يعرض 1 - 10 نتائج من 48 نتيجة بحث عن '"внеклеточная днк"', وقت الاستعلام: 1.03s تنقيح النتائج
  1. 1
    دورية أكاديمية

    المساهمون: The study was conducted with the support of “POKARD” Research and Production Company LLC., Исследование проведено при поддержке ООО НПФ «ПОКАРД».

    المصدر: Modern Rheumatology Journal; Том 18, № 2 (2024); 75-80 ; Современная ревматология; Том 18, № 2 (2024); 75-80 ; 2310-158X ; 1996-7012

    وصف الملف: application/pdf

    العلاقة: https://mrj.ima-press.net/mrj/article/view/1565/1461Test; Kaul A, Gordon C, Crow MK, et al. Systemic lupus erythematosus. Nat Rev Dis Primers. 2016 Jun 16:2:16039. doi:10.1038/nrdp.2016.39.; Насонов ЕЛ, Авдеева АС, Решетняк ТМ и др. Роль нетоза в патогенезе иммуновоспалительных ревматических заболеваний. Научно-практическая ревматология. 2023;61(5):513-530.; Tsokos GC. Autoimmunity and organ damage in systemic lupus erythematosus. Nat Immunol. 2020 Jun;21(6):605-614. doi:10.1038/s41590-020-0677-6. Epub 2020 May 4.; Crow MK. Pathogenesis of systemic lupuserythematosus: Risks,mechanisms and therapeutic targets. Ann Rheum Dis. 2023 Aug; 82(8):999-1014. doi:10.1136/ard-2022223741. Epub 2023 Feb 15.; Насонов ЕЛ, Авдеева АС. Иммуновоспалительные ревматические заболевания, связанные с интерфероном типа I: новые данные. Научно-практическая ревматология.2019;57(4):452-461.; Psarras A, Wittmann M, Vital EM. Emerging concepts of type I interferons in SLE pathogenesis and therapy. Nat Rev Rheumatol. 2022 Oct;18(10):575-590. doi:10.1038/s41584-022-00826-z. Epub 2022 Sep 12.; Ma S, Jiang W, Zhang X, Liu W. Insightsinto the pathogenic role of neutrophils in systemic lupus erythematosus. Curr Opin Rheumatol. 2023 Mar 1;35(2):82-88. doi:10.1097/BOR.0000000000000912. Epub 2022 Oct 14.; Banchereau R, Hong S, Cantarel B, et al.Personalized immunomonitoring uncovers molecular networks that stratify lupus patients. Cell. 2016 Apr 21;165(3):551-65. doi:10.1016/j.cell.2016.03.008. Epub 2016 Mar 31.; Gestermann N, Di Domizio J, Lande R, et al. Netting neutrophils activate autoreactive B cells in lupus. J Immunol. 2018 May 15; 200(10):3364-3371. doi:10.4049/jimmunol.1700778. Epub 2018 Apr 9.; Petretto A, Bruschi M, Pratesi F, et al. Neutrophil extracellular traps (NET) induced by different stimuli: A comparative proteomic analysis. PLoS One. 2019 Jul 8;14(7):e0218946. doi:10.1371/journal.pone.0218946.eCollection 2019.; Apel F, Andreeva L, Knackstedt LS, et al. The cytosolic DNA sensor cGAS recognizes neutrophil extracellular traps. Sci Signal. 2021 Mar 9;14(673):eaax7942. doi:10.1126/scisignal.aax7942.; Tumurkhuu G, Chen S, Montano EN, et al. Oxidative DNA damage accelerates skin inflammation in pristane-induced lupus model. Front Immunol. 2020 Sep 24:11:554725. doi:10.3389/fimmu.2020.554725.eCollection 2020.; Gehrke N, Mertens C, Zillinger T, et al. Oxidative damage of DNA confers resistance to cytosolic nuclease TREX1 degradation and potentiates STING-dependent immune sensing. Immunity. 2013 Sep 19;39(3):482-95. doi:10.1016/j.immuni.2013.08.004. Epub 2013 Aug 29.; Chauhan SK, Rai R, Singh VV, et al. Differential clearance mechanisms, neutrophil extracellular trap degradation and phagocytosis, are operative in systemic lupus erythematosus patients with distinct autoantibody specificities. Immunol Lett. 2015 Dec;168(2): 254-9. doi:10.1016/j.imlet.2015.09.016. Epub 2015 Oct 3.; Gupta AK, Giaglis S, Hasler P, Hahn S.Efficient neutrophil extracellular trap induction requires mobilization of both intracellular and extracellular calcium pools and is modulated by cyclosporine A. PLoS One. 2014 May 12;9(5):e97088. doi:10.1371/journal.pone.0097088.eCollection 2014.; Lachmann PJ. The treatment of systemiclupus erythematosus (SLE) in NZB/W F1 hybrid mice; studies with recombinant murine DNase and with dexamethasone. Clin Exp Immunol. 