يعرض 1 - 10 نتائج من 485 نتيجة بحث عن '"метастазирование"', وقت الاستعلام: 1.02s تنقيح النتائج
  1. 1
    دورية أكاديمية

    المصدر: Siberian journal of oncology; Том 22, № 6 (2023); 35-44 ; Сибирский онкологический журнал; Том 22, № 6 (2023); 35-44 ; 2312-3168 ; 1814-4861 ; 10.21294/1814-4861-2017-0-31-36

    وصف الملف: application/pdf

    العلاقة: https://www.siboncoj.ru/jour/article/view/2833/1178Test; Саевец В.В., Семенов Ю.А., Мухин А.А., Таратонов А.В., Ивахно М.Н., Шмидт А.В. Лимфаденэктомия при онкогинекологической патологии: оценка формирования лимфатических кист и выявления метастазов в зависимости от количества удаленных лимфатических узлов. Уральский медицинский журнал. 2021; 20(4): 31–7. doi:10.52420/2071-5943-2021-20-4-31-37.; Состояние онкологической помощи населению России в 2020 году. Под ред. А.Д. Каприна, В.В. Старинского, А.О. Шахзадовой. М., 2021. 252 с.; Кравец О.А., Морхов К.Ю., Нечушкина В.М., Новикова Е.Г., Новикова О.В., Хохлова С.В., Чулкова О.В. Клинические рекомендации по диагностике и лечению больных раком эндометрия. Общероссийский союз общественных объединений. Ассоциация онкологов России. 15 с.; Анпилогов С.В., Шевчук А.С., Новикова Е.Г. Лапароскопическая экстирпация матки с тазовой лимфаденэктомией как альтернатива лапаротомии при лечении рака эндометрия. Злокачественные опухоли. 2016; (4): 41–7. doi:10.18027/2224-5057-2016-4-41-47.; Нечушкина В.М., Морхов К.Ю., Егорова А.В. Выбор объема хирургического лечения у больных раком тела матки. Злокачественные опухоли. 2020; 3s1: 3–10. doi:10.18027/2224-5057-2019-10-3s1-3-10.; Colombo N., Creutzberg C., Amant F., Bosse T., González-Martín A., Ledermann J., Marth C., Nout R., Querleu D., Mirza M.R., Sessa C.; ESMO-ESGO-ESTRO Endometrial Consensus Conference Working Group. ESMO-ESGO-ESTRO Consensus Conference on Endometrial Cancer: diagnosis, treatment and follow-up. Ann Oncol. 2016; 27(1): 16–41. doi:10.1093/annonc/mdv484.; Очиров М.О., Кишкина А.Ю., Коломиец Л.А., Чернов В.И. Биопсия сторожевых лимфатических узлов при хирургическом лечении рака эндометрия: история и современность. Опухоли женской репродуктивной системы. 2018; 14(4): 65–71. doi:10.17650/1994-4098-2018-14-4-65-71.; Нечушкина В.М., Коломиец Л.А., Кравец О.А., Морхов К.Ю., Новикова Е.Г., Новикова О.В., Тюляндина А.С., Ульрих Е.А., Феденко А.А., Хохлова С.В. Практические рекомендации по лекарственному лечению рака тела матки и сарком матки. Злокачественные опухоли. 2021; 11(3s2): 218–32. doi:10.18027/2224-5057-2021-11-3s2-14.; Todo Y., Kato H., Kaneuchi M., Watari H., Takeda M., Sakuragi N. Survival efect of para-aortic lymphadenectomy in endometrial cancer (SEPAL study): a retrospective cohort analysis. Lancet. 2010; 375(9721): 1165–72. doi:10.1016/S0140-6736(09)62002-X.; Petousis S., Christidis P., Margioula-Siarkou C., Papanikolaou A., Dinas K., Mavromatidis G., Guyon F., Rodolakis A., Vergote I., Kalogiannidi I. Combined pelvic and para-aortic is superior to only pelvic lymphadenectomy in intermediate and high-risk endometrial cancer: a systematic review and meta-analysis. Arch Gynecol Obstet. 