يعرض 1 - 10 نتائج من 301 نتيجة بحث عن '"кишечная микробиота"', وقت الاستعلام: 1.02s تنقيح النتائج
  1. 1
    دورية أكاديمية

    المساهمون: Not specified., Отсутствует.

    المصدر: Current Pediatrics; Том 23, № 2 (2024); 58-62 ; Вопросы современной педиатрии; Том 23, № 2 (2024); 58-62 ; 1682-5535 ; 1682-5527

    وصف الملف: application/pdf

    العلاقة: https://vsp.spr-journal.ru/jour/article/view/3448/1363Test; Хавкин А.И., Налетов А.В., Марченко Н.А. Воспалительные заболевания кишечника у детей: современные достижения в диагностике и терапии // Российский журнал гастроэнтерологии, гепатологии, колопроктологии. — 2023. — Т. 33. — № 6. — С. 7–15. — doi: https://doi.org/10.22416/1382-4376-2023-33-6-7-15Test; Хавкин А.И., Налетов А.В., Федулова Э.Н., Марченко Н.А. Воспалительные заболевания кишечника у детей: алгоритмы диагностики и современные стратегии терапии // Вопросы диетологии. — 2023. — Т. 13. — № 3. — С. 32–42.; Piovani D, Danese S, Peyrin-Biroulet L, et al. Environmental risk factors for inflammatory bowel diseases: an umbrella review of meta-analyses. Gastroenterology. 2019;157(3):647–659.e4. doi: https://doi.org/10.1053/j.gastro.2019.04.016Test; Infante M, Fabbri A, Della-Morte D, Ricordi C. The importance of vitamin D and omega-3 PUFA supplementation: a nonpharmacologic immunomodulation strategy to halt autoimmunity. Eur Rev Med Pharmacol Sci. 2022;26(18):6787–6795. doi:10.26355/eurrev_202209_29780; Fabbri A, Infante M, Ricordi C. Editorial — Vitamin D status: a key modulator of innate immunity and natural defense from acute viral respiratory infections. Eur Rev Med Pharmacol Sci. 2020;24(7): 4048–4052. doi: https://doi.org/10.26355/eurrev_202004_20876Test; Национальная программа «Недостаточность витамина D у детей и подростков Российской Федерации: современные подходы к коррекции» / Союз педиатров России и др. — М.: ПедиатрЪ; 2018. — 96 с.; Кондратьева Е.И., Лошкова Е.В., Захарова И.Н. и др. Оценка обеспеченности витамином D детей Москвы и Московской области // Российский вестник перинатологии и педиатрии. — 2021. — Т. 66 — № 2. — С. 78–84. — doi: https://doi.org/10.21508/1027-4065-2021-66-2-78-84Test; Хавкин А.И., Лошкова Е.В., Дорошенко И.В. и др. Витамин D и эпигеном основные дефиниции, механизмы и клинические эффекты // Экспериментальная и клиническая гастроэнтерология. — 2023. — № 9. — С. 209–221. — doi: https://doi.org/10.31146/1682-8658-ecg-217-9-209-221Test; Налетов А.В. Обеспеченность витамином D детей с функциональными абдоминальными болевыми расстройствами // Children’s medicine of the North-West. — 2022. — Т. 10. — № 2. — С. 58–62.; Налетов А.В., Свистунова Н.А., Вакуленко М.В. Обеспеченность витамином D детей первого года жизни с аллергией к белкам коровьего молока, проживающих в условиях военного конфликта в Донбассе // Мать и дитя в Кузбассе. — 2020. — № 1. — С. 18–22. — doi: https://doi.org/10.24411/2686-7338-2020-10004Test; Fletcher J, Cooper SC, Ghosh S, Hewison M. The role of vitamin D in inflammatory bowel disease: mechanism to management. Nutrients. 2019;11(5):1019. doi: https://doi.org/10.12968/bjon.2016.25.15.846Test; Abreu MT, Kantorovich V, Vasiliauskas EА, et al. Measurement of vitamin D levels in inflammatory bowel disease patients reveals a subset of Crohn’s disease patients with elevated 1,25-dihyd-roxyvitamin D and low bone mineral density. Gut. 2004;53(8): 1129–1136. doi: https://doi.org/10.1136/gut.2003.036657Test; Law AD, Dutta U, Kochhar R, et al. Vitamin D deficiency in adult patients with ulcerative colitis: Prevalence and relationship with disease severity, extent, and duration. Indian J Gastroenterol. 2019;38(1):6–14. doi: https://doi.org/10.1007/s12664-019-00932-zTest; Burrelli Scotti G, Afferri MT, De Carolis A. Factors affecting vitamin D deficiency in active inflammatory bowel diseases. Dig Liver Dis. 2019;51(5):657–662. doi: https://doi.org/10.1016/j.dld.2018.11.036Test; Wu Z, Liu D, Deng F. The Role of vitamin D in immune system and inflammatory bowel disease. J Inflamm Res. 2022;15:3167–3185. doi: https://doi.org/10.2147/JIR.S363840Test; Rasouli E, Sadeghi N, Parsi A, et al. Relationship between Vitamin D deficiency and disease activity in patients with inflammatory bowel disease in Ahvaz, Iran. Clin Exp Gastroenterol. 2020;13:419–425. doi: https://doi.org/10.2147/CEG.S254278Test; Sun J, Zhang YG. Vitamin D receptor influences intestinal barriers in health and disease. Cells. 2022; 11(7):1129. doi: https://doi.org/10.3390/cell11071129Test; Chen SW, Wang PY, Zhu J, et al. Protective effect of 1,25-dihydroxyvitamin D3 on lipopolysaccharide-induced intestinal epithelial tight junction injury in caco-2 cell. Inflammation. 2015;38(1):375–383. doi: https://doi.org/10.1007/s10753-014-0041-9Test; Du J, Chen Y, Shi Y, et al. 1,25-dihydroxyvitamin D protects intestinal epithelial barrier by regulating the myosin light chain kinase signaling pathway. Inflamm Bowel Dis. 2015;21(11):2495–2506. doi: https://doi.org/10.1097/MIB.0000000000000526Test; Lee C, Lau E, Chusilp S, et al. Protective effects of vitamin D against injury in intestinal epithelium. Pediatr Surg Int. 2019;35(12):1395–1401. doi: https://doi.org/10.1007/s00383-019-04586-yTest; Wu S, Zhang YG, Lu R, et al. Intestinal epithelial vitamin D receptor deletion leads to defective autophagy in colitis. Gut. 2015;64(7):1082–1094. doi: https://doi.org/10.1136/gutjnl-2014-307436Test; Liu W, Chen Y, Golan MA, et al. Intestinal epithelial vitamin D receptor signaling inhibits experimental colitis. J Clin Investig. 