يعرض 1 - 10 نتائج من 67 نتيجة بحث عن '"инкретины"', وقت الاستعلام: 1.04s تنقيح النتائج
  1. 1
    دورية أكاديمية

    المصدر: SCIENTIFIC JOURNAL OF APPLIED AND MEDICAL SCIENCES; Vol. 3 No. 4 (2024): AMALIY VA TIBBIYOT FANLARI ILMIY JURNALI; 69-76 ; НАУЧНЫЙ ЖУРНАЛ ПРИКЛАДНЫХ И МЕДИЦИНСКИХ НАУК; Том 3 № 4 (2024): AMALIY VA TIBBIYOT FANLARI ILMIY JURNALI; 69-76 ; 2181-3469

    وصف الملف: application/pdf

  2. 2
    دورية أكاديمية

    المساهمون: The work was carried out within the framework of a grant from the Russian Science Foundation(Project No. 20-75-10013)., Работа выполнена в рамках гранта РНФ (проект № 20-75-10013).

    المصدر: Pharmacy & Pharmacology; Том 11, № 4 (2023); 347-380 ; Фармация и фармакология; Том 11, № 4 (2023); 347-380 ; 2413-2241 ; 2307-9266 ; 10.19163/2307-9266-2023-11-4

    وصف الملف: application/pdf

    العلاقة: https://www.pharmpharm.ru/jour/article/view/1386/999Test; https://www.pharmpharm.ru/jour/article/view/1386/1000Test; Дедов И.И., Шестакова М.В., Майоров А.Ю., Мокрышева Н.Г., Викулова О.К., Галстян Г.Р., Кураева Т.Л., Петеркова В.А., Смирнова О.М., Старостина Е.Г., Суркова Е.В., Сухарева О.Ю., Токмакова А.Ю., Шамхалова М.Ш., Ярек-Мартынова И.Я., Артемова Е.В., Бешлиева Д.Д., Бондаренко О.Н., Волеводз Н.Н., Гомова И.С., Григорян О.Р., Джемилова З.Н., Есаян Р.М., Ибрагимова Л.И., Калашников В.Ю., Кононенко И.В., Лаптев Д.Н., Липатов Д.В., Мельникова О.Г., Михина М.С., Мичурова М.С., Мотовилин О.Г., Никонова Т.В., Роживанов Р.В., Скляник И.А., Шестакова Е.А. «Алгоритмы специализированной медицинской помощи больным сахарным диабетом». Под редакцией И.И. Дедова, М.В. Шестаковой, А.Ю. Майорова. 10-й выпуск // Сахарный диабет. – 2021. – Т. 24, № 1S. – С. 1–148. DOI:10.14341/DM12802; Blonde L., Umpierrez G.E., Reddy S.S., McGill J.B., Berga S.L., Bush M., Chandrasekaran S., DeFronzo R.A., Einhorn D., Galindo R.J., Gardner T.W., Garg R., Garvey W.T., Hirsch I.B., Hurley D.L., Izuora K., Kosiborod M., Olson D., Patel S.B., Pop-Busui R., Sadhu A.R., Samson S.L., Stec C., Tamborlane W.V. Jr, Tuttle K.R., Twining C., Vella A., Vellanki P., Weber S.L. American Association of Clinical Endocrinology Clinical Practice Guideline: Developing a Diabetes Mellitus Comprehensive Care Plan-2022 Update // Endocr Pract. – 2022. – Vol. 28, No. 10. – P. 923–1049. DOI:10.1016/j.eprac.2022.08.002; Saisho Y. Incretin-based therapy and pancreatitis: accumulating evidence and unresolved questions // Ann Transl Med. – 2018. – Vol. 6, No. 7. – P. 131. DOI:10.21037/atm.2018.02.24; Müller T.D., Finan B., Bloom S.R., D’Alessio D., Drucker D.J., Flatt P.R., Fritsche A., Gribble F., Grill H.J., Habener J.F., Holst J.J., Langhans W., Meier J.J., Nauck M.A., Perez-Tilve D., Pocai A., Reimann F., Sandoval D.A., Schwartz T.W., Seeley R.J., Stemmer K., Tang-Christensen M., Woods S.C., DiMarchi R.D., Tschöp M.H. Glucagon-like peptide 1 (GLP-1) // Mol Metab. – 2019. – Vol. 30. – P. 72–130. DOI:10.1016/j.molmet.2019.09.010; Holst J.J. From the Incretin Concept and the Discovery of GLP-1 to Today’s Diabetes Therapy // Front Endocrinol (Lausanne). – 2019. – Vol. 10. – P. 260. DOI:10.3389/fendo.2019.00260; Sharma D., Verma S., Vaidya S., Kalia K., Tiwari V. Recent updates on GLP-1 agonists: Current advancements & challenges // Biomed. Pharmacother. – 2018. – Vol. 108. – P. 952–962. DOI:10.1016/j.biopha.2018.08.088; Brierley D.I., de Lartigue G. Reappraising the role of the vagus nerve in GLP-1-mediated regulation of eating // Br J Pharmacol. – 2022. – Vol. 179, No. 4. – P. 584–599. DOI:10.1111/bph.15603; Singh I., Wang L., Xia B., Liu J., Tahiri A., El Ouaamari A., Wheeler M.B., Pang Z.P. Activation of arcuate nucleus glucagon-like peptide-1 receptor-expressing neurons suppresses food intake // Cell Biosci. – 2022. – Vol. 12, No. 1. – P. 178. DOI:10.1186/s13578-022-00914-3; Gabe M.B.N., Skov-Jeppesen K., Gasbjerg L.S., Schiellerup S.P., Martinussen C., Gadgaard S., Boer G.A., Oeke J., Torz L.J., Veedfald S., Svane M.S., Bojsen-Møller K.N., Madsbad S., Holst J.J., Hartmann B., Rosenkilde M.M. GIP and GLP-2 together improve bone turnover in humans supporting GIPR-GLP-2R co-agonists as future osteoporosis treatment // Pharmacol Res. – 2022. – Vol. 176. – P. 106058. DOI:10.1016/j.phrs.2022.106058; Henriksen D.B., Alexandersen P., Hartmann B., Adrian C.L., Byrjalsen I., Bone H.G., Holst J.J., Christiansen C. Four-month treatment with GLP-2 significantly increases hip BMD: a randomized, placebo-controlled, dose-ranging study in postmenopausal women with low BMD // Bone. – 2009. – Vol. 45, No. 5. – P. 833–842. DOI:10.1016/j.bone.2009.07.008; Greco E.V., Russo G., Giandalia A., Viazzi F., Pontremoli R., De Cosmo S. GLP-1 Receptor Agonists and Kidney Protection // Medicina (Kaunas). – 2019. – Vol. 55, No. 6. – P. 233. DOI:10.3390/medicina55060233; Zhao X., Wang M., Wen Z., Lu Z., Cui L., Fu C., Xue H., Liu Y., Zhang Y. GLP-1 Receptor Agonists: Beyond Their Pancreatic Effects // Front. Endocrinol. (Lausanne). – 2021. – Vol. 12. – P. 721135. DOI:10.3389/fendo.2021.721135; Whalley N.M., Pritchard L.E., Smith D.M., White A. Processing of proglucagon to GLP-1 in pancreatic α-cells: is this a paracrine mechanism enabling GLP-1 to act on β-cells? // J Endocrinol. – 2011. – Vol. 211, No. 1. – P. 99–106. DOI:10.1530/JOE-11-0094; Wideman R.D., Yu I.L., Webber T.D., Verchere C.B., Johnson J.D., Cheung A.T., Kieffer T.J. Improving function and survival of pancreatic islets by endogenous production of glucagon-like peptide 1 (GLP-1) // Proc Natl Acad Sci USA. – 2006. – Vol. 103, No. 36. – P. 13468–13473. DOI:10.1073/pnas.0600655103; Jun L.S., Millican R.L., Hawkins E.D., Konkol D.L., Showalter A.D., Christe M.E., Michael M.D., Sloop K.W. Absence of glucagon and insulin action reveals a role for the GLP-1 receptor in endogenous glucose production // Diabetes. – 2015. – Vol. 64, No. 3. – P. 819–827. DOI:10.2337/db14-1052; Capozzi M.E., Svendsen B., Encisco S.E., Lewandowski S.L., Martin M.D., Lin H., Jaffe J.L., Coch R.W., Haldeman J.M., MacDonald P.E., Merrins M.J., D’Alessio D.A., Campbell J.E. β Cell tone is defined by proglucagon peptides through cAMP signaling // JCI Insight. – 2019. – Vol. 4, No. 5. – P. e126742. DOI:10.1172/jci.insight.126742; Zhao F., Zhou Q., Cong Z., Hang K., Zou X., Zhang C., Chen Y., Dai A., Liang A., Ming Q., Wang M., Chen L.N., Xu P., Chang R., Feng W., Xia T., Zhang Y., Wu B., Yang D., Zhao L., Xu H.E., Wang M.W. Structural insights into multiplexed pharmacological actions of tirzepatide and peptide 20 at the GIP, GLP-1 or glucagon receptors // Nat Commun. – 2022. – Vol. 13, No. 1. – P. 1057. DOI:10.1038/s41467-022-28683-0; Svendsen B., Larsen O., Gabe M.B.N., Christiansen C.B., Rosenkilde M.M., Drucker D.J., Holst J.J. Insulin Secretion Depends on Intra-islet Glucagon Signaling // Cell Rep. – 2018. – Vol. 25, No. 5. – P. 1127–1134.e2. DOI:10.1016/j.celrep.2018.10.018; Holst J.J. Glucagon-like peptide-1: Are its roles as endogenous hormone and therapeutic wizard congruent? // J Intern Med. – 2022. – Vol. 291, No. 5. – P. 557–573. DOI:10.1111/joim.13433; Malik F., Li Z. Non-peptide agonists and positive allosteric modulators of glucagon-like peptide-1 receptors: Alternative approaches for treatment of Type 2 diabetes // Br J Pharmacol. – 2022. – Vol. 179, No. 4. – P. 511–525. DOI:10.1111/bph.15446; McLean B.A., Wong C.K., Campbell J.E., Hodson D.J., Trapp S., Drucker D.J. Revisiting the Complexity of GLP-1 Action from Sites of Synthesis to Receptor Activation // Endocr Rev. – 2021. – Vol. 42, No. 2. – P. 101–132. DOI:10.1210/endrev/bnaa032; Choe H.J., Cho Y.M. Peptidyl and Non-Peptidyl Oral Glucagon-Like Peptide-1 Receptor Agonists // Endocrinol. Metab. (Seoul). – 2021. – Vol. 36, No. 1. – P. 22–29. DOI:10.3803/EnM.2021.102; Kawai T., Sun B., Yoshino H., Feng D., Suzuki Y., Fukazawa M., Nagao S., Wainscott D.B., Showalter A.D., Droz B.A., Kobilka T.S., Coghlan M.P., Willard F.S., Kawabe Y., Kobilka B.K., Sloop K.W. Structural basis for GLP-1 receptor activation by LY3502970, an orally active nonpeptide agonist // Proc. Natl. Acad. Sci. USA. – 2020. – Vol. 117, No. 47. – P. 29959–29967. DOI:10.1073/pnas.2014879117; Pyke C., Heller R.S., Kirk R.K., Ørskov C., Reedtz-Runge S., Kaastrup P., Hvelplund A., Bardram L., Calatayud D., Knudsen L.B. GLP-1 receptor localization in monkey and human tissue: novel distribution revealed with extensively validated monoclonal antibody // Endocrinology. – 2014. – Vol. 155, No. 4. – P. 1280–1290. DOI:10.1210/en.2013-1934; Richards P., Parker H.E., Adriaenssens A.E., Hodgson J.M., Cork S.C., Trapp S., Gribble F.M., Reimann F. Identification and characterization of GLP-1 receptor-expressing cells using a new transgenic mouse model // Diabetes. – 2014. – Vol. 63, No. 4. – P. 1224–1233. DOI:10.2337/db13-1440; Hjørne A.P., Modvig I.M., Holst J.J. The Sensory Mechanisms of Nutrient-Induced GLP-1 Secretion // Metabolites. – 2022. – Vol. 12, No. 5. – P. 420. DOI:10.3390/metabo12050420; Mayendraraj A., Rosenkilde M.M., Gasbjerg L.S. GLP-1 and GIP receptor signaling in beta cells – а review of receptor interactions and co-stimulation // Peptides. – 2022. – Vol. 151. – P. 170749. DOI:10.1016/j.peptides.2022.170749; Wootten D., Reynolds C.A., Smith K.J., Mobarec J.C., Koole C., Savage E.E., Pabreja K., Simms J., Sridhar R., Furness S.G.B., Liu M., Thompson P.E., Miller L.J., Christopoulos A., Sexton P.M. The Extracellular Surface of the GLP-1 Receptor Is a Molecular Trigger for Biased Agonism // Cell. – 2016. – Vol. 165, No. 7. – P. 1632–1643. DOI:10.1016/j.cell.2016.05.023; Spreckley E., Murphy K.G. The L-Cell in Nutritional Sensing and the Regulation of Appetite // Front Nutr. – 2015. – Vol. 2. – P. 23. DOI:10.3389/fnut.2015.00023; Wang X., Liu H., Chen J., Li Y., Qu S. Multiple Factors Related to the Secretion of Glucagon-Like Peptide-1 // Int J Endocrinol. – 2015. – Vol. 2015. – P. 651757. DOI:10.1155/2015/651757; Alavi S.E., Cabot P.J., Moyle P.M. Glucagon-Like Peptide-1 Receptor Agonists and Strategies To Improve Their Efficiency // Mol Pharm. – 2019. – Vol. 16, No. 6. – P. 2278–2295. DOI:10.1021/acs.molpharmaceut.9b00308; Eriksson L., Nyström T. Antidiabetic agents and endothelial dysfunction – beyond glucose control. Basic Clin Pharmacol Toxicol. – 2015. – Vol. 117, No. 1. – P. 15–25. DOI:10.1111/bcpt.12402; Calanna S., Christensen M., Holst J.J., Laferrère B., Gluud L.L., Vilsbøll T., Knop F.K. Secretion of glucagon-like peptide-1 in patients with type 2 diabetes mellitus: systematic review and meta-analyses of clinical studies // Diabetologia. – 2013. – Vol. 56, No. 5. – P. 965–972. DOI:10.1007/s00125-013-2841-0; Kuhre R.E., Frost C.R., Svendsen B., Holst J.J. Molecular mechanisms of glucose-stimulated GLP-1 secretion from perfused rat small intestine // Diabetes. – 2015. – Vol. 64, No. 2. – P. 370–382. DOI:10.2337/db14-0807; Tyurenkov I.N., Ozerov A.A., Kurkin D.V., Logvinova E.O., Bakulin D.A., Volotova E.V., Borodin D.D. Structure and biological activity of endogenous and synthetic agonists of GPR119 // Russian Chemical Reviews. – 2018. – Vol. 87, No. 2. – P. 151–166. DOI:10.1070/rcr4737; Тюренков И.Н., Куркин Д.В., Волотова Е.В., Бакулин Д.