يعرض 1 - 10 نتائج من 53 نتيجة بحث عن '"жидкостная биопсия"', وقت الاستعلام: 0.97s تنقيح النتائج
  1. 1
    دورية أكاديمية
  2. 2
    دورية أكاديمية
  3. 3
    دورية أكاديمية
  4. 4
    دورية أكاديمية

    المساهمون: The study was carried out within the framework of the basic budget financing projects of the Ministry of Education and Science of Russia (No. 121030200173-6) and the Ministry of Health of Russia (No. 121031300227-2)., Исследование выполнено в рамках проектов базового бюджетного финансирования Минобрнауки России (№ 121030200173-6) и Минздрава России (№ 121031300227-2).

    المصدر: Advances in Molecular Oncology; Том 10, № 2 (2023); 78-89 ; Успехи молекулярной онкологии; Том 10, № 2 (2023); 78-89 ; 2413-3787 ; 2313-805X ; 10.17650/2313-805X-2023-10-2

    وصف الملف: application/pdf

    العلاقة: https://umo.abvpress.ru/jour/article/view/543/302Test; Sung H., Ferlay J., Siegel R.L. et al. Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 2021;71(3):209–49. DOI:10.3322/caac.21660; Eberhardt W.E., Pöttgen C., Gauler T.C. et al. Phase III study of surgery versus definitive concurrent chemoradiotherapy boost in patients with resectable stage IIIA(N2) and selected IIIB non-small-cell lung cancer after induction chemotherapy and concurrent chemoradiotherapy (ESPATUE). J Clin Oncol 2015;33(35):4194–201. DOI:10.1200/JCO.2015.62.6812; Chang K., Wang H. The cancer genome atlas pan-cancer analysis project. Nat Genet 2013;45(10):1113–20. DOI:10.3779/j.issn.1009-3419.2015.04.02; Sempere L.F., Azmi A.S., Moore A. microRNA-based diagnostic and therapeutic applications in cancer medicine. Wiley Interdiscip Rev RNA 2021;12(6):e1662. DOI:10.1002/wrna.1662; Dhawan A., Scott J.G., Harris A.L., Buffa F.M. Pan-cancer characterisation of microRNA across cancer hallmarks reveals microRNA-mediated downregulation of tumour suppressors. Nat Commun 2018;9(1):5228. DOI:10.1038/s41467-018-07657-1; He B., Zhao Z., Cai Q. et al. miRNA-based biomarkers, therapies, and resistance in cancer. Int J Biol Sci 2020;16(14):2628–47. DOI:10.7150/ijbs.4720; Fredsøe J., Rasmussen A.K.I., Thomsen A.R. et al. Diagnostic and prognostic microRNA biomarkers for prostate cancer in cell-free urine. Eur Urol Focus 2018;4(6):825–33. DOI:10.1016/j.euf.2017.02.018; Hu C., Meiners S., Lukas C. et al. Role of exosomal microRNAs in lung cancer biology and clinical applications. Cell Prolif 2020;53(6):e12828. DOI:10.1111/cpr.12828; Yi M., Liao Z., Deng L. et al. High diagnostic value of miRNAs for NSCLC: quantitative analysis for both single and combined miRNAs in lung cancer. Ann Med 2021;53(1):2178–93. DOI:10.1080/07853890.2021.2000634; Gao S., Guo W., Liu T. et al. Plasma extracellular vesicle microRNA profiling and the identification of a diagnostic signature for stage I lung adenocarcinoma. Cancer Sci 2022;113(2):648–59. DOI:10.1111/cas.15222; Osipov I.D., Zaporozhchenko I.A., Bondar A.A. et al. Cell-free miRNA-141 and miRNA-205 as prostate cancer biomarkers. Adv Exp Med Biol 2016;924:9–12. DOI:10.1007/978-3-319-42044-8_2; Zaporozhchenko I.A., Morozkin E.S., Ponomaryova A.A. et al. Profiling of 179 miRNA expression in blood plasma of lung cancer patients and cancer-free individuals. Sci Rep 2018;8(1):6348. DOI:10.1038/s41598-018-24769-2; Li C., Yin Y., Liu X. et al. Non-small cell lung cancer associated microRNA expression signature: integrated bioinformatics analysis, validation and clinical significance. Oncotarget 2017;8(15):24564–78. DOI:10.18632/oncotarget.15596; Huang W., Huang W., Hu J. et al. Two microRNA panels to discriminate three subtypes of lung carcinoma in bronchial brushing specimens. Am J Respir Crit Care Med 2012;186(11):1160–7. DOI:10.1164/rccm.201203-0534OC; Wu C., Cao Y., He Z. et al. Serum levels of miR-19b and miR-146a as prognostic biomarkers for non-small cell lung cancer. Tohoku J Exp Med 2014;232(2):85–95. DOI:10.1620/tjem.232.85; Boeri M., Verri C., Conte D. et al. MicroRNA signatures in tissues and plasma predict development and prognosis of computed tomography detected lung cancer. Proc Natl Acad Sci USA 2011;108(9):3713–8. DOI:10.1073/pnas.1100048108; Zhou X., Wen W., Shan X. et al. A six-microRNA panel in plasma was identified as a potential biomarker for lung adenocarcinoma diagnosis. Oncotarget 2016;8(4):6513–25. DOI:10.18632/oncotarget.14311; Liu M., Gao J., Huang Q. et al. Downregulating microRNA-144 mediates a metabolic shift in lung cancer cells by regulating GLUT1 expression. Oncol Lett 2016;11(6):3772–6. DOI:10.3892/ol.2016.4468; Pan H.L., Wen Z.S., Huang Y.C. et al. Down-regulation of microRNA-144 in air pollution-related lung cancer. Sci Rep 2015;5:14331. DOI:10.1038/srep14331; Zhang G., An H., Fang X. MicroRNA-144 regulates proliferation, invasion, and apoptosis of cells in malignant solitary pulmonary nodule via zinc finger E-box-binding