2013;123(9):3983–3996. doi: https://doi.org/10.1172/JCI65842Test; Reynolds CJ, Koszewski NJ, Horst RL, et al. Localization of the 1,25-dihydroxyvitamin d-mediated response in the intestines of mice. J Steroid Biochem Mol Biol. 2019;186:56–60. doi: https://doi.org/10.1016/j.jsbmb.2018.09.009Test; Garg M, Royce SG, Tikellis C, et al. The intestinal vitamin D receptor in inflammatory bowel disease: Inverse correlation with inflammation but no relationship with circulating vitamin D status. Therap Adv Gastroenterol. 2019;12:1756284818822566. doi: https://doi.org/10.1177/1756284818822566Test; Qiu W, Wu B, Wang X, et al. PUMA-mediated intestinal epithelial apoptosis contributes to ulcerative colitis in humans and mice. J Clin Investig. 2011;121(5):1722–1732. doi: https://doi.org/10.1172/JCI42917Test; Махмутов Р.Ф., Лихобабина О.А., Налетов А.В. Современный взгляд на роль витамина D в патогенезе развития заболеваний у детей (обзор литературы) // Медико-социальные проблемы семьи. — 2022. — Т. 27. — № 3. — С. 117–123.; Chun RF, Liu PT, Modlin RL, et al. Impact of vitamin D on immune function: lessons learned from genome-wide analysis. Front Physiol. 2014;5:151. doi: https://doi.org/10.3389/fphys.2014.00151Test.; Gubatan J, Mehigan GA, Villegas F, et al. Cathelicidin mediates a protective role of vitamin D in ulcerative colitis and human colonic epithelial cells. Inflamm Bowel Dis. 2020;26(6):885–897. doi: https://doi.org/10.1093/ibd/izz330Test; Lu R, Zhang YG, Xia Y, et al. Paneth cell alertness to pathogens maintained by vitamin D receptors. Gastroenterology. 2021;160(4):1269–1283. doi: https://doi.org/10.1053/j.gastro.2020.11.015Test; Pols TWH, Puchner T, Korkmaz HI, et al. Lithocholic acid controls adaptive immune responses by inhibition of Th1 activation through the vitamin D receptor. PLoS ONE. 2017;12(5):e0176715. doi: https://doi.org/10.1371/journal.pone.0176715Test; Székely JI, Pataki Á. Effects of vitamin D on immune disorders with special regard to asthma, COPD and autoimmune diseases: a short review. Expert Rev Respir Med. 2012;6(6):683–704. doi: https://doi.org/10.1586/ers.12.57Test; Zhang Y, Leung DY, Richers BN, et al. Vitamin D inhibits monocyte/ macrophage proinflammatory cytokine production by targeting MAPK phosphatase-1. J Immunol. 2012;188(5):2127–2135. doi: https://doi.org/10.4049/jimmunol.1102412Test; Bouillon R, Lieben L, Mathieu C. Vitamin D action: lessons from VDR and Cyp27b1 null mice. Pediatr Endocrinol Rev. 2013;10 (Suppl 2):354–366.; Yu S, Cantorna MT. Epigenetic reduction in invariant NKT cells following in utero vitamin D deficiency in mice. J Immunol. 2011;186(3):1384–1390. doi: https://doi.org/10.4049/jimmunol.1002545Test; Zhou Q, Qin S, Zhang J, et al. 1,25(OH)(2)D(3) induces regulatory T-cell differentiation by influencing the VDR/PLC-γ1/TGF-β1/pathway. Mol Immunol. 2017;91:156–164. doi: https://doi.org/10.1016/j.molimm.2017.09.006Test; James J, Weaver V, Cantorna MT. Control of circulating IgE by the vitamin D receptor in vivo involves B Cell intrinsic and extrinsic mechanisms. J Immunol. 2017;198(3):1164–1171. doi: https://doi.org/10.4049/jimmunol.1601213Test; Wang J, Thingholm LB, Skiecevicie J, et al. Genome-wide association analysis identifies variation in Vitamin D receptor and other host factors influencing the gut microbiota. Nat Genet. 2016;48(11):1396–1406. doi: https://doi.org/10.1038/ng.3695Test; Cantorna MT, Lin YD, Arora J, et al. Vitamin D regulates the microbiota to control the numbers of RORγt/FoxP3+ regulatory T Cells in the colon. Front Immunol. 2019;10:1772. doi: https://doi.org/10.3389/fimmu.2019.01772Test; Bora SA, Kennett MJ, Smith PB, et al. The gut microbiota regulates endocrine vitamin D metabolism through Fibroblast growth factor 23. Front Immunol. 2018;9:408. doi: https://doi.org/10.3389/fimmu.2018.00408Test; Naderpoor N, Mousa A, Fernanda Gomez Arango L, et al. Effect of vitamin D supplementation on faecal microbiota: a randomised clinical trial. Nutrients. 2019;11(12):2888. doi: https://doi.org/10.3390/nu11122888Test; Bashir M, Prietl B, Tauschmann M. et al. Effects of high doses of vitamin D3 on mucosa-associated gut microbiome vary between regions of the human gastrointestinal tract. Eur J Nutr. 2016;55(4):1479–1489. doi: https://doi.org/10.1007/s00394-015-0966-2Test; Charoenngam N, Shirvani A, Kalajian TA, et al. The effect of various doses of oral vitamin D3 supplementation on gut microbiota in healthy adults: a randomized, double-blinded, dose-response study. Anticancer Res. 2020;40(1):551–556. doi: https://doi.org/10.21873/anticanres.13984Test; Schäffler H, Herlemann DP, Klinitzke P, et al. Vitamin D administration leads to a shift of the intestinal bacterial composition in Crohn’s disease patients, but not in healthy controls. J Dig Dis. 2018;19(4):225–234. doi: https://doi.org/10.1111/1751-2980.12591Test; Garg M, Hendy P, Ding JN, et al. The effect of vitamin D on intestinal inflammation and faecal microbiota in patients with ulcerative colitis. J Crohns Colitis. 2018;12(8):963–972. doi: https://doi.org/10.1093/ecco-jcc/jjy052Test; Soltys K, Stuchlikova M, Hlavaty T, et al. Seasonal changes of circulating 25-hydroxyvitamin D correlate with the lower gut microbiome composition in inflammatory bowel disease patients. Sci Rep. 2020;10(1):6024. doi: https://doi.org/10.1038/s41598-020-62811-4Test; https://vsp.spr-journal.ru/jour/article/view/3448Test