2020; 302(1): 249–63. doi:10.1007/s00404-020-05587-2.; Guo W., Cai J., Li M., Wang H., Shen Y. Survival benefits of pelvic lymphadenectomy versus pelvic and para-aortic lymphadenectomy in patients with endometrial cancer: A meta-analysis. Medicine (Baltimore). 2018; 97(1). doi:10.1097/MD.0000000000009520.; Frost J.A., Webster K.E., Bryant A., Morrison J. Lymphadenectomy for the management of endometrial cancer. Cochrane Database Syst Rev. 2017; 10(10). doi:10.1002/14651858.CD007585.pub4.; Беришвили А.И., Ли О.В., Кочоян Т.М., Левкина Н.В., Керимов Р.А., Поликарпова С.Б. Сторожевые лимфатические узлы при раке тела матки. Опухоли женской репродуктивной системы. 2017; 17(2): 68–74. doi:10.17650/1994-4098-2017-13-2-68-74.; Антонова И.Б., Алешикова О.И., Ригер А.Н., Мамурова Г.А. Диагностическая значимость лимфаденэктомии и биопсии сторожевого лимфоузла у пациенток с I и II стадией рака тела матки. Доктор. Ру. 2021; 20(8): 59–63. doi:10.31550/1727-2378-2021-20-8-59-63.; Кочатков А.В., Харлов Н.С. Биопсия сторожевых лимфатических узлов, маркированных индоцианином зеленым, в хирургическом лечении рака эндометрия: обзор литературы и собственный опыт. Сибирский онкологический журнал. 2019; 18(2): 52–7. doi:/10.21294/1814-4861-2019-18-2-52-57.; Bogani G., Murgia F., Ditto A., Raspagliesi F. Sentinel node mapping vs. lymphadenectomy in endometrial cancer: A systematic review and meta-analysis. Gynecol Oncol. 2019; 153(3): 676–83. doi:10.1016/j.ygyno.2019.03.254.; Accorsi G.S., Paiva L.L., Schmidt R., Vieira M., Reis R., Andrade C. Sentinel Lymph Node Mapping vs Systematic Lymphadenectomy for Endometrial Cancer: Surgical Morbidity and Lymphatic Complications. J Minim Invasive Gynecol. 2020; 27(4): 938–45. doi:10.1016/j.jmig.2019.07.030.; Grassi T., Dell’Orto F., Jaconi M., Lamanna M., De Ponti E., Paderno M., Landoni F., Leone B.E., Fruscio R., Buda A. Two ultrastaging protocols for the detection of lymph node metastases in early-stage cervical and endometrial cancers. Int J Gynecol Cancer. 2020; 30(9): 1404–10. doi:10.1136/ijgc-2020-001298.; Берлев И.В., Ульрих Е.А., Ибрагимов З.Н., Гусейнов К.Д., Городнова Т.В., Новиков С.Н., Крживицкий П.И., Роговская Т.Т., Мкртчян Г.Б., Трифанов Ю.Н., Некрасова Е.А., Бежанова Е.Г., Ахмеров Р.Д., Микая Н.А., Урманчеева А.Ф., Канаев С.В. Возможности детекции сигнальных лимфатических узлов при раке эндометрия радиоизотопным и флуоресцентным (ICG). Вопросы онкологии. 2017; 63(2): 304–8.; Мкртчян Г.Б., Ибрагимов З.Н., Бежанова Е.Г., Ульрих Е.А., Урманчеева А.Ф., Берлев И.В. Эффективность флуоресцентного метода с использованием индоцианин сигнальных лимфатических узлов у больных с раком шейки матки. Доктор.Ру. 2018; 146(2): 41–5.; Berek J.S., Matias-Guiu X., Creutzberg C., Fotopoulou C., Gaffney D., Kehoe S., Lindemann K., Mutch D., Concin N.; Endometrial Cancer Staging Subcommittee, FIGO Women’s Cancer Committee. FIGO staging of endometrial cancer: 2023. Int J Gynaecol Obstet. 2023; 162(2): 383–94. doi:10.1002/ijgo.14923.; https://www.siboncoj.ru/jour/article/view/2833Test

  2. 2
    دورية أكاديمية

    المصدر: Obstetrics, Gynecology and Reproduction; Vol 18, No 1 (2024); 96-111 ; Акушерство, Гинекология и Репродукция; Vol 18, No 1 (2024); 96-111 ; 2500-3194 ; 2313-7347

    وصف الملف: application/pdf

    العلاقة: https://www.gynecology.su/jour/article/view/1955/1182Test; LeBleu V. Imaging the tumor microenvironment. Cancer J. 2015;21(3):174–8. https://doi.org/10.1097/PPO.0000000000000118Test.; Del Prete A., Schioppa T., Tiberio L. et al. Leukocyte trafficking in tumor microenvironment. Curr Opin Pharmacol. 2017;35:40–7. https://doi.org/10.1016/j.coph.2017.05.004Test.; Desai A., Small E.J. Treatment of advanced renal cell carcinoma patients with cabozantinib, an oral multityrosine kinase inhibitor of MET, AXL and VEGF receptors. Future Oncol. 2019;15(20):2337–48. https://doi.org/10.2217/fon-2019-0021Test.; Mantovani A., Allavena P., Sica A., Balkwill F. Cancer-related inflammation. Nature. 2008;454(7203):436–44. https://doi.org/10.1038/nature07205Test.; Torre L.A., Bray F., Siegel R.L. et al. Global cancer statistics, 2012. CA Cancer J Clin. 2015;65(2):87–108. https://doi.org/10.3322/caac.21262Test.; Hanahan D., Coussens L.M. Accessories to the crime: functions of cells recruited to the tumor microenvironment. Cancer Cell. 2012;21(3):309– 22. https://doi.org/10.1016/j.ccr.2012.02.022Test.; Hinshaw D.C., Shevde L.A. The tumor microenvironment innately modulates cancer progression. Cancer Res. 2019;79(18):4557–66. https://doi.org/10.1158/0008-5472.CAN-18-3962Test.; Pottier C., Wheatherspoon A., Roncarati P. et al. The importance of the tumor microenvironment in the therapeutic management of cancer. Expert Rev Anticancer Ther. 2015;15(8):943–54. https://doi.org/10.1586/14737140.2015.1059279Test.; Angell H., Galon J. From the immune contexture to the Immunoscore: the role of prognostic and predictive immune markers in cancer. Curr Opin Immunol. 2013;25(2):261–7. https://doi.org/10.1016/j.coi.2013.03.004Test.; Wang T., Niu G., Kortylewski M. et al. Regulation of the innate and adaptive immune responses by Stat-3 signaling in tumor cells. Nat Med. 2004;10(1):48–54. https://doi.org/10.1038/nm976Test.; Maimela N.R., Liu S., Zhang Y. Fates of CD8+ T cells in tumor microenvironment. Comput Struct Biotechnol J. 2019;17:1–13. https://doi.org/10.1016/j.csbj.2018.11.004Test.; Lv L., Pan K., Li X.-d. et al. The accumulation and prognosis value of tumor infiltrating IL-17 producing cells in esophageal squamous cell carcinoma. PloS One. 2011;6(3):e18219. https://doi.org/10.1371/journal.pone.0018219Test.; Plitas G., Rudensky A.Y. Regulatory T cells in cancer. Annu Rev Cancer Biol. 2020;4(1):459–77. https://doi.org/10.1146/annurevcancerbio-030419-033428Test.; Curiel T.J., Coukos G., Zou L. et al. Specific recruitment of regulatory T cells in ovarian carcinoma fosters immune privilege and predicts reduced survival. Nat Med. 2004;10(9):942–9. https://doi.org/10.1038/nm1093Test.; Fozza C., Longinotti M. T-cell traffic jam in Hodgkin's lymphoma: pathogenetic and therapeutic implications. Adv Hematol. 2011;2011:501659. https://doi.org/10.1155/2011/501659Test.; Koreishi A.F., Saenz A.J., Persky D.O. et al. The role of cytotoxic and regulatory T-cells in relapsed/refractory Hodgkin lymphoma. Appl Immunohistochem Mol Morphol. 2010;18(3):206–11. https://doi.org/10.1097/PAI.0b013e3181c7138bTest.; Gomes A.Q., Martins D.S., Silva-Santos B. Targeting γδ T lymphocytes for cancer immunotherapy: from novel mechanistic insight to clinical application. Cancer Res. 2010;70(24):10024–7. https://doi.org/10.1158/0008-5472.CAN-10-3236Test.; Tanaka M., Iwakiri Y. The hepatic lymphatic vascular system: structure, function, markers, and lymphangiogenesis. Cell Mol Gastroenterol Hepatol. 2016;2(6):733–49. https://doi.org/10.1016/j.jcmgh.2016.09.002Test.; Milne K., Köbel M., Kalloger S.E. et al. Systematic analysis of immune infiltrates in high-grade serous ovarian cancer reveals CD20, FoxP3 and TIA-1 as positive prognostic factors. PloS One. 2009;4(7):e6412. https://doi.org/10.1371/journal.pone.0006412Test.; Andreu P., Johansson M., Affara N.I. et al. FcRγ activation regulates inflammation-associated squamous carcinogenesis. Cancer Cell. 2010;17(2):121–34. https://doi.org/10.1016/j.ccr.2009.12.019Test.; Mauri C., Bosma A. Immune regulatory function of B cells. Annu Rev Immunol. 2012;30:221–41. https://doi.org/10.1146/annurevimmunol-020711-074934Test.; Horikawa M., Minard-Colin V., Matsushita T., Tedder T. F. Regulatory B cell production of IL-10 inhibits lymphoma depletion during CD20 immunotherapy in mice. J Clin Invest. 2011;121(11):4268–80. https://doi.org/10.1172/JCI59266Test.; Sharonov G.V., Serebrovskaya E.O., Yuzhakova D.V. et al. B cells, plasma cells and antibody repertoires in the tumour microenvironment. Nat Rev Immunol. 2020;20(5):294–307. https://doi.org/10.1038/s41577-019-0257-xTest.; Marcus A., Gowen B. G., Thompson T.W. et al. Recognition of tumors by the innate immune system and natural killer cells. Adv Immunol. 2014;122:91–128. https://doi.org/10.1016/B978-0-12-800267-4.00003-1Test.; Qian B.-Z., Pollard J.W. Macrophage diversity enhances tumor progression and metastasis. Cell. 2010;141(1):39–51. https://doi.org/10.1016/j.cell.2010.03.014Test.; Condeelis J., Pollard J.W. Macrophages: obligate partners for tumor cell migration, invasion, and metastasis. Cell. 2006;124(2):263–6. https://doi.org/10.1016/j.cell.2006.01.007Test.; Wang S.-C., Hong J.-H., Hsueh C., Chiang C.-S. Tumor-secreted SDF-1 promotes glioma invasiveness and TAM tropism toward hypoxia in a murine astrocytoma model. Lab Invest. 2012;92(1):151–62. https://doi.org/10.1038/labinvest.2011.128Test.; Franklin R.A., Liao W., Sarkar A. et al. The cellular and molecular origin of tumor-associated macrophages. Science. 2014;344(6186):921–5. https://doi.org/10.1126/science.1252510Test.; Gabrilovich D.I., Ostrand-Rosenberg S., Bronte V. Coordinated regulation of myeloid cells by tumours. Nat Rev Immunol. 2012;12(4):253–68. https://doi.org/10.1038/nri3175Test.; Meredith M.M., Liu K., Darrasse-Jeze G. et al. Expression of the zinc finger transcription factor zDC (Zbtb46, Btbd4) defines the classical dendritic cell lineage. J Exp Med. 2012;209(6):1153–65. https://doi.org/10.1084/jem.20112675Test.; Nozawa H., Chiu C., Hanahan D. Infiltrating neutrophils mediate the initial angiogenic switch in a mouse model of multistage carcinogenesis. Proc Natl Acad Sci U S A. 2006;103(33):12493–8. https://doi.org/10.1073/pnas.0601807103Test.; Youn J.-I., Gabrilovich D.I. The biology of myeloid-derived suppressor cells: the blessing and the curse of morphological and functional heterogeneity. Eur J Immunol. 2010;40(11):2969–75. https://doi.org/10.1002/eji.201040895Test.; Erler J.T., Bennewith K.L., Cox T.R. et al. Hypoxia-induced lysyl oxidase is a critical mediator of bone marrow cell recruitment to form the premetastatic niche. Cancer Cell. 2009;15(1):35–44. https://doi.org/10.1016/j.ccr.2008.11.012Test.; Granot Z., Henke E., Comen E.A. et al. Tumor entrained neutrophils inhibit seeding in the premetastatic lung. Cancer Cell. 2011;20(3):300–14. https://doi.org/10.1016/j.ccr.2011.08.012Test.; Walker C., Mojares E., del Río Hernández A. Role of extracellular matrix in development and cancer progression. Int J Mol Sci. 2018;19(10):3028. https://doi.org/10.3390/ijms19103028Test.; Nieman K.M., Kenny H.A., Penicka C.V. et al. Adipocytes promote ovarian cancer metastasis and provide energy for rapid tumor growth. Nat Med. 2011;17(11):1498–503. https://doi.org/10.1038/nm.2492Test.; Alitalo K. The lymphatic vasculature in disease. Nat Med. 2011;17(11):1371–80. https://doi.org/10.1038/nm.2545Test.; Swartz M.A., Lund A.W. Lymphatic and interstitial flow in the tumour microenvironment: linking mechanobiology with immunity. Nat Rev Cancer. 2012;12(3):210–9. https://doi.org/10.1038/nrc3186Test.; Erez N., Truitt M., Olson P. et al. Cancer-associated fibroblasts are activated in incipient neoplasia to orchestrate tumor-promoting inflammation in an NF-κB-dependent manner. Cancer Cell. 2010;17(2):135–47. https://doi.org/10.1016/j.ccr.2009.12.041Test.; Xing F., Saidou J., Watabe K. Cancer associated fibroblasts (CAFs) in tumor microenvironment. Front Biosci. 2010;15(1):166–79. https://doi.org/10.2741/3613Test.; Korneev K.V., Atretkhany K.