homeobox 1. Int J Clin Exp Pathol 2015;8(5):5960–7.; Ling B., Wang G.X., Long G. et al. Tumor suppressor miR-22 suppresses lung cancer cell progression through post-transcriptional regulation of ErbB3. J Cancer Res Clin Oncol 2012;138(8):1355–61. DOI:10.1007/s00432-012-1194-2; Xin M., Qiao Z., Li J. et al. miR-22 inhibits tumor growth and metastasis by targeting ATP citrate lyase: evidence in osteosarcoma, prostate cancer, cervical cancer and lung cancer. Oncotarget 2014;7(28):44252–65. DOI:10.18632/oncotarget.10020; Hosseini S.A., Seidi M., Yaghoobi H. Designed miR-19a/b sponge induces apoptosis in lung cancer cells through the PI3K-PTEN-Akt pathway regulation. Mol Biol Rep 2022;49(9):8485–93. DOI:10.1007/s11033-022-07670-0; Zhang X., Wang X., Chai B. et al. Downregulated miR-18a and miR-92a synergistically suppress non-small cell lung cancer via targeting Sprouty 4. Bioengineered 2022;13(4):11281–95. DOI:10.1080/21655979.2022.2066755; Reis P.P., Drigo S.A., Carvalho R.F. et al. Circulating miR-16-5p, miR-92a-3p, and miR-451a in plasma from lung cancer patients: potential application in early detection and a regulatory role in tumorigenesis pathways. Cancers 2020;12(8):2071. DOI:10.3390/cancers12082071; Wang Z., Pan L., Yang L. et al. Long non-coding RNA GATA6-AS1 sponges miR-324-5p to inhibit lung cancer cell proliferation and invasion. Onco Targets Ther 2020;13:9741–51. DOI:10.2147/OTT.S256336; Zhang Y., Xu H. Serum exosomal miR-378 upregulation is associated with poor prognosis in non-small-cell lung cancer patients. J Clin Lab Anal 2020;34(6):e23237. DOI:10.1002/jcla.23237; Ji K.X., Cui F., Qu D. et al. MiR-378 promotes the cell proliferation of non-small cell lung cancer by inhibiting FOXG1. Eur Rev Med Pharmacol Sci 2018;22(4):1011–9. DOI:10.26355/eurrev_201802_14383; Cao X., Zhong W., Guo S. et al. Low expression of miR-27b in serum exosomes of non-small cell lung cancer facilitates its progression by affecting EGFR. Open Med (Wars) 2022;17(1):816–25. DOI:10.1515/med-2022-0472; Zhong S., Golpon H., Zardo P. et al. miRNAs in lung cancer. A systematic review identifies predictive and prognostic miRNA candidates for precision medicine in lung cancer. Transl Res 2021;230:164–96. DOI:10.1016/j.trsl.2020.11.012; Konoshenko M.Y., Lekchnov E.A., Bryzgunova O.E. et al. Isolation of extracellular vesicles from biological fluids via the aggregation-precipitation approach for downstream miRNAs detection. Diagnostics 2012;11(3):384. DOI:10.3390/diagnostics11030384; Lekchnov E.A., Zaporozhchenko I.A., Morozkin E.S. et al. Protocol for miRNA isolation from biofluids. Anal Biochem 2016;499:78–84. DOI:10.1016/j.ab.2016.01.025; Konoshenko M.Y., Lekchnov E.A., Bryzgunova O.E. et al. The panel of 12 cell-Free microRNAs as potential biomarkers in prostate neoplasms. Diagnostics 2020;10(1):38. DOI:10.3390/diagnostics10010038; Landoni E., Miceli R., Callari M. et al. Proposal of supervised data analysis strategy of plasma miRNAs from hybridisation array data with an application to assess hemolysis-related deregulation. BMC Bioinformatics 2015;16:388. DOI:10.1186/s12859-015-0820-9; Bryzgunova O.E., Zaporozhchenko I.A., Lekchnov E.A. et al. Data analysis algorithm for the development of extracellular miRNA-based diagnostic systems for prostate cancer. PLoS One 2019;14(4):e0215003. DOI:10.1371/journal.pone.0215003; Bryzgunova O.E., Konoshenko M.Y., Zaporozhchenko I.A. et al. Isolation of cell-free miRNA from biological fluids: influencing factors and methods. Diagnostics (Basel) 2021;11(5):865. DOI:10.3390/diagnostics11050865; Dejima H., Iinuma H., Kanaoka R. et al. Exosomal microRNA in plasma as a non-invasive biomarker for the recurrence of non-small cell lung cancer. Oncol Lett 2017;13(3):1256–63. DOI:10.3892/ol.2017.5569; Kanaoka R., Iinuma H., Dejima H. et al. Usefulness of plasma exosomal microRNA-451a as a noninvasive biomarker for early prediction of recurrence and prognosis of non-small cell lung cancer. Oncology 2018;94(5):311–23. DOI:10.1159/000487006; Liu Q., Yu Z., Yuan S. et al. Circulating exosomal microRNAs as prognostic biomarkers for non-small-cell lung cancer. Oncotarget 2017;8(8):13048–58. DOI:10.18632/oncotarget.14369; Munagala R., Aqil F., Gupta R.C. Exosomal miRNAs as biomarkers of recurrent lung cancer. Tumor Biol 2016;37(8):10703–14. DOI:10.1007/s13277-016-4939-8; Silva J., García V., Zaballos Á. et al. Vesicle-related microRNAs in plasma of nonsmall cell lung cancer patients and correlation with survival. Eur Respir J 2011;37(3):617–23. DOI:10.1183/09031936.00029610; Zhuang L., Shou T., Li K. et al. MicroRNA-30e-5p promotes cell growth by targeting PTPN13 and indicates poor survival and recurrence in lung adenocarcinoma. J Cell Mol Med 2017;21(11):2852–62. DOI:10.1111/jcmm.13198; Li W., Yang P., Zhong C. et al. The circ-PITX1 promotes