А. Роль микрофлоры кишечника, состава пищи, GPR41- и GPR43-рецепторов к короткоцепочечным жирным кислотам в энергетическом обмене позвоночных животных // Успехи физиологических наук. – 2017. – Т. 48, № 2. – С. 100–112.; Tyurenkov I.N., Kurkin D.V., Bakulin D.A., Volotova E.V., Morkovin E.I., Chafeev M.A., Karapetian R.N. Chemistry and Hypoglycemic Activity of GPR119 Agonist ZB-16 // Front Endocrinol (Lausanne). – 2018. – Vol. 9. – P. 543. DOI:10.3389/fendo.2018.00543; Im D.S. GPR119 and GPR55 as Receptors for Fatty Acid Ethanolamides, Oleoylethanolamide and Palmitoylethanolamide // Int J Mol Sci. – 2021. – Vol. 22, No. 3. – P. 1034. DOI:10.3390/ijms22031034; Higuchi N., Hira T., Yamada N., Hara H. Oral administration of corn zein hydrolysate stimulates GLP-1 and GIP secretion and improves glucose tolerance in male normal rats and Goto-Kakizaki rats // Endocrinology. – 2013. – Vol. 154, No. 9. – P. 3089–3098. DOI:10.1210/en.2012-2275; Gagnon J., Baggio L.L., Drucker D.J., Brubaker P.L. Ghrelin Is a Novel Regulator of GLP-1 Secretion // Diabetes. – 2015. – Vol. 64, No. 5. – P. 1513–1521. DOI:10.2337/db14-1176; Hansen L., Lampert S., Mineo H., Holst J.J. Neural regulation of glucagon-like peptide-1 secretion in pigs // Am J Physiol Endocrinol Metab. – 2004. – Vol. 287, No. 5. – P. E939–947. DOI:10.1152/ajpendo.00197.2004; Persson K., Gingerich R.L., Nayak S., Wada K., Wada E., Ahrén B. Reduced GLP-1 and insulin responses and glucose intolerance after gastric glucose in GRP receptor-deleted mice // Am J Physiol Endocrinol. Metab. – 2000. – Vol. 279, No. 5. – P. E956–962. DOI:10.1152/ajpendo.2000.279.5.E956; Han Y.E., Kang C.W., Oh J.H., Park S.H., Ku C.R., Cho Y.H., Lee M.K., Lee E.J. Olfactory Receptor OR51E1 Mediates GLP-1 Secretion in Human and Rodent Enteroendocrine L Cells // J Endocr Soc. – 2018. – Vol. 2, No. 11. – P. 1251–1258. DOI:10.1210/js.2018-00165; Tomas A., Jones B., Leech C. New Insights into Beta-Cell GLP-1 Receptor and cAMP Signaling // J Mol Biol. – 2020. – Vol. 432, No. 5. – P. 1347–1366. DOI:10.1016/j.jmb.2019.08.009; Gromada J., Brock B., Schmitz O., Rorsman P. Glucagon-like peptide-1: regulation of insulin secretion and therapeutic potential // Basic Clin Pharmacol Toxicol. – 2004. – Vol. 95, No. 6. – P. 252–262. DOI:10.1111/j.1742-7843.2004.t01-1-pto950502.x; Buteau J. GLP-1 receptor signaling: effects on pancreatic beta-cell proliferation and survival // Diabetes Metab. – 2008. – Vol. 34 Suppl 2. – P. S73–77. DOI:10.1016/S1262-3636(08)73398-6; Park S., Dong X., Fisher T.L., Dunn S., Omer A.K., Weir G., White M.F. Exendin-4 uses Irs2 signaling to mediate pancreatic beta cell growth and function // J Biol Chem. – 2006. – Vol. 281, No. 2. – P. 1159–1168. DOI:10.1074/jbc.M508307200; Peng W., Zhou R., Sun Z.F., Long J.W., Gong Y.Q. Novel Insights into the Roles and Mechanisms of GLP-1 Receptor Agonists against Aging-Related Diseases // Aging Dis. – 2022. – Vol. 13, No. 2. – P. 468–490. DOI:10.14336/AD.2021.0928; Oh Y.S., Jun H.S. Effects of Glucagon-Like Peptide-1 on Oxidative Stress and Nrf2 Signaling // Int J Mol Sci. – 2017. – Vol. 19, No. 1. – P. 26. DOI:10.3390/ijms19010026; Urusova I.A., Farilla L., Hui H., D’Amico E., Perfetti R. GLP-1 inhibition of pancreatic islet cell apoptosis // Trends Endocrinol Metab. – 2004. – Vol. 15, No. 1. – P. 27–33. DOI:10.1016/j.tem.2003.11.006; Drucker D.J. Mechanisms of action and therapeutic application of glucagon-like peptide-1 // Cell Metab. – 2018. – Vol. 27, No. 4. – P. 740–756. DOI:10.1016/j.cmet.2018.03.001; De Marinis Y.Z., Salehi A., Ward C.E., Zhang Q., Abdulkader F., Bengtsson M., Braha O., Braun M., Ramracheya R., Amisten S., Habib A.M., Moritoh Y., Zhang E., Reimann F., Rosengren A., Shibasaki T., Gribble F., Renström E., Seino S., Eliasson L., Rorsman P. GLP-1 inhibits and adrenaline stimulates glucagon release by differential modulation of N– and L-type Ca2+ channel-dependent exocytosis // Cell Metab. – 2010. – Vol. 11, No. 6. – P. 543–553. DOI:10.1016/j.cmet.2010.04.007; Ravassa S., Zudaire A., Díez J. GLP-1 and cardioprotection: from bench to bedside // Cardiovasc Res. – 2012. – Vol. 94, No. 2. – P. 316–323. DOI:10.1093/cvr/cvs123; Bremholm L., Andersen U.B., Hornum M., Hilsted L., Veedfald S., Hartmann B., Holst J.J. Acute effects of glucagon-like peptide-1, GLP-19-36 amide, and exenatide on mesenteric blood flow, cardiovascular parameters, and biomarkers in healthy volunteers // Physiol Rep. – 2017. – Vol. 5, No. 4. – P. e13102. DOI:10.14814/phy2.13102; Sun F., Wu S., Guo S., Yu K., Yang Z., Li L., Zhang Y., Quan X., Ji L., Zhan S. Impact of GLP-1 receptor agonists on blood pressure, heart rate and hypertension among patients with type 2 diabetes: A systematic review and network meta-analysis // Diabetes Res Clin Pract. – 2015. – Vol. 110, No. 1. – P. 26–37. DOI:10.1016/j.diabres.2015.07.015; Erbil D., Eren C.Y., Demirel C., Küçüker M.U., Solaroğlu I., Eser H.Y. GLP-1’s role in neuroprotection: a systematic review // Brain Inj. – 2019. – Vol. 33, No. 6. – P. 734–819. DOI:10.1080/02699052.2019.1587000; Heppner K.M., Kirigiti M., Secher A., Paulsen S.J., Buckingham R., Pyke C., Knudsen L.B., Vrang N., Grove K.L. Expression and distribution of glucagon-like peptide-1 receptor mRNA, protein and binding in the male nonhuman primate (Macaca mulatta) brain // Endocrinology. – 2015. – Vol. 156, No. 1. – P. 255–267. DOI:10.1210/en.2014-1675; Kabahizi A., Wallace B., Lieu L., Chau D., Dong Y., Hwang E.S., Williams K.W. Glucagon-like peptide-1 (GLP-1) signalling in the brain: From neural circuits and metabolism to therapeutics // Br J Pharmacol. – 2022. – Vol. 179, No. 4. – P. 600–624. DOI:10.1111/bph.15682; Trapp S., Brierley D.I. Brain GLP-1 and the regulation of food intake: GLP-1 action in the brain and its implications for GLP-1 receptor agonists in obesity treatment // Br J Pharmacol. – 2022. – Vol. 179, No. 4. – P. 557–570. DOI:10.1111/bph.15638; Alhadeff A.L., Mergler B.D., Zimmer D.J., Turner C.A., Reiner D.J., Schmidt H.D., Grill H.J., Hayes M.R. Endogenous glucagon-like peptide-1 receptor signaling in the nucleus tractus solitarius is required for food intake control // Neuropsychopharmacology. – 2017. – Vol. 42, No. 7. – P. 1471–1479. DOI:10.1038/npp.2016.246; Ong Z.Y., Liu J.J., Pang Z.P., Grill H.J. Paraventricular thalamic control of food intake and reward: role of glucagon-like peptide-1 receptor signaling // Neuropsychopharmacology. – 2017. – Vol. 42, No. 12. – P. 2387–2397. DOI:10.1038/npp.2017.150; Adams J.M., Pei H., Sandoval D.A., Seeley R.J., Chang R.B., Liberles S.D., Olson D.P. Liraglutide modulates appetite and body weight through glucagon-like peptide 1 receptor-expressing glutamatergic neurons // Diabetes. – 2018. – Vol. 67, No. 8. – P. 1538–1548. DOI:10.2337/db17-1385; Hayes M.R., Leichner T.M., Zhao S., Lee G.S., Chowansky A., Zimmer D., De Jonghe B.C., Kanoski S.E., Grill H.J., Bence K.K. Intracellular signals mediating the food intake-suppressive effects of hindbrain glucagon-like peptide-1 receptor activation // Cell Metab. – 2011. – Vol. 13, No. 3. – P. 320–330. DOI:10.1016/j.cmet.2011.02.001; Sirohi S., Schurdak J.D., Seeley R.J., Benoit S.C., Davis J.F. Central & peripheral glucagon-like peptide-1 receptor signaling differentially regulate addictive behaviors // Physiol Behav. – 2016. – Vol. 161. – P. 140–144. DOI:10.1016/j.physbeh.2016.04.013; Dossat A.M., Diaz R., Gallo L., Panagos A., Kay K., Williams D.L. Nucleus accumbens GLP-1 receptors influence meal size and palatability // Am J Physiol Endocrinol Metab. – 2013. – Vol. 304, No. 12. – P. E1314–1320. DOI:10.1152/ajpendo.00137.2013; Hisadome K., Reimann F., Gribble F.M., Trapp S. CCK stimulation of GLP-1 neurons involves α1-adrenoceptor-mediated increase in glutamatergic synaptic inputs // Diabetes. – 2011. – Vol. 60, No. 11. – P. 2701–2709. DOI:10.2337/db11-0489; Gaykema R.P., Newmyer B.A., Ottolini M., Raje V., Warthen D.M., Lambeth P.S., Niccum M., Yao T., Huang Y., Schulman I.G., Harris T.E., Patel M.K., Williams K.W., Scott M.M. Activation of murine pre-proglucagon-producing neurons reduces food intake and body weight // J Clin Invest. – 2017. – Vol. 127, No. 3. – P. 1031–1045. DOI:10.1172/JCI81335; Holt M.K., Richards J.E., Cook D.R., Brierley D.I., Williams D.L., Reimann F., Gribble F.M., Trapp S. Preproglucagon neurons in the nucleus of the solitary tract are the main source of brain GLP-1, mediate stress-induced hypophagia, and limit unusually large intakes of food // Diabetes. – 2019. – Vol. 68, No. 1. – P. 21–33. DOI:10.2337/db18-0729; Lee S.J., Sanchez-Watts G., Krieger J.P., Pignalosa A., Norell P.N., Cortella A., Pettersen K.G., Vrdoljak D., Hayes M.R., Kanoski S.E., Langhans W., Watts A.G. Loss of dorsomedial hypothalamic GLP-1 signaling reduces BAT thermogenesis and increases adiposity // Mol Metab. – 2018. – Vol. 11. – P. 33–46. DOI:10.1016/j.molmet.2018.03.008; Maselli D.B., Camilleri M. Effects of GLP-1 and Its Analogs on Gastric Physiology in Diabetes Mellitus and Obesity // Adv Exp Med Biol. – 2021. – Vol. 1307. – P. 171–192. DOI:10.1007/5584_2020_496; Ghosal S., Packard A.E.B., Mahbod P., McKlveen J.M., Seeley R.J., Myers B., Ulrich-Lai Y., Smith E.P., D’Alessio D.A., Herman J.P. Disruption of Glucagon-Like Peptide 1 Signaling in Sim1 Neurons Reduces Physiological and Behavioral Reactivity to Acute and Chronic Stress // J Neurosci. – 2017. – Vol. 37, No. 1. – P. 184–193. DOI:10.1523/JNEUROSCI.1104-16.2016; Salcedo I., Tweedie D., Li Y., Greig N.H. Neuroprotective and neurotrophic actions of glucagon-like peptide-1: an emerging opportunity to treat neurodegenerative and cerebrovascular disorders // Br J Pharmacol. – 2012. – Vol. 166, No. 5. – P. 1586–1599. DOI:10.1111/j.1476-5381.2012.01971.x; Monti G., Gomes Moreira D., Richner M., Mutsaers H.A.M., Ferreira N., Jan A. GLP-1 Receptor Agonists in Neurodegeneration: Neurovascular Unit in the Spotlight // Cells. – 2022. – Vol. 11, No. 13. – P. 2023. DOI:10.3390/cells11132023; Chang C.C., Lin T.C., Ho H.L., Kuo C.Y., Li H.H., Korolenko T.A., Chen W.J., Lai T.J., Ho Y.J., Lin C.L. GLP-1 Analogue Liraglutide Attenuates Mutant Huntingtin-Induced Neurotoxicity by Restoration of Neuronal Insulin Signaling // Int J Mol Sci. – 2018. – Vol. 19, No. 9. – P. 2505. DOI:10.3390/ijms19092505; Qi L., Ke L., Liu X., Liao L., Ke S., Liu X., Wang Y., Lin X., Zhou Y., Wu L., Chen Z., Liu L. Subcutaneous administration of liraglutide ameliorates learning and memory impairment by modulating tau hyperphosphorylation via the glycogen synthase kinase-3β pathway in an amyloid β protein induced alzheimer disease mouse model // Eur J Pharmacol. – 2016. – Vol. 783. – P. 23–32. DOI:10.1016/j.ejphar.2016.04.052; Chen S., Sun J., Zhao G., Guo A., Chen Y., Fu R., Deng Y. Liraglutide Improves Water Maze Learning and Memory Performance While Reduces Hyperphosphorylation of Tau and Neurofilaments in APP/PS1/Tau Triple Transgenic Mice // Neurochem Res. – 2017. – Vol. 42, No. 8. – P. 2326–2335. DOI:10.1007/s11064-017-2250-8; Hansen H.H., Fabricius K., Barkholt P., Niehoff M.L., Morley J.E., Jelsing J., Pyke C., Knudsen L.B., Farr S.A., Vrang N. The GLP-1 Receptor Agonist Liraglutide Improves Memory Function and Increases Hippocampal CA1 Neuronal Numbers in a Senescence-Accelerated Mouse Model of Alzheimer’s Disease // J Alzheimers Dis. – 2015. – Vol. 46, No. 4. – P. 877–888. DOI:10.3233/JAD-143090; Gejl M., Brock B., Egefjord L., Vang K., Rungby J., Gjedde A. Blood-Brain Glucose Transfer in Alzheimer’s disease: Effect of GLP-1 Analog Treatment // Sci Rep. – 2017. – Vol. 7, No. 1. – P. 17490. DOI:10.1038/s41598-017-17718-y; Watson K.T., Wroolie T.E., Tong G., Foland-Ross L.C., Frangou S., Singh M., McIntyre R.S., Roat-Shumway S., Myoraku A., Reiss A.L., Rasgon N.L. Neural correlates of liraglutide effects in persons at risk for Alzheimer’s disease // Behav Brain Res. – 2019. – Vol. 356. – P. 271–278. DOI:10.1016/j.bbr.2018.08.006; Femminella G.D., Frangou E., Love S.B., Busza G., Holmes C., Ritchie C., Lawrence R., McFarlane B., Tadros G., Ridha B.H., Bannister C., Walker Z., Archer H., Coulthard E., Underwood B.R., Prasanna A., Koranteng P., Karim S., Junaid K., McGuinness B., Nilforooshan R., Macharouthu A., Donaldson A., Thacker S., Russell G., Malik N., Mate V., Knight L., Kshemendran S., Harrison J., Hölscher C., Brooks D.J., Passmore A.P., Ballard C., Edison P. Evaluating the effects of the novel GLP-1 analogue liraglutide in Alzheimer’s disease: study protocol for a randomised controlled trial (ELAD study) // Trials. – 2019. – Vol. 20, No. 1. – P. 191. DOI:10.1186/s13063-019-3259-x; Li Y., Perry T., Kindy M.S., Harvey B.K., Tweedie D., Holloway H.W., Powers K., Shen H., Egan J.M., Sambamurti K., Brossi A., Lahiri D.K., Mattson M.P., Hoffer B.J., Wang Y., Greig N.H. GLP-1 receptor stimulation preserves primary cortical and dopaminergic neurons in cellular and rodent models of stroke and Parkinsonism // Proc Natl Acad Sci USA. – 2009. – Vol. 106, No. 4. – P. 1285–1290. DOI:10.1073/pnas.0806720106; Rampersaud N., Harkavyi A., Giordano G., Lever R., Whitton J., Whitton P.S. Exendin-4 reverses biochemical and behavioral deficits in a pre-motor rodent model of Parkinson’s disease with combined noradrenergic and serotonergic lesions // Neuropeptides. – 2012. – Vol. 46, No. 5. – P. 183–193. DOI:10.1016/j.npep.2012.07.004; Athauda D., Maclagan K., Skene S.S., Bajwa-Joseph M., Letchford D., Chowdhury K., Hibbert S., Budnik N., Zampedri L., Dickson J., Li .Y, Aviles-Olmos I., Warner T.T., Limousin P., Lees A.J., Greig N.H., Tebbs S., Foltynie T. Exenatide once weekly versus placebo in Parkinson’s disease: a randomised, double-blind, placebo-controlled trial // Lancet. – 2017. – Vol. 390, No. 10103. – P. 1664–1675. DOI:10.1016/S0140-6736(17)31585-4; Basalay M.V., Davidson S.M., Yellon D.M. Neuroprotection in Rats Following Ischaemia-Reperfusion Injury by GLP-1 Analogues-Liraglutide and Semaglutide // Cardiovasc Drugs Ther. – 2019. – Vol. 33, No. 6. – P. 661–667. DOI:10.1007/s10557-019-06915-8; Gerstein H.C., Colhoun H.M., Dagenais G.R., Diaz R., Lakshmanan M., Pais P., Probstfield J., Botros F.T., Riddle M.C., Rydén L., Xavier D., Atisso C.M., Dyal L., Hall S., Rao-Melacini P., Wong G., Avezum A., Basile J., Chung N., Conget I., Cushman W.C., Franek E., Hancu N., Hanefeld M., Holt S., Jansky P., Keltai M., Lanas F., Leiter L.A., Lopez-Jaramillo P., Cardona Munoz E.G., Pirags V., Pogosova N., Raubenheimer P.J., Shaw J.E., Sheu W.H., Temelkova-Kurktschiev T.; REWIND Investigators. Dulaglutide and renal outcomes in type 2 diabetes: an exploratory analysis of the REWIND randomised, placebo-controlled trial // Lancet. – 2019. – Vol. 394, No. 10193. – P. 131–138. DOI:10.1016/S0140-6736(19)31150-X; Hansen M.S., Frost M. Alliances of the gut and bone axis // Semin Cell Dev Biol. – 2022. – Vol. 123. – P. 74–81. DOI:10.1016/j.semcdb.2021.06.024; Mieczkowska A., Mansur S., Bouvard B., Flatt P.R., Thorens B., Irwin N., Chappard D., Mabilleau G. Double incretin receptor knock-out (DIRKO) mice present with alterations of trabecular and cortical micromorphology and bone strength // Osteoporos Int. – 2015. – Vol. 26, No. 1. – P. 209–218. DOI:10.1007/s00198-014-2845-8; Maagensen H., Helsted M.M., Gasbjerg L.S., Vilsbøll T., Knop F.K. The Gut-Bone Axis in Diabetes // Curr Osteoporos Rep. – 2022. DOI:10.1007/s11914-022-00767-2; Nauck M.A., Quast D.R., Wefers J., Meier J.J. GLP-1 receptor agonists in the treatment of type 2 diabetes – state-of-the-art // Mol Metab. – 2021. – Vol. 46. – P. 101102. DOI:10.1016/j.molmet.2020.101102; Tomlinson B., Hu M., Zhang Y., Chan P., Liu Z.M. An overview of new GLP-1 receptor agonists for type 2 diabetes // Expert Opin Investig Drugs. – 2016. – Vol. 25, No. 2. – P. 145–158. DOI:10.1517/13543784.2016.1123249; Yang X., Qiang Q., Li N., Feng P., Wei W., Hölscher C. Neuroprotective Mechanisms of Glucagon-Like Peptide-1-Based Therapies in Ischemic Stroke: An Update Based on Preclinical Research // Front Neurol. – 2022. – Vol. 13. – P. 844697. DOI:10.3389/fneur.2022.844697; Cheang J.Y., Moyle P.M. Glucagon-Like Peptide-1 (GLP-1)-based therapeutics: current status and future opportunities beyond Type 2 Diabetes // ChemMedChem. – 2018. – Vol. 13, No. 7. – P. 662–671. DOI:10.1002/cmdc.201700781; Kalra S., Bhattacharya S., Kapoor N. Contemporary classification of glucagon-like peptide 1 receptor Agonists (GLP1RAs) // Diabetes Ther. – 2021. – Vol. 12, No. 8. – P. 2133–2147. DOI:10.1007/s13300-021-01113-y; Аметов А.С., Шохин И.Е., Рогожина Е.А., Бодрова Т.Г., Невретдинова М.Е., Белый П.А., Заславская К.Я., Куркин Д.В., Корянова К.Н., Мищенко Е.С., Носков С.М. Российская разработка для лекарственной независимости в эндокринологии: сравнительный анализ биоэквивалентности, безопасности и переносимости первого отечественного лираглутида // Фармация и фармакология. – 2023. – Т. 11, № 3. – С. 255–276. DOI:10.19163/2307-9266-2023-11-3-255-276; Арефьева А.Н, Банко В.В., Садовских М.О., Носков С.М. Первый препарат семаглутида в Российской Федерации: результаты открытого рандомизированного исследования фармакокинетики // Медицинский совет. – 2023. – Т. 17, № 16. – С. 77–82. DOI:10.21518/ms2023-312; Zhang X., Belousoff M.J., Zhao P., Kooistra A.J., Truong T.T., Ang S.Y., Underwood C.R., Egebjerg T., Šenel P., Stewart G.D., Liang Y.L., Glukhova A., Venugopal H., Christopoulos A., Furness S.G.B., Miller L.J., Reedtz-Runge S., Langmead C.J., Gloriam D.E., Danev R., Sexton P.M., Wootten D. Differential GLP-1R Binding and Activation by Peptide and Non-peptide Agonists // Mol Cell. – 2020. – Vol. 80, No. 3. – P. 485–500.e7. DOI:10.1016/j.molcel.2020.09.020; Zhao P., Liang Y.L., Belousoff M.J., Deganutti G., Fletcher M.M., Willard F.S., Bell M.G., Christe M.E., Sloop K.W., Inoue A., Truong T.T., Clydesdale L., Furness S.G.B., Christopoulos A., Wang M.W., Miller L.J., Reynolds C.A., Danev R., Sexton P.M., Wootten D. Activation of the GLP-1 receptor by a non-peptidic agonist // Nature. – 2020. – Vol. 577, No. 7790. – P. 432–436. DOI:10.1038/s41586-019-1902-z; Freeman J.L.R., Dunn I.M., Valcarce C. Beyond topline results for the oral (non-peptide) GLP-1R agonist TTP273 in type 2 diabetes: how much and when // Diabetol. Conf. 53rd Annu. Meet. Eur. Assoc. study diabetes, EASD 2017. Port. – 2017. – Vol. 60. – P. S51-S52.; Girdhar K., Thakur S., Gaur P., Choubey A., Dogra S., Dehury B., Kumar S., Biswas B., Dwivedi D.K., Ghosh S., Mondal P. Design, synthesis, and biological evaluation of a small molecule oral agonist of the glucagon-like-peptide-1 receptor // J Biol Chem. – 2022. – Vol. 298, No. 5. – P. 101889. DOI:10.1016/j.jbc.2022.101889; Karakasis P., Patoulias D., Pamporis K., Stachteas P., Bougioukas K.I., Klisic A., Fragakis N., Rizzo M. Safety and efficacy of the new, oral, small-molecule, GLP-1 receptor agonists orforglipron and danuglipron for the treatment of type 2 diabetes and obesity: systematic review and meta-analysis of randomized controlled trials // Metabolism. – 2023. – Vol. 149. – P. 155710. DOI:10.1016/j.metabol.2023.155710; Bueno A.B., Sun B., Willard F.S., Feng D., Ho J.D., Wainscott D.B., Showalter A.D., Vieth M., Chen Q., Stutsman C., Chau B., Ficorilli J., Agejas F.J., Cumming G.R., Jiménez A., Rojo I., Kobilka T.S., Kobilka B.K., Sloop K.W. Structural insights into probe-dependent positive allosterism of the GLP-1 receptor // Nat Chem Biol. – 2020. – Vol. 16, No. 10. – P. 1105–1110. DOI:10.1038/s41589-020-0589-7; King K., Lin N.P., Cheng Y.H., Chen G.H., Chein R.J. Isolation of Positive Modulator of Glucagon-like Peptide-1 Signaling from Trigonella foenum-graecum (Fenugreek) Seed // J Biol Chem. – 2015. – Vol. 290, No. 43. – P. 26235–26248. DOI:10.1074/jbc.M115.672097; Huthmacher J.A., Meier J.J., Nauck M.A. Efficacy and Safety of Short- and Long-Acting Glucagon-Like Peptide 1 Receptor Agonists on a Background of Basal Insulin in Type 2 Diabetes: A Meta-analysis // Diabetes Care. – 2020. – Vol. 43, No. 9. – P. 2303–2312. DOI:10.2337/dc20-0498; Baggio L.L., Drucker D.J. Glucagon-like peptide-1 receptor co-agonists for treating metabolic disease // Mol Metab. – 2021. – Vol. 46. – P. 101090. DOI:10.1016/j.molmet.2020.101090; Finan B., Yang B., Ottaway N., Smiley D.L., Ma T., Clemmensen C., Chabenne J., Zhang L., Habegger K.M., Fischer K., Campbell J.E., Sandoval D., Seeley R.J., Bleicher K., Uhles S., Riboulet W., Funk J., Hertel C., Belli S., Sebokova E., Conde-Knape K., Konkar A., Drucker D.J., Gelfanov V., Pfluger P.T., Müller T.D., Perez-Tilve D., DiMarchi R.D., Tschöp M.H. A rationally designed monomeric peptide triagonist corrects obesity and diabetes in rodents // Nat Med. – 2015. – Vol. 21, No. 1. – P. 27–36. DOI:10.1038/nm.3761; Finan B., Ma T., Ottaway N., Müller T.D., Habegger K.M., Heppner K.M., Kirchner H., Holland J., Hembree J., Raver C., Lockie S.H., Smiley D.L., Gelfanov V., Yang B., Hofmann S., Bruemmer D., Drucker D.J., Pfluger P.T., Perez-Tilve D., Gidda J., Vignati L., Zhang L., Hauptman J.B., Lau M., Brecheisen M., Uhles S., Riboulet W., Hainaut E., Sebokova E., Conde-Knape K., Konkar A., DiMarchi R.D., Tschöp M.H. Unimolecular dual incretins maximize metabolic benefits in rodents, monkeys, and humans // Sci Transl Med. – 2013. – Vol. 5, No. 209. – P. 209ra151. DOI:10.1126/scitranslmed.3007218; Bech E.M., Voldum-Clausen K., Pedersen S.L., Fabricius K., Rudkjær L.C.B., Hansen H.H., Jelsing J. Adrenomedullin and glucagon-like peptide-1 have additive effects on food intake in mice // Biomed Pharmacother. – 2019. – Vol. 109. – P. 167–173. DOI:10.1016/j.biopha.2018.10.040; Decara J., Rivera P., Arrabal S., Vargas A., Serrano A., Pavón F.J., Dieguez C., Nogueiras R., Rodríguez de Fonseca F., Suárez J. Cooperative role of the glucagon-like peptide-1 receptor and β3-adrenergic-mediated signalling on fat mass reduction through the downregulation of PKA/AKT/AMPK signalling in the adipose tissue and muscle of rats // Acta Physiol (Oxf). – 2018. – Vol. 222, No. 4. – P. e13008. DOI:10.1111/apha.13008; Bojanowska E., Radziszewska E. Combined stimulation of glucagon-like peptide-1 receptor and inhibition of cannabinoid CB1 receptor act synergistically to reduce food intake and body weight in the rat // J Physiol Pharmacol. – 2011. – Vol. 62, No. 4. – P. 395–402.; Jouihan H., Will S., Guionaud S., Boland M.L., Oldham S., Ravn P., Celeste A., Trevaskis J.L. Superior reductions in hepatic steatosis and fibrosis with co-administration of a glucagon-like peptide-1 receptor agonist and obeticholic acid in mice // Mol Metab. – 2017. – Vol. 6, No. 11. – P. 1360–1370. DOI:10.1016/j.molmet.2017.09.001; Elvert R., Bossart M., Herling A.W., Weiss T., Zhang B., Kannt A., Wagner M., Haack T., Evers A., Dudda A., Keil S., Lorenz M., Lorenz K., Riz M., Hennerici W., Larsen P.J. Team players or opponents: coadministration of selective glucagon and GLP-1 receptor agonists in obese diabetic monkeys // Endocrinology. – 2018. – Vol. 159, No. 8. – P. 3105–3119. DOI:10.1210/en.2018-00399; Дружилов М. А., Кузнецова Т. Ю., Чумакова Г. А. Мульти-агонисты «инкретиновой оси» как перспективный инструмент управления кардиометаболическим риском при синдроме висцерального ожирения // Российский кардиологический журнал. – 2022. – Т. 27, № 4. – C. 4755. DOI:10.15829/1560-4071-2022-4755; Simonsen L., Lau J., Kruse T., Guo T., McGuire J., Jeppesen J.F., Niss K., Sauerberg P., Raun K., Dornonville de la Cour C. Preclinical evaluation of a protracted GLP-1/glucagon receptor co-agonist: Translational difficulties and pitfalls // PLoS One. – 2022. – Vol. 17, No. 3. – P. e0264974. DOI:10.1371/journal.pone.0264974; van Witteloostuijn S.B., Dalbøge L.S., Hansen G., Midtgaard S.R., Jensen G.V., Jensen K.J., Vrang N., Jelsing J., Pedersen S.L. GUB06-046, a novel secretin/glucagon-like peptide 1 co-agonist, decreases food intake, improves glycemic control, and preserves beta cell mass in diabetic mice // J Pept Sci. – 2017. – Vol. 23, No. 12. – P. 845–854. DOI:10.1002/psc.3048; Stensen S., Gasbjerg L.S., Helsted M.M., Hartmann B., Christensen M.B., Knop F.K. GIP and the gut-bone axis – Physiological, pathophysiological and potential therapeutic implications // Peptides. – 2020. – Vol. 125. – P. 170197. DOI:10.1016/j.peptides.2019.170197; Del Prato S., Kahn S.E., Pavo I., Weerakkody G.J., Yang Z., Doupis J., Aizenberg D., Wynne A.G., Riesmeyer J.S., Heine R.J., Wiese R.J.; SURPASS-4 Investigators. Tirzepatide versus insulin glargine in type 2 diabetes and increased cardiovascular risk (SURPASS-4): a randomised, open-label, parallel-group, multicentre, phase 3 trial // Lancet. – 2021. – Vol. 398, No. 10313. – P. 1811–1824. DOI:10.1016/S0140-6736(21)02188-7; Jastreboff A.M., Kaplan L.M., Frías J.P., Wu Q., Du Y., Gurbuz S., Coskun T., Haupt A., Milicevic Z., Hartman M.L.; Retatrutide Phase 2 Obesity Trial Investigators. Triple-Hormone-Receptor Agonist Retatrutide for Obesity – A Phase 2 Trial // N Engl J Med. – 2023. – Vol. 389, No. 6. – P. 514-526. DOI:10.1056/NEJMoa2301972; Fosgerau K., Jessen L., Lind Tolborg J., Østerlund T., Schæffer Larsen K., Rolsted K., Brorson M., Jelsing J., Skovlund Ryge Neerup T. The novel GLP-1-gastrin dual agonist, ZP3022, increases β-cell mass and prevents diabetes in db/db mice // Diabetes Obes Metab. – 2013. – Vol. 15, No. 1. – P. 62–71. DOI:10.1111/j.1463-1326.2012.01676.x; Chodorge M., Celeste A.J., Grimsby J., Konkar A., Davidsson P., Fairman D., Jenkinson L., Naylor J., White N., Seaman J.C., Dickson K., Kemp B., Spooner J., Rossy E., Hornigold D.C., Trevaskis J.L., Bond N.J., London T.B., Buchanan A., Vaughan T., Rondinone C.M., Osbourn J.K. Engineering of a GLP-1 analogue peptide/anti-PCSK9 antibody fusion for type 2 diabetes treatment // Sci Rep. – 2018. – Vol. 8, No. 1. – P. 17545. DOI:10.1038/s41598-018-35869-4; Jain M., Carlson G., Cook W., Morrow L., Petrone M., White N.E., Wang T., Naylor J., Ambery P., Lee C., Hirshberg B. Randomised, phase 1, dose-finding study of MEDI4166, a PCSK9 antibody and GLP-1 analogue fusion molecule, in overweight or obese patients with type 2 diabetes mellitus // Diabetologia. – 2019. – Vol. 62, No. 3. – P. 373–386. DOI:10.1007/s00125-018-4789-6; https://www.pharmpharm.ru/jour/article/view/1386Test