  2. 2
    دورية أكاديمية

    المصدر: Current Pediatrics; Том 22, № 6 (2023); 506-512 ; Вопросы современной педиатрии; Том 22, № 6 (2023); 506-512 ; 1682-5535 ; 1682-5527

    وصف الملف: application/pdf

    العلاقة: https://vsp.spr-journal.ru/jour/article/view/3353/1347Test; Milani C, Duranti S, Bottacini F, et al. The First Microbial Colonizers of the Human Gut: Composition, Activities, and Health Implications of the Infant Gut Microbiota. Microbiol Mol Biol Rev. 2017;81(4):e00036-17. doi: https://doi.org/10.1128/MMBR.00036-17Test; Sommer F, Backhed F. The gut microbiota — masters of host development and physiology. Nat Rev Microbiol. 2013;11(4): 227-238. doi: https://doi.org/10.1038/nrmicro2974Test; Turroni F, Milani C, Duranti S, et al. The infant gut microbiome as a microbial organ influencing host well-being. Ital J Pediatr. 2020; 46(1):16. doi: https://doi.org/10.1186/s13052-020-0781-0Test; DeGruttola AK, Low D, Mizoguchi A, et al. Current understanding of dysbiosis in disease in human and animal models. Inflamm Bowel Dis. 2016;22(5):1137-1150. doi: https://doi.org/10.1097/MIB.0000000000000750Test; Yang T, Santisteban MM, Rodriguez V, et al. Gut dysbiosis is linked to hypertension. Hypertension. 2015;65(6):1331-1340. doi: https://doi.org/10.1161/HYPERTENSIONAHA.115.05315Test; Battson ML, Lee DM, Jarrell DK, et al. Suppression of gut dysbiosis reverses Western diet-induced vascular dysfunction. Am J Physiol Endocrinol Metab. 2018;314(5):E468-E477. doi: https://doi.org/10.1152/ajpendo.00187.2017Test; Simon AK, Hollander GA, McMichael A. Evolution of the Immune System in Humans from Infancy to Old Age. Proc Biol Sci. 2015;282(1821):20143085. doi: https://doi.org/10.1098/rspb.2014.3085Test; Ratsika A, Codagnone MC, O'Mahony S, et al. Priming for Life: Early Life Nutrition and the Microbiota-Gut-Brain Axis. Nutrients. 2021;13(2):423. doi: https://doi.org/10.3390/nu13020423Test; Chu DM, Antony KM, Ma J, et al. The early infant gut microbiome varies in association with a maternal high-fat diet. Genome Med. 2016;8(1):77. doi: https://doi.org/10.1186/s13073-016-0330-zTest; Garci'a-Mantrana I, Selma-Royo M, Gonzalez S, et al. Distinct maternal microbiota clusters are associated with diet during pregnancy: Impact on neonatal microbiota and infant growth during the first 18 months of life. Gut Microbes. 2020;11(4):962-978. doi: https://doi.org/10.1080/19490976.2020.1730294Test; Collado M, Isolauri E, Laitinen K, Salminen S. Effect of mother's weight on infant's microbiota acquisition, composition, and activity during early infancy: A prospective follow-up study initiated in early pregnancy. Am J Clin Nutr. 2010;92(5):1023-1030. doi: https://doi.org/10.3945/ajcn.2010.29877Test; Romero R, Hassan SS, Gajer P, et al. The Composition and Stability of the Vaginal Microbiota of Normal Pregnant Women Is Different from That of Non-Pregnant Women. Microbiome. 2014;2(1):4. doi: https://doi.org/10.1186/2049-2618-2-4Test; Romero R, Hassan SS, Gajer P, et al. The Vaginal Microbiota of Pregnant Women Who Subsequently Have Spontaneous Preterm Labor and Delivery and Those with a Normal Delivery at Term. Microbiome. 2014;2:18. doi: https://doi.org/10.1186/2049-2618-2-18Test; Dierikx TH, Visser DH, Benninga MA, et al. The Influence of Prenatal and Intrapartum Antibiotics on Intestinal Microbiota Colonisation in Infants: A Systematic Review. J Infect. 2020;81(2):190-204. doi: https://doi.org/10.1016/j.jinf.2020.05.002Test; Mazzola G, Murphy K, Ross RP, et al. Early Gut Microbiota Perturbations Following Intrapartum Antibiotic Prophylaxis to Prevent Group B Streptococcal Disease. PLoS ONE. 2016;11(6):e0157527. doi: https://doi.org/10.1371/journal.pone.0157527Test; Seedat F, Stinton C, Patterson J, et al. Adverse Events in Women and Children Who Have Received Intrapartum Antibiotic Prophylaxis Treatment: A Systematic Review. BMC Pregnancy Childbirth. 2017;17(1):247. doi: https://doi.org/10.1186/s12884-017-1432-3Test; Stencel-Gabriel K, Gabriel I, Wiczkowski A, et al. Prenatal priming of cord blood T lymphocytes by microbiota in the maternal vagina. Am J Reprod Immunol. 2009;61(3):246-252. https://doi.org/10.1111/j.1600-0897.2009.00687.xTest; De Aguero MG, Ganal-Vonarburg SC, Fuhrer T, et al. The Maternal Microbiota Drives Early Postnatal Innate Immune Development. Science. 2016;351(6279):1296-1302. doi: https://doi.org/10.1126/science.aad2571Test; Bailey MT, Lubach GR, Coe CL. Prenatal Stress Alters Bacterial Colonization of the Gut in Infant Monkeys. J Pediatr Gastroenterol Nutr. 2004;38(4):414-421. doi: https://doi.org/10.1097/00005176-200404000-00009Test; Mold JE, Michaëlsson J, Burt TD, et al. Maternal Alloantigens Promote the Development of Tolerogenic Fetal Regulatory T Cells in Utero. Science. 2008;322(5907):1562-1565. doi: https://doi.org/10.1126/science.1164511Test; Marchant A, Appay V, Van Der Sande M, et al. Mature CD8(+) T Lymphocyte Response to Viral Infection during Fetal Life. J Clin Investig. 2003;111(11):1747-1755. doi: https://doi.org/10.1172/JCI200317470Test; Perez-Munoz ME, Arrieta MC, Ramer-Tait AE, et al. A critical assessment of the “sterile womb” and “in utero colonization” hypotheses: implications for research on the pioneer infant microbiome. Microbiome. 2017;5(1):48. doi: https://doi.org/10.1186/s40168-017-0268-4Test; Lauder AP, Roche AM, Sherrill-Mix S, et al. Comparison of placenta samples with contamination controls does not provide evidence for a distinct placenta microbiota. Microbiome. 2016;4(1):29. doi: https://doi.org/10.1186/s40168-016-0172-3Test; Palmer C, Bik EM, DiGiulio DB, et al. Development of the Human Infant Intestinal. Microbiota. PLoS Biol. 2007;5(7):e177. doi: https://doi.org/10.1371/journal.pbio.0050177Test; Dominguez-Bello MG, De Jesus-Laboy KM, Shen N, et al. Partial Restoration of the Microbiota of Cesarean-Born Infants via Vaginal Microbial Transfer. Nat Med. 2016;22(3):250-253. doi: https://doi.org/10.1038/nm.4039Test; Fettweis JM, Serrano MG, Brooks JP, et al. The Vaginal Microbiome and Preterm Birth. Nat Med. 2019;25(6):1012-1021. doi: https://doi.org/10.1038/s41591-019-0450-2Test; Calder PC, Krauss-Etschmann S, de Jong EC, et al. Early Nutrition and Immunity — Progress and Perspectives. Br J Nutr. 2006;96(4):774-790. doi: https://doi.org/10.1079/BJN20061917Test; McDavid A, Laniewski N, Grier A, et al. Aberrant Newborn T Cell and Microbiota Developmental Trajectories Predict Respiratory Compromise during Infancy. iScience. 202;25(4):104007. doi: https://doi.org/10.1016/j.isci.2022.104007Test; Miyoshi J, Bobe AM, Miyoshi S, et al. Peripartum Antibiotics Promote Gut Dysbiosis, Loss of Immune Tolerance, and Inflammatory Bowel Disease in Genetically Prone Offspring. Cell Rep. 2017;20(2):491-504. doi: https://doi.org/10.1016/j.celrep.2017.06.060Test; Sidener HM, Park B, Gao L. Effect of Antibiotic Administration during Infancy on Growth Curves through Young Adulthood in Rhesus Macaques (Macaca Mulatta). Comp Med. 2017;67(3):270-276.; Al Nabhani Z, Eberl G. Imprinting of the Immune System by the Microbiota Early in Life. Mucosal Immunol. 2020;13(2):183-189. doi: https://doi.org/10.1038/s41385-020-0257-yTest; Arrieta MC, Stiemsma LT, Dimitriu PA, et al. Early Infancy Microbial and Metabolic Alterations Affect Risk of Childhood Asthma. Sci Transl Med. 2015;7(307):307ra152. doi: https://doi.org/10.1126/scitranslmed.aab2271Test; Tamburini S, Shen N, Wu HC, Clemente JC. The Microbiome in Early Life: Implications for Health Outcomes. Nat Med. 2016;22(7):713-722. doi: https://doi.org/10.1038/nm.4142Test; Lokossou GAG, Kouakanou L, Schumacher A, Zenclussen AC. Human Breast Milk: From Food to Active Immune Response With Disease Protection in Infants and Mothers. Front Immunol. 2022;13:849012. doi: https://doi.org/10.3389/fimmu.2022.849012Test; Gopalakrishna KP, Hand TW. Influence of Maternal Milk on the Neonatal Intestinal Microbiome. Nutrients. 2020;12(3):823. doi: https://doi.org/10.3390/nu12030823Test; Molès JP Tuaillon E, Kankasa C, et al. Breastmilk Cell Trafficking Induces Microchimerism-Mediated Immune System Maturation in the Infant. Pediatr Allergy Immunol. 2018;29(2):133-143. doi: https://doi.org/10.1111/pai.12841Test; Murphy K, Curley D, O'Callaghan TF, et al. The Composition of Human Milk and Infant Faecal Microbiota Over the First Three Months of Life: A Pilot Study. Sci Rep. 2017;7:40597. doi: https://doi.org/10.1038/srep40597Test; Pärnänen K, Karkman A, Hultman J, et al. Maternal Gut and Breast Milk Microbiota Affect Infant Gut Antibiotic Resistome and Mobile Genetic Elements. Nat Commun. 2018;9(1):3891. doi: https://doi.org/10.1038/s41467-018-06393-wTest; Laouar A. Maternal Leukocytes and Infant Immune Programming during Breastfeeding. Trends Immunol. 2020;41(3):225-239. doi: https://doi.org/10.1016/j.it.2020.01.005Test; Koch S, Hufnagel M, Theilacker C, Huebner J. Enterococcal Infections: Host Response, Therapeutic, and Prophylactic Possibilities. Vaccine. 2004;22(7):822-830. doi: https://doi.org/10.1016/j.vaccine.2003.11.027Test; Torow N, Dittrich-Breiholz O, Hornef MW. Transcriptional Profiling of Intestinal CD4+ T Cells in the Neonatal and Adult Mice. Genom Data. 2015;5:371-374. doi: https://doi.org/10.1016/j.gdata.2015.07.009Test; Dettmer AM, Allen JM, Jaggers RM, Bailey MT. A Descriptive Analysis of Gut Microbiota Composition in Differentially-Reared Infant Rhesus Monkeys (Macaca Mulatta) across the First Six Months of Life. Am J Primatol. 2019;81(10-11):e22969. doi: https://doi.org/10.1002/ajp.22969Test; Ardeshir A, Narayan NR, Méndez-Lagares G, et al. Breast-Fed and Bottle-Fed Infant Rhesus Macaques Develop Distinct Gut Microbiotas and Immune Systems. Sci Transl Med. 2014;6(252): 252ra120. doi: https://doi.org/10.1126/scitranslmed.3008791Test; Narayan NR, Méndez-Lagares G, Ardeshir A, et al. Persistent Effects of Early Infant Diet and Associated Microbiota on the Juvenile Immune System. Gut Microbes. 2015;6(4):284-289. doi: https://doi.org/10.1080/19490976.2015.1067743Test; Laursen MF, Bahl MI, Michaelsen KF, Licht TR. First Foods and Gut Microbes. Front Microbiol. 2017;8:356. doi: https://doi.org/10.3389/fmicb.2017.00356Test; Magne F, Hachelaf W, Suau A, et al. A Longitudinal Study of Infant Faecal Microbiota during Weaning. FEMS Microbiol Ecol. 2006;58(3):563-571. doi: https://doi.org/10.1111/j.1574-6941.2006.00182.xTest; Программа оптимизации вскармливания детей первого года жизни в Российской Федерации: методические рекомендации. — М.: НМИЦ здоровья детей; 2019. — 112 с.; Koenig JE, Spor A, Scalfone N, et al. Succession of Microbial Consortia in the Developing Infant Gut Microbiome. Proc Natl Acad Sci USA. 2011;108(Suppl 1):4578-4585. doi: https://doi.org/10.1073/pnas.1000081107Test; Laursen MF, Andersen LBB, Michaelsen KF, et al. Infant gut microbiota development is driven by transition to family foods independent of maternal obesity. mSphere. 2016;1(1):e00069-15. doi: https://doi.org/10.1128/mSphere.00069-15Test; Knoop KA, Gustafsson JK, McDonald KG, et al. Microbial Antigen Encounter during a Preweaning Interval Is Critical for Tolerance to Gut Bacteria. Sci Immunol. 2017;2(18):eaao1314. doi: https://doi.org/10.1126/sciimmunol.aao1314Test; Al Nabhani Z, Dulauroy S, Marques R, et al. A Weaning Reaction to Microbiota Is Required for Resistance to Immunopathologies in the Adult. Immunity. 2019;50(5):1276-1288.e5. doi: https://doi.org/10.1016/j.immuni.2019.02.014Test; Mao K, Baptista AP, Tamoutounour S, et al. Innate and Adaptive Lymphocytes Sequentially Shape the Gut Microbiota and Lipid Metabolism. Nature. 2018;554(7691):255-259. doi: https://doi.org/10.1038/nature25437Test; Vatanen T, Kostic AD, d'Hennezel E, et al. Variation in Microbiome LPS Immunogenicity Contributes to Autoimmunity in Humans. Cell. 2016;165(4):842-853. doi: https://doi.org/10.1016/j.cell.2016.04.007Test; Mosca A, Leclerc M, Hugot JP. Gut microbiota diversity and human diseases: should we reintroduce key predators in our ecosystem? Front Microbiol. 2016;7:455. doi: https://doi.org/10.3389/fmicb.2016.00455Test; Abrahamsson TR, Jakobsson HE, Andersson AF, et al. Low diversity of the gut microbiota in infants with atopic eczema. J Allergy Clin Immunol. 2012;129(2):434-440. doi: https://doi.org/10.1016/j.jaci.2011.10.025Test; Abrahamsson TR, Jakobsson HE, Andersson AF, et al. Low gut microbiota diversity in early infancy precedes asthma at school age. Clin Exp Allergy. 2014;44(6):842-850. doi: https://doi.org/10.1111/cea.12253Test; Kostic AD, Gevers D, Siljander H, et al. The dynamics of the human infant gut microbiome in development and in progression toward type 1 diabetes. Cell Host Microbe. 2015;17(2):260-273. doi: https://doi.org/10.1016/j.chom.2015.01.001Test; Ivarsson A, Persson LA, Nystrom L, et al. Epidemic of Coeliac Disease in Swedish Children. Acta Paediatr. 2000;89(2):165-171. doi: https://doi.org/10.1111/j.1651-2227.2000.tb01210.xTest; Ivarsson A, Myleus A, Norstrom F, et al. Prevalence of Childhood Celiac Disease and Changes in Infant Feeding. Pediatrics. 2013;131(3):e687-e694. doi: https://doi.org/10.1542/peds.2012-1015Test; Chassin C, Kocur M, Pott J, et al. MiR-146a Mediates Protective Innate Immune Tolerance in the Neonate Intestine. Cell Host Microbe. 2010;8(4):358-368. doi: https://doi.org/10.1016/j.chom.2010.09.005Test; Сорвачева Т.Н. «Первый выбор» должен быть правильным! // Эффективная фармакотерапия. Педиатрия. — 2015. — № 4-5. — С. 38-41. [Sorvacheva T.N. “Pervyi vybor” dolzhen byt' pravil'nym! Effektivnaya farmakoterapiya. Pediatriya. 2015;(4-5):38-41. (In Russ).]; Codex Alimentarius. Standard for Processed Cereal-Based Foods for Infants and Young Children. CODEX STAN 74-1981. Available online: https://www.isdi.org/wp-content/uploads/2020/04/CXS-74-1981.pdfTest. Accessed on November 30, 2023.; Agostoni C, Decsi T, Fewtrell M, et al. Complementary feeding: A commentary by the ESPGHAN Committee on Nutrition. J Pediatr Gastroenterol Nutr. 2008;46(1):99-110. doi: https://doi.org/10.1097/01.mpg.0000304464.60788.bdTest; Grimes CA, Szymlek-Gay EA, Campbell KJ, Nicklas TA. Food sources of total energy and nutrients among US infants and toddlers: National Health and Nutrition Examination Survey 2005-2012. Nutrients. 2015;7(8):6797-6836. doi: https://doi.org/10.3390/nu7085310Test; Finn K, Callen C, Bhatia J, et al. Importance of dietary sources of iron in infants and toddlers: Lessons from the FITS study. Nutrients. 2017;9(7):733. doi: https://doi.org/10.3390/nu9070733Test; Fardet A. New hypotheses for the health-protective mechanisms of whole-grain cereals: What is beyond fiber? Nutr Res Rev. 2010;23(1):65-134. doi: https://doi.org/10.1017/S0954422410000041Test; Fallani M, Amarri S, Uusijarvi A, et al. Determinants of the human infant intestinal microbiota after the introduction of first complementary foods in infant samples from five European centres. Microbiology. 2011;157(Pt 5):1385-1392. doi: https://doi.org/10.1099/mic.0.042143-0Test; Gamage HK, Tetu SG, Chong RW, et al. Cereal products derived from wheat, sorghum, rice and oats alter the infant gut microbiota in vitro. Sci Rep. 2017;7(1):14312. doi: https://doi.org/10.1038/s41598-017-14707-zTest; Vriezinga SL, Auricchio R, Bravi E, et al. Randomized feeding intervention in infants at high risk for celiac disease. N Engl J Med. 2014;371(14):1304-1315. doi: https://doi.org/10.1056/NEJMoa1404172Test; Dalmau Serra J, Moreno Villares J. Alimentacion complementaria: Puesta al día. Pediatr Integral. 2017;21(1):47.e1-47.e4.; Fewtrell M, Bronsky J, Campoy C, et al. Complementary feeding: A position paper by the European Society for Paediatric Gastroenterology, Hepatology, and Nutrition (ESPGHAN) Committee on Nutrition. J Pediatr Gastroenterol Nutr. 2017;64(1):119-132. doi: https://doi.org/10.1097/MPG.0000000000001454Test; Klerks M, Bernal MJ, Roman S, et al. Infant Cereals: Current Status, Challenges, and Future Opportunities for Whole Grains. Nutrients. 2019;11(2):473. doi: https://doi.org/10.3390/nu11020473Test; Plaza-Diaz J, Bernal MJ, Schutte S, et al. Effects of WholeGrain and Sugar Content in Infant Cereals on Gut Microbiota at Weaning: A Randomized Trial. Nutrients. 2021;13(5):1496. doi: https://doi.org/10.3390/nu13051496Test; Pham VT, Greppi A, Chassard C, et al. Stepwise establishment of functional microbial groups in the infant gut between 6 months and 2 years: A prospective cohort study. Front Nutr. 2022;9:948131. doi: https://doi.org/10.3389/fnut.2022.948131Test; Rachmühl C, Lacroix C, Giorgetti A, et al. Validation of a batch cultivation protocol for fecal microbiota of Kenyan infants. BMC Microbiol. 2023;23(1):174. doi: https://doi.org/10.1186/s12866-023-02915-9Test; https://vsp.spr-journal.ru/jour/article/view/3353Test

  3. 3
    دورية أكاديمية

    المساهمون: The work was carried out as a part of the research activities of Central Tuberculosis Research Institute, RK YHFVRE-2022-0019, Registration Number 122041100210-4., Работа выполнена в рамках НИР ФГБНУ «ЦНИИТ» РК YHFVRE-2022-0019, регистрационный номер 122041100210-4.

    المصدر: Tuberculosis and Lung Diseases; Том 102, № 2 (2024); 86-96 ; Туберкулез и болезни легких; Том 102, № 2 (2024); 86-96 ; 2542-1506 ; 2075-1230

    وصف الملف: application/pdf

    العلاقة: https://www.tibl-journal.com/jour/article/view/1808/1817Test; Адамова В., Гуляева Н. Изменения микрофлоры кишечника и верхних дыхательных путей у детей с латентной туберкулезной инфекцией // FORCIPE. – 2021. – Т. 4, № S1. – С. 921 – 921.; Ардатская М.Д., Бельмер С.В., Добрица В.П., Захаренко С.М., Лазебник Л.Б., Минушкин О.Н., Орешко Л.С., Ситкин С.И., Ткаченко Е.И., Суворов А.Н., Хавкин А.И., Шендеров Б.А. Дисбиоз (дисбактериоз) кишечника: современное состояние проблемы, комплексная диагностика и лечебная коррекция // Экспериментальная и клиническая гастроэнтерология. – 2015. – Т.117, № 5. – С. 13 – 50.; Белова И.В., Соловьева И.В., Точилина А.Г., Барболина С.Ф., Павлунин А.В, Шпрыков А.С. Эффективность использования нового иммобилизованного пробиотика в комплексе лечения больных туберкулезом легких // Туберкулёз и болезни лёгких. – 2017. – Т 95, № 5. – С. 34 – 40. https://doi.org/10.21292/2075-1230-2017-95-5-34-40Test; Воробьев А.А., Бондаренко В.М., Лыкова Е.А., Григорьев А.В., Мацулевич Т.М. Микроэкологические нарушения при клинической патологии и их коррекция бифидосодержащими пробиотиками // Вестник РАМН. – 2004. – №2. – С. 13 – 17.; Дугина Н.И. Эффективность комплексного лечения больных туберкулезом органов дыхания в сочетании с лекарственно-индуцированным дисбактериозом толстой кишки в условиях специализированного санатория: Автореф. Дисс. . канд. мед. наук: 14.00.26 / Центр. науч.-исслед. ин-т туберкулеза. – Москва, 2005. – 18 с.; Захарова И.Н. Микробиом, микробиота. Что нового? // Медицинский совет. – 2016, № 16. – С. 92 – 97. https://doi.org/10.21518/2079-701X-2016-16-92-97Test.; Ильина Е.Н., Майорова Е.М., Манолов А.И., Коренькова А.А., Бахметьев В.В., Горбунов К.С. Микробиом кишечника и метаболизм лекарственных соединений (Обзор) // Biomedical Chemistry: Research and Methods. – 2021. – Т. 4, №.1. – С.e00146. https://doi.org/10.18097/bmcrm00146Test; Кожевников А.А., Раскина К.В., Мартынова Е.Ю., Тяхт А.В., Перфильев А.В., Драпкина О.М., Сычев Д.А., Фатхутдинов И.Р., Мусиенко С.В., Никогосов Д.А., Жегулина И.О., Бавыкина Л.Г., Каршиева А.В., Селезнева К.С., Алексеев Д.Г.Потешкин Ю.Е. Кишечная микробиота: современные представления о видовом составе, функциях и методах исследования // РМЖ. – 2017. – Т. 25, №. 17. – С. 1244 – 1247.; Комиссарова О. Г., Шорохова В.А., Абдуллаев Р.Ю., Романов В.В. Состояние больных микробиотами у пациентов с впервые выявленным туберкулезом легких // Врач. – 2021. – Т. 32, №. 4. – С. 71 – 76. https://doi.org/10.29296/25877305-2021-04-12Test; Лазовская А.Л., Воробьева З.Г., Слинина К.Н., Гришина Н.В., Кульчицкая М.А. Антагонистическая активность споровых пробиотиков и влияние на лекарственную чувствительность микобактерий туберкулеза // Вестник Российского университета дружбы народов. Серия: Медицина. – 2010. – № 1. – С.18 – 23.; Лазовская А.Л. Воробьева З.Г., Слинина К.Н. Действие пробиотиков на патогенные микобактерии // Проблемы туберкулеза и болезней легких. – 2007. – № 7. – С. 25 – 27.; Линева З.Е., Гуляева Н.А., Романова М.В., Антонов С.Н., Иванова Р.П. Клинико-бактериологические проявления дисбактериоза кишечника у больных туберкулезом легких, осложненным сопутсвующей патологией со стороны желудочно-кишечного тракта // Международный журнал прикладных и фундаментальных исследований. – 2013. – № 12. – С. 88 – 93.; Макарова С.Г., Намазова-Баранова Л.С., Ерешко О.А., Ясаков Д.С., Садчиков П.Е. Кишечная микробиота и аллергия. Про- и пребиотики в профилактике и лечении аллергических заболеваний // Педиатрическая фармакология. – 2019. – Т. 16, №. 1. – С. 7 – 18. https://doi.org/10.15690/pf.v16i1.1999Test; Мишин В.Ю., Чуканов В.И., Григорьев Ю.Г. Побочное действие противотуберкулезных препаратов при стандартных и индивидуализированных режимах химиотерапии. М.: Компьютербург; 2004. – 207 с.; Петров В.А., Салтыкова И.В., Жукова И.А., Алифирова В.М., Жукова Н.Г., Дорофеева Ю.Б., Сазонов А.Э. Исследование микробиоты кишечника при болезни Паркинсона // Бюллетень экспериментальной биологии и медицины. – 2016. – Т. 162, №. 12. – С. 700 – 703.; Прозоров А.А., Федорова И.А., Беккер О.Б., Даниленко В.Н. Факторы вирулентности Mycobacterium tuberculosis: генетический контроль, новые концепции // Генетика. – 2014. – Т. 50, №.8. – С. 885 – 908. https://doi.org/10.7868/S0016675814080050Test; Пузанов В.А., Комиссарова О.Г., Никоненко Б.В. Бактериальная микробиота нижних отделов кишечника и бронхов у больных туберкулезом // Туберкулез и болезни легких. – 2020. – Т. 98, № 5. – С. 37 – 43. https://doi.org/10.21292/2075-1230-2020-98-5-37-43Test; Соловьева И.В., Белова И.В., Репина Н.Б., Точилина А.Г., Васильева Н.В., Иванова Т.П. Пробиотики как неотъемлемая часть комплексного лечения детей с туберкулезной инфекцией // Вестник Российского государственного медицинского университета. – 2011. – №. 4. – С. 53 – 58.; Соловьева И.В., Соколова К.Я., Белова И.В., Репина Н.Б., Иванова Т.П., Точилина А.Г. Туберкулезная инфекция у детей: дополнение алгоритма лечения новым пробиотиком // Медицинский альманах. – 2009. – № 2. – С. 56 – 58.; Трухан Д.И. Нарушения кишечного микробиоценоза: расширение сферы применения пробиотиков // Медицинский совет. – 2022. – Т. 16, № 7. – С. 132 – 143. https://doi.org/10.21518/2079-701X-2022-16-7-132-143Test; Шугаева С.Н. Состояние микроэкологии кишечника у больных туберкулезом легких до начала и в процессе противотуберкулезной терапии // Сибирский Медицинский Журнал. – 2001. – Т. 27, №3. – С. 54 – 58; Харитонова Л.А., Григорьев К.И., Борзакова С.Н. Микробиота человека: как новая научная парадигма меняет медицинскую практику // Экспериментальная и клиническая гастроэнтерология. – 2019. – Т.1, №161. – С. 55 – 63. https://doi.org/10.31146/1682-8658-ecg-161-1-55-63Test; Холодов А.А., Захарова Ю.В., Отдушкина Л.Ю., Галайда Н.М., Пьянзова Т.В. Микробиоценоз кишечника у больных туберкулезом с множественной лекарственной устойчивостью возбудителя с синдромом кишечной диспепсии, возникшим в условиях противотуберкулезной терапии. //Вестник ЦНИИТ. – 2022. – Т. 1, №18. – С. 79 – 86. https://doi.org/10.7868/S2587667822010083Test; Холодов А.