non-small cell lung cancer development via the miR-30e-5p/ITGA6 axis. Cell Cycle 2022;21(3):304–21. DOI:10.1080/15384101.2021.2020041; Dong W., Zhang H., Dai Y. et al. circRNA circFAT1(e2) Elevates the development of non-small-cell lung cancer by regulating miR-30e-5p and USP22. BioMed Res Int 2021;2021:6653387. DOI:10.1155/2021/6653387; Gao W., Shen H., Liu L. et al. MiR-21 overexpression in human primary squamous cell lung carcinoma is associated with poor patient prognosis. J Cancer Res Clin Oncol 2011;137(4):557–66. DOI:10.1007/s00432-010-0918-4; Ning Z.Q., Lu H.L., Chen C. et al. MicroRNA-30e reduces cell growth and enhances drug sensitivity to gefitinib in lung carcinoma. Oncotarget 2017;8(3):4572–81. DOI:10.18632/oncotarget.13944; Turchinovich A., Burwinkel B. Distinct AGO1 and AGO2 associated miRNA profiles in human cells and blood plasma. RNA Biol 2012;9(8):1066–75. DOI:10.4161/rna.21083; Lunavat T.R., Lesley C., Dae-Kyum K. et al. Small RNA deep sequencing discriminates subsets of extracellular vesicles released by melanoma cells – evidence of unique microRNA cargos. RNA Biol 2015;12(8):810–23. DOI:10.1080/15476286.2015.1056975; Huang X., Tiezheng Y., Tschannen M. et al. Characterization of human plasma-derived exosomal RNAs by deep sequencing. BMC Genomics 2013;14:319. DOI:10.1186/1471-2164-14-319; Markou A., Sourvinou I., Vorkas P.A. et al. Clinical evaluation of microRNA expression profiling in non small cell lung cancer. Lung Cancer 2013;81(3):388–96. DOI:10.1016/j.lungcan.2013.05.007; Cui Y., Zhao L., Zhao S. et al. MicroRNA-30e inhibits proliferation and invasion of non-small cell lung cancer via targeting SOX9. Human Cell 2019;32(3):326–33. DOI:10.1007/s13577-018-0223-0; Xu G., Cai J., Wang L. et al. MicroRNA-30e-5p suppresses non-small cell lung cancer tumorigenesis by regulating USP22-mediated Sirt1/JAK/STAT3 signaling. Exp Cell Res 2018;362(2):268–78. DOI:10.1016/j.yexcr.2017.11.027; He J., Jin S., Zhang W. et al. Long non-coding RNA LOC554202 promotes acquired gefitinib resistance in non-small cell lung cancer through upregulating miR-31 expression. J Cancer 2019;10(24):6003–13. DOI:10.7150/jca.35097; Liu X., Sempere L.F., Ouyang H. et al. MicroRNA-31 functions as an oncogenic microRNA in mouse and human lung cancer cells by repressing specific tumor suppressors. J Clin Invest 2010;120(4):1298–309. DOI:10.1172/JCI39566; Zhu C., Wang S., Zheng M. et al. miR-31-5p modulates cell progression in lung adenocarcinoma through TNS1/p53 axis. Strahlenther Onkol 2022;198(3):304–14. DOI:10.1007/s00066-021-01895-x; Hou C., Sun B., Jiang Y. et al. MicroRNA-31 inhibits lung adenocarcinoma stem-like cells via down-regulation of MET-PI3K-Akt signaling pathway. Anticancer Agents Med Chem 2016;16(4):501–18. DOI:10.2174/1871520615666150824152353; Zhang J., Li D., Zhang Y. et al. Integrative analysis of mRNA and miRNA expression profiles reveals seven potential diagnostic biomarkers for non-small cell lung cancer. Oncol Rep 2020;43(1):99–112. DOI:10.3892/or.2019.7407; Cheng X., Sha M., Jiang W. et al. LINC00174 suppresses non-small cell lung cancer progression by up-regulating LATS2 via sponging miR-31-5p. Cell J 2022;24(3):140–7. DOI:10.22074/cellj.2022.7991; Wang Y., Shang S., Yu K. et al. miR-224, miR-147b and miR-31 associated with lymph node metastasis and prognosis for lung adenocarcinoma by regulating PRPF4B, WDR82 or NR3C2. Peer J 2020;8:e9704. DOI:10.7717/peerj.9704; Meng W., Ye Z., Cui R. et al. MicroRNA-31 predicts the presence of lymph node metastases and survival in patients with lung adenocarcinoma. Clin Cancer Res 2013;19(19):5423–33. DOI:10.1158/1078-0432.CCR-13-0320; Zeng X., Liu D., Peng G. et al. MiroRNA-31-3p promotes the invasion and metastasis of non-small-cell lung cancer cells by targeting forkhead Box 1 (FOXO1). Comput Math Methods Med 2022;2022:4597087. DOI:10.1155/2022/4597087; Sun X., Zhang S., Ma X. Prognostic value of microRNA-125 in various human malignant neoplasms: a meta-analysis Clin Lab 2015;61(11):1667–74. DOI:10.7754/clin.lab.2015.150408; Kazempour Dizaji M., Farzanegan B., Bahrami N. et al. Expression of miRNA1, miRNA133, miRNA191, and miRNA24, as good biomarkers, in non-small cell lung cancer using real-time PCR method. Asian Pac J Cancer Prev 2022;23(5):1565–70. DOI:10.31557/APJCP.2022.23.5.1565; Liu S., Chen J., Zhang T. et al. MicroRNA-133 inhibits the growth and metastasis of the human lung cancer cells by targeting epidermal growth factor receptor. J BUON 2012;24(3):929–35.; Liu G., Li Y.I., Gao X. Overexpression of microRNA-133b sensitizes non-small cell lung cancer cells to irradiation through the inhibition of glycolysis. Oncol Lett 2016;11(4):2903–8. DOI:10.3892/ol.2016.4316; Wei G., Xu Y., Peng T. et al. miR-133 involves in lung adenocarcinoma cell metastasis by targeting FLOT2. Artif