1996 Nov;106(2):243-52. doi:10.1046/j.1365-2249.1996.d01-839.x.; Macanovic M, Sinicropi D, Shak S, et al. Recombinant human Dnase I (rhDNase) in patients with lupus nephritis. Lupus. 1999;8(1): 68-76. doi:10.1191/096120399678847380.; Ngo ATP, Gollomp K. Building a betterNET: Neutrophil extracellular trap targeted therapeutics in the treatment of infectious and inflammatory disorders. Res Pract Thromb Haemost. 2022;6:e12808. doi:10.1002/rth2.12808; Huang J, Hong W, Wan M, Zheng L. Molecular mechanisms and therapeutic target of NETosis in diseases. MedComm (2020). 2022 Aug 19;3(3):e162. doi:10.1002/mco2.162.eCollection 2022 Sep.; Baker KF, Isaacs JD. Novel therapies forimmune-mediated inflammatory diseases: What can we learn from their use in rheumatoid arthritis, spondyloarthritis, systemic lupus erythematosus, psoriasis, Crohn’s disease and ulcerative colitis? Ann Rheum Dis. 2018 Feb; 77(2):175-187. doi:10.1136/annrheumdis2017-211555. Epub 2017 Aug 1.; Насонов ЕЛ. Фармакотерапия ревматоидного артрита: новая стратегия, новые мишени. Научно-практическая ревматология. 2017;55(4):409-419.; Aswani A, Abramovsky S, Afanasieva M,et al. Safety and Performance of the NucleoCapture Column for Selective cfDNA/NETs Apheresis in Patients with Sepsis (ClinicalTrials.gov Identifier: NCT04749238). Abstract Booklet. ISFA – E-ISFA; 2023. Р. 67.; Абрамовский СВ , Иванова ГГ , Булдаков МЮ. Селективное удаление внеклеточной ДНК у больных с риском развития острого почечного повреждения. Клиническое исследование. XIX Cъезд Федерации анастезиологов и реаниматологов России (ФАРР-2021). Сборник тезисов – электронное издание. Санкт-Петербург: Человек и его здоровье; 2021. С. 6-7.; Wang Y, Xiao S, Xia Y, Wang H. The Therapeutic Strategies for SLE by Targeting Anti-dsDNA Antibodies. Clin Rev Allergy Immunol. 2022 Oct;63(2):152-165. doi:10.1007/s12016-021-08898-7. Epub 2021 Sep 20.; Terman DS, Buffaloe G, Mattioli C, et al.Extracorporeal immunoadsorption: initial experience in human systemic lupus erythematosus. Lancet. 1979 Oct 20;2(8147):824-7. doi:10.1016/s0140-6736(79)92177-9.; Kronbichler A, Brezina B, Quintana LF, Jayne DR. Efficacy of plasma exchange and immunoadsorption in systemic lupus erythematosus and antiphospholipid syndrome: A systematic review. Autoimmun Rev. 2016 Jan; 15(1):38-49. doi:10.1016/j.autrev.2015.08.010. Epub 2015 Aug 28.; Stummvoll GH. Immunoadsorption (IAS) for systemic lupus erythematosus. Lupus. 2011 Feb;20(2):115-9. doi:10.1177/0961203310 389487.; Smith CK, Kaplan MJ. The role of neutrophils in the pathogenesis of systemic lupus erythematosus. Curr Opin Rheumatol. 2015 Sep;27(5):448-53. doi:10.1097/BOR.0000000000000197; Tay SH, Celhar T, Fairhurst AM. LowDensity Neutrophils in Systemic Lupus Erythematosus. Arthritis Rheumatol. 2020 Oct; 72(10):1587-95. doi:10.1002/art.41395. Epub 2020 Aug 26.; Rahman S, Sagar D, Hanna RN, et al.Low-density granulocytes activate T cells and demonstrate a non-suppressive role in systemic lupus erythematosus. Ann Rheum Dis. 2019 Jul;78(7):957-66. doi:10.1136/annrheumdis-2018-214620. Epub 2019 Apr 30.; Garcia-Romo GS, Caielli S, Vega B, et al. Netting neutrophils are major inducers of type I IFN production in pediatric systemic lupus erythematosus. Sci Transl Med. 2011 Mar 9; 3(73):73ra20. doi:10.1126/scitranslmed.3001201; Leffler J, Gullstrand B, Jönsen A, et al. Degradation of neutrophil extracellular traps co-varies with disease activity in patients with systemic lupus erythematosus. Arthritis Res Ther. 2013 Aug 14;15(4):R84. doi:10.1186/ar4264.; https://mrj.ima-press.net/mrj/article/view/1565Test

  2. 2
    دورية أكاديمية
  3. 3
    دورية أكاديمية
  4. 4
    دورية أكاديمية

    المساهمون: The work was supported by the state task of the Ministry of Science and Higher Education for Research Centre for Medical Genetics., Государственное задание Министерства науки и высшего образования для ФГБНУ МГНЦ.

    المصدر: Medical Genetics; Том 22, № 5 (2023); 40-53 ; Медицинская генетика; Том 22, № 5 (2023); 40-53 ; 2073-7998

    وصف الملف: application/pdf

    العلاقة: https://www.medgen-journal.ru/jour/article/view/2290/1715Test; Wan J.C.M., Massie C., Garcia-Corbacho J., Mouliere F., Brenton J.D., Caldas C., Pacey S., Baird R., Rosenfeld N. Liquid biopsies come of age: towards implementation of circulating tumour DNA. Nat Rev Cancer. 2017;17(4):223-238. doi:10.1038/nrc.2017.7.; Heitzer E., Haque I.S., Roberts C.E.S., Speicher M.R. Current and future perspectives of liquid biopsies in genomics-driven oncology. Nat Rev Genet. 2019;20(2):71-88. doi:10.1038/s41576-018-0071-5.; Kustanovich A., Schwartz R., Peretz T., Grinshpun A. Life and death of circulating cell-free DNA. Cancer Biol Ther. 2019;20(8):1057-1067. doi:10.1080/15384047.2019.1598759.; Duvvuri B., Lood C. Cell-Free DNA as a Biomarker in Autoimmune Rheumatic Diseases. Front Immunol. 2019;10:502. doi:10.3389/fimmu.2019.00502.; Han D.S.C., Lo Y.M.D. The Nexus of cfDNA and Nuclease Biology. Trends Genet. 2021;37(8):758-770. doi:10.1016/j.tig.2021.04.005.; Knight SR, Thorne A, Lo Faro ML. Donor-specific Cell-free DNA as a Biomarker in Solid Organ Transplantation. A Systematic Review. Transplantation. 2019;103(2):273-283. doi:10.1097/TP.0000000000002482.; Meddeb R., Dache Z.A.A., Thezenas S., Otandault A., Tanos R., Pastor B., Sanchez C., Azzi J., Tousch G., Azan S., Mollevi C., Adenis A., El Messaoudi S., Blache P., Thierry A.R. Quantifying circulating cell-free DNA in humans. Sci Rep. 2019;9(1):5220. doi:10.1038/s41598-019-41593-4.; Marsman G., Zeerleder S., Luken B.M. Extracellular histones, cell-free DNA, or nucleosomes: differences in immunostimulation. Cell Death Dis. 2016;7(12):e2518. doi:10.1038/cddis.2016.410.; Nie L., Cai S.Y., Shao J.Z, Chen J. Toll-Like Receptors, Associated Biological Roles, and Signaling Networks in Non-Mammals. Front Immunol. 2018;9:1523. doi:10.3389/fimmu.2018.01523.; Zhang Q., Raoof M., Chen Y., Sumi Y., Sursal T., Junger W., Brohi K., Itagaki K., Hauser C.J. Circulating mitochondrial DAMPs cause inflammatory responses to injury. Nature. 2010;464(7285):104-7. doi:10.1038/nature08780.; Dwivedi D.J., Toltl L.J., Swystun L.L., Pogue J., Liaw K.L., Weitz J.I., Cook D.J., Fox-Robichaud A.E., Liaw P.C.; Canadian Critical Care Translational Biology Group. Prognostic utility and characterization of cell-free DNA in patients with severe sepsis. Crit Care. 2012;16(4):R151. doi:10.1186/cc11466.; Weber C., Jenke A., Chobanova V., Yazdanyar M., Chekhoeva A., Eghbalzadeh K., Lichtenberg A, Wahlers T, Akhyari P, Paunel-Görgülü A. Targeting of cell-free DNA by DNase I diminishes endothelial dysfunction and inflammation in a rat model of cardiopulmonary bypass. Sci Rep. 2019;9(1):19249. doi:10.1038/s41598-019-55863-8.; Soni C., Reizis B. DNA as a self-antigen: nature and regulation. Curr Opin Immunol. 2018;55:31-37. doi:10.1016/j.coi.2018.09.009.; Chan R.W., Jiang P., Peng X., Tam L.S., Liao G.J., Li E.K., Wong P.C., Sun H., Chan K.C., Chiu R.W., Lo Y.M. Plasma DNA aberrations in systemic lupus erythematosus revealed by genomic and methylomic sequencing. Proc Natl Acad Sci U S A. 2014;111(49):E5302-11. doi:10.1073/pnas.1421126111.; Tamkovich S.N., Cherepanova A.V., Kolesnikova E.V., Rykova E.Y., Pyshnyi D.V., Vlassov V.V., Laktionov P.P. Circulating DNA and DNase activity in human blood. Ann N Y Acad Sci. 2006;1075:191-6. doi:10.1196/annals.1368.026.; Kawai Y., Yoshida M., Arakawa K., Kumamoto T., Morikawa N., Masamura K., Tada H., Ito S., Hoshizaki H., Oshima S., Taniguchi K., Terasawa H., Miyamori I., Kishi K., Yasuda T. Diagnostic use of serum deoxyribonuclease I activity as a novel early-phase marker in acute myocardial infarction. Circulation. 2004;109(20):2398-400. doi:10.1161/01.CIR.0000129232.61483.43.; Yasuda T., Iida R., Kawai Y., Nakajima T., Kominato Y., Fujihara J., Takeshita H. Serum deoxyribonuclease I can be used as a useful marker for diagnosis of death due to ischemic heart disease. Leg Med (Tokyo). 2009;11 Suppl 1:S213-5. doi:10.1016/j.legalmed.2009.01.092.; Ershova E., Sergeeva V., Klimenko M., Avetisova K., Klimenko P., Kostyuk E., Veiko N., Veiko R., Izevskaya V., Kutsev S., Kostyuk S. Circulating cell-free DNA concentration and DNase I activity of peripheral blood plasma change in case of pregnancy with intrauterine growth restriction compared to normal pregnancy. Biomed Rep. 2017;7(4):319-324. doi:10.3892/br.2017.968.; Velders M., Treff G., Machus K., Bosnyák E., Steinacker J., Schumann U. Exercise is a potent stimulus for enhancing circulating DNase activity. Clin Biochem. 2014;47(6):471-4. doi:10.1016/j.clinbiochem.2013.12.017.; Вейко Н.Н., Шубаева Н.О., Иванова С.М., Сперанский А.И., Ляпунова Н.А., Спитковский Д.М. ДНК сыворотки крови больных ревматоидным артритом значительно обогащена фрагментами рибосомных повторов, содержащих иммуностимулирующие CpG–мотивы. Бюллетень экспериментальной биологии и медицины.2006; 9: 282-285.; Korzeneva I.B., Kostuyk S.V., Ershova E.S., Skorodumova E.N., Zhuravleva VF, Pankratova GV, Volkova IV, Stepanova EV, Porokhovnik LN, Veiko NN. Human circulating ribosomal DNA content significantly increases while circulating satellite III (1q12) content decreases under chronic occupational exposure to low-dose gamma- neutron and tritium beta-radiation. Mutat Res. 2016;791-792:49-60. doi:10.1016/j.mrfmmm.2016.09.001.; Вейко Н.Н., Булычева Н.В., Рогинко О.А., Вейко Р.В., Ершова Е.С., Коздоба О.А., Кузьмин В.А., Виноградов A.M., Юдин А.А., Сперанский А.И. Фрагменты транскрибируемой области рибосомного повтора в составе внеклеточной ДНК — маркер гибели клеток организма. Биомедицинская химия. 2008; 54(1):78-93.; Aswani A., Manson J., Itagaki K., Chiazza F., Collino M., Wupeng W.L., Chan T.K., Wong W.S.F., Hauser C.J., Thiemermann C., Bro-hi K. Scavenging Circulating Mitochondrial DNA as a Potential Therapeutic Option for Multiple Organ Dysfunction in Trauma Hemorrhage. Front Immunol. 2018;9:891. doi:10.3389/fimmu.2018.00891.; Ershova E.S., Jestkova E.M., Martynov A.V., Shmarina G.V., Umriukhin P.E., Bravve L.V., Zakharova N.V., Kostyuk G.P., Saveliev D.V., Orlova M.D., Bogush M., Kutsev S.I., Veiko N.N., Kostyuk S.V. Accumulation of Circulating Cell-Free CpG-Enriched Ribosomal DNA Fragments on the Background of High Endonuclease Activity of Blood Plasma in Schizophrenic Patients. Int J Genomics. 2019;2019:8390585. doi:10.1155/2019/8390585.; Ershova E.S., Jestkova E.M., Chestkov I.V., Porokhovnik L.N., Izevskaya V.L., Kutsev S.I., Veiko N.N., