Hum Toxicol. 1988;30(5):420–423. Available at: https://pubmed.ncbi.nlm.nih.gov/3188360Test.; Bailey C.J., Day C. Traditional plant medicines as treatments for diabetes. Diabetes Care. 1989;12(8):553–564. https://doi.org/10.2337/diacare.12.8.553Test.; Mckendry J.B., Kuwayti K., Rado P.P. Clinical experience with DBI (phenformin) in the management of diabetes. Can Med Assoc J. 1959;80(10):773–778. Available at: https://pubmed.ncbi.nlm.nih.gov/13652024Test.; Bailey C.J. Metformin: historical overview. Diabetologia. 2017;60(9):1566–1576. https://doi.org/10.1007/s00125-017-4318-zTest.; IDF Clinical Guidelines Task Force. Global Guideline for Type 2 Diabetes: recommendations for standard, comprehensive, and minimal care. Diabet Med. 2006;23(6):579–593. https://doi.org/10.1111/j.1464-5491.2006.01918.xTest.; Смирнова О.М. Место метформина в современном лечении и профилактике сахарного диабета 2 типа. Сахарный диабет. 2010;13(3):83–90. https://doi.org/10.14341/2072-0351-5494Test.; American Diabetes Association. Standards of Medical Care in Diabetes – 2021. Diabetes Care. 2021;44(Suppl. 1):111–124. https://doi.org/10.2337/dc21-S009Test.; Garber A.J., Handelsman Y., Grunberger G., Einhorn D., Abrahamson M.J., Barzilay J.I. et al. Consensus statement by the American association of clinical endocrinologists and American college of endocrinology on the comprehensive type 2 diabetes management algorithm – 2020. Endocr Pract. 2020;26(1):107–139. https://doi.org/10.4158/CS-2019-0472Test.; Cosentino F., Grant P.J., Aboyans V., Bailey C.J., Ceriello A., Delgado V. et al. 2019 ESC Guidelines on diabetes, pre-diabetes, and cardiovascular diseases developed in collaboration with the EASD. Eur Heart J. 2020;41(2):255–323. https://doi.org/10.1093/eurheartj/ehz486Test.; Blonde L., Umpierrez G.E., Reddy S.S., McGill J.B., Berga S.L., Bush M. et al. American Association of Clinical Endocrinology Clinical Practice Guideline: Developing a Diabetes Mellitus Comprehensive Care Plan – 2022 Update. Endocr Pract. 2022;28(10):923–1049. https://doi.org/10.1016/j.eprac.2022.08.002Test.; Sanchez-Rangel E., Inzucchi S.E. Metformin: clinical use in type 2 diabetes. Diabetologia. 2017;60(9):1586–1593. https://doi.org/10.1007/s00125-017-4336-xTest.; Hostalek U., Gwilt M., Hildemann S. Therapeutic Use of Metformin in Prediabetes and Diabetes Prevention. Drugs. 2015;75(10):1071–1094. https://doi.org/10.1007/s40265-015-0416-8Test.; Matthews D.R., Paldánius P.M., Proot P., Chiang Y., Stumvoll M., Del Prato S.; VERIFY study group. Glycaemic durability of an early combination therapy with vildagliptin and metformin versus sequential metformin monotherapy in newly diagnosed type 2 diabetes (VERIFY): a 5-year, multicentre, randomised, double-blind trial. Lancet. 2019;394(10208):1519–1529. https://doi.org/10.1016/S0140-6736Test(19)32131-2.; Sivitz W.I., Phillips L.S., Wexler D.J., Fortmann S.P., Camp A.W., Tiktin M. et al. Optimization of Metformin in the GRADE Cohort: Effect on Glycemia and Body Weight. Diabetes Care. 2020;43(5):940–947. https://doi.org/10.2337/dc19-1769Test.; Garber A.J., Duncan T.G., Goodman A.M., Mills D.J., Rohlf J.L. Efficacy of metformin in type II diabetes: results of a double-blind, placebo-controlled, dose-response trial. Am J Med. 1997;103(6):491–497. https://doi.org/10.1016/s0002-9343Test(97)00254-4.; Mahabaleshwarkar R., DeSantis A. Metformin dosage patterns in type 2 diabetes patients in a real-world setting in the United States. Diabetes Res Clin Pract. 2021;172:108531. https://doi.org/10.1016/j.diabres.2020.108531Test.; Дедов И.И., Шестакова М.В., Галстян Г.Р. Распространенность сахарного диабета 2 типа у взрослого населения России (исследование NATION). Сахарный диабет. 2016;19(2):104–112. https://doi.org/10.14341/DM2004116-17Test.; Ali M.K., Bullard K.M., Saydah S., Imperatore G., Gregg E.W. Cardiovascular and renal burdens of prediabetes in the USA: analysis of data from serial cross-sectional surveys, 1988–2014. Lancet Diabetes Endocrinol. 2018;6(5):392–403. https://doi.org/10.1016/S2213-8587Test(18)30027-5.; Vistisen D., Witte D.R., Brunner E.J., Kivimäki M., Tabák A., Jørgensen M.E., Færch K. Risk of Cardiovascular Disease and Death in Individuals With Prediabetes Defined by Different Criteria: The Whitehall II Study. Diabetes Care. 2018;41(4):899–906. https://doi.org/10.2337/dc17-2530Test.; Diabetes Prevention Program Research Group. Long-term safety, tolerability, and weight loss associated with metformin in the Diabetes Prevention Program Outcomes Study. Diabetes Care. 2012;35(4):731–737. https://doi.org/10.2337/dc11-1299Test.; Diabetes Prevention Program Research Group. Long-term Effects of Metformin on Diabetes Prevention: Identification of Subgroups That Benefited Most in the Diabetes Prevention Program and Diabetes Prevention Program Outcomes Study. Diabetes Care. 2019;42(4):601–608. https://doi.org/10.2337/dc18-1970Test.; Walker E.A., Gonzalez J.S., Tripputi M.T., Dagogo-Jack S., Matulik M.J., Montez M.G. et al. Group. Long-term metformin adherence in the Diabetes Prevention Program Outcomes Study. BMJ Open Diabetes Res Care. 2020;8(1):e001537. https://doi.org/10.1136/bmjdrc-2020-001537Test.; Hughes A., Khan T., Kirley K., Moin T., Mainous A., Sachdev N. et al. Metformin Prescription Rates for Patients with Prediabetes. J Am Board Fam Med. 2022;35(4):821–826. https://doi.org/10.3122/jabfm.2022.04.210485Test.; McCreight L.J., Bailey C.J., Pearson E.R. Metformin and the gastrointestinal tract. Diabetologia. 2016;59(3):426–435. https://doi.org/10.1007/s00125015-3844-9Test.; Bonnet F., Scheen A. Understanding and overcoming metformin gastrointestinal intolerance. Diabetes Obes Metab. 2017;19(4):473–481. https://doi.org/10.1111/dom.12854Test.; Wee A.K.H., Sultana R. Determinants of vitamin B12 deficiency in patients with type-2 diabetes mellitus – A primary-care retrospective cohort study. BMC Prim Care. 2023;24(1):102. https://doi.org/10.1186/s12875-023-02057-xTest.; Rathis T.S., Ranganathan R.S., Solai Raja M., Srivastav P.S.S. Prevalence of Vitamin B12 Deficiency in Type 2 Diabetes Mellitus Patients on Metformin Therapy. Cureus. 2023;15(4):e37466. https://doi.org/10.7759/cureus.37466Test.; Kim J., Ahn C.W., Fang S., Lee H.S., Park J.S. Association between metformin dose and vitamin B12 deficiency in patients with type 2 diabetes. Medicine (Baltimore). 2019;98(46):e17918. https://doi.org/10.1097/MD.0000000000017918Test.; Aroda V.R., Edelstein S.L., Goldberg R.B., Knowler W.C., Marcovina S.M., Orchard T.J. et al. Long-term Metformin Use and Vitamin B12 Deficiency in the Diabetes Prevention Program Outcomes Study. J Clin Endocrinol Metab. 2016;101(4):1754–1761. https://doi.org/10.1210/jc.2015-3754Test.; Liu L., Simon B., Shi J., Mallhi A.K., Eisen H.J. Impact of diabetes mellitus on risk of cardiovascular disease and all-cause mortality: Evidence on health outcomes and antidiabetic treatment in United States adults. World J Diabetes. 2016;7(18):449–461. https://doi.org/10.4239/wjd.v7.i18.449Test.; Khunti K., Millar-Jones D. Clinical inertia to insulin initiation and intensification in the UK: A focused literature review. Prim Care Diabetes. 2017;11(1):3–12. https://doi.org/10.1016/j.pcd.2016.09.003Test.; Effect of intensive blood-glucose control with metformin on complications in overweight patients with type 2 diabetes (UKPDS 34). UK Prospective Diabetes Study (UKPDS) Group. Lancet. 1998;352(9131):854865. Available at: https://pubmed.ncbi.nlm.nih.gov/9742977Test.; Hong J., Zhang Y., Lai S., Lv A., Su Q., Dong Y. et al. Effects of metformin versus glipizide on cardiovascular outcomes in patients with type 2 diabetes and coronary artery disease. Diabetes Care. 2013;36(5):1304–1311. https://doi.org/10.2337/dc12-0719Test.; Selvin E., Bolen S., Yeh H.C., Wiley C., Wilson L.M., Marinopoulos S.S. et al. Cardiovascular outcomes in trials of oral diabetes medications: a systematic review. Arch Intern Med. 2008;168(19):2070–2080. https://doi.org/10.1001/archinte.168.19.2070Test.; Han Y., Xie H., Liu Y., Gao P., Yang X., Shen Z. Effect of metformin on allcause and cardiovascular mortality in patients with coronary artery diseases: a systematic review and an updated meta-analysis. Cardiovasc Diabetol. 2019;18(1):96. https://doi.org/10.1186/s12933-019-0900-7Test.; Kim Y., Kim H.S., Lee J.W., Kim Y.S., You H.S., Bae Y.J. et al. Metformin use in el der ly population with diabetes reduced the risk of dementia in a dose-dependent manner, based on the Korean NHIS-HEALS cohort. Diabetes Res Clin Pract. 2020;170:108496. https://doi.org/10.1016/j.diabres.2020.108496Test.; Zhang Q.Q., Li W.S., Liu Z., Zhang H.L., Ba Y.G., Zhang R.X. Metformin therapy and cognitive dysfunction in patients with type 2 diabetes: A meta-analysis and systematic review. Medicine (Baltimore). 2020;99(10):e19378. https://doi.org/10.1097/MD.0000000000019378Test.; https://www.med-sovet.pro/jour/article/view/7720Test

  6. 6
    دورية أكاديمية

    المصدر: Meditsinskiy sovet = Medical Council; № 23 (2022); 199-204 ; Медицинский Совет; № 23 (2022); 199-204 ; 2658-5790 ; 2079-701X

    وصف الملف: application/pdf

    العلاقة: https://www.med-sovet.pro/jour/article/view/7327/6549Test; Дедов И.И., Шестакова М.В., Викулова О.К., Железнякова А.В., Исаков М.А. Эпидемиологические характеристики сахарного диабета в Российской Федерации: клинико-статистический анализ по данным регистра сахарного диабета на 01.01.2021. Сахарный диабет. 2021;24(3):204–221. https://doi.org/10.14341/DM12759Test.; Дедов И.И., Шестакова М.В., Майоров А.Ю. (ред.). Алгоритмы специализированной медицинской помощи больным сахарным диабетом. 9-й выпуск. Сахарный диабет. 2019;22(Suppl. 1):1–144. https://doi.org/10.14341/DM221S1Test.; Викулова О.К., Железнякова А.В., Исаков М.А., Серков А.А., Шестакова М.В., Дедов И.И. Динамический анализ состояния углеводного обмена в субъектах Российской Федерации по данным мобильного медицинского центра (Диамодуль) и регистра сахарного диабета Российской Федерации. Сахарный диабет. 