Cells Nanomed Biotechnol 2018;46(2):224–30. DOI:10.1080/21691401.2017.1324467; Xiao B., Liu H., Gu Z. et al. Expression of microRNA-133 inhibits epithelial-mesenchymal transition in lung cancer cells by directly targeting FOXQ1. Arch Bronconeumol 2016;52(10):505–11. DOI:10.1016/j.arbres.2015.10.016; Xu M., Wang Y.Z. miR-133a suppresses cell proliferation, migration and invasion in human lung cancer by targeting MMP-14. Oncol Rep 2013;30(3):1398–404. DOI:10.3892/or.2013.2548; Peinado P., Andrades A., Martorell-Marugán J. et al. The SWI/SNF complex regulates the expression of miR-222, a tumor suppressor microRNA in lung adenocarcinoma. Human Mol Gen 2021;30(23):2263–71. DOI:10.1093/hmg/ddab187; Wu Q., Yu L., Lin X. et al. Combination of serum miRNAs with serum exosomal miRNAs in early diagnosis for non-small-cell lung cancer. Cancer Manag Res 2020;12:485–95. DOI:10.2147/CMAR.S232383; Chen W., Li X. MiR-222-3p promotes cell proliferation and inhibits apoptosis by targeting PUMA (BBC3) in non-small cell lung cancer. Technol Cancer Res Treat 2020;19:1533033820922558. DOI:10.1177/1533033820922558; Garofalo M., Romano G., Di Leva G. et al. EGFR and MET receptor tyrosine kinase-altered microRNA expression induces tumorigenesis and gefitinib resistance in lung cancers. Nat Med 2011;18:74–82. DOI:10.1038/nm.2577; Mao K.P., Zhang W.N., Liang X.M. et al. MicroRNA-222 expression and its prognostic potential in non-small cell lung cancer. Sci World J 2014;908326. DOI:10.1155/2014/908326; Zhong C., Ding S., Xu Y. et al. MicroRNA-222 promotes human non-small cell lung cancer H460 growth by targeting p27. Int J Clin Exp Med 2015;8(4):5534–40.; Sun Q., Jiang C.W., Tan Z.H. et al. MiR-222 promotes proliferation, migration and invasion of lung adenocarcinoma cells by targeting ETS1. Eur Rev Med Pharmacol Sci 2017;21(10):2385–91.; Hetta H.F., Zahran A.M., El-Mahdy R.I. et al. Assessment of circulating miRNA-17 and miRNA-222 expression profiles as non-invasive biomarkers in egyptian patients with non-small-cell lung cancer. Asian Pac J Cancer Prev 2019;20(6):1927–33. DOI:10.31557/APJCP.2019.20.6.1927; Kim Y., Sim J., Kim H. et al. MicroRNA-374a expression as a prognostic biomarker in lung adenocarcinoma. J Pathol Transl Med 2019;53(6):354–60. DOI:10.4132/jptm.2019.10.01; Wang G., Ji X., Li P. et al. Human bone marrow mesenchymal stem cell-derived exosomes containing microRNA-425 promote migration, invasion and lung metastasis by down-regulating CPEB1. Regen Ther 2022;20:107–16. DOI:10.1016/j.reth.2022.03.007; Guo Z., Ye H., Zheng X. et al. Extracellular vesicle-encapsulated microRNA-425-derived from drug-resistant cells promotes non-small-cell lung cancer progression through DAPK1-medicated PI3K/AKT pathway. J Cell Physiol 2021;236(5):3808–20. DOI:10.1002/jcp.30126; Zhou J.S., Yang Z.S., Cheng S.Y. et al. miRNA-425-5p enhances lung cancer growth via the PTEN/PI3K/AKT signaling axis. BMC Pulm Med 2020;20(1):223. DOI:10.1186/s12890-020-01261-0; Jiang L., Ge W., Geng J. miR-425 regulates cell proliferation, migration and apoptosis by targeting AMPH-1 in non-small-cell lung cancer. Pathol Res Pract 2019;215(12):152705. DOI:10.1016/j.prp.2019.152705.; Fu Y., Li Y., Wang X. et al. Overexpression of miR-425-5p is associated with poor prognosis and tumor progression in non-small cell lung cancer. Cancer Biomark 2020;27(2):147–56. DOI:10.3233/cbm-190782; Yuwen D., Ma Y., Wang D. et al. Prognostic role of circulating exosomal miR-425-3p for the response of NSCLC to platinum-based chemotherapy. Cancer Epidemiol Biomark Prevent 2019;28(1):163–73. DOI:10.1158/1055-9965.epi-18-0569; Fortunato O., Boeri M., Moro M. et al. Mir-660 is downregulated in lung cancer patients and its replacement inhibits lung tumorigenesis by targeting MDM2-p53 interaction. Cell Death Dis 2014;5(12):e1564. DOI:10.1038/cddis.2014.507; Qi Y., Zha W., Zhang W. Exosomal miR-660-5p promotes tumor growth and metastasis in non-small cell lung cancer. J BUON 2019;24(2):599–607.; Moro M., Di Paolo D., Milione M. et al. Coated cationic lipid-nanoparticles entrapping miR-660 inhibit tumor growth in patient-derived xenografts lung cancer models. J Control Release 2019;308:44–56. DOI:10.1016/j.jconrel.2019.07.006; https://umo.abvpress.ru/jour/article/view/543Test

  5. 5
    دورية أكاديمية

    المساهمون: The study was supported by the Russian Science Foundation (RSF) grant №21-15-00411 and grant №1815-00391. The study was supported by resources of the MIPT Research Equipment Sharing Center «Applied Genetics» (grant №075-15-2021-684, state assignment 730000Ф.99.1.БВ10АА00006)., Исследование выполнено при финансовой поддержке РНФ гранты №21-15-00411 и РНФ №18-1500391. Исследование было выполнено при использовании ресурсов ЦКП МФТИ «Прикладная генетика» (грант №075-15-2021-684, госзадание 730000Ф.99.1.БВ10АА00006).

    المصدر: Siberian journal of oncology; Том 22, № 3 (2023); 108-118 ; Сибирский онкологический журнал; Том 22, № 3 (2023); 108-118 ; 2312-3168 ; 1814-4861

    وصف الملف: application/pdf

    العلاقة: https://www.siboncoj.ru/jour/article/view/2590/1118Test; Хухлаева Е.А., Коновалов А.Н., Пронин И.Н., Корниенко В.Н., Гаврюшин А.В. Нейрорадиология и принципы классификации опухолей ствола головного мозга. Медицинская визуализация. 2011; 6: 62-74.; Louis D.N., Perry A., Wesseling P., Brat D.J., Cree I.A., Figarella-Branger D., Hawkins C., Ng H.K., Pfister S.M., Reifenberger G., Soffietti R., von Deimling A., Ellison D.W. The 2021 WHO Classification of Tumors of the Central Nervous System: a summary. Neuro Oncol. 2021; 23(8): 1231-51. doi:10.1093/neuonc/noab106.; Диникина Ю.В., Белогурова М.Б. Особенности новой классификации опухолей центральной нервной системы ВОЗ 2021: взгляд клинициста. Российский журнал персонализированной медицины. 2022; 2(4): 77-90. doi:10.18705/2782-3806-2022-2-4-77-90.; Gianno F., Giovannoni I., Cafferata B., Diomedi-Camassei F., Minasi S., Barresi S., Buttarelli F.R., Alesi V., Cardoni A., Antonelli M., Puggioni C., Colafati G.S., Carai A., Vinci M., Mastronuzzi A., Miele E., Alaggio R., Giangaspero F., Rossi S. Paediatric-type diffuse high-grade gliomas in the 5th CNS WHO Classification. Pathologica. 2022; 114(6): 422-35. doi:10.32074/1591-951X-830.; Регентова О.С., Щербенко О.И. Современное состояние проблемы диагностики и лечения диффузно растущих глиом ствола мозга у детей и подростков. Вестник Российского научного центра рентгенорадиологии Минздрава России. 2019; 19(1): 95-130.; Hoffman L.M., Veldhuijzen van Zanten S.E.M., Colditz N., et al. Clinical, Radiologic, Pathologic, and Molecular Characteristics of LongTerm Survivors of Diffuse Intrinsic Pontine Glioma (DIPG): A Collaborative Report From the International and European Society for Pediatric Oncology DIPG Registries. J Clin Oncol. 2018; 36(19): 1963-72. doi:10.1200/JCO.2017.75.9308.; Veldhuijzen van Zanten S.E.M., Sewing A.C.P., van Lingen A., Hoekstra O.S., Wesseling P., Meel M.H., van Vuurden D.G., Kaspers G.J.L., Hulleman E., Bugiani M. Multiregional Tumor Drug-Uptake Imaging by PET and Microvascular Morphology in End-Stage Diffuse Intrinsic Pontine Glioma. J Nucl Med. 2018; 59(4): 612-5. doi:10.2967/jnumed.117.197897.; Lobon-Iglesias M.J., Santa-Maria Lopez V., Puerta Roldan P., Candela-Canto S., Ramos-Albiac M., Gomez-Chiari M., Puget S., Bolle S., Goumnerova L., Kieran M.W., Cruz O., Grill J., Morales La Madrid A. Tumor dissemination through surgical tracts in diffuse intrinsic pontine glioma. J Neurosurg Pediatr. 2018; 22(6): 678-83. doi:10.3171/2018.6.PEDS17658.; Hoffman L.M., DeWire M., Ryall S., Buczkowicz P., Leach J., Miles L., Ramani A., Brudno M., Kumar S.S., Drissi R., Dexheimer P., Salloum R., Chow L., Hummel T., Stevenson C., Lu Q.R., Jones B., Witte D., Aronow B., Hawkins C.E., Fouladi M. Spatial genomic heterogeneity in diffuse intrinsic pontine and midline high-grade glioma: implications for diagnostic biopsy and targeted therapeutics. Acta Neuropathol Commun. 2016; 4: 1. doi:10.1186/s40478-015-0269-0. Erratum in: Acta Neuropathol Commun. 2016; 4: 13.; Bronkhorst A.J., Ungerer V., Holdenrieder S. The emerging role of cell-free DNA as a molecular marker for cancer management. Biomol Detect Quantif. 2019; 17. doi:10.1016/j.bdq.2019.100087.; Lu V.M., Power E.A., Zhang L., Daniels D.J. Unlocking the translational potential of circulating nucleosomes for liquid biopsy in diffuse intrinsic pontine glioma. Biomark Med. 2019; 13(8): 597-600. doi:10.2217/bmm-2019-0139.; Garnier D., Jabado N., Rak J. Extracellular vesicles as prospective carriers of oncogenic protein signatures in adult and paediatric brain tumours. Proteomics. 2013; 13(10-11): 1595-607. doi:10.1002/pmic.201200360.; Nobre L., Zapotocky M., Johnson M., Wasserman J., Abla O., Whitlock J., Tabori U., Hawkins C. Abstract 2226: Validation of a liquid biopsy tool to identify point mutations in pediatric brain tumor patients. Cancer Res. 2019; 79: 2226. doi:10.1158/1538-7445.AM2019-2226.; Назарян Д., Друй А., Ясько Л., Папуша Л., Новичкова Г. Жидкостные биопсии в детской нейроонкологии: в преддверии возможностей тераностики. Вопросы гематологии/онкологии и иммунопатологии в педиатрии. 2018; 17(1): 133-5. doi:10.24287/17261708-2018-17-1-133-135.; Lapin D.H., Tsoli M., Ziegler D.S. Genomic Insights into Diffuse Intrinsic Pontine Glioma. Front Oncol. 2017; 7: 57. doi:10.3389/fonc.2017.00057.; Dufour C., Vasseur R., PerbetR., LeblondP, VinchonM., Reyns N., Touzet G., Maurage C.A., Fabienne E., Florence R. DIPG-44. Molecular And Chromosomal Characterization Of A Unique Series Of Diffuse Midline Gliomas In Children And Young Adults. Neuro Oncol. 2018; 20s2: 57-8. doi:10.1093/neuonc/noy059.137.; Wu G., Broniscer A., McEachron TA., Lu C., Paugh B.S.,Becksfort J., Qu C., Ding L., Huether R., Parker M., Zhang J., Gajjar A., Dyer M.A., Mullighan C.G., Gilbertson R.J., Mardis E.R., Wilson R.K., Downing J.R., Ellison D.W., Zhang J., Baker S.J.; St. .Jude Childrens Research Hospital Washington University Pediatric Cancer Genome Project. Somatic histone H3 alterations in pediatric diffuse intrinsic pontine gliomas and nonbrainstem glioblastomas. Nat Genet. 2012; 44(3): 251-3. doi:10.1038/ng.1102.; Lewis P.W., Muller M.M., Koleisky M.S., Cordero F., Lin S., Banaszynski L.A., Garcia B.A., Muir T.W., Becher O.J., Allis C.D. Inhibition of PRC2 activity by a gain-of-function H3 mutation found in pediatric glioblastoma. Science. 2013; 340(6134): 857-61. doi:10.1126/science.1232245.; Mohammad F., Helin K. Oncohistones: drivers of pediatric cancers. Genes Dev. 2017; 31(23-24): 2313-24. doi:10.1101/gad.309013.117.; Salloum R., McConechy M.K., Mikael L.G., Fuller C., Drissi R., DeWire M., Nikbakht H., De Jay N., Yang X., Boue D., Chow L.M.L., Finlay J.L., Gayden T., Karamchandani J., Hummel T.R., Olshefski R., Osorio D.S., Stevenson C., Kleinman C.L., Majewski J., Fouladi M., Jabado N. Characterizing temporal genomic heterogeneity in pediatric high-grade gliomas. Acta Neuropathol Commun. 2017; 5(1): 78. doi:10.1186/s40478-017-0479-8.; Park Y., An P., Ding D., Eberhart C.G., Raabe E.H. DIPG-34. A Human Neural Stem Cell Dipg Model Identifies The Relative Contribution Of Different Oncogenic Elements To Invasive Malignant Transformation. Neuro Oncol. 2018; 20 (s2): 55-6. doi:10.1093/neuonc/noy059.127.; Silveira A.B., Kasper L.H., Fan Y., Jin H., Wu G., Shaw T.I., Zhu X., Larson J.D., Easton J., Shao Y., Yergeau D.A., Rosencrance C., Boggs K., Rusch M.C., Ding L., Zhang J., Finkelstein D., Noyes R.M., Russell B.L., Xu B., Broniscer A., Wetmore C., Pounds S.B., Ellison D.W., Zhang J., Baker S.J. H3.3 K27M depletion increases differentiation and extends latency of diffuse intrinsic pontine glioma growth in vivo. Acta Neuropathol. 2019; 137(4): 637-55. doi:10.1007/s00401-019-01975-4. Erratum in: Acta Neuropathol. 2019; 137(6): 1021.; Chan K.M., Fang D., Gan H., Hashizume R., Yu C., SchroederM., Gupta N., Mueller S., James C.D., Jenkins R., Sarkaria J., Zhang Z. The histone H3.3K27M mutation in pediatric glioma reprograms H3K27 methylation and gene expression. Genes Dev. 2013; 27(9): 985-90. doi:10.1101/gad.217778.113.; Louis D.N., Giannini C., Capper D., Paulus W., Figarella-Branger D., Lopes M.B., Batchelor T.T., Cairncross J.G., van den Bent M., Wick W., Wesseling P. cIMPACT-NOW update 2: diagnostic clarifications for diffuse midline glioma, H3 K27M-mutant and diffuse astrocytoma/anaplastic astrocytoma, IDH-mutant. Acta Neuropathol. 2018; 135(4): 639-42. doi:10.1007/s00401-018-1826-y.; Han H.J., Jain P., Resnick A.C. Shared ACVR1 mutations in FOP and DIPG: Opportunities and challenges in extending biological and clinical implications across rare diseases. Bone. 2018; 109: 91-100. doi:10.1016/j.bone.2017.08.001.; Carvalho D., Taylor K.R., Olaciregui N.G., Molinari V, Clarke M., Mackay A., Ruddle R., Henley A., Valenti M., Hayes A., Brandon A.H., Eccles S.A., Raynaud F., Boudhar A., Monje M., Popov S., Moore A.S., Mora J., Cruz O., Vinci M., Brennan P.E., Bullock A.N., Carcaboso A.M., Jones C. ALK2 inhibitors display beneficial effects in preclinical models of ACVR1 mutant diffuse intrinsic pontine glioma. Commun Biol. 2019; 2: 156. doi:10.1038/s42003-019-0420-8.; Saratsis A.M., Yadavilli S., Magge S., Rood B.R., Perez J., Hill D.A., Hwang E., Kilburn L., Packer R.J., Nazarian J. Insights into pediatric diffuse intrinsic pontine glioma through proteomic analysis of cerebrospinal fluid. Neuro Oncol. 2012; 14(5): 547-60. doi:10.1093/neuonc/nos067.; WerbrouckC., Evangelista C.C.S., Lobon-IglesiasMJ., Barret E., Le Teuff G., Merlevede J., Brusini R., Kergrohen T., Mondini M., Bolle S., Varlet P., Beccaria K., Boddaert N., Puget S., Grill J., Debily M.A., Castel D. TP53 Pathway Alterations Drive Radioresistance in Diffuse Intrinsic Pontine Gliomas (DIPG). Clin Cancer Res. 2019; 25(22): 6788-6800. doi:10.1158/1078-0432.CCR-19-0126.; Paugh B.S., Broniscer A., Qu C., Miller C.P., Zhang J., Tatevossian R.G., Olson J.M., Geyer J.R., Chi S.N., da Silva N.S., Onar-Thomas A., Baker J.N., Gajjar A., Ellison D.W., Baker S.J. Genome-wide analyses identify recurrent amplifications of receptor tyrosine kinases and cell-cycle regulatory genes in diffuse intrinsic pontine glioma. J Clin Oncol. 2011; 29(30): 3999-4006. doi:10.1200/JCO.2011.35.5677.; Paugh B.S., Zhu X., Qu C., Endersby R., Diaz A.K., Zhang J., Bax D.A., Carvalho D., Reis R.M., Onar-Thomas A., Broniscer A., Wetmore C., Zhang J., Jones C., Ellison D.W., Baker S.J. Novel oncogenic PDGFRA mutations in pediatric high-grade gliomas. Cancer Res. 2013; 73(20): 6219-29. doi:10.1158/0008-5472.CAN-13-1491.; Akamandisa M.P., Nie K., Nahta R., Hambardzumyan D., Castel-lino R.C. Inhibition of mutant PPM1D enhances DNA damage response and growth suppressive effects of ionizing radiation in diffuse intrinsic pontine glioma. Neuro Oncol. 2019; 21(6): 786-99. doi:10.1093/neuonc/noz053.; Chi A.S., Tarapore R.S., Hall M.D., Shonka N., Gardner S., Umemura Y., Sumrall A., Khatib Z., Mueller S., Kline C., Zaky W., Khatua S., Weathers S.P., Odia Y., Niazi T.N., Daghistani D., Cherrick I., Korones D., Karajannis M.A., Kong X.T., Minturn J., Waanders A., Arillaga-Romany I., Batchelor T., Wen P.Y., Merdinger K., Schalop L., Stogniew M., Allen J.E., Oster W., Mehta M.P. Pediatric and adult H3 K27M-mutant diffuse midline glioma treated with the selective DRD2 antagonist ONC201. J Neurooncol. 