  3. 3
    دورية أكاديمية
  4. 4
    دورية أكاديمية

    المصدر: Meditsinskiy sovet = Medical Council; № 9 (2023); 137-143 ; Медицинский Совет; № 9 (2023); 137-143 ; 2658-5790 ; 2079-701X

    وصف الملف: application/pdf

    العلاقة: https://www.med-sovet.pro/jour/article/view/7616/6765Test; Демидова Т.Ю., Лобанова К.Г., Ойноткинова О.Ш. Кишечная микробиота как фактор риска развития ожирения и сахарного диабета 2-го типа. Терапевтический архив. 2020;92(10):97–104. https://doi.org/10.26442Test/ 00403660.2020.10.000778. Demidova T.Y., Lobanova K.G., Oinotkinova O.S. Gut microbiota is a factor of risk for obesity and type 2 diabetes. Terapevticheskii Arkhiv. 2020;92(10):97–104. (In Russ.) https://doi.org/10.26442/00403660.2020Test. 10.000778.; Черникова Н.А., Камынина Л.Л., Аметов А.С. Кардиометаболическая оценка вариабельности гликемии у пациентов с сахарным диабетом 2 типа: роль глюкокардиомониторирования. Кардиология. 2020;60(5):100–106. https://doi.org/10.18087/cardio.2020.5.n902Test. Chernikova N.A., Kamynina L.L., Ametov A.S. The сardiometabolic assessment of the glycemic variability in patients with diabetes mellitus: the role of the glucocardiomonitoring. Kardiologiya. 2020;60(5):100–106. (In Russ.) https://doi.org/10.18087/cardio.2020.5.n902Test.; Brown J.M., Hazen S.L. The Gut Microbial Endocrine Organ: Bacterially Derived Signals Driving Cardiometabolic Diseases. Annu Rev Med. 2015;66(1):343–359. https://doi.org/10.1146/annurev-med-060513-093205Test.; Noce A., Marrone G., Di Daniele F., Ottaviani E., Wilson Jones G., Bernini R. et al. Impact of Gut Microbiota Composition on Onset and Progression of Chronic Non-Communicable Diseases. Nutrients. 2019;11(5):1073. https://doi.org/10.3390/nu11051073Test.; Tang W.H.W., Kitai T., Hazen S.L. Gut Microbiota in Cardiovascular Health and Disease. Circ Res. 2017;120(7):1183–1196. https://doi.org/10.1161Test/ CIRCRESAHA.117.309715.; Chang P.V., Hao L., Offermanns S., Medzhitov R. The microbial metabolite butyrate regulates intestinal macrophage function via histone deacetylase inhibition. Proc Natl Acad Sci USA. 2014;111(6):2247–2252. https://doiTest. org/10.1073/pnas.1322269111.; Wang H., Hou L., Kwak D., Fassett J., Xu X., Chen A. et al. Increasing Regulatory T Cells With Interleukin-2 and Interleukin-2 Antibody Complexes Attenuates Lung Inflammation and Heart Failure Progression. Hypertension. 2016;68(1):114–122. https://doi.org/10.1161/HYPERTENSIONAHA.116.07084Test.; Smith P.M., Howitt M.R., Panikov N., Michaud M., Gallini C.A., Bohlooly-Y. M. et al. The Microbial Metabolites, Short-Chain Fatty Acids, Regulate Colonic T reg Cell Homeostasis. Science. 2013;341(6145):569–573. https://doi.orgTest/ 10.1126/science.1241165.; Koh A., De Vadder F., Kovatcheva-Datchary P., Bäckhed F. From Dietary Fiber to Host Physiology: Short-Chain Fatty Acids as Key Bacterial Metabolites. Cell. 2016;165(6):1332–1345. https://doi.org/10.1016/j.cell.2016.05.041Test.; Yuan J., Cao A.L., Yu M., Lin Q.-W., Yu X., Zhang J.-H. et al. Th17 cells facilitate the humoral immune response in patients with acute viral myocarditis. J Clin Immunol. 2010;30(2):226–234. https://doi.org/10.1007/s10875Test- 009-9355-z.; Liao Y.H., Xia N., Zhou S.F., Tang T.T., Yan X.X., Lv B.J. et al. Interleukin-17A Contributes to Myocardial Ischemia/Reperfusion Injury by Regulating Cardiomyocyte Apoptosis and Neutrophil Infiltration. J Am Coll Cardiol. 2012;59(4):420–429. https://doi.org/10.1016/j.jacc.2011.10.863Test.; Bartolomaeus H., Balogh A., Yakoub M., Homann S., Markó L., Höges S. et al. Short-Chain Fatty Acid Propionate Protects From Hypertensive Cardiovascular Damage. Circulation. 2019;139(11):1407–1421. https://doiTest. org/10.1161/CIRCULATIONAHA.118.036652.; Демидова Т.Ю., Лобанова К.Г., Ойноткинова О.Ш. Кишечная микробиота как эндокринный орган. Ожирение и метаболизм. 2020;17(3):299–306. https://doi.org/10.14341/omet12457Test. Demidova T.Y., Lobanova K.G., Oynotkinova O.S. Gut microbiota is an endocrine organ. Obesity and Metabolism. 2020;17(3):299–306. (In Russ.) https://doi.org/10.14341/omet12457Test.; Covasa M., Stephens R.W., Toderean R., Cobuz C. Intestinal Sensing by Gut Microbiota: Targeting Gut Peptides. Front Endocrinol. 2019;(10):82. https://doi.org/10.3389/fendo.2019.00082Test.; Parada Venegas D., De la Fuente M.K., Landskron G., González M.J., Quera R., Dijkstra G. et al. Short Chain Fatty Acids (SCFAs)-Mediated Gut Epithelial and Immune Regulation and Its Relevance for Inflammatory Bowel Diseases. Front Immunol. 2019;(10):277. https://doi.org/10.3389/fimmu.2019.00277Test.; Schiattarella G.G., Sannino A., Toscano E., Giugliano G., Gargiulo G., Franzone A. et al. Gut microbe-generated metabolite trimethylamine-Noxide as cardiovascular risk biomarker: a systematic review and dose-response meta-analysis. Eur Heart J. 2017;38(39):2948–2956. https://doi.orgTest/ 10.1093/eurheartj/ehx342.; Zhou W., Cheng Y., Zhu P., Nasser M.I., Zhang X., Zhao M. Implication of Gut Microbiota in Cardiovascular Diseases. Oxid Med Cell Longev. 2020;2020:5394096. https://doi.org/10.1155/2020/5394096Test.; Chen W., Zhang S., Wu J., Ye T., Wang S., Wang P. et al. Butyrate-producing bacteria and the gut-heart axis in atherosclerosis. Clin Chim Acta. 2020;507:236–241. https://doi.org/10.1016/j.cca.2020.04.037Test.; Sternini C., Anselmi L., Rozengurt E. Enteroendocrine cells: a site of ‘taste’ in gastrointestinal chemosensing. Curr Opin Endocrinol Diabetes Obes. 2008;15(1):73–78. https://doi.org/10.1097/MED.0b013e3282f43a73Test.; Sikalidis A.K., Maykish A. The Gut Microbiome and Type 2 Diabetes Mellitus: Discussing A Complex Relationship. Biomedicines. 2020;8(1):8. https://doi.org/10.3390/biomedicines8010008Test.; Zhao L., Lou H., Peng Y., Chen S., Zhang Y., Li X. Comprehensive relationships between gut microbiome and faecal metabolome in individuals with type 2 diabetes and its complications. Endocrine. 2019;66(3):526–537. https://doi.org/10.1007/s12020-019-02103-8Test.; Sedighi M., Razavi S., Navab-Moghadam F., Khamseh M.E., Alaei-Shahmiri F., Mehrtash A. et al. Comparison of gut microbiota in adult patients with type 2 diabetes and healthy individuals. Microb Pathog. 2017;111:362–369. https://doi.org/10.1016/j.micpath.2017.08.038Test.; Baothman O.A., Zamzami M.A., Taher I., Abubaker J., Abu-Farha M. The role of Gut Microbiota in the development of obesity and Diabetes. Lipids Health Dis. 2016;(15):108. https://doi.org/10.1186/s12944-016-0278-4Test.; Cunningham A.L., Stephens J.W., Harris D.A. Gut microbiota influence in type 2 diabetes mellitus (T2DM). Gut Pathog. 2021;13(1):50. https://doiTest. org/10.1186/s13099-021-00446-0.; Furet J.P., Kong L.C., Tap J., Poitou C., Basdevant A., Bouillot J.L. et al. Differential Adaptation of Human Gut Microbiota to Bariatric Surgery–Induced Weight Loss: links with metabolic and low-grade inflammation markers Diabetes. 2010;59(12):3049–3057. https://doi.org/10.2337/db10-0253Test.; Pascale A., Marchesi N., Govoni S., Coppola A., Gazzaruso C. The role of gut microbiota in obesity, diabetes mellitus, and effect of metformin: new insights into old diseases. Curr Opin Pharmacol. 2019;(49):1–5. https://doi.org/10.1016/j.coph.2019.03.011Test.; Gu Y., Wang X., Li J., Zhang Y., Zhong H., Liu R. et al. Analyses of gut microbiota and plasma bile acids enable stratification of patients for antidiabetic treatment. Nat Commun. 2017;8(1):1785. https://doi.org/10.1038/s41467-017-01682-2Test.; Nagatomo Y., Tang W.H.W. Intersections Between Microbiome and Heart Failure: Revisiting the Gut Hypothesis. J Card Fail. 2015;21(12):973–980. https://doi.org/10.1016/j.cardfail.2015.09.017Test.; Cui X., Ye L., Li J., Jin L., Wang W., Li S. et al. Metagenomic and metabolomic analyses unveil dysbiosis of gut microbiota in chronic heart failure patients. Sci Rep. 2018;8(1):635. https://doi.org/10.1038/s41598-017-18756-2Test.; Louis P., Flint H.J. Diversity, metabolism and microbial ecology of butyrate-producing bacteria from the human large intestine. FEMS Microbiol Lett. 2009;294(1):1–8. https://doi.org/10.1111/j.1574-6968.2009.01514.xTest.; Burkard T., Pfister O., Rickli H., Follath F., Hack D., Zaker R. et al. Prognostic impact of systemic inflammatory diseases in elderly patients with congestive heart failure. QJM. 2014;107(2):131–138. https://doi.org/10.1093/qjmed/hct205Test.; Kummen M., Mayerhofer C.C.K., Vestad B., Broch K., Awoyemi A., Storm-Larsen C. et al. Gut Microbiota Signature in Heart Failure Defined From Profiling of 2 Independent Cohorts. J Am Coll Cardiol. 2018;71(10):1184–1186. https://doi.org/10.1016/j.jacc.2017.12.057Test.; Kamo T., Akazawa H., Suda W., Saga-Kamo A., Shimizu Y., Yagi H. et al. Dysbiosis and compositional alterations with aging in the gut microbiota of patients with heart failure. PLoS ONE. 2017;12(3):e0174099. https://doi.org/10.1371/journal.pone.0174099Test.; Tang W.H., Wang Z., Fan Y., Levison B., Hazen J.E., Donahue L.M. et al. Prognostic Value of Elevated Levels of Intestinal Microbe-Generated Metabolite Trimethylamine-N-Oxide in Patients With Heart Failure. J Am Coll Cardiol. 2014;64(18):1908–1914. https://doi.org/10.1016/j.jacc.2014.02.617Test.; Jin B., Ji F., Zuo A., Liu H., Qi L., He Y. et al. Destructive Role of TMAO in T-Tubule and Excitation-Contraction Coupling in the Adult Cardiomyocytes. Int Heart J. 2020;61(2):355–363. https://doi.org/10.1536/ihj.19-372Test.; Jia Q., Li H., Zhou H., Zhang X., Zhang A., Xie Y. et al. Role and Effective Therapeutic Target of Gut Microbiota in Heart Failure. Cardiovasc Ther. 2019;2019:5164298. https://doi.org/10.1155/2019/5164298Test.; Wang Z., Klipfell E., Bennett B.J., Koeth R., Levison B.S., Dugar B. et al. Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease. Nature. 2011;472(7341):57–63. https://doi.org/10.1038/nature09922Test.; Tang W.H., Wang Z., Levison B.S., Koeth R.A., Britt E.B., Fu X. et al. Intestinal Microbial Metabolism of Phosphatidylcholine and Cardiovascular Risk. N Engl J Med. 2013;368(17):1575–1584. https://doi.org/10.1056/NEJMoa1109400Test.; Koren O., Spor A., Felin J., Fåk F., Stombaugh J., Tremaroli V. et al. Human oral, gut, and plaque microbiota in patients with atherosclerosis. Proc Natl Acad Sci USA. 2011;108(Suppl 1):4592–4598. https://doi.org/10.1073/pnas.1011383107Test.; Ding L., Chang M., Guo Y., Zhang L., Xue C., Yanagita T. et al. Trimethylamine-N-oxide (TMAO)-induced atherosclerosis is associated with bile acid metabolism. Lipids Health Dis. 2018;17(1):286. https://doi.org/10.1186/s12944-018-0939-6Test.; Geng J., Yang C., Wang B., Zhang X., Hu T., Gu Y. et al. Trimethylamine N-oxide promotes atherosclerosis via CD36-dependent MAPK/JNK pathway. Biomed Pharmacother. 2018;97:941–947. https://doi.org/10.1016/j.biopha.2017.11.016Test.; Korcz E., Kerényi Z., Varga L. Dietary fibers, prebiotics, and exopolysaccharides produced by lactic acid bacteria: potential health benefits with special regard to cholesterol-lowering effects. Food Funct. 2018;9(6):3057–3068. https://doi.org/10.1039/C8FO00118ATest.; Zhao Y., Liu J., Hao W., Zhu H., Liang N., He Z. et al. Structure-Specific Effects of Short-Chain Fatty Acids on Plasma Cholesterol Concentration in Male Syrian Hamsters. J Agric Food Chem. 2017;65(50):10984–10992. https://doi.org/10.1021/acs.jafc.7b04666Test.; Hartley L., May M.D., Loveman E., Colquitt J.L., Rees K. Dietary fibre for the primary prevention of cardiovascular disease. Cochrane Database Syst Rev. 2016;2016(1):CD011472. https://doi.org/10.1002/14651858.CD011472.pub2Test.; Chen Y., Xu C., Huang R., Song J., Li D., Xia M. Butyrate from pectin fermentation inhibits intestinal cholesterol absorption and attenuates atherosclerosis in apolipoprotein E-deficient mice. J Nutr Biochem. 2018;56:175–182. https://doi.org/10.1016/j.jnutbio.2018.02.011Test.; Gan X.T., Ettinger G., Huang C.X., Burton J.P., Haist J.V., Rajapurohitam V. et al. Probiotic Administration Attenuates Myocardial Hypertrophy and Heart Failure After Myocardial Infarction in the Rat. Circ Heart Fail. 2014;7(3):491–499. https://doi.org/10.1161/CIRCHEARTFAILURE.113.000978Test.; Lam V., Su J., Koprowski S., Hsu A., Tweddell J.S., Rafiee P. et al. Intestinal microbiota determine severity of myocardial infarction in rats. FASEB J. 2012;26(4):1727–1735. https://doi.org/10.1096/fj.11-197921Test.; Costanza A.C., Moscavitch S.D., Faria Neto H.C.C., Mesquita E.T. Probiotic therapy with Saccharomyces boulardii for heart failure patients: A randomized, double-blind, placebo-controlled pilot trial. Int J Cardiol. 2015;179:348–350. https://doi.org/10.1016/j.ijcard.2014.11.034Test.; Cho Y.A., Kim J. Effect of Probiotics on Blood Lipid Concentrations: A Meta-Analysis of Randomized Controlled Trials. Medicine. 2015;94(43):e1714. https://doi.org/10.1097/MD.0000000000001714Test.; Wang L., Guo M.J., Gao Q., Yang J.F., Yang L., Pang X.L. et al. The effects of probiotics on total cholesterol: A meta-analysis of randomized controlled trials. Medicine. 2018;97(5):e9679. https://doi.org/10.1097/MD.0000000000009679Test.; Shimizu M., Hashiguchi M., Shiga T., Tamura H., Mochizuki M. Meta-Analysis: Effects of Probiotic Supplementation on Lipid Profiles in Normal to Mildly Hypercholesterolemic Individuals. PLoS ONE. 2015;10(10):e0139795. https://doi.org/10.1371/journal.pone.0139795Test.; Sabico S., Al-Mashharawi A., Al-Daghri N.M., Wani K., Amer O.E., Hussain D.S. et al. Effects of a 6-month multi-strain probiotics supplementation in endotoxemic, inflammatory and cardiometabolic status of T2DM patients: A randomized, double-blind, placebo-controlled trial. Clin Nutr. 2019;38(4):1561–1569. https://doi.org/10.1016/j.clnu.2018.08.009Test.; Firouzi S., Majid H.A., Ismail A., Kamaruddin N.A., Barakatun-Nisak M.Y. Effect of multi-strain probiotics (multi-strain microbial cell preparation) on glycemic control and other diabetes-related outcomes in people with type 2 diabetes: a randomized controlled trial. Eur J Nutr. 2017;56(4):1535–1550. https://doi.org/10.1007/s00394-016-1199-8Test.; Kobyliak N., Falalyeyeva T., Mykhalchyshyn G., Kyriienko D., Komissarenko I. Effect of alive probiotic on insulin resistance in type 2 diabetes patients: Randomized clinical trial. Diabetes Metab Syndr. 2018;12(5):617–624. https://doi.org/10.1016/j.dsx.2018.04.015Test.; Zhou X., Li J., Guo J., Geng B., Ji W., Zhao Q. et al. Gut-dependent microbial translocation induces inflammation and cardiovascular events after ST-elevation myocardial infarction. Microbiome. 2018;6(1):66. https://doi.org/10.1186/s40168-018-0441-4Test.; Ponziani F.R., Zocco M.A., D’Aversa F., Pompili M., Gasbarrini A. Eubiotic properties of rifaximin: Disruption of the traditional concepts in gut microbiota modulation. World J Gastroenterol. 2017;23(25):4491. https://doi.org/10.3748/wjg.v23.i25.4491Test.; Conraads V.M., Jorens P.G., De Clerck L.S., Van Saene H.K., Ieven M.M., Bosmans J.M. et al. Selective intestinal decontamination in advanced chronic heart failure: a pilot trial. Eur J Heart Fail. 2004;6(4):483–491. https://doi.org/10.1016/j.ejheart.2003.12.004Test.; Roberts A.B., Gu X., Buffa J.A., Hurd A.G., Wang Z., Zhu W. et al. Development of a gut microbe–targeted nonlethal therapeutic to inhibit thrombosis potential. Nat Med. 2018;24(9):1407–1417. https://doi.org/10.1038/s41591-018-0128-1Test.; Wang Z., Roberts A.B., Buffa J.A., Levison B.S., Zhu W., Org E. et al. Non-lethal Inhibition of Gut Microbial Trimethylamine Production for the Treatment of Atherosclerosis. Cell. 2015;163(7):1585–1595. https://doi.org/10.1016/j.cell.2015.11.055Test.; Pathak P., Helsley R.N., Brown A.L., Buffa J.A., Choucair I., Nemet I. et al. Small molecule inhibition of gut microbial choline trimethylamine lyase activity alters host cholesterol and bile acid metabolism. Am J Physiol Heart Circ Physiol. 2020;318(6):H1474-H1486. https://doi.org/10.1152/ajpheart.00584.2019Test.; Chen M.L., Yi L., Zhang Y., Zhou X., Ran L., Yang J. et al. Resveratrol Attenuates Trimethylamine- N -Oxide (TMAO)-Induced Atherosclerosis by Regulating TMAO Synthesis and Bile Acid Metabolism via Remodeling of the Gut Microbiota. mBio. 2016;7(2):e02210-15. https://doi.org/10.1128/mBio.02210-15Test.; Korsten S.G.P.J., Smits E.A.W., Garssen J., Vromans H. Modeling of the luminal butyrate concentration to design an oral formulation capable of achieving a pharmaceutical response. PharmaNutrition. 2019;(10):100166. https://doi.org/10.1016/j.phanu.2019.100166Test.; Демидова Т.Ю., Лобанова К.Г., Короткова Т.Н., Харчилава Л.Д. Абнормальная кишечная микробиота и нарушение инкретинового эффекта как причины развития сахарного диабета 2 типа. Медицинский вестник Юга России. 2022;13(1):24–42. https://doi.org/10.21886/2219-8075-2022-13-1-24-42Test.; Demidova T.Y., Lobanova K.G., Korotkova T.N., Kharchilava L.D. Abnormal gut microbiota and impaired incretin effect as a cause of type 2 diabetes mellitus. Medical Herald of the South of Russia. 2022;13(1):24–42. (In Russ.) https://doi.org/10.21886/2219-8075-2022-13-1-24-42Test.; Olivares M., Neyrinck A.M., Pötgens S.A., Beaumont M., Salazar N., Cani P.D. et al. The DPP-4 inhibitor vildagliptin impacts the gut microbiota and prevents disruption of intestinal homeostasis induced by a Western diet in mice. Diabetologia. 2018;61(8):1838–1848. https://doi.org/10.1007/s00125-018-4647-6Test.; Zhang M., Feng R., Yang M., Qian C., Wang Z., Liu W., Ma J. Effects of metformin, acarbose, and sitagliptin monotherapy on gut microbiota in Zucker diabetic fatty rats. BMJ Open Diabetes Res Care. 2019;7(1):e000717. https://doi.org/10.1136/bmjdrc-2019-000717Test.; https://www.med-sovet.pro/jour/article/view/7616Test

  5. 5
    دورية أكاديمية

    المصدر: Meditsinskiy sovet = Medical Council; № 9 (2023); 40-46 ; Медицинский Совет; № 9 (2023); 40-46 ; 2658-5790 ; 2079-701X

    وصف الملف: application/pdf

    العلاقة: https://www.med-sovet.pro/jour/article/view/7604/6753Test; Цыганкова О.В., Веретюк В.В., Аметов А.С. Инкретины сегодня: множественные эффекты и терапевтический потенциал. Сахарный диабет. 2019;22(1):70–78. https://doi.org/10.14341/DM9841Test. Tsygankova O.V., Veretyuk V.V., Ametov A.S. Incretins today: multiple effects and therapeutic potential. Diabetes Mellitus. 2019;22(1):70–78. (In Russ.) https://doi.org/10.14341/DM9841Test.; Тюренков И.Н., Бакулин Д.А., Куркин Д.В., Волотова Е.В. Нейропротективные свойства инкретиномиметиков при ишемии головного мозга и нейродегенеративных заболеваниях. Проблемы эндокринологии. 2017;63(1):58–67. https://doi.org/10.14341/probl201763158-67Test. Tyurenkov I.N., Bakulin D.A., Kurkin D.V., Volotova E.V. Neuroprotective properties of incretin mimetics in brain ischemia and neurodegenerative diseases. Problemy Endokrinologii. 2017;63(1):58–67. (In Russ.) https://doi.org/10.14341/probl201763158-67Test.; Cork S.C., Richards J.E., Holt M.K., Gribble F.M., Reimann F., Trapp S. Distribution and characterisation of Glucagon-like peptide-1 receptor expressing cells in the mouse brain. Mol Metab. 2015;4(10):718–731. https://doi.org/10.1016/j.molmet.2015.07.008Test.; Shirazi R., Palsdottir V., Collander J., Anesten F., Vogel H., Langlet F. et al. Glucagon-like peptide 1 receptor induced suppression of food intake, and body weight is mediated by central IL-1 and IL-6. Proc Natl Acad Sci. 2013;110(40):16199–16204. https://doi.org/10.1073/pnas.1306799110Test.; Grieco M., Giorgi A., Gentile M.C., d’Erme M., Morano S., Maras B., Filardi T. Glucagon-Like Peptide-1: A Focus on Neurodegenerative Diseases. Front Neurosci. 2019;13:1112. Available at: https://pubmed.ncbi.nlm.nih.govTest/ 31680842/.; Романцова Т.И. Аналог глюкагоноподобного пептида-1 лираглутид (Саксенда®): механизм действия, эффективность в лечении ожирения. Ожирение и метаболизм. 2018;15(1):3–11. https://doi.org/10.14341Test/ omet201813-11. Romantsova T.I. Gglucagon-like peptide-1 analogue liraglutide (Saxenda®): mechanism of action, efficacy for the treatment of obesity. Obesity and Metabolism. 2018;15(1):3–11. (In Russ.) https://doi.org/10.14341Test/ omet201813-11.; Sharma D., Verma S., Vaidya S., Kalia K., Tiwari V. Recent updates on GLP-1 agonists: Current advancements & challenges. Biomed Pharmacother. 2018;108:952–962. https://doi.org/10.1016/j.biopha.2018.08.088Test.; El Tabaa M.M., El Tabaa M.M., Anis A., Elgharabawy R.M., Borai El-Borai N. GLP-1 mediates the neuroprotective action of crocin against cigarette smoking-induced cognitive disorders via suppressing HMGB1-RAGE/ TLR4- NF-κB pathway. Int Immunopharmacol. 2022;110:108995. https://doi.org/10.1016/j.intimp.2022.108995Test.; Yan W., Pang M., Yu Y., Gou X., Si P., Zhawatibai A. et al. The neuroprotection of liraglutide on diabetic cognitive deficits is associated with improved hippocampal synapses and inhibited neuronal apoptosis. Life Sci. 2019;231:116566. https://doi.org/10.1016/j.lfs.2019.116566Test.; Finan B., Ma T., Ottaway N., Müller T.D., Habegger K.M., Heppner K.M. et al. Unimolecular Dual Incretins Maximize Metabolic Benefits in Rodents, Monkeys, and Humans. Sci Transl Med. 2013;5(209):209ra151. https://doi.org/10.1126/scitranslmed.3007218Test.; Flanagan M., Sonnen J.A., Keene C.D., Hevner R.F., Montine T.J. Molecular Basis of Diseases of the Nervous System. Molecular Pathology. Elsevier. 2018:651–690. https://doi.org/10.1016/B978-0-12-802761-5.00029-8Test.; Quillinan N., Herson P.S., Traystman R.J. Neuropathophysiology of Brain Injury. Anesthesiol Clin. 2016;34(3):453–464. https://doi.org/10.1016/jTest. anclin.2016.04.011.; Власов Т.Д., Симаненкова А.В., Дора С.В., Шляхто Е.В. Механизмы нейропротективного действия инкретиномиметиков. Сахарный диабет. 2016;19(1):16–23. https://doi.org/10.14341/DM7192Test. Vlasov T.D., Simanenkova A.V., Dora S.V., Shlyakhto E.V. Mechanisms of neuroprotective action of incretin mimetics. Diabetes Mellitus. 2016;19(1):16–23. (In Russ.) https://doi.org/10.14341/DM7192Test.; Deng C., Cao J., Han J., Li J., Li Z., Shi N., He J. Liraglutide Activates the Nrf2/HO-1 Antioxidant Pathway and Protects Brain Nerve Cells against Cerebral Ischemia in Diabetic Rats. Comput Intell Neurosci. 2018; 2018:3094504. https://doi.org/10.1155/2018/3094504Test.; Yang X., Qiang Q., Li N., Feng P., Wei W., Hölscher C. Neuroprotective Mechanisms of Glucagon-Like Peptide-1-Based Therapies in Ischemic Stroke: An Update Based on Preclinical Research. Front Neurol. 2022;13:844697. https://doi.org/10.3389/fneur.2022.844697Test.; Zhang H., Meng J., Zhou S., Liu Y., Qu D., Wang L. et al. Intranasal Delivery of Exendin-4 Confers Neuroprotective Effect Against Cerebral Ischemia in Mice. AAPS J. 2016;18(2):385–394. https://doi.org/10.1208/s12248-015-9854-1Test.; Timper K., Del Río-Martín A., Cremer A.L., Bremser S., Alber J., Giavalisco P. et al. GLP-1 Receptor Signaling in Astrocytes Regulates Fatty Acid Oxidation, Mitochondrial Integrity, and Function. Cell Metab. 2020;31(6):1189–1205.e13. https://doi.org/10.1016/j.cmet.2020.05.001Test.; Shandilya A., Mehan S., Kumar S., Sethi P., Narula A.S., Alshammari A. et al. Activation of IGF-1/GLP-1 Signalling via 4-Hydroxyisoleucine Prevents Motor Neuron Impairments in Experimental ALS-Rats Exposed to Methylmercury-Induced Neurotoxicity. Molecules. 2022;27(12):3878. https://doi.org/10.3390/molecules27123878Test.; Nizari S., Basalay M., Chapman P., Korte N., Korsak A., Christie I.N. et al. Glucagon-like peptide-1 (GLP-1) receptor activation dilates cerebral arterioles, increases cerebral blood flow, and mediates remote (pre)conditioning neuroprotection against ischaemic stroke. Basic Res Cardiol. 2021;116(1):32. https://doi.org/10.1007/s00395-021-00873-9Test.; Bai B., Li D., Xue G., Feng P., Wang M., Han Y. et al. The novel GLP-1/GIP dual agonist DA3-CH is more effective than liraglutide in reducing endoplasmic reticulum stress in diabetic rats with cerebral ischemia-reperfusion injury. Nutri Metab Cardiovasc Dis. 2021;31(1):333–343. https://doi.org/10.1016/jTest. numecd.2020.09.002.; Li Y., Gong M. Analysis of the neuroprotective effect of GLP‐1 receptor agonist peptide on cerebral ischemia‐reperfusion injury by Quantitative Proteomics Mass Spectrometry. Brain Behav. 2021;11(6):е02190. https://doi.org/10.1002/brb3.2190Test.; Augestad I.L., Dekens D., Karampatsi D., Elabi O., Zabala A., Pintana H. et al. Normalisation of glucose metabolism by exendin‐4 in the chronic phase after stroke promotes functional recovery in male diabetic mice. Br J Pharmacol. 2022;179(4):677–694. https://doi.org/10.1111/bph.15524Test.; Shan Y., Tan S., Lin Y., Liao S., Zhang B., Chen X. et al. The glucagon-like peptide-1 receptor agonist reduces inflammation and blood-brain barrier breakdown in an astrocyte-dependent manner in experimental stroke. J Neuroinflammation. 2019;16(1):242. https://doi.org/10.1186/s12974-019-1638-6Test.; Xie Z., Enkhjargal B., Wu L., Zhou K., Sun C., Hu X. et al. Exendin-4 attenuates neuronal death via GLP-1R/PI3K/Akt pathway in early brain injury after subarachnoid hemorrhage in rats. Neuropharmacology. 2018;128:142–151. https://doi.org/10.1016/j.neuropharm.2017.09.040Test.; Polymeropoulos M.H., Lavedan C., Leroy E., Ide S.E., Dehejia A., Dutra A. et al. Mutation in the α-Synuclein Gene Identified in Families with Parkinson’s Disease. Science. 1997;276(5321):2045–2047. https://doi.org/10.1126/science.276.5321.2045Test.; Irvine G.B., El-Agnaf O.M., Shankar G.M., Walsh D.M. Protein Aggregation in the Brain: The Molecular Basis for Alzheimer’s and Parkinson’s Diseases. Mol Med. 2008;14(7–8):451–464. https://doi.org/10.2119/2007-00100.IrvineTest.; Hong C.T., Chen K.Y., Wang W., Chiu J.Y., Wu D., Chao T.Y. et al. Insulin Resistance Promotes Parkinson’s Disease through Aberrant Expression of α-Synuclein, Mitochondrial Dysfunction, and Deregulation of the Polo-Like Kinase 2 Signaling. Cells. 2020;9(3):740. https://doi.org/10.3390/cells9030740Test.; Aghanoori M.-R., Smith D.R., Roy Chowdhury S., Sabbir M.G., Calcutt N.A., Fernyhough P. Insulin prevents aberrant mitochondrial phenotype in sensory neurons of type 1 diabetic rats. Exp Neurol. 2017;297:148–157. https://doi.org/10.1016/j.expneurol.2017.08.005Test.; Porniece Kumar M., Cremer L., Klemm P., Steuernagel L., Sundaram S., Jais A. et al. Insulin signalling in tanycytes gates hypothalamic insulin uptake and regulation of AgRP neuron activity. Nat Metab. 2021;3(12):1662–1679. https://doi.org/10.1038/s42255-021-00499-0Test.; García-Cáceres C., Quarta C., Varela L., Gao Y., Gruber T., Legutko B. et al. Astrocytic Insulin Signaling Couples Brain Glucose Uptake with Nutrient Availability. Cell. 2016;166(4):867–880. https://doi.org/10.1016/j.cell.2016.07.028Test.; Kim D.S., Choi H.I., Wang Y., Luo Y., Hoffer B.J., Greig N.H. A New Treatment Strategy for Parkinson’s Disease through the Gut-Brain Axis: The GlucagonLike Peptide-1 Receptor Pathway. Cell Transplant. 2017;26(9):1560–1571. https://doi.org/10.1177/0963689717721234Test.; Fiory F., Perruolo G., Cimmino I., Cabaro S., Pignalosa F.C., Miele C. et al. The Relevance of Insulin Action in the Dopaminergic System. Front Neurosci. 2019;13:868. https://doi.org/10.3389/fnins.2019.00868Test.; Yang L., Wang H., Liu L., Xie A. The Role of Insulin/IGF-1/PI3K/Akt/GSK3β Signaling in Parkinson’s Disease Dementia. Front Neurosci. 2018;12:73. https://doi.org/10.3389/fnins.2018.00073Test.; Li Y., Perry T., Kindy M.S., Harvey B.K., Tweedie D., Holloway H.W. et al. GLP-1 receptor stimulation preserves primary cortical and dopaminergic neurons in cellular and rodent models of stroke and Parkinsonism. Proc Natl Acad Sci. 2009;106(4):1285–1290. https://doi.org/10.1073/pnas.0806720106Test.; Mahapatra M.K., Karuppasamy M., Sahoo B.M. Therapeutic Potential of Semaglutide, a Newer GLP-1 Receptor Agonist, in Abating Obesity, NonAlcoholic Steatohepatitis and Neurodegenerative diseases: A Narrative Review. Pharm Res. 2022;39(6):1233–1248. https://doi.org/10.1007Test/ s11095-022-03302-1.; Zhang L., Zhang L., Li L., Hölscher C. Semaglutide is Neuroprotective and Reduces α-Synuclein Levels in the Chronic MPTP Mouse Model of Parkinson’s Disease. J Parkinsons Dis. 2019;9(1):157–171. https://doi.org/10.3233Test/ JPD-181503.; Harkavyi A., Abuirmeileh A., Lever R., Kingsbury A.E., Biggs C.S., Whitton P.S. Glucagon-like peptide 1 receptor stimulation reverses key deficits in distinct rodent models of Parkinson’s disease. J Neuroinflammation. 2008;5(1):19. https://doi.org/10.1186/1742-2094-5-19Test.; Oh Y., Jun H.S. Effects of Glucagon-Like Peptide-1 on Oxidative Stress and Nrf2 Signaling. Int J Mol Sci. 2017;19(1):26. https://doi.org/10.3390/ijms19010026Test.; Salameh T.S., Rhea E.M., Talbot K., Banks W.A. Brain uptake pharmacokinetics of incretin receptor agonists showing promise as Alzheimer’s and Parkinson’s disease therapeutics. Biochem Pharmacol. 2020;180:114187. https://doi.org/10.1016/j.bcp.2020.114187Test.; Wiciński M., Socha M., Malinowski B., Wódkiewicz E., Walczak M., Górski K. et al. Liraglutide and its Neuroprotective Properties–Focus on Possible Biochemical Mechanisms in Alzheimer’s Disease and Cerebral Ischemic Events. Int J Mol Sci. 2019;20(5):1050. https://doi.org/10.3390/ijms20051050Test.; Hunter K., Hölscher C. Drugs developed to treat diabetes, liraglutide and lixisenatide, cross the blood brain barrier and enhance neurogenesis. BMC Neurosci. 2012;13(1):33. https://doi.org/10.1186/1471-2202-13-33Test.; Zeng S.S., Bai J.J., Jiang H., Zhu J.J., Fu C.C., He M.Z. et al. Treatment With Liraglutide Exerts Neuroprotection After Hypoxic–Ischemic Brain Injury in Neonatal Rats via the PI3K/AKT/GSK3β Pathway. Front Cell Neurosci. 2020;13:585. https://doi.org/10.3389/fncel.2019.00585Test.; Boehme A.K., Esenwa C., Elkind M.S.V. Stroke Risk Factors, Genetics, and Prevention. Circ Res. 2017;120(3):472–495. https://doi.org/10.1161Test/ CIRCRESAHA.116.308398.; Zhu H., Zhang Y., Shi Z., Lu D., Li T., Ding Y. et al. The Neuroprotection of Liraglutide Against Ischaemia-induced Apoptosis through the Activation of the PI3K/AKT and MAPK Pathways. Sci Rep. 2016;6(1):26859. https://doi.org/10.1038/srep26859Test.; Abdel-latif R.G., Heeba G.H., Taye A., Khalifa M.M.A. Lixisenatide ameliorates cerebral ischemia-reperfusion injury via GLP-1 receptor dependent/ independent pathways. Eur J Pharmacol. 2018;833:145–154. https://doi.org/10.1016/j.ejphar.2018.05.045Test.; Zhang Q., Liu C., Shi R., Zhou S., Shan H., Deng L. et al. Blocking C3d+ / GFAP+ A1 Astrocyte Conversion with Semaglutide Attenuates Blood-Brain Barrier Disruption in Mice after Ischemic Stroke. Aging Dis. 2022;13(3):943–959. https://doi.org/10.14336/AD.2021.1029Test.; Basalay M., Davidson S.M., Yellon D.M. Neuroprotection in Rats Following Ischaemia-Reperfusion Injury by GLP-1 Analogues–Liraglutide and Semaglutide. Cardiovasc Drugs Ther. 2019;33(6):661–667. https://doi.org/10.1007/s10557-019-06915-8Test.; Strain W.D., Frenkel O., James M.A., Leiter L.A., Rasmussen S., Rothwell P.M. et al. Effects of Semaglutide on Stroke Subtypes in Type 2 Diabetes: Post Hoc Analysis of the Randomized SUSTAIN 6 and PIONEER 6. Stroke. 2022;53(9):2749–2757. https://doi.org/10.1161/STROKEAHA.121.037775Test.; Riddle M.C., Gerstein H.C., Xavier D., Cushman W.C., Leiter L.A., Raubenheimer P.J. et al. Efficacy and Safety of Dulaglutide in Older Patients: A post hoc Analysis of the REWIND trial. J Clin Endocrinol Metab. 2021;106(5):1345–1351. https://doi.org/10.1210/clinem/dgab065Test.; Marso S.P., Daniels G.H., Brown-Frandsen K., Kristensen P., Mann J.F., Nauck M.A. et al. Liraglutide and Cardiovascular Outcomes in Type 2 Diabetes. N Engl J Med. 2016;375(4):311–322. https://doi.org/10.1056Test/ NEJMoa1603827.; De Pablo-Fernandez E., Goldacre R., Pakpoor J., Noyce A.J., Warner T.T. Association between diabetes and subsequent Parkinson disease. Neurology. 2018;91(2):e139–e142. https://doi.org/10.1212/WNL.0000000000005771Test.; Athauda D., Maclagan K., Skene S.S., Bajwa-Joseph M., Letchford D., Chowdhury K. et al. Exenatide once weekly versus placebo in Parkinson’s disease: a randomised, double-blind, placebo-controlled trial. Lancet. 2017;390(10103):1664–1675. https://doi.org/10.1016/S0140-6736Test(17) 31585-4.; Aviles-Olmos I., Dickson J., Kefalopoulou Z., Djamshidian A., Ell P., Soderlund T. et al. Exenatide and the treatment of patients with Parkinson’s disease. J Clin Invest. 2013;123(6):2730–2736. https://doi.org/10.1172/JCI68295Test.; Femminella G.D., Frangou E., Love S.B., Busza G., Holmes C., Ritchie C. et al. Evaluating the effects of the novel GLP-1 analogue liraglutide in Alzheimer’s disease: study protocol for a randomised controlled trial (ELAD study). Trials. 2019;20(1):191. https://doi.org/10.1186/s13063Test- 019-3259-x.; https://www.med-sovet.pro/jour/article/view/7604Test