2020;23(2):104–112. https://doi.org/10.14341/DM12327Test.; Дедов И.И., Шестакова М.В., Майоров А.Ю., Шамхалова М.Ш., Сухарева О.Ю., Галстян Г.Р. и др. Сахарный диабет 2 типа у взрослых. Клинические рекомендации. Сахарный диабет. 2020;23(2 Suppl.):4–102. https://doi.org/10.14341/DM12507Test.; Shu A.D. Adherence to osteoporosis medication after patient and physician brief education: post hoc analysis of a randomized controller trial. Am J Manag Care. 2009;15(7):417–424. Available at: https://pubmed.ncbi.nlm.nih.gov/19589009Test.; Morris A.D. Considerations in assessing effectiveness and costs of diabetes care: lessons from DARTS. Diabetes Metab Res Rev. 2002;8(3):32–35. https://doi.org/10.1002/dmrr.295Test.; Rojas L.B., Gomes M.B. Metformin: an old but still the best treatment for type 2 diabetes. Diabetol Metab Syndr. 2013;5(1):6. https://doi.org/10.1186/1758-5996-5-6Test.; Markowicz-Piasecka M., Huttunen K.M., Mateusiak L., Mikiciuk-Olasik E., Sikora J. Is Metformin a Perfect Drug? Updates in Pharmacokinetics and Pharmacodynamics. Curr Pharm Des. 2017;23(17):2532–2550. https://doi.org/10.2174/1381612822666161201152941Test.; Rena G., Hardie G.G., Pearson E.A. The mechanisms of action of metformin. Diabetologia. 2017;60(9):1577–1585. https://doi.org/10.1007/s00125-017-4342-zTest.; Вербовой А.Ф., Вербовая Н.И., Ломонова Т.В., Долгих Ю.А. Метформин – время расширять показания? РМЖ. 2021;(2):37–41. Режим доступа: https://www.rmj.ru/articles/endokrinologiya/Metformin_vremya_rasshiryaty_pokazaniya/#ixzz7HyWgr6AVTest.; Древаль А.В., Мисникова И.В., Триголосова И.В., Тишенина Р.С. Влияние метформина на углеводный и липидный обмен у лиц с ранними нарушениями углеводного обмена. Сахарный диабет. 2010;13(2):63–67. https://doi.org/10.14341/2072-0351-5676Test.; Effect of intensive blood-glucose control with metformin on complication in overweight patients with type 2 diabetes (UKPDS 34). UK Prospective Diabetes Study (UKPDS) Group. Lancet. 1998;352(9131):854–865. Available at: https://pubmed.ncbi.nlm.nih.gov/9742977Test.; Scarpello J.H. Improving survival with metformin: the evidence base today. Diabetes Metab. 2003;29(4):636–643. https://doi.org/10.1016/s1262-3636Test(03)72786-4.; McFarlane S.I., Banerij M., Sowers J.R. Insulin resistance and cardiovascular disease. J Clin Endocrinol Metab. 2001;86:713–718. https://doi.org/10.1210/jcem.86.2.7202Test.; Davidson M.B., Peters A.L. An overview of metformin in the treatment of type 2 diabetes mellitus. Am J Med. 1997;102(1):99–110. https://doi.org/10.1016/s0002-9343Test(96)00353-1.; Phung O.J., Sobieraj D.M., Engel S.S., Rajpathak S.N. Early combination therapy for the treatment of type 2 diabetes mellitus: systematic review and metaanalysis. Diabetes Obes Metab. 2014;16(5):410–417. https://doi.org/10.1111/dom.12233Test.; Zhang Y., McCoy R.G., Mason J.E., Smith S.A., Shah N.D., Denton B.T. et al. Second-line agents for glycemic control for type 2 diabetes: are newer agents better? Diabetes Care. 2014;37(5):1338–1345. https://doi.org/10.2337/dc13-1901Test.; Blonde L., Wogen J., Kreilick C., Seymour A.A. Greater reductions in A1C in type 2 diabetic patients new to therapy with glyburide-metformin tablets as compared to glyburide co-administered with metformin. Diabetes Obes Metab. 2003;5(6):424–431. https://doi.org/10.1046/j.1463-1326.2003.00297.xTest.; Duckworth W., Marcelli M., Padden M. et al. Improvements in glycemic control in type 2 diabetes patients switched from sulfonylurea coadministered with metformin to glyburide-metformin tablets. J Manag Care Pharm. 2003;9(3):256–262. https://doi.org/10.18553/jmcp.2003.9.3.256Test.; Lim P.C., Lim S.L., Oiyammaal C. Glycaemic control and cost analysis when changing from gliclazide co-administered with metformin to pre-combined glibenclamide-metformin tablets in type 2 diabetes mellitus. Med J Malaysia. 2012;67(1):21–24. Available at: https://pubmed.ncbi.nlm.nih.gov/22582544Test.; Cheong C., Barner J.C., Lawson K.A., Johnsrud M.T. Patient adherence and reimbursement amount for antidiabetic fixed dose combination products compared with dual therapy among texas medicaid recipients. Clin Ther. 2008;30(10):1893–1907. https://doi.org/10.1016/j.clinthera.2008.10.003Test.; Charpentier G., Fleury F., Kabir M., Vaur L., Halimi S. Improved glycaemic control by addition of glimepiride to metformin monotherapy in type 2 diabetic patients. Diabetic Medicine. 2001;18(10):828–834. https://doi.org/10.1046/j.1464-5491.2001.00582.xTest.; Müller G., Hartz D., Pünter J., Okonomopulos R., Kramer W. Differential interaction of glimepiride and glibenclamide with the beta-cell sulfonylurea receptor. I. Binding characteristics. Biochimica et Biophysica Acta. 1994;1191(2):267–277. https://doi.org/10.1016/0005-2736Test(94)90177-5.; Shukla U.A., Chi E.M., Lehr K.H. Glimepiride pharmacokinetics in obese versus non-obese diabetic patients. Annals of Pharmacotherapy. 2004;38(1):30–35. https://doi.org/10.1345/aph.1C397Test.; Matsuki M., Matsuda M., Kohara K., Shimoda M., Kanda Y., Tawaramoto K. et al. Pharmacokinetics and pharmacodynamics of glimepiride in type 2 diabetic patients: compared effects of onceversus twice-daily dosing. Endocrine Journal. 2007;54(4):571–576. https://doi.org/10.1507/endocrj.k06-052Test.; Rosenkranz B., Profozic V., Metelko Z., Mrzljak V., Lange C., Malerczyk V. Pharmacokinetics and safety of glimepiride at clinically effective doses in diabetic patients with renal impairment. Diabetologia. 1996;39(12):1617–1624. https://doi.org/10.1007/s001250050624Test.; Pareek A., Chandurkar N.B., Salkar H.R., Borkar M.S., Tiwari D. Evaluation of efficacy and tolerability of glimepiride and metformin combination: a multicentric study in patients with type-2 diabetes mellitus, uncontrolled on monotherapy with sulfonylurea or metformin. Am J Ther. 2013;20(1):41–47. https://doi.org/10.1097/MJT.0b013e3181ff7c63Test.; González-Ortiz M., Guerrero-Romero J.F., Violante-Ortiz R., Wacher-Rodarte N., Martínez-Abundis E., Aguilar-Salinas C. et al. Efficacy of glimepiride/metformin combination versus glibenclamide/metformin in patients with uncontrolled type 2 diabetes mellitus. J Diabetes Complications. 2009;23(6):376–379. https://doi.org/10.1016/j.jdiacomp.2008.09.002Test.; Мкртумян А.М. Результаты наблюдательного исследования ESCALATION: особенности применения глимепирида у пациентов с сахарным диабетом 2-го типа, не достигших целевых показателей углеводного обмена на фоне терапии ингибитором ДПП-4 в комбинации с метформином. Проблемы эндокринологии. 