А., Захарова Ю. В., Отдушкина Л. Ю., Пьянзова Т. В. Факторы риска развития диспептического синдрома у пациентов фтизиатрического стационара и состояние микрофлоры кишечника больных до начала противотуберкулезной терапии // Туберкулез и болезни легких. – 2022. – Т. 100, № 4. – С. 46-51. http://doi.org/10.21292/2075-1230-2022-100-4-46Test–51.; Цыгина Т.Ю. Совершенствование комплексного лечения больных инфильтративным туберкулезом легких с множественной и широкой лекарственной устойчивостью возбудителя при дисбиозе толстой кишки. Автореф. Дисс. … канд. мед. наук: 14.01.16 / Центр. науч.-исслед. ин-т туберкулеза. – М., 2010. – 29 с.; Юсубова А.Н., Киселевич О.К., Выхристюк О.Ф. Состояние микробиоценоза кишечника у детей раннего и дошкольного возраста, больных туберкулезом // Вопросы детской диетологии. – 2015. – Т. 13, №. 4. – С. 63 – 67.; Юсубова А.Н., Стаханов В.А., Киселевич О.К., Богданова Е.В., Балашова Н.А. Коррекция дисбиоза кишечника у больных туберкулёзом детей раннего и дошкольного возраста в процессе комплексной химиотерапии // Туберкулез и болезни легких. – 2010. – Т. 87, № 8. – С. 26 – 28.; Arnold I., Hutchings C., Kondova I., Hey A., Powrie F., Beverley P., Tchilian E. Helicobacter hepaticus infection in BALB/c mice abolishes subunit-vaccine-induced protection against M. tuberculosis // Vaccine. – 2015. – Vol. 33, № 15. – Р. 1808 – 1814. https://doi.org/10.1016/j.vaccine.2015.02.041Test; Boehm G., Moro G. Structural and functional aspects of prebiotics used in infant nutrition // The Journal of nutrition. – 2008. – Vol. 138, № 9. – Р. 1818 –1828. https://doi.org/10.1093/jn/138.9.1818STest; Budden K.F., Gellatly S.L., Wood D.L., Cooper M.A., Morrison M., Hugenholtz P., Hansbro P.M. Emerging pathogenic links between microbiota and the gut-lung axis. // Nature Reviews Microbiology. – 2017. – Vol. 15, № 1. – Р. 55 – 63. https://doi.org/10.1038/nrmicro.2016.142Test; Cao D., Liu W., Lyu N., Li B., Song W., Yang Y., Zhu J., Zhang Z., Zhu B. Gut Mycobiota Dysbiosis in Pulmonary Tuberculosis Patients Undergoing Anti-Tuberculosis Treatment // Microbiology spectrum. – 2021. – Vol. 9, № 3. – Р. e00615–21. https://doi.org/10.1128/spectrum.00615-21Test; Cheng H.Y., Ning M.X., Chen D.K., Ma W.T. Interactions Between the Gut Microbiota and the Host Innate Immune Response Against Pathogens // Front Immunol. – 2019. – № 10. – Р. 607. https://doi.org/10.3389/fimmu.2019.00607Test; Comberiati P., Di Cicco M., Paravati F., Pelosi U., Di Gangi A., Arasi S., Barni S., Caimmi D., Mastrorilli C., Licari A., Chiera F. The Role of Gut and Lung Microbiota in Susceptibility to Tuberculosis // International journal of environmental research and public health. – 2021. – Vol. 18, №. 22. – Р. 12220. https://doi.org/10.3390/ijerph182212220Test; Dumas A., Corral D., Colom A., Levillain F., Peixoto A., Hudrisier D., Poquet Y., Neyrolles O. The Host Microbiota Contributes to Early Protection Against Lung Colonization by Mycobacterium tuberculosis // Frontiers in Immunology. – 2018. – № 9. – Р. 2656. https://doi.org/10.3389/fimmu.2018.02656Test.; Eribo O.A., du Plessis N., Ozturk M., Guler R., Walzl G., Chegou N.N. The gut microbiome in tuberculosis susceptibility and treatment response: guilty or not guilty? // Cellular and Molecular Life Sciences. – 2020. – Vol. 77, № 8. – Р. 1497–1509. https://doi.org/10.1007/s00018-019-03370-4Test; Fellag M., Gouba N., Bedotto M., Sakana M., Zingué D., Tarnagda Z., Million M., Drancourt M. Culturomics Discloses Anti-Tubercular Enterococci Exclusive of Pulmonary Tuberculosis: a Preliminary Report // Microorganisms. – 2020. – Vol. 8, № 10. – Р. 1544. https://doi.org/10.3390/microorganisms8101544Test; Fujimura K.E., Lynch S.V. Microbiota in allergy and asthma and the emerging relationship with the gut microbiome // Microbe hôte cellulaire. – 2015. – Vol. 17, № 5. – Р. 592–602. https://doi.org/10.1016/j.chom.2015.04.007Test; Hu Y., Feng Y., Wu J., Liu F., Zhang Z., Hao Y., Liang S., Li B., Li J., Lv N., Xu Y., Zhu B., Sun Z. The Gut Microbiome Signatures Discriminate Healthy From Pulmonary Tuberculosis Patients // Frontiers in cellular and infection microbiology. – 2019. – Vol. 90, № 9. – Р. 90. https://doi.org/10.3389/fcimb.2019.00090Test; Kalliomaki M., Collado M.C., Salminen S., Isolauri E. Early differences in fecal microbiota composition in children may predict overweight // The American journal of clinical nutrition. – 2008. – Vol. 87, № 3. – Р. 534–538. https://doi.org/10.1093/ajcn/87.3.534Test; Khan N., Mendonca L., Dhariwal A., Fontes G., Menzies D., Xia J., Divangahi M., King I.L. Intestinal dysbiosis compromises alveolar macrophage immunity to Mycobacterium tuberculosis // Mucosal immunology. – 2019. – Vol. 12, № 3. – P. 772–783. https://doi.org/10.1038/s41385-019-0147-3Test; Ley R.E., Turnbaugh P.J., Klein S., Gordon J.I. Microbial ecology: human gut microbes associated with obesity // Nature. – 2006. – Vol. 444, № 7122 – Р. 1022–1023. https://doi.org/10.1038/4441022aTest; Li W., Zhu Y., Liao Q., Wang Z., Wan C. Characterization of gut microbiota in children with pulmonary tuberculosis // BMC pediatrics. – 2019. – Vol. 19, № 1. – Р. 1 – 10. https://doi.org/10.1186/s12887-019-1782-2Test.; Liu Y., Wang J., Wu C. Microbiota and Tuberculosis: A Potential Role of Probiotics, and Postbiotics // Frontiers in Nutrition. – 2021. – № 8. – Р.626254. https://doi.org/10.3389/fnut.2021.626254Test; Luo M., Liu Y., Wu P., Luo D.X., Sun Q., Zheng H., Hu R., Pandol S.J., Li Q.F., Han Y.P., Zeng Y. Alternation of Gut Microbiota in Patients with Pulmonary Tuberculosis // Frontiers in physiology. – 2017. – № 8. – Р. 822. https://doi.org/10.3389/fphys.2017.00822Test; Majlessi L., Sayes F., Bureau J.F., Pawlik A., Michel V., Jouvion G., Huerre M., Severgnini M., Consolandi C., Peano C., Brosch R., Touati E., Leclerc C. Colonization with Helicobacter is concomitant with modified gut microbiota and drastic failure of the immune control of Mycobacterium tuberculosis // Mucosal Immunology. – 2017. – Vol. 10, № 5. – Р. 1178 – 1189. https://doi.org/10.1038/mi.2016.140Test; Mori G., Morrison M., Blumenthal A. Microbiome-immune interactions in tuberculosis // PLoS Pathogens. – 2021. – Т. 17, № 4. – Р. e1009377. https://doi.org/10.1371/journal.ppat.1009377Test; Nadeem S., Maurya S.K., Das D.K., Khan N., Agrewala J.N. Gut Dysbiosis Thwarts the Efficacy of Vaccine Against Mycobacterium tuberculosis // Frontiers in immunology. – 2020. – № 11. – Р. 726. https://doi.org/10.3389/fimmu.2020.00726Test; Namasivayam