-S. N., Drutskaya M. S. et al. TLR-signaling and proinflammatory cytokines as drivers of tumorigenesis. Cytokine. 2017;89:127–35. https://doi.org/10.1016/j.cyto.2016.01.021Test.; Shiga K., Hara M., Nagasaki T. et al. Cancer-associated fibroblasts: their characteristics and their roles in tumor growth. Cancers. 2015;7(4):2443– 58. https://doi.org/10.3390/cancers7040902Test.; Li B., Wang J. H.-C. Fibroblasts and myofibroblasts in wound healing: force generation and measurement. J Tissue Viability. 2011;20(4):108–20. https://doi.org/10.1016/j.jtv.2009.11.004Test.; Kraman M., Bambrough P.J., Arnold J.N. et al. Suppression of antitumor immunity by stromal cells expressing fibroblast activation protein-α. Science. 2010;330(6005):827–30. https://doi.org/10.1126/science.1195300Test.; Armulik A., Genové G., Betsholtz C. Pericytes: developmental, physiological, and pathological perspectives, problems, and promises. Dev Cell. 2011;21(2):193–215. https://doi.org/10.1016/j.devcel.2011.07.001Test.; Cooke V.G., LeBleu V.S., Keskin D.N et al. Pericyte depletion results in hypoxia-associated epithelial-to-mesenchymal transition and metastasis mediated by met signaling pathway. Cancer Cell. 2012;21(1):66–81. https://doi.org/10.1016/j.ccr.2011.11.024Test.; Turley S.J., Cremasco V., Astarita J.L. Immunological hallmarks of stromal cells in the tumour microenvironment. Nat Rev Immunol. 2015;15(11):669–82. https://doi.org/10.1038/nri3902Test.; McAndrews K.M., McGrail D.J., Ravikumar N., Dawson M.R. Mesenchymal stem cells induce directional migration of invasive breast cancer cells through TGF-β. Sci Rep. 2015;5(1):16941. https://doi.org/10.1038/srep16941Test.; Lam P.Y. Biological effects of cancer-secreted factors on human mesenchymal stem cells. Stem Cell Res Ther. 2013;4(6):138. https://doi.org/10.1186/scrt349Test.; Hu Y., Li D., Wu A. et al. TWEAK-stimulated macrophages inhibit metastasis of epithelial ovarian cancer via exosomal shuttling of microRNA. Cancer Lett. 2017;393:60–7. https://doi.org/10.1016/j.canlet.2017.02.009Test.; Farnie G., Sotgia F., Lisanti M.P. High mitochondrial mass identifies a sub-population of stem-like cancer cells that are chemo-resistant. Oncotarget. 2015;6(31):30472–86. https://doi.org/10.18632/oncotarget.5401Test.; Feig C., Jones J.O., Kraman M. et al. Targeting CXCL12 from FAP-expressing carcinoma-associated fibroblasts synergizes with antiPD-L1 immunotherapy in pancreatic cancer. Proc Natl Acad Sci U S A. 2013;110(50):20212–7. https://doi.org/10.1073/pnas.1320318110Test.; Henke E., Nandigama R., Ergün S. Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Front Mol Biosci. 2020;6:160. https://doi.org/10.3389/fmolb.2019.00160Test.; Vaupel P., Mayer A. Hypoxia in tumors: pathogenesis-related classification, characterization of hypoxia subtypes, and associated biological and clinical implications. Adv Exp Med Biol. 2014;812:19–24. https://doi.org/10.1007/978-1-4939-0620-8_3Test.; Elinav E., Garrett W.S., Trinchieri G., Wargo J. The cancer microbiome. Nat Rev Cancer. 2019;19(7):371–6. https://doi.org/10.1038/s41568-019-0155-3Test.; Hofer H.R., Tuan R.S. Secreted trophic factors of mesenchymal stem cells support neurovascular and musculoskeletal therapies. Stem Cell Res Ther. 2016;7(1):131. https://doi.org/10.1186/s13287-016-0394-0Test.; Altman J.B., Benavides A.D., Das R., Bassiri H. Antitumor responses of invariant natural killer T cells. J Immunol Res. 2015;2015:652875. https://doi.org/10.1155/2015/652875Test.; Keely P.J. Mechanisms by which the extracellular matrix and integrin signaling act to regulate the switch between tumor suppression and tumor promotion. J Mammary Gland Biol Neoplasia. 2011;16(3):205–19. https://doi.org/10.1007/s10911-011-9226-0Test.; Guan J., Chen J. Mesenchymal stem cells in the tumor microenvironment. Biomed Rep. 2013;1(4):517–21. https://doi.org/10.3892/br.2013.103Test.; Metzler K.D., Fuchs T.A., Nauseef W.M. et al. Myeloperoxidase is required for neutrophil extracellular trap formation: implications for innate immunity. Blood. 