2017;63(1):30–38. https://doi.org/10.14341/probl201763131-38Test.; Perkovic V., Heerspink H.L., Chalmers J., Woodward M., Jun M., Li Q. et al; ADVANCE Collaborative Group. Intensive glucose control improves kidney outcomes in patients with type 2 diabetes. Kidney Int. 2013;83(3):517–523. https://doi.org/10.1038/ki.2012.401Test.; ADVANCE Collaborative Group, Patel A., MacMahon S., Chalmers J., Neal B., Billot L., Woodward M. et al. Intensive blood glucose control and vascular outcomes in patients with type 2 diabetes. N Engl J Med. 2008;358(24):2560–2572. https://doi.org/10.1056/NEJMoa0802987Test.; Oellgaard J., Gæde P., Rossing P., Persson F., Parving H.H., Pedersen O. Intensified multifactorial intervention in type 2 diabetics with microalbuminuria leads to long-term renal benefits. Kidney Int. 2017;91(9):982–988. https://doi.org/10.1016/j.kint.2016.11.023Test.; Katakami N., Yamasaki Y., Hayashi-Okano R., Ohtoshi K., Kaneto H., Matsuhisa M. et al. Metformin or gliclazide, rather than glibenclamide, attenuate progression of carotid intima-media thickness in subjects with type 2 diabetes. Diabetologia. 2004;47(11):1906–1913. https://doi.org/10.1007/s00125-004-1547-8Test.; Шестакова М.В., Викулова О.К. Результаты открытой наблюдательной программы DIAMOND. Сахарный диабет. 2011;14(3):96–102. https://doi.org/10.14341/2072-0351-6232Test.; Аметов А.С., Бутаева С.Г. Комбинированная сахароснижающая терапия: иДПП-4 в сравнении с сульфонилмочевиной. Эндокринологи: новости, мнения, обучение. 2018;7(1):76–81. https://doi.org/10.24411/2304-9529-2018-00008Test.; Zaccardi F., Jacquot E., Cortese V., Tyrer F., Seidu S., Davies M.J., Khunti K. Comparative effectiveness of gliclazide modified release versus sitagliptin as second-line treatment after metformin monotherapy in patients with uncontrolled type 2 diabetes. Diabetes, Obes Metab. 2020;22(12):2417–2426. https://doi.org/10.1111/dom.14169Test.; Maloney A., Rosenstock J., Fonseca V. A Model-Based Meta-Analysis of 24 Antihyperglycemic Drugs for Type 2 Diabetes: Comparison of Treatment Effects at Therapeutic Doses. Clin Pharmacol Ther. 2019;105(5):1213–1223. https://doi.org/10.1002/cpt.1307Test.; https://www.med-sovet.pro/jour/article/view/7327Test

  7. 7
    دورية أكاديمية

    المصدر: The Russian Archives of Internal Medicine; Том 13, № 2 (2023); 129-135 ; Архивъ внутренней медицины; Том 13, № 2 (2023); 129-135 ; 2411-6564 ; 2226-6704

    وصف الملف: application/pdf

    العلاقة: https://www.medarhive.ru/jour/article/view/1595/1207Test; https://www.medarhive.ru/jour/article/view/1595/1215Test; Steenblock Ch., Schwarz P.E. H., Ludwig B. et al. COVID-19 and metabolic disease: mechanisms and clinical management. Lancet Diabetes Endocrinol. 2021; 9 (11): 786-798. https://doi.org/10.1016/S2213-8587Test(21)00244-8; Игнатенко Г.А., Багрий А.Э., Оприщенко А.А. и др. Сахарный диабет: руководство для врачей. Донецк, РБ Позитив. 2022; 640 с.; Apicella M., Campopiano M.C., Mazoni L. et al. COVID-19 in people with diabetes: understanding the reasons for worse out-comes. Lancet Diabetes Endocrinol. 2020; 8 (9): 782-792. doi:10.1016/S2213-8587(20)30238-2; Lim S., Bae J.H., Kwon H.S. et al. COVID-19 and diabetes mellitus: From pathophysiology to clinical management. Nat Rev Endocrinol. 2021; 17 (1): 11-30. https://doi.org/10.1038/s41574-020-00435-4Test; Davis H.E., Assaf G.S., McCorkell L. et al. Characterizing long COVID in an international: 7 months of symptoms and their impact. EClini-calMedicine. 