S., Kauffman K.D., McCulloch J.A., Yuan W., Thovarai V., Mittereder L.R., Trinchieri G., Barber D.L., Sher A. Correlation between Disease Severity and the Intestinal Microbiome in Mycobacterium tuberculosis-Infected Rhesus Macaques // MBio. – 2019. – Vol. 10, № 3. – Р. e01018–19. – https://doi.org/10.1128/mBio.01018-19Test; Namasivayam S., Maiga M., Yuan W., Thovarai V., Costa D.L., Mittereder L.R., Wipperman M.F., Glickman M.S., Dzutsev A., Trinchieri G., Sher A. Longitudinal profiling reveals a persistent intestinal dysbiosis triggered by conventional anti-tuberculosis therapy // Microbiome. – 2017. – Vol. 5, № 1. – Р. 1 – 17. https://doi.org/10.1186/s40168-017-0286-2Test; Negi S., Pahari S., Bashir H., Agrewala J.N. Intestinal microbiota disruption limits the isoniazid mediated clearance of Mycobacterium tuberculosis in mice // European journal of immunology. – 2020. – Vol. 50, № 12. – Р. 1976 – 1987. https://doi.org/10.1002/eji.202048556Test; Osei Sekyere J., Maningi N.E., Fourie P.B. Mycobacterium tuberculosis, antimicrobials, immunity, and lung–gut microbiota crosstalk: Current updates and emerging advances //Annals of the New York Academy of Sciences. – 2020. – Vol. 1467, № 1. – Р. 21 – 47. https://doi.org/10.1111/nyas.14300Test; Palma Albornoz S.P., Fraga-Silva T.F.C., Gembre A.F., de Oliveira R.S., de Souza F.M., Rodrigues T.S., Kettelhut I.D.C., Manca C.S., Jordao A.A., Ramalho L.N.Z., Ribolla P.E.M., Carlos D., Bonato V.L.D. Obesity-Induced Dysbiosis Exacerbates IFN-γ Production and Pulmonary Inflammation in the Mycobacterium tuberculosis Infection // Cells. – 2021. – Vol. 10, № 7. – Р. 1732. https://doi.org/10.3390/cells10071732Test; Palmer C., Bik E.M., DiGiulio D.B., Relman D.A., Brown P.O. Development of the human infant intestinal microbiota //PLoS biology. – 2007. – Vol. 5, № 7. – Р. e177. https://doi.org/10.1371/journal.pbio.0050177Test; Pearl J.E., Das M., Cooper A.M. Immunological roulette: Luck or something more? Considering the connections between host and environment in TB // Cellular & Molecular Immunology. – 2018. – Vol. 15, № 3. – Р. 226 – 232. https://doi.org/10.1038/cmi.2017.145Test; Perry S., de Jong B.C., Solnick J.V., de la Luz Sanchez M., Yang S., Lin P.L., Hansen L.M., Talat N., Hill P.C., Hussain R., Adegbola R.A., Flynn J., Canfield D., Parsonnet J. Infection with Helicobacter pylori is associated with protection against tuberculosis // PloS one. – 2010. – Vol. 5, № 1. – Р. e8804. https://doi.org/10.1371/journal.pone.0008804Test; Rowan-Nash A.D., Korry B. J, Mylonakis E., Belenky P. Cross-domain and viral interactions in the microbiome //Microbiology and Molecular Biology Reviews. – 2019. – Vol. 83, № 1. – Р. e00044–18. https://doi.org/10.1128/MMBR.00044-18Test; Sender R, Fuchs S, Milo R. Revised Estimates for the Number of Human and Bacteria Cells in the Body // PLoS Biol. – 2016. – Vol.14, № 8. – Р. e1002533. https://doi.org/10.1371/journal.pbio.1002533Test; Shi W., Hu Y., Ning Z., Xia F., Wu M., Hu Y.O.O., Chen C., Prast-Nielsen S., Xu B. Alterations of gut microbiota in patients with active pulmonary tuberculosis in China: a pilot study // International Journal of Infectious Diseases. – 2021. – № 111. – Р. 313–321. https://doi.org/10.1016/j.ijid.2021.08.064Test.; Todorov S.D., Franko B.D., Vid I.J. An in vitro study of the beneficial properties and safety of lactic acid bacteria isolated from Portuguese fermented meat products // Poleznyye Mikroby. – 2014. – Vol. 5, № 3. – Р. 351–366. https://doi.org/10.3920/BM2013.0030Test; Torow N., Hornef M.W. The neonatal window of opportunity: setting the stage for life-long host-microbial interaction and immune homeostasis // The Journal of Immunology. – 2017. – Vol. 198, № 2. – Р. 557–563. https://doi.org/10.4049/jimmunol.1601253Test; Wang J., Xiong K., Zhao S., Zhang C., Zhang J., Xu L., Ma A. Long-Term Effects of Multi-Drug-Resistant Tuberculosis Treatment on Gut Microbiota and Its Health Consequences // Frontiers in microbiology. – 2020. – № 11. – Р. 53. https://doi.org/10.3389/fmicb.2020.00053Test; Wang Y., Deng Y., Liu N., Chen Y., Jiang Y., Teng Z., Ma Z., Chang Y., Xiang Y. Alterations in the Gut Microbiome of Individuals With Tuberculosis of Different Disease States // Frontiers in Cellular and Infection Microbiology. – 2022. – № 12. – Р. 328. https://doi.org/10.3389/fcimb.2022.836987Test; Winglee K., Eloe-Fadrosh E., Gupta S., Guo H., Fraser C., Bishai W. Aerosol Mycobacterium tuberculosis infection causes rapid loss of diversity in gut microbiota // PloS one. – 2014. – Vol. 9, № 5. – Р. e97048. https://doi.org/10.1371/journal.pone.0097048Test; Wipperman M.F., Fitzgerald D.W., Juste M.A.J., Taur Y., Namasivayam S., Sher A., Bean J.M., Bucci V., Glickman M.S. Antibiotic treatment for Tuberculosis induces a profound dysbiosis of themicrobiome that persists long after therapy is completed // Scientific reports. – 2017. – Vol. 7, № 1. – Р. 1 – 11. https://doi.org/10.1038/s41598-017-10346-6Test; Woodall C.A., McGeoch L.J., Hay A.D., Hammond A. Respiratory tract infections and gut microbiome modifications: A systematic review // PloS one. – 2022. – Vol. 17, № 1. – Р. e0262057. https://doi.org/10.1371/journal.pone.0262057Test; Yang F., Yang Y., Chen L., Zhang Z., Liu L., Zhang C., Mai Q., Chen Y., Chen Z., Lin T., Chen L., Guo H., Zhou L., Shen H., Chen X., Liu L., Zhang G., Liao H., Zeng L., Zeng G. The gut microbiota mediates protective immunity against tuberculosis via modulation of lncRNA. Gut // Gut microbes. – 2022. – Vol.14, № 1. – Р. 2029997. https://doi.org/10.1080/19490976.2022.2029997Test; Yatsunenko T., Rey F.E., Manary M.J., Trehan I., Dominguez-Bello M.G., Contreras M., Magris M., Hidalgo G., Baldassano R.N., Anokhin A.P., Heath A.C., Warner B., Reeder J., Kuczynski J., Caporaso J.G., Lozupone C.A., Lauber C., Clemente J.C., Knights D., Knight R., Gordon J.I. Human gut microbiome viewed across age and geography // Nature. – 2012. – Vol. 486, № 7402. – Р. 222–227. https://doi.org/10.1038/nature11053Test; Yu Z., Shen X., Wang A., Hu C., Chen J. (2023) The gut microbiome: A line of defense against tuberculosis development // Front. Cell. Infect. Microbiol. – № 13. – Р. 1149679. https://doi.org/10.3389/fcimb.2023.1149679Test; Zhang D., Li S., Wang N., Tan H.Y., Zhang Z., Feng Y. The Cross-Talk Between Gut Microbiota and Lungs in Common Lung Diseases // Front Microbiol. – 2020. – № 11. – Р. 301. https://doi.org/10.3389/fmicb.2020.00301Test; https://www.tibl-journal.com/jour/article/view/1808Test