2011;117(3):953–9. https://doi.org/10.1182/blood2010-06-290171Test.; Acuff H.B., Carter K.J., Fingleton B. et al. Matrix metalloproteinase-9 from bone marrow-derived cells contributes to survival but not growth of tumor cells in the lung microenvironment. Cancer Res. 2006;66(1):259–66. https://doi.org/10.1158/0008-5472.CAN-05-2502Test.; Pahler J.C., Tazzyman S., Erez N. et al. Plasticity in tumor-promoting inflammation: impairment of macrophage recruitment evokes a compensatory neutrophil response. Neoplasia. 2008;10(4):329–40. https://doi.org/10.1593/neo.07871Test.; Cools-Lartigue J., Spicer J., McDonald B. et al. Neutrophil extracellular traps sequester circulating tumor cells and promote metastasis. J Clin Invest. 2013;123(8):3446–58. https://doi.org/10.1172/JCI67484Test.; Romson J.L., Hook B., Rigot V. et al. The effect of ibuprofen on accumulation of indium-111-labeled platelets and leukocytes in experimental myocardial infarction. Circulation. 1982;66(5):1002–11. https://doi.org/10.1161/01.cir.66.5.1002Test.; Goh C.Y., Patmore S., Smolenski A. et al. The role of von Willebrand factor in breast cancer metastasis. Transl Oncol. 2021;14(4):101033. https://doi.org/10.1016/j.tranon.2021.101033Test.; Price L.C., Wort S.J. Earlier diagnosis and international registries may improve outcomes in pulmonary tumour thrombotic microangiopathy. Eur Respir J. 2016;47(2):690–1. https://doi.org/10.1183/13993003.01736-2015Test.; Farge D., Bounameaux H., Brenner B. et al. International clinical practice guidelines including guidance for direct oral anticoagulants in the treatment and prophylaxis of venous thromboembolism in patients with cancer. Lancet Oncol. 2016;17(10):e452–e466. https://doi.org/10.1016/S1470-2045Test(16)30369-2.; Tinholt M., Viken M.K., Dahm A.E. et al. Increased coagulation activity and genetic polymorphisms in the F5, F10 and EPCR genes are associated with breast cancer: a case-control study. BMC Cancer. 2014;14:845. https://doi.org/10.1186/1471-2407-14-845Test.; Pihusch R., Danzl G., Scholz M. et al. Impact of thrombophilic gene mutations on thrombosis risk in patients with gastrointestinal carcinoma. Cancer. 2002;94(12):3120–6. https://doi.org/10.1002/cncr.10590Test.; Tavares V., Pinto R., Assis J. et al. Dataset of GWAS-identified variants underlying venous thromboembolism susceptibility and linkage to cancer aggressiveness. Data Brief. 2020;30:105399. https://doi.org/10.1016/j.dib.2020.105399Test.; Vossen C.Y., Hoffmeister M., Chang-Claude J.C. et al. Clotting factor gene polymorphisms and colorectal cancer risk. J Clin Oncol. 2011;29(13):1722–7. https://doi.org/10.1200/JCO.2010.31.8873Test.; de Haas E.C., Zwart N., Meijer C. et al. Association of PAI-1 gene polymorphism with survival and chemotherapy-related vascular toxicity in testicular cancer. Cancer. 2010;116(24):5628–36. https://doi.org/10.1002/cncr.25300Test.; Duffy M.J., McGowan P.M., Harbeck N. et al. uPA and PAI-1 as biomarkers in breast cancer: validated for clinical use in level-of-evidence-1 studies. Breast Cancer Res. 2014;16(4):428. https://doi.org/10.1186/s13058-014-0428-4Test.; Tavares V., Pinto R., Assis J. et al. Venous thromboembolism GWAS reported genetic makeup and the hallmarks of cancer: Linkage to ovarian tumour behaviour. Biochim Biophys Acta Rev Cancer. 2020;1873(1):188331. https://doi.org/10.1016/j.bbcan.2019.188331Test.; Vila P., Hernandez M., Lopez-Fernandez M., Batlle J. Prevalence, follow-up and clinical significance of the anticardiolipin antibodies in normal subjects. Thromb Haemost. 1994;72(8):209–13.; Vassalo J., Spector N., de Meis E. et al. Antiphospholipid antibodies in critically ill patients with cancer: a prospective cohort study. J Crit Care. 2014;29(4):533–8. https://doi.org/10.1016/j.jcrc.2014.02.005Test.; Abdel-Wahab N., Tayar J.H., Fa'ak F. et al. Systematic review of observational studies reporting antiphospholipid antibodies in patients with solid tumors. Blood Adv. 2020;4(8):1746–55. https://doi.org/10.1182/bloodadvances.2020001557Test.; Cervera R., Rodríguez-Pintó I., Colafrancesco S. et al. 14th international congress on antiphospholipid antibodies task force report on catastrophic antiphospholipid syndrome. Autoimmun Rev. 2014;13(7):699–707. https://doi.org/10.1016/j.autrev.2014.03.002Test.; https://www.gynecology.su/jour/article/view/1955Test

  3. 3
    دورية أكاديمية

    المصدر: Obstetrics, Gynecology and Reproduction; Vol 18, No 1 (2024); 55-67 ; Акушерство, Гинекология и Репродукция; Vol 18, No 1 (2024); 55-67 ; 2500-3194 ; 2313-7347

    وصف الملف: application/pdf

    العلاقة: https://www.gynecology.su/jour/article/view/1960/1181Test; Brinkmann V., Reichard U., Goosmann C. et al. Neutrophil extracellular traps kill bacteria. Science. 2004;303(5663):1532–5. https://doi.org/10.1126/science.1092385Test.; Snoderly H.T., Boone B.A., Bennewitz M.F. Neutrophil extracellular traps in breast cancer and beyond: current perspectives on NET stimuli, thrombosis and metastasis, and clinical utility for diagnosis and treatment. Breast Cancer Res. 2019;21(1):145. https://doi.org/10.1186/s13058-019-1237-6Test.; Papayannopoulos V., Metzler K.D., Hakkim A., Zychlinsky A. Neutrophil elastase and myeloperoxidase regulate the formation of neutrophil extracellular traps. J Cell Biol. 2010;191(3):677–91. https://doi.org/10.1083/jcb.201006052Test.; Hanahan D., Weinberg R.A. Hallmarks of cancer: the next generation. Cell. 2011;144(5):646–74. https://doi.org/10.1016/j.cell.2011.02.013Test.; Balkwill F., Mantovani A. Inflammation and cancer: back to Virchow? Lancet. 2001;357(9255):539–45. https://doi.org/10.1016/S0140-6736Test(00)04046-0.; Bonavita E., Galdiero M.R., Jaillon S., Mantovani A. Phagocytes as сorrupted зolicemen in сancer-кelated шnflammation. Adv Cancer Res. 2015;128:141–71. https://doi.org/10.1016/bs.acr.2015.04.013Test.; Coffelt S., Wellenstein M., de Visser K. Neutrophils in cancer: neutral no more. Nat Rev Cancer. 2016;16(7):431–46. https://doi.org/10.1038/nrc.2016.52Test.; Colotta F., Re F., Polentarutti N. et al. Modulation of granulocyte survival and programmed cell death by cytokines and bacterial products. Blood. 1992;80(8):2012–20.; Carnevale S., Ghasemi S., Rigatelli A., Jaillon S. The complexity of neutrophils in health and disease: focus on cancer. Semin Immunol. 2020;48:101409. https://doi.org/10.1016/j.smim.2020.101409Test.; De Meo M.L., Spicer J.D. The role of neutrophil extracellular traps in cancer progression and metastasis. Semin Immunol. 2021;57:101595. https://doi.org/10.1016/j.smim.2022.101595Test.; Слуханчук Е.В., Бицадзе В.О., Солопова А.Г. и др. Маркеры внеклеточных ловушек нейтрофилов у женщин со злокачественными новообразованиями репродуктивной системы, получавших хирургическое лечение и адъювантную химиотерапию. Акушерство, Гинекология и Репродукция. 2023;17(4):420–32. https://doi.org/10.17749/2313-7347/ob.gyn.rep.2023.432Test.; Cristinziano L., Modestino L., Antonelli A. et al. Neutrophil extracellular traps in cancer. Semin Cancer Biol. 2022;79:91–104. https://doi.org/10.1016/j.semcancer.2021.07.011Test.; Sosa M.S., Bragado P., Aguirre-Ghiso J.A. Mechanisms of disseminated cancer cell dormancy: an awakening field. Nat Rev Cancer. 2014;14(9):611–22. https://doi.org/10.1038/nrc3793Test.; Albrengues J., Shields M.A., Ng D. et al. Neutrophil extracellular traps produced during inflammation awaken dormant cancer cells in mice. Science. 2018;361(6409):eaao4227. https://doi.org/10.1126/science.aao4227Test.; Poto R., Cristinziano L, Modestino L. et al. Neutrophil extracellular traps, angiogenesis and cancer. Biomedicines. 2022;10(2):431. https://doi.org/10.3390/biomedicines10020431Test.; Szczerba M.B., Castro-Giner F., Vetter M. et al. Neutrophils escort circulating tumour cells to enable cell cycle progression. Nature. 2019;566(7745):553–7. https://doi.org/10.1038/s41586-019-0915-yTest.; Shaul M.E., Fridlender Z.G. Tumour-associated neutrophils in patients with cancer. Nat Rev Clinical Oncol. 2019;16(10):601–20. https://doi.org/10.1038/s41571-019-0222-4Test.; Li P., Lu M., Shi J. et al. Lung mesenchymal cells elicit lipid storage in neutrophils that fuel breast cancer lung metastasis. Nat Immunol. 2020;21(11):1444–55. https://doi.org/10.1038/s41590-020-0783-5Test.; Tohme S., Yazdani H.O., Al-Khafaji A.B. et al. Neutrophil extracellular traps promote the development and progression of liver metastases after surgical stress. Cancer Res. 2016;76(6):1367–80. https://doi.org/10.1158/0008-5472.CAN-15-1591Test.; Mauracher L.M., Posch F., Martinod K. et al. Citrullinated histone H3, a biomarker of neutrophil extracellular trap formation, predicts the risk of venous thromboembolism in cancer patients. J Thromb Haemost. 2018;16(3):508–18. https://doi.org/10.1111/jth.13951Test.; Слуханчук Е.В., Бицадзе В.О., Солопова А.Г. и др. Иммунотромбоз, прогрессия опухоли и метастазирование. Роль интерлейкина-8 и внеклеточных ловушек нейтрофилов. Вопросы гинекологии, акушерства и перинатологии. 2023;22(4):48–56. https://doi.org/10.20953/1726-1678-2023-4-48-56Test.; North R.J., Neubauer R.H., Huang J.J. et al. Interleukin 1-induced, T cellmediated regression of immunogenic murine tumors. Requirement for an adequate level of already acquired host concomitant immunity. J Exp Med. 1988;168(6):2031–43. https://doi.org/10.1084/jem.168.6.2031Test.; Rébé C., Ghiringhelli F. Interleukin-1β and cancer. Cancers (Basel). 2020;12(7):1791. https://doi.org/10.3390/cancers12071791Test.; Zahorec R. Neutrophil-to-lymphocyte ratio, past, present and future perspectives. Bratisl Lek Listy. 2021;122(7):474–88. https://doi.org/10.4149/BLL_2021_078Test.; Forget P., Khalifa C., Defour J.P. et al. What is the normal value of the neutrophil-to-lymphocyte ratio? BMC Res Notes. 2017;10(1):12. https://doi.org/10.1186/s13104-016-2335-5Test.; https://www.gynecology.su/jour/article/view/1960Test

  4. 4
    دورية أكاديمية
  5. 5
    دورية أكاديمية
  6. 6
    دورية أكاديمية
  7. 7
    دورية أكاديمية
  8. 8
    دورية أكاديمية
  9. 9
    دورية أكاديمية
  10. 10
    دورية أكاديمية

    المصدر: Siberian journal of oncology; Том 22, № 5 (2023); 180-189 ; Сибирский онкологический журнал; Том 22, № 5 (2023); 180-189 ; 2312-3168 ; 1814-4861

    وصف الملف: application/pdf

    العلاقة: https://www.siboncoj.ru/jour/article/view/2772/1168Test; Klimek M. Pulmonary lymphangitis carcinomatosis: systematic review and meta-analysis of case reports, 1970–2018. Postgrad Med. 2019 Jun; 131(5): 309–18. doi:10.1080/00325481.2019.1595982.; Doyle L. Gabriel Andral (1797–1876) and the first reports of lymphangitis carcinomatosa. J R Soc Med. 1989; 82(8): 491–3. doi:10.1177/014107688908200814.; Trapnell D.H. Radiological Appearances of Lymphangitis Carcinomatosa of the Lung. Thorax. 1964; 19: 251–60. doi:10.1136/thx.19.3.251.; Babu S., Satheeshan B., Geetha M., Salih S. A rare presentation of pulmonary lymphangitic carcinomatosis in cancer of lip: case report. World J Surg Oncol. 2011; 9: 77. doi:10.1186/1477-7819-9-77.; Yamamoto T., Nakane T., Kimura T., Osaki T. Pulmonary lymphangitic carcinomatosis from an oropharyngeal squamous cell carcinoma: a case report. Oral Oncol. 2000; 36(1): 125–8. doi:10.1016/s1368-8375(99)00060-3.; Tighe D., Cavilla S., Simcock R. Pulmonary lymphangitic carcinomatosis from head and neck squamous cell carcinoma. Int J Oral Maxillofac Surg. 2014; 43(7): 806–10. doi:10.1016/j.ijom.2013.12.003.; Iguchi H., Hashimoto K., Sunami K., Yamane H. A case of fatal respiratory failure after surgery for advanced supraglottic laryngeal carcinoma. Acta Otolaryngol Suppl. 2004; (554): 71–3. doi:10.1080/03655230410018327.; Zieske L.A., Myers E.N., Brown B.M. Pulmonary lymphangitic carcinomatosis from hypopharyngeal adenosquamous carcinoma. Head Neck Surg. 1988; 10(3): 195–8. doi:10.1002/hed.2890100308.; Fend F., Gruber U., Fritzsche H., Rothmund J., Breitfellner G., Mikuz G. Occult papillary carcinoma of the thyroid with pulmonary lymphangitic spread diagnosed by lung biopsy. Klin Wochenschr. 1989; 67(13): 687–90. doi:10.1007/BF01718031.; Digumarthy S.R., Fischman A.J., Kwek B.H., Aquino S.L. Fluorodeoxyglucose positron emission tomography pattern of pulmonary lymphangitic carcinomatosis. J Comput Assist Tomogr. 2005; 29(3): 346–9. doi:10.1097/01.rct.0000163952.03192.ef.; Jiménez-Fonseca P., Carmona-Bayonas A., Font C., PlasenciaMartínez J., Calvo-Temprano D., Otero R., Beato C., Biosca M., Sánchez M., Benegas M., Varona D., Faez L., Antonio M., de la Haba I., Madridano O., Solis M.P., Ramchandani A., Castañón E., Marchena P.J., Martín M., de la Peña F.A., Vicente V.; EPIPHANY study investigators and the Asociación de Investigación de la Enfermedad Tromboembólica de la Región de Murcia. The prognostic impact of additional intrathoracic findings in patients with cancer-related pulmonary embolism. Clin Transl Oncol. 2018; 20(2): 230–42. doi:10.1007/s12094-017-1713-3.; Belhassine M., Papakrivopoulou E., Venet C., Mestdagh C., Schroeven M. Gastric adenocarcinoma revealed by atypical pulmonary lymphangitic carcinomatosis. J Gastrointest Oncol. 2018; 9(6): 1207–12. doi:10.21037/jgo.2018.07.06.; Bruce D.M., Heys S.D., Eremin O. Lymphangitis carcinomatosa: a literature review. J R Coll Surg Edinb. 1996; 41(1): 7–13.; Pandey S., Ojha S. Delays in Diagnosis of Pulmonary Lymphangitic Carcinomatosis due to Benign Presentation. Case Rep Oncol Med. 2020. doi:10.1155/2020/4150924.; Okayama M., Kanemitsu Y., Oguri T., Asano T., Fukuda S., Ohkubo H., Takemura M., Maeno K., Ito Y., NIImi A. A Rare Case of Isolated Chronic Cough Caused by Pulmonary Lymphangitic Carcinomatosis as a Primary Manifestation of Rectum Carcinoma. Intern Med. 2018; 57(18): 2709–12. doi:10.2169/internalmedicine.0572-17.; Charest M., Armanious S. Prognostic implication of the lymphangitic carcinomatosis pattern on perfusion lung scan. Can Assoc Radiol J. 2012; 63(4): 294–303. doi:10.1016/j.carj.2011.04.004.; Prakash P., Kalra M.K., Sharma A., Shepard J.A., Digumarthy S.R. FDG PET/CT in assessment of pulmonary lymphangitic carcinomatosis. Am J Roentgenol. 2010; 194(1): 231–6. doi:10.2214/AJR.09.3059.; Yahng S.A., Kang H.H., Kim S.K., Lee S.H., Moon H.S., Lee B.Y., Kim H.S., Seo E.J. Erdheim-Chester disease with lung involvement mimicking pulmonary lymphangitic carcinomatosis. Am J Med Sci. 2009; 337(4): 302–4. doi:10.1097/MAJ.0b013e31818d7a64.; Im Y., Lee H., Lee H.Y., Baek S.Y., Jeong B.H., Lee K., Kim H., Kwon O.J., Han J., Lee K.S., Ahn M.J., Kim J., Um S.W. Prognosis of pulmonary lymphangitic carcinomatosis in patients with non-small cell lung cancer. Transl Lung Cancer Res. 2021; 10(11): 4130–40. doi:10.21037/tlcr-21-677.; https://www.siboncoj.ru/jour/article/view/2772Test