2021; 38: 101019. https://doi.org/10.1016/j.eclinm.2021.101019Test; Nalbandian A., Sehgal K., Gupta A. et al. Post-acute COVID-19 syndrome. Nature Medicine. 2021; 27 (4): 601-615. doi:10.1038/s41591-021-01283-z; COVID-19 Treatment Guidelines Panel. Coronavirus Disease 2019 (COVID-19) Treatment Guidelines. National Institutes of Health. Available at https://www.covid19treatmentguidelines.nih.govTest/. Accessed [May 31, 2022]; Kosiborod M.N., Esterline R., Furtado R.H. M. et al. Dapagliflozin in patients with cardiometabolic risk factors hospitalised with COVID-19 (DARE-19): a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Diabetes Endocrinol. 2021; 9 (9): 586-594. doi:10.1016/S2213-8587(21)00180-7; Manu P. Drug Therapy for Unexplained Dyspnea in Post-COVID-19 Fatigue Syndrome: Empagliflozin and Sildenafil. Am J Ther. 2022; 29 (4): e447-e448. doi:10.1097/MJT.0000000000001483. PMID: 35412483; Kang Y., Zhan F., He M. et al. Anti-inflammatory effects of sodium-glucose co-transporter 2 inhibitors on atherosclerosis. Vascul Pharmacol. 2020; 133-134: 106779. doi:10.1016/j.vph.2020.106779; Pawlos A., Broncel M., Wozniak E. et al. Neuroprotective effect of SGLT2 inhibitors. Molecules. 2021; 26: 7213. doi:10.3390/molecules26237213; Wiciński M., Wódkiewicz E., Górski K. et al. Perspective of SGLT2 inhibition in treatment of conditions connected to neuronal loss: focus on alzheimer’s disease and ischemia-related brain injury. Pharmaceuticals (Basel). 2020; 13: 379. doi:10.3390/ph13110379; Bornstein S.R., Rubino F., Khunti K. et al. Practical recommendations for the management of diabetes in patients with COVID-19. Lancet Diabetes Endocrinol. 2020; 8 (6): 546-550. doi:10.1016/S2213-8587(20)30152-2; Жмеренецкий К.В., Витько А.В., Петричко Т.А. и др. Сложные вопросы ведения пациентов с COVID-19, коморбидных по сердечно-сосудистым заболеваниям и сахарному диабету 2-го типа. Дальневосточный медицинский журнал. 2020; 2: 102-114.; Kleine-Weber H., Schroeder S., Krüger N. et al. Polymorphisms in dipeptidylpeptidase 4 reduce host cell entry of Middle East respiratory syndrome coronavirus. Emerg. Microbes Infect. 2020; 9 (1): 155-168. doi:10.1080/22221751.2020.1713705; Solerte S.B., D’Addio F., Trevisan R. et al. Sitagliptin treatment at the time of hospitalization was associated with reduced mortality in patients with type 2 diabetes and COVID-19: a multicenter case-control retrospective observational study. Diabetes Care. 2020; 43 (12): 2999-3006. https://doi.org/10.2337/dc20-1521Test; Mirani M., Favacchio G., Carrone F. et al. Impact of comorbidities, glycemia at admission, and DPP-4 inhibitors in type 2 diabetic patients with COVID-19: a case series from an academic hospital in Lombardy, Italy. Diabetes Care. 2020; 43 (12): 3042-3049. https://doi.org/10.2337/dc20-1340Test; Dalan R., Ang L.W., Tan W.Y. T. et al. The association of hypertension and diabetes pharmacotherapy with COVID-19 severity and immune signatures: an observational study. Eur. Heart J. Cardiovasc. Pharmacother. 2021; 7 (3): e48-e51. https://doi.org/10.1093/ehjcvp/pvaa098Test; Scherer P.E., Kirwan J.P., Rosen C.J. Post-acute sequelae of COVID-19: A metabolic perspective. Elife. 2022; 11: e78200. doi:10.7554/eLife.78200; https://www.medarhive.ru/jour/article/view/1595Test

  8. 8
  9. 9
    دورية أكاديمية
  10. 10
    دورية أكاديمية