  4. 4
    دورية أكاديمية

    المصدر: The Siberian Journal of Clinical and Experimental Medicine; Том 39, № 1 (2024); 38-43 ; Сибирский журнал клинической и экспериментальной медицины; Том 39, № 1 (2024); 38-43 ; 2713-265X ; 2713-2927

    وصف الملف: application/pdf

    العلاقة: https://www.sibjcem.ru/jour/article/view/2182/930Test; Katz J.N., Arant K.R., Loeser R.F. Diagnosis and Treatment of Hip and Knee Osteoarthritis: A Review. JAMA. 2021;325(6):568–578. DOI:10.1001/jama.2020.22171.; Vina E.R., Kwoh C.K. Epidemiology of osteoarthritis: literature update. Curr. Opin. Rheumatol. 2018;30(2):160–167. DOI:10.1097/BOR.0000000000000479.; Glyn-Jones S., Palmer A.J., Agricola R., Price A.J., Vincent T.L., Weinans H. et al. Osteoarthritis. Lancet. 2015;386(9991):376–387. DOI:10.1016/S0140-6736(14)60802-3.; Xia B., Di C., Zhang J., Hu S., Jin H., Tong P. Osteoarthritis pathogenesis: a review of molecular mechanisms. Calcif. Tissue Int. 2014;95(6):495– 505. DOI:10.1007/s00223-014-9917-9.; Robinson W.H., Lepus C.M., Wang Q., Raghu H., Mao R., Lindstrom T.M. et al. Low-grade inflammation as a key mediator of the pathogenesis of osteoarthritis. Nat. Rev. Rheumatol. 2016;12(10):580–592. DOI:10.1038/nrrheum.2016.136.; Scanzello C.R. Role of low-grade inflammation in osteoarthritis. Curr. Opin. Rheumatol. 2017;29(1):79–85. DOI:10.1097/BOR.0000000000000353.; Huang Z., Chen J., Li B., Zeng B., Chou C.H., Zheng X. et al. Faecal microbiota transplantation from metabolically compromised human donors accelerates osteoarthritis in mice. Ann. Rheum. Dis. 2020;79(5):646– 656. DOI:10.1136/annrheumdis-2019-216471.; Le Chatelier E., Nielsen T., Qin J., Prifti E., Hildebrand F., Falony G. et al. Richness of human gut microbiome correlates with metabolic markers. Nature. 2013;500(7464):541–546. DOI:10.1038/nature12506.; Ghoshal S., Witta J., Zhong J., de Villiers W., Eckhardt E. Chylomicrons promote intestinal absorption of lipopolysaccharides. J. Lipid Res. 2009;50(1):90–97. DOI:10.1194/jlr.M800156-JLR200.; Cani P.D., Neyrinck A.M., Fava F., Knauf C., Burcelin R.G., Tuohy K.M., et al. Selective increases of bifidobacteria in gut microflora improve highfat-diet-induced diabetes in mice through a mechanism associated with endotoxaemia. Diabetologia. 2007;50(11):2374–2383. DOI:10.1007/s00125-007-0791-0.; Biver E., Berenbaum F., Valdes A.M., Araujo de Carvalho I., Bindels L.B., Brandi M.L. et al. Gut microbiota and osteoarthritis management: An expert consensus of the European society for clinical and economic aspects of osteoporosis, osteoarthritis and musculoskeletal diseases (ESCEO). Ageing Res. Rev. 2019;55:100946. DOI:10.1016/j.arr.2019.100946.; Azamar-Llamas D., Hernández-Molina G., Ramos-Ávalos B., Furuzawa-Carballeda J. Adipokine contribution to the pathogenesis of osteoarthritis. Mediators Inflamm. 2017;2017:5468023. DOI:10.1155/2017/5468023.; Xie C., Chen Q. Adipokines: new therapeutic target for osteoarthritis? Curr. Rheumatol. Rep. 2019;21(12):71. DOI:10.1007/s11926-019-0868-z.; Mobasheri A., Matta C., Zákány R., Musumeci G. Chondrosenescence: definition, hallmarks and potential role in the pathogenesis of osteoarthritis. Maturitas. 2015;80(3):237–244. DOI:10.1016/j.maturitas.2014.12.003.; O’Toole P.W., Jeffery I.B. Gut microbiota and aging. Science. 2015;350(6265):1214–1215. DOI:10.1126/science.aac8469.; Hao X., Shang X., Liu J., Chi R., Zhang J., Xu T. The gut microbiota in osteoarthritis: where do we stand and what can we do? Arthritis Res. Ther. 2021;23(1):42. DOI:10.1186/s13075-021-02427-9.; Ramires L.C., Santos G.S., Ramires R.P., da Fonseca L.F., Jeyaraman M., Muthu S. et al. The Association between gut microbiota and osteoarthritis: Does the disease begin in the gut? Int. J. Mol. Sci. 2022;23(3):1494. DOI:10.3390/ijms23031494.; Chow Y.Y., Chin K.Y. The role of inflammation in the pathogenesis of osteoarthritis. Mediators Inflamm. 2020;2020:8293921. DOI:10.1155/2020/8293921.; Huang Z., Kraus V.B. Does lipopolysaccharide-mediated inflammation have a role in OA? Nat. Rev. Rheumatol. 2016;12(2):123–129. DOI:10.1038/nrrheum.2015.158.; Huang Z.Y., Stabler T., Pei F.X., Kraus V.B. Both systemic and local lipopolysaccharide (LPS) burden are associated with knee OA severity and inflammation. Osteoarthr. Cartil. 2016;24(10):1769–1775. DOI:10.1016/j.joca.2016.05.008.; Guan Z., Jia J., Zhang C., Sun T., Zhang W., Yuan W. et al. Gut microbiome dysbiosis alleviates the progression of osteoarthritis in mice. Clin. Sci. (Lond.). 2020;134(23):3159–3174. DOI:10.1042/CS20201224.; Mendez M.E., Murugesh D.K., Sebastian A., Hum N.R., McCloy S.A., Kuhn E.A. et al. Antibiotic treatment prior to injury improves post-traumatic osteoarthritis outcomes in mice. Int. J. Mol. Sci. 2020;21(17):6424. DOI:10.3390/ijms21176424.; Yu X.H., Yang Y.Q., Cao R.R., Bo L., Lei S.F. The causal role of gut microbiota in development of osteoarthritis. Osteoarthr. Cartil. 2021;29(12):1741–1750. DOI:10.1016/j.joca.2021.08.003.; Li M., Van Esch B.C.A.M., Wagenaar G.T.M., Garssen J., Folkerts G., Henricks P.A.J. Pro- and anti-inflammatory effects of short chain fatty acids on immune and endothelial cells. Eur. J. Pharmacol. 2018;831:52– 59. DOI:10.1016/j.ejphar.2018.05.003.; Zhao Y., Chen B., Li S., Yang L., Zhu D., Wang Y. et al. Detection and characterization of bacterial nucleic acids in culture-negative synovial tissue and fluid samples from rheumatoid arthritis or osteoarthritis patients. Sci. Rep. 2018;8(1):14305. DOI:10.1038/s41598-018-32675-w.; Collins K.H., Paul H.A., Reimer R.A., Seerattan R.A., Hart D.A., Herzog W. Relationship between inflammation, the gut microbiota, and metabolic osteoarthritis development: studies in a rat model. Osteoarthr. Cartil. 2015;23(11):1989–1998. DOI:10.1016/j.joca.2015.03.014.; Green M., Arora K., Prakash S. Microbial medicine: prebiotic and probiotic functional foods to target obesity and metabolic syndrome. Int. J. Mol. Sci. 2020;21(8):2890. DOI:10.3390/ijms21082890.; Saltzman E.T., Thomsen M., Hall S., Vitetta L. Perna canaliculus and the Intestinal Microbiome. Mar. Drugs. 2017;15(7):207. DOI:10.3390/md15070207.; Jhun J., Cho K.H., Lee D.H., Kwon J.Y., Woo J.S., Kim J. et al. Oral administration of Lactobacillus rhamnosus ameliorates the progression of osteoarthritis by inhibiting joint pain and inflammation. Cells. 2021;10(5):1057. DOI:10.3390/cells10051057.; So J.-S., Kwon H.-K., Lee C.-G., Yi H.J., Park J.A., Lim S.Y. et al. Lactobacillus casei suppresses experimental arthritis by down-regulating T helper 1 effector functions. Mol. Immunol. 2008;45(9):2690–2699. DOI:10.1016/j.molimm.2007.12.010.; Amdekar S., Singh V., Singh R., Sharma P., Keshav P., Kumar A. Lactobacillus casei reduces the inflammatory joint damage associated with collagen-induced arthritis (CIA) by reducing the pro-inflammatory cytokines. J. Clin. Immunol. 2011;31(2):147–154. DOI:10.1007/s10875-010-9457-7.; Henrotin Y., Patrier S., Pralus A., Roche M., Nivoliez A. Protective actions of oral administration of Bifidobacterium longum CBi0703 in spontaneous osteoarthritis in dunkin hartley guinea pig model. Cartilage. 2021;13(2_suppl.):1204S–1213S. DOI:10.1177/1947603519841674.; Holscher H.D. Dietary fiber and prebiotics and the gastrointestinal microbiota. Gut Microbes. 2017;8(2):172–184. DOI:10.1080/19490976.2017.1290756.; Primec M., Klemenak M., Di Gioia D., Aloisio I., Bozzi Cionci N., Quagliariello A. et al. Clinical intervention using Bifidobacterium strains in celiac disease children reveals novel microbial modulators of TNF-α and short-chain fatty acids. Clin. Nutr. 2019;38(3):1373–1381. DOI:10.1016/j.clnu.2018.06.931.; Li M., Van Esch B.C.A.M., Henricks P.A.J., et al. The anti-inflammatory effects of short chain fatty acids on lipopolysaccharide- or tumor necrosis factor α-stimulated endothelial cells via activation of GPR41/43 and inhibition of HDACs. Front. Pharmacol. 2018;9:533. DOI:10.3389/fphar.2018.00533.; O-Sullivan I., Natarajan Anbazhagan A., Singh G., Ma K., Green S.J., Singhal M. et al. Lactobacillus acidophilus mitigates osteoarthritis-associated pain, cartilage disintegration and gut microbiota dysbiosis in an experimental murine OA model. Biomedicines. 2022;10(6):1298. DOI:10.3390/biomedicines10061298.; Taye I., Bradbury J., Grace S., Avila C. Probiotics for pain of osteoarthritis; An N-of-1 trial of individual effects. Complement. Ther. Med. 2020;54:102548. DOI:10.1016/j.ctim.2020.102548.; https://www.sibjcem.ru/jour/article/view/2182Test

  5. 5
    دورية أكاديمية
  6. 6
    دورية أكاديمية
  7. 7
    دورية أكاديمية
  8. 8
    دورية أكاديمية
  9. 9
    دورية أكاديمية
  10. 10
    دورية أكاديمية