  6. 6
    دورية أكاديمية

    المساهمون: The study was financially supported by the Ministry of Science and Higher Education of the Russian Federation (Agreement No. 075-15-2022-301 dated April 20, 2022)., Исследование выполнено при финансовой поддержке Министерства науки и высшего образования Российской Федерации (соглашение №075-15-2022-301 от 20.04.2022).

    المصدر: Meditsinskiy sovet = Medical Council; № 10 (2022); 96-103 ; Медицинский Совет; № 10 (2022); 96-103 ; 2658-5790 ; 2079-701X

    وصف الملف: application/pdf

    العلاقة: https://www.med-sovet.pro/jour/article/view/6920/6244Test; Lakka H.M., Laaksonen D.E., Lakka T.A., Niskanen L.K., Kumpusalo E., Tuomilehto J., Salonen J.T. The metabolic syndrome and total and cardiovascular disease mortality in middle-aged men. JAMA. 2002;288(21):2709–2716. https://doi.org/10.1001/jama.288.21.2709Test.; Thomas M.C., Cooper M.E., Zimmet P. Changing epidemiology of type 2 diabetes mellitus and associated chronic kidney disease. Nat Rev Nephrol. 2016;12(2):73–81. https://doi.org/10.1038/nrneph.2015.173Test.; Einarson T.R., Acs A., Ludwig C., Panton U.H. Prevalence of cardiovascular disease in type 2 diabetes: a systematic literature review of scientific evidence from across the world in 2007–2017. Cardiovasc Diabetol. 2018;17(1):83. https://doi.org/10.1186/s12933-018-0728-6Test.; Nichols G.A., Gullion C.M., Koro C.E., Ephross S.A., Brown J.B. The incidence of congestive heart failure in type 2 diabetes: an update. Diabetes Care. 2004;27(8):1879–1784. https://doi.org/10.2337/diacare.27.8.1879Test.; Ndumele C.E., Matsushita K., Lazo M., Bello N., Blumenthal R.S., Gerstenblith G. et al. Obesity and Subtypes of Incident Cardiovascular Disease. J Am Heart Assoc. 2016;5(8):e003921. https://doi.org/10.1161/JAHA.116.003921Test.; Jenkins D.J.A., Dehghan M., Mente A., Bangdiwala S.I., Rangarajan S., Srichaikul K. et al. Glycemic Index, Glycemic Load, and Cardiovascular Disease and Mortality. N Engl J Med. 2021;384(14):1312–1322. https://doi.org/10.1056/NEJMoa2007123Test.; Leow M.K., Henry C.J. Glycemic Index, Glycemic Load, and Cardiovascular Disease and Mortality. N Engl J Med. 2021;385(4):378. https://doi.org/10.1056/NEJMc2107926Test.; Kirkpatrick C.F., Maki K.C. Dietary Influences on Atherosclerotic Cardiovascular Disease Risk. Curr Atheroscler Rep. 2021;23(10):62. https://doi.org/10.1007/s11883-021-00954-zTest.; Morigny P., Boucher J., Arner P., Langin D. Lipid and glucose metabolism in white adipocytes: pathways, dysfunction and therapeutics. Nat Rev Endocrinol. 2021;17(5):276–295. https://doi.org/10.1038/s41574-021-00471-8Test.; Stenkula K.G., Erlanson-Albertsson C. Adipose cell size: importance in health and disease. Am J Physiol Regul Integr Comp Physiol. 2018;315(2):R284–R295. https://doi.org/10.1152/ajpregu.00257.2017Test.; Ahlqvist E., Storm P., Käräjämäki A., Martinell M., Dorkhan M., Carlsson A. et al. Novel subgroups of adult-onset diabetes and their association with outcomes: a data-driven cluster analysis of six variables. Lancet Diabetes Endocrinol. 2018;6(5):361–369. https://doi.org/10.1016/S2213-8587Test(18)30051-2.; Häring H.U. Novel phenotypes of prediabetes? Diabetologia. 2016;59(9):1806–1818. https://doi.org/10.1007/s00125-016-4015-3Test.; Stefan N., Fritsche A., Schick F., Häring H.U. Phenotypes of prediabetes and stratification of cardiometabolic risk. Lancet Diabetes Endocrinol. 2016;4(9):789–798. https://doi.org/10.1016/S2213-8587Test(16)00082-6.; Stefan N., Staiger H., Wagner R., Machann J., Schick F., Häring H.U., Fritsche A. A high-risk phenotype associates with reduced improvement in glycaemia during a lifestyle intervention in prediabetes. Diabetologia. 2015;58(12):2877–2884. https://doi.org/10.1007/s00125-015-3760-zTest.; Wagner R., Heni M., Tabák A.G., Machann J., Schick F., Randrianarisoa E. et al. Pathophysiology-based subphenotyping of individuals at elevated risk for type 2 diabetes. Nat Med. 2021;27(1):49–57. https://doi.org/10.1038/s41591-020-1116-9Test.; Hur K.Y., Lee M.S. New mechanisms of metformin action: Focusing on mitochondria and the gut. J Diabetes Investig. 2015;6(6):600–609. https://doi.org/10.1111/jdi.12328Test.; Van Son J., Koekkoek L.L., La Fleur S.E., Serlie M.J., Nieuwdorp M. The Role of the Gut Microbiota in the Gut-Brain Axis in Obesity: Mechanisms and Future Implications. Int J Mol Sci. 2021;22(6):2993. https://doi.org/10.3390/ijms22062993Test.; Rastelli M., Knauf C., Cani P.D. Gut Microbes and Health: A Focus on the Mechanisms Linking Microbes, Obesity, and Related Disorders. Obesity (Silver Spring). 2018;26(5):792–800. https://doi.org/10.1002/oby.22175Test.; Belkaid Y., Harrison O.J. Homeostatic Immunity and the Microbiota. Immunity. 2017;46(4):562–576. https://doi.org/10.1016/j.immuni.2017.04.008Test.; Hersoug L.G., Møller P., Loft S. Gut microbiota-derived lipopolysaccharide uptake and trafficking to adipose tissue: implications for inflammation and obesity. Obes Rev. 2016;17(4):297–312. https://doi.org/10.1111/obr.12370Test.; Postler T.S., Ghosh S. Understanding the Holobiont: How Microbial Metabolites Affect Human Health and Shape the Immune System. Cell Metab. 2017;26(1):110–130. https://doi.org/10.1016/j.cmet.2017.05.008Test.; Møller C.L., Vistisen D., Færch K., Johansen N.B., Witte D.R., Jonsson A. et al. Glucose-Dependent Insulinotropic Polypeptide Is Associated With Lower Low-Density Lipoprotein But Unhealthy Fat Distribution, Independent of Insulin: The ADDITION-PRO Study. J Clin Endocrinol Metab. 2016;101(2):485–493. https://doi.org/10.1210/jc.2015-3133Test.; Meijles D.N., Zoumpoulidou G., Markou T., Rostron K.A., Patel R., Lay K. et al. The cardiomyocyte “redox rheostat”: Redox signalling via the AMPKmTOR axis and regulation of gene and protein expression balancing vival and death. J Mol Cell Cardiol. 2019;129:118–129. https://doi.org/10.1016/j.yjmcc.2019.02.006Test.; Krzysiak T.C., Thomas L., Choi Y.J., Auclair S., Qian Y., Luan S. et al. An Insulin-Responsive Sensor in the SIRT1 Disordered Region Binds DBC1 and PACS-2 to Control Enzyme Activity. Mol Cell. 2018;72(6):985– 998.e7. https://doi.org/10.1016/j.molcel.2018.10.007Test.; Paula-Gomes S., Gonçalves D.A., Baviera A.M., Zanon N.M., Navegantes L.C., Kettelhut I.C. Insulin suppresses atrophyand autophagy-related genes in heart tissue and cardiomyocytes through AKT/FOXO signaling. Horm Metab Res. 2013;45(12):849–855. https://doi.org/10.1055/s-0033-1347209Test.; Baek J.H., Jin S.M., Bae J.C., Jee J.H., Yu T.Y., Kim S.K. et al. Serum Calcium and the Risk of Incident Metabolic Syndrome: A 4.3-Year Retrospective Longitudinal Study. Diabetes Metab J. 2017;41(1):60–68. https://doi.org/10.4093/dmj.2017.41.1.60Test.; Stepensky D., Friedman M., Raz I., Hoffman A. Pharmacokineticpharmacodynamic analysis of the glucose-lowering effect of metformin in diabetic rats reveals first-pass pharmacodynamic effect. Drug Metab Dispos. 2002;30(8):861–868. https://doi.org/10.1124/dmd.30.8.861Test.; Bailey C.J., Mynett K.J., Page T. Importance of the intestine as a site of metformin-stimulated glucose utilization. Br J Pharmacol. 1994;112(2):671–675. https://doi.org/10.1111/j.1476-5381.1994.tb13128.xTest.; Bailey C.J., Wilcock C., Scarpello J.H. Metformin and the intestine. Diabetologia. 2008;51(8):1552–1553. https://doi.org/10.1007/s00125-008-1053-5Test.; Tucker G.T., Casey C., Phillips P.J., Connor H., Ward J.D., Woods H.F. Metformin kinetics in healthy subjects and in patients with diabetes mellitus. Br J Clin Pharmacol. 1981;12(2):235–246. https://doi.org/10.1111/j.1365-2125.1981.tb01206.xTest.; Gorboulev V., Schürmann A., Vallon V., Kipp H., Jaschke A., Klessen D. et al. Na(+)-D-glucose cotransporter SGLT1 is pivotal for intestinal glucose absorption and glucose-dependent incretin secretion. Diabetes. 2012;61(1):187–196. https://doi.org/10.2337/db11-1029Test.; Kuhre R.E., Frost C.R., Svendsen B., Holst J.J. Molecular mechanisms of glucose-stimulated GLP-1 secretion from perfused rat small intestine. Diabetes. 2015;64(2):370–382. https://doi.org/10.2337/db14-0807Test.; Parker H.E., Adriaenssens A., Rogers G., Richards P., Koepsell H., Reimann F., Gribble F.M. Predominant role of active versus facilitative glucose transport for glucagon-like peptide-1 secretion. Diabetologia. 2012;55(9): 2445–2455. https://doi.org/10.1007/s00125-012-2585-2Test.; Bauer P.V., Duca F.A., Waise T.M.Z., Rasmussen B.A., Abraham M.A., Dranse H.J. et al. Metformin Alters Upper Small Intestinal Microbiota that Impact a Glucose-SGLT1-Sensing Glucoregulatory Pathway. Cell Metab. 2018;27(1):101–117.e5. https://doi.org/10.1016/j.cmet.2017.09.019Test.; Sun L., Xie C., Wang G., Wu Y., Wu Q., Wang X. et al. Gut microbiota and intestinal FXR mediate the clinical benefits of metformin. Nat Med. 2018;24(12):1919–1929. https://doi.org/10.1038/s41591-018-0222-4Test.; Lee C.B., Chae S.U., Jo S.J., Jerng U.M., Bae S.K. The Relationship between the Gut Microbiome and Metformin as a Key for Treating Type 2 Diabetes Mellitus. Int J Mol Sci. 2021;22(7):3566. https://doi.org/10.3390/ijms22073566Test.; Den Besten G., van Eunen K., Groen A.K., Venema K., Reijngoud D.J., Bakker B.M. The role of short-chain fatty acids in the interplay between diet, gut microbiota, and host energy metabolism. J Lipid Res. 2013;54(9):2325–2340. https://doi.org/10.1194/jlr.R036012Test.; Lee H., Lee Y., Kim J., An J., Lee S., Kong H. et al. Modulation of the gut microbiota by metformin improves metabolic profiles in aged obese mice. Gut Microbes. 2018;9(2):155–165. https://doi.org/10.1080/19490976.2017.1405209Test.; Rios-Covian D., Arboleya S., Hernandez-Barranco A.M., Alvarez-Buylla J.R., Ruas-Madiedo P., Gueimonde M., de los Reyes-Gavilan C.G. Interactions between Bifidobacterium and Bacteroides species in cofermentations are affected by carbon sources, including exopolysaccharides produced by bifidobacteria. Appl Environ Microbiol. 2013;79(23):7518–7524. https://doi.org/10.1128/AEM.02545-13Test.; Ryan P.M., Patterson E., Carafa I., Mandal R., Wishart D.S., Dinan T.G. et al. Metformin and Dipeptidyl Peptidase-4 Inhibitor Differentially Modulate the Intestinal Microbiota and Plasma Metabolome of Metabolically Dysfunctional Mice. Can J Diabetes. 2020;44(2):146–155.e2. https://doi.org/10.1016/j.jcjd.2019.05.008Test.; Zhang W., Xu J.H., Yu T., Chen Q.K. Effects of berberine and metformin on intestinal inflammation and gut microbiome composition in db/db mice. Biomed Pharmacother. 2019;118:109131. https://doi.org/10.1016/j.biopha.2019.109131Test.; Li X., Wang E., Yin B., Fang D., Chen P., Wang G. et al. Effects of Lactobacillus casei CCFM419 on insulin resistance and gut microbiota in type 2 diabetic mice. Benef Microbes. 2017;8(3):421–432. https://doi.org/10.3920/BM2016.0167Test.; Zheng J., Li H., Zhang X., Jiang M., Luo C., Lu Z. et al. Prebiotic Mannan-Oligosaccharides Augment the Hypoglycemic Effects of Metformin in Correlation with Modulating Gut Microbiota. J Agric Food Chem. 2018;66(23):5821–5831. https://doi.org/10.1021/acs.jafc.8b00829Test.; Shin N.R., Lee J.C., Lee H.Y., Kim M.S., Whon T.W., Lee M.S., Bae J.W. An increase in the Akkermansia spp. population induced by metformin treatment improves glucose homeostasis in diet-induced obese mice. Gut. 2014;63(5):727–735. https://doi.org/10.1136/gutjnl-2012-303839Test.; Wu H., Esteve E., Tremaroli V., Khan M.T., Caesar R., Mannerås-Holm L. et al. Metformin alters the gut microbiome of individuals with treatment-naive type 2 diabetes, contributing to the therapeutic effects of the drug. Nat Med. 2017;23(7):850–858. https://doi.org/10.1038/nm.4345Test.; Lee H., Ko G. Effect of metformin on metabolic improvement and gut microbiota. Appl Environ Microbiol. 2014;80(19):5935–5943. https://doi.org/10.1128/AEM.01357-14Test.; Gao Z., Yin J., Zhang J., Ward R.E., Martin R.J., Lefevre M. et al. Butyrate improves insulin sensitivity and increases energy expenditure in mice. Diabetes. 2009;58(7):1509–1517. https://doi.org/10.2337/db08-1637Test.; Lin H.V., Frassetto A., Kowalik E.J. Jr, Nawrocki A.R., Lu M.M., Kosinski J.R. et al. Butyrate and propionate protect against diet-induced obesity and regulate gut hormones via free fatty acid receptor 3-independent mechanisms. PLoS ONE. 2012;7(4):e35240. https://doi.org/10.1371/journal.pone.0035240Test.; Lynn F.C., Thompson S.A., Pospisilik J.A., Ehses J.A., Hinke S.A., Pamir N. et al. A novel pathway for regulation of glucose-dependent insulinotropic polypeptide (GIP) receptor expression in beta cells. FASEB J. 2003;17(1):91–93. https://doi.org/10.1096/fj.02-0243fjeTest.; Ahmadi S., Razazan A., Nagpal R., Jain S., Wang B., Mishra S.P. et al. Metformin Reduces Aging-Related Leaky Gut and Improves Cognitive Function by Beneficially Modulating Gut Microbiome/Goblet Cell/Mucin Axis. J Gerontol A Biol Sci Med Sci. 2020;75(7):e9–e21. https://doi.org/10.1093/gerona/glaa056Test.; Liu Y., Wang C., Li J., Li T., Zhang Y., Liang Y., Mei Y. Phellinus linteus polysaccharide extract improves insulin resistance by regulating gut microbiota composition. FASEB J. 2020;34(1):1065–1078. https://doi.org/10.1096/fj.201901943RRTest.; Pryor R., Norvaisas P., Marinos G., Best L., Thingholm L.B., Quintaneiro L.M. et al. Host-Microbe-Drug-Nutrient Screen Identifies Bacterial Effectors of Metformin Therapy. Cell. 2019;178(6):1299–1312.e29. https://doi.org/10.1016/j.cell.2019.08.003Test.; Cui H.X., Zhang L.S., Luo Y., Yuan K., Huang Z.Y., Guo Y. A Purified Anthraquinone-Glycoside Preparation From Rhubarb Ameliorates Type 2 Diabetes Mellitus by Modulating the Gut Microbiota and Reducing Inflammation. Front Microbiol. 2019;10:1423. https://doi.org/10.3389/fmicb.2019.01423Test.; Vrieze A., Van Nood E., Holleman F., Salojärvi J., Kootte R.S., Bartelsman J.F. et al. Transfer of intestinal microbiota from lean donors increases insulin sensitivity in individuals with metabolic syndrome. Gastroenterology. 2012;143(4):913–916.e7. https://doi.org/10.1053/j.gastro.2012.06.031Test.; Delzenne N.M., Cani P.D., Everard A., Neyrinck A.M., Bindels L.B. Gut microorganisms as promising targets for the management of type 2 diabetes. Diabetologia. 2015;58(10):2206–2217. https://doi.org/10.1007/s00125-015-3712-7Test.; Balakumar M., Prabhu D., Sathishkumar C., Prabu P., Rokana N., Kumar R. et al. Improvement in glucose tolerance and insulin sensitivity by probiotic strains of Indian gut origin in high-fat diet-fed C57BL/6J mice. Eur J Nutr. 2018;57(1):279–295. https://doi.org/10.1007/s00394-016-1317-7Test.; Carvalho B.M., Guadagnini D., Tsukumo D.M.L., Schenka A.A., Latuf-Filho P., Vassallo J. et al. Modulation of gut microbiota by antibiotics improves insulin signalling in high-fat fed mice. Diabetologia. 2012;55(10):2823–2834. https://doi.org/10.1007/s00125-012-2648-4Test.; Turnbaugh P.J., Hamady M., Yatsunenko T., Cantarel B.L., Duncan A., Ley R.E. et al. A core gut microbiome in obese and lean twins. Nature. 2009;457(7228):480–484. https://doi.org/10.1038/nature07540Test.; Ma W., Chen J., Meng Y., Yang J., Cui Q., Zhou Y. Metformin Alters Gut Microbiota of Healthy Mice: Implication for Its Potential Role in Gut Microbiota Homeostasis. Front Microbiol. 2018;9:1336. https://doi.org/10.3389/fmicb.2018.01336Test.; Rosario D., Benfeitas R., Bidkhori G., Zhang C., Uhlen M., Shoaie S., Mardinoglu A. Understanding the Representative Gut Microbiota Dysbiosis in Metformin-Treated Type 2 Diabetes Patients Using Genome-Scale Metabolic Modeling. Front Physiol. 2018;9:775. https://doi.org/10.3389/fphys.2018.00775Test.; Depommier C., Everard A., Druart C., Plovier H., Van Hul M., Vieira-Silva S. et al. Supplementation with Akkermansia muciniphila in overweight and obese human volunteers: a proof-of-concept exploratory study. Nat Med. 2019;25(7):1096–1103. https://doi.org/10.1038/s41591-019-0495-2Test.; Napolitano A., Miller S., Nicholls A.W., Baker D., Van Horn S., Thomas E. et al. Novel gut-based pharmacology of metformin in patients with type 2 diabetes mellitus. PLoS ONE. 2014;9(7):e100778. https://doi.org/10.1371/journal.pone.0100778Test.; De la Cuesta-Zuluaga J., Mueller N.T., Corrales-Agudelo V., VelásquezMejía E.P., Carmona J.A., Abad J.M., Escobar J.S. Metformin Is Associated With Higher Relative Abundance of Mucin-Degrading Akkermansia muciniphila and Several Short-Chain Fatty Acid-Producing Microbiota in the Gut. Diabetes Care. 2017;40(1):54–62. https://doi.org/10.2337/dc16-1324Test.; Elbere I., Kalnina I., Silamikelis I., Konrade I., Zaharenko L., Sekace K. et al. Association of metformin administration with gut microbiome dysbiosis in healthy volunteers. PLoS ONE. 2018;13(9):e0204317. https://doi.org/10.1371/journal.pone.0204317Test.; Li T., Chiang J.Y. Bile acid signaling in metabolic disease and drug therapy. Pharmacol Rev. 2014;66(4):948–983. https://doi.org/10.1124/pr.113.008201Test.; Sansome D.J., Xie C., Veedfald S., Horowitz M., Rayner C.K., Wu T. Mechanism of glucose-lowering by metformin in type 2 diabetes: Role of bile acids. Diabetes Obes Metab. 2020;22(2):141–148. https://doi.org/10.1111/dom.13869Test.; Scarpello J.H., Hodgson E., Howlett H.C. Effect of metformin on bile salt circulation and intestinal motility in type 2 diabetes mellitus. Diabet Med. 1998;15(8):651–656. https://doi.org/10.1002Test/(SICI)1096-9136(199808)15:83.0.CO;2-A.; Meng X.M., Ma X.X., Tian Y.L., Jiang Q., Wang L.L., Shi R. et al. Metformin improves the glucose and lipid metabolism via influencing the level of serum total bile acids in rats with streptozotocin-induced type 2 diabetes mellitus. Eur Rev Med Pharmacol Sci. 2017;21(9):2232–2237. Available at: https://www.europeanreview.org/article/12704Test.; Brønden A., Albér A., Rohde U., Rehfeld J.F., Holst J.J., Vilsbøll T., Knop F.K. Single-Dose Metformin Enhances Bile Acid-Induced Glucagon-Like Peptide-1 Secretion in Patients With Type 2 Diabetes. J Clin Endocrinol Metab. 2017;102(11):4153–4162. https://doi.org/10.1210/jc.2017-01091Test.; Forslund K., Hildebrand F., Nielsen T., Falony G., Le Chatelier E., Sunagawa S. et al. Disentangling type 2 diabetes and metformin treatment signatures in the human gut microbiota. Nature. 2015;528(7581):262–266. https://doi.org/10.1038/nature15766Test.; Breit S.N., Brown D.A., Tsai V.W. The GDF15-GFRAL Pathway in Health and Metabolic Disease: Friend or Foe? Annu Rev Physiol. 2021;83:127–151. https://doi.org/10.1146/annurev-physiol-022020-045449Test.; Gerstein H.C., Pare G., Hess S., Ford R.J., Sjaarda J., Raman K. et al. Growth Differentiation Factor 15 as a Novel Biomarker for Metformin. Diabetes Care. 2017;40(2):280–283. https://doi.org/10.2337/dc16-1682Test.; Natali A., Nesti L., Venturi E., Shore A.C., Khan F., Gooding K. et al. Metformin is the key factor in elevated plasma growth differentiation factor-15 levels in type 2 diabetes: A nested, case-control study. Diabetes Obes Metab. 2019;21(2):412–416. https://doi.org/10.1111/dom.13519Test.; Preiss D., Lloyd S.M., Ford I., McMurray J.J., Holman R.R., Welsh P. et al. Metformin for non-diabetic patients with coronary heart disease (the CAMERA study): a randomised controlled trial. Lancet Diabetes Endocrinol. 2014;2(2):116–124. https://doi.org/10.1016/S2213-8587Test(13)70152-9.; Coll A.P., Chen M., Taskar P., Rimmington D., Patel S., Tadross J.A. et al. GDF15 mediates the effects of metformin on body weight and energy balance. Nature. 2020;578(7795):444–448. https://doi.org/10.1038/s41586-019-1911-yTest.; Blonde L., Dailey G.E., Jabbour S.A., Reasner C.A., Mills D.J. Gastrointestinal tolerability of extended-release metformin tablets compared to immediate-release metformin tablets: results of a retrospective cohort study. Curr Med Res Opin. 2004;20(4):565–572. https://doi.org/10.1185/030079904125003278Test.; Аметов А.С., Барыкина И.Н., Бондарь И.А., Вайсберг А.Р., Вербовая Н.И., Жукова Л.А. и др. Приверженность пациентов терапии метформином пролонгированного действия (Глюкофаж® Лонг) в условиях реальной клинической практики в Российской Федерации. Эндокринология: новости, мнения, обучение. 2017;(4):52–63. https://doi.org/10.24411/2304-9529-2017-00054Test.; https://www.med-sovet.pro/jour/article/view/6920Test

  7. 7
    دورية أكاديمية
  8. 8
    دورية أكاديمية

    المساهمون: Volgograd State Medical University, Волгоградский государственный медицинский университет

    المصدر: Annals of the Russian academy of medical sciences; Vol 72, No 1 (2017); 66-75 ; Вестник Российской академии медицинских наук; Vol 72, No 1 (2017); 66-75 ; 2414-3545 ; 0869-6047 ; 10.15690/vramn721

    وصف الملف: application/pdf

  9. 9
    دورية أكاديمية
  10. 10