2019; 145(1): 97-105. doi:10.1007/s11060-019-03271-3.; Mount C.W., Majzner R.G., Sundaresh S., Arnold E.P., Kadapa-kkam M., Haile S., Labanieh L., Hulleman E., Woo P.J., Rietberg S.P., Vogel H., Monje M., Mackall C.L. Potent antitumor efficacy of anti-GD2 CAR T cells in H3-K27M+ diffuse midline gliomas. Nat Med. 2018; 24(5): 572-9. doi:10.1038/s41591-018-0006-x.; Wingerter A., El Malki K., Sandhoff R., Seidmann L., Wagner D.C., Lehmann N., Vewinger N., Frauenknecht K.B.M., Sommer C.J., Traub F., Kindler T., Russo A., Otto H., Lollert A., Staatz G., Roth L., Paret C., Faber J. Exploiting Gangliosides for the Therapy of Ewing's Sarcoma and H3K27M-Mutant Diffuse Midline Glioma. Cancers (Basel). 2021; 13(3): 520. doi:10.3390/cancers13030520.; Cobb D.A., de Rossi J., Liu L., An E., Lee D.W. Targeting of the alphav beta3 integrin complex by CAR-T cells leads to rapid regression of diffuse intrinsic pontine glioma and glioblastoma. J Immunother Cancer. 2022; 10(2). doi:10.1136/jitc-2021-003816.; Chung C., Sweha S.R., Pratt D., Tamrazi B., Panwalkar P., Banda A., Bayliss J., Hawes D., Yang F., Lee H.J., Shan M., Cieslik M., Qin T., Werner C.K., Wahl D.R., Lyssiotis C.A., Bian Z., Shotwell J.B., Yadav V.N., Koschmann C., Chinnaiyan AM., Bluml S., Judkins A.R., Venneti S. Integrated Metabolic and Epigenomic Reprograming by H3K27M Mutations in Diffuse Intrinsic Pontine Gliomas. Cancer Cell. 2020; 38(3): 334-49. doi:10.1016/j.ccell.2020.07.008.; Duchatel R.J., Mannan A., Woldu A.S., Hawtrey T., Hindley P.A., Douglas A.M., Jackson E.R., Findlay I.J., Germon Z.P., Staudt D., Kearney P.S., Smith N.D., Hindley K.E., Cain J.E., Andre N., La Madrid AM., Nixon B., De Iuliis G.N., Nazarian J., Irish K., Alvaro F., Eisenstat D.D., Beck A., Vitanza N.A., Mueller S., Morris J.C., Dun M.D. Preclinical and clinical evaluation of German-sourced ONC201 for the treatment of H3K27M-mutant diffuse intrinsic pontine glioma. Neurooncol Adv. 2021; 3(1). doi:10.1093/noajnl/vdab169.; Mackay A., Molinari V., Carvalho D., Pemberton H., Temelso S., Burford A., Clarke M., Fofana M., Boult J., Izquierdo E., Taylor K.,Bjerke L., Salom J.F., Kessler K., Rogers R., Chandler C., Zebian B., Martin A., Stapleton S., Hettige S., Marshall L., Carceller F., Mandeville H., Vaidya S., Bridges L., Al-Sarraj S., Pears J., Mastronuzzi A., Carai A., del Bufalo F., de Torres C., Sunol M., Cruz O., Mora J., Moore A., Robinson S., Lord C., Carcaboso A.M., Vinci M., Jones C. HGG-23. drug screening linked to molecular profiling identifies novel dependencies in patient-derived primary cultures of paediatric high grade glioma and dipg. Neuro Oncol. 2018; 20(S2): 93-4. doi:10.1093/neuonc/noy059.295.; Fons N.R., Sundaram R.K., Breuer G.A., Peng S., McLean R.L., Kalathil A.N., Schmidt M.S., Carvalho D.M., Mackay A., Jones C., Car-caboso A.M., Nazarian J., BerensM.E., Brenner C., Bindra R.S. PPM1D mutations silence NAPRT gene expression and confer NAMPT inhibitor sensitivity in glioma. Nat Commun. 2019; 10(1): 3790. doi:10.1038/s41467-019-11732-6.; Carvalho D., Olaciregui N.G., Ruddle R., Donovan A., Pal A., Raynaud F., Richardson P.J., Carcaboso A.M., Jones C. DIPG-29. Pre-clinical efficacy of combined acvr1 and PI3K/mTOR inhibition in diffuse intrinsic pontine glioma (DIPG). Neuro Oncol. 2018; 20: 54-5. doi:10.1093/neuonc/noy059.122.; Panditharatna E., Kilburn L.B., Aboian M.S., Kambhampati M., Gordish-Dressman H., Magge S.N., Gupta N., Myseros J.S., Hwang E.I., Kline C., Crawford J.R., Warren K.E., Cha S., Liang W.S., Berens M.E., Packer R.J., Resnick A.C., Prados M., Mueller S., Nazarian J. Clinically Relevant and Minimally Invasive Tumor Surveillance of Pediatric Diffuse Midline Gliomas Using Patient-Derived Liquid Biopsy. Clin Cancer Res. 2018; 24(23): 5850-9. doi:10.1158/1078-0432.CCR-18-1345.; Huang T.Y., Piunti A., Lulla R.R., Qi J., Horbinski C.M., Tomita T., James C.D., Shilatifard A., Saratsis A.M. Detection of Histone H3 mutations in cerebrospinal fluid-derived tumor DNA from children with diffuse midline glioma. Acta Neuropathol Commun. 2017; 5(1): 28. doi:10.1186/s40478-017-0436-6.; Bruzek AK., Tunkle L., Stallard S., Thamilselvan V, Qin T., Wolfe I., Mody R., Muraszko K.L., Robertson P.L., Maher C.O., Garton H.J.L., Koschmann C. DIPG-06. rapid, ultra-deep sequencing of pediatric DIPG from cerebrospinal fluid using a novel hand-held electronic dna analysis platform. Neuro Oncol. 2019; 21s2: 69. doi:10.1093/neuonc/noz036.027.; Pan C., Diplas B.H., Chen X., Wu Y., Xiao X., Jiang L., Geng Y., Xu C., Sun Y., Zhang P., Wu W., Wang Y., Wu Z., Zhang J., Jiao Y., Yan H., Zhang L. Molecular profiling of tumors of the brainstem by sequencing of CSF-derived circulating tumor DNA. Acta Neuropathol. 2019; 137(2): 297-306. doi:10.1007/s00401-018-1936-6.; Cantor E., Wierzbicki K., Tarapore R.S., Ravi K., Thomas C., CartaxoR., Band Yadav V, RavindranR., BruzekA.K., Wadden J., .John V, May Babila C., Cummings J.R., Rahman Kawakibi A., Ji S., Ramos J., Paul A., Walling D., Leonard M., Robertson P., Franson A., Mody R., Garton H.J.L., Venneti S., Odia Y., Kline C., Vitanza N.A., Khatua S., Mueller S., Allen J.E., Gardner S.L., Koschmann C. Serial H3K27M cell-free tumor DNA (cf-tDNA) tracking predicts ONC201 treatment response and progression in diffuse midline glioma. Neuro Oncol. 2022; 24(8): 1366-74. doi:10.1093/neuonc/noac030.; Регентова О.С., Щербенко О.И., Джикия Е.Л., Захаренко М.В., Сенчукова А.Л., Измайлов Т.Р., Кулинич Т.М., Боженко В.К. Содержание и динамика в процессе лечения некоторых молекулярно-генетических маркеров в плазме крови у больных глиальными опухолями мозга по данным «жидкостной биопсии». Вестник Российского научного центра рентгенорадиологии Минздрава России. 2020; 20(2): 117-28.; Wadden J., Ravi K., John V., Babila C.M., Koschmann C. Cell-Free Tumor DNA (cf-tDNA) Liquid Biopsy: Current Methods and Use in Brain Tumor Immunotherapy. Front Immunol. 2022; 13. doi:10.3389/fimmu.2022.882452.; Zaytseva M., Usman N., Salnikova E., Sanakoeva A., Valiakhmetova A., Chervova A., PapushaL., Novichkova G., DruyA. Methodological Challenges of Digital PCR Detection of the Histone H3 K27M Somatic Variant in Cerebrospinal Fluid. Pathol Oncol Res. 2022; 28. doi:10.3389/pore.2022.1610024.; Ianno M.F., Biassoni V., Schiavello E., Carenzo A., Boschetti L., Gandola L., Diletto B., Marchesi E., Vegetti C., Molla A., Kramm C.M., van Vuurden D.G., Gasparini P., Gianno F., Giangaspero F., Modena P., Bison B., Anichini A., Vennarini S., Pignoli E., Massimino M., De Cecco L. A microRNA Prognostic Signature in Patients with Diffuse Intrinsic Pontine Gliomas through Non-Invasive Liquid Biopsy. Cancers (Basel). 2022; 14(17): 4307. doi:10.3390/cancers14174307.; Pericoli G., Galardi A., Lisa Petrilli L., Colletti M., Ferretti R., Paolini A., Masotti A., Levi Mortera S., Petrini S., de Billy E., Pascucci L., Court W., Cacchione A., Carai A., Camassei F.D., Moore A., Carcaboso AM., .Jones C., Mastronuzzi A., LocatelliF., Di Giannatale A., Vinci M. PDTM-09. diffuse intrinsic pontine glioma and pediatric glioblastoma derived-exosomes have specific oncogenic signatures. Neuro Oncol. 2018; 20 s6: 205. doi:10.1093/neuonc/noy148.851.; Petersen E.V., Chudakova D.A., Skorova E.Y., Anikin V., Reshetov I.V., Mynbaev O.A. The Extracellular Matrix-Derived Biomarkers for Diagnosis, Prognosis, and Personalized Therapy of Malignant Tumors. Front Oncol. 2020; 10. doi:10.3389/fonc.2020.575569.; Li Z., Langhans S.A. In Vivo and Ex Vivo Pediatric Brain Tumor Models: An Overview. Front Oncol. 2021; 11. doi:10.3389/fonc.2021.620831.; RotaCM., Brown A.T., Addleson E., Ives C., Trumper E., Pelton K., Teh W.P., Schniederjan M.J., Castellino R.C., Buhrlage S., Lauffenburger D.A., Ligon K.L., Griffith L.G., Segal R.A. Synthetic extracellular matrices and astrocytes provide a supportive microenvironment for the cultivation and investigation of primary pediatric gliomas. Neurooncol Adv. 2022; 4(1). doi:10.1093/noajnl/vdac049.; Kholosy M .W., Derieppe M., van den Ham F., Ober K., Su Y., Custers L., Schild L., van Zogchel M. J. L., M Wellens L., R Ariese H., Szanto C.L., Wienke J., Dierselhuis M.P., van Vuurden D., Dolman E.M., Molenaar J.J. Neuroblastoma and DIPG Organoid Coculture System for Personalized Assessment of Novel Anticancer Immunotherapies. J Pers Med. 2021; 11(9): 869. doi:10.3390/jpm11090869.; Carvalho D.M., Temelso S., Mackay A., Pemberton H.N., Rogers R., Kessler K., Izquierdo E., Bjerke L., Salom J.F., Clarke M., Grabovska Y., Burford A., Olaciregui N.G., Boult J.K.R., Molinari V., Fofana M., Proszek P., Potente E.F., Taylor K.R., Chandler C., Zebian B., Bhangoo R., Martin A.J., Dabbous B., Stapleton S., Hettige S., Marshall L.V., CarcellerF., MandevilleH.C., Vaidya S.J., Al-Sarraj S., Bridges L.R., Johnston R., Cryan J., Farrell M., Crimmins D., Caird J., Pears J., Pericoli G., Miele E., Mastronuzzi A., Locatelli F., Carai A., Robinson S.P., Hubank M., MonjeM., Moore A.S., Hassall T.E.G., Carcaboso A.M., Lord C.J., Vinci M., Jones C. Drug screening linked to molecular profiling identifies novel dependencies in patient-derived primary cultures of paediatric high grade glioma and DIPG. bioRxiv. 2020. doi:10.1101/2020.12.29.424674.; Kozhushko N., Jedrysik M., Fillmore H. OTME-22. Bioinformatic evaluation of ECM molecules and angiogenic associate genes in diffuse midline glioma (DMG): mapping the tumour microenvironment. Neurooncol Adv. 2021; 3(s2): 18. doi:10.1093/noajnl/vdab070.073.; Jedrysik M., Loveson K.L., Kozusko N., Singh P., Allison K., Fillmore H.L. OPTC-4. Bioinformatic analysis of COLXIa1 gene expression and its alternative splicing regulation in Paediatric Diffuse Intrinsic Pontine Gliomas (DIPGs). Neurooncol Adv. 2021; 3(S2): 6. doi:10.1093/noajnl/vdab070.025.; De T., Goyal S., Balachander G., Chatterjee K., Kumar P., Babu K G., Rangarajan A. A Novel Ex Vivo System Using 3D Polymer Scaffold to Culture Circulating Tumor Cells from Breast Cancer Patients Exhibits Dynamic E-M Phenotypes. J Clin Med. 2019; 8(9): 1473. doi:10.3390/jcm8091473.; Sherman H., Rossi A.E. A Novel Three-Dimensional Glioma Blood-Brain Barrier Model for High-Throughput Testing of Tumoricidal Capability. Front Oncol. 2019; 9: 351. doi:10.3389/fonc.2019.00351.; https://www.siboncoj.ru/jour/article/view/2590Test

  6. 6
    دورية أكاديمية
  7. 7
    دورية أكاديمية
  8. 8
    دورية أكاديمية
  9. 9
    دورية أكاديمية
  10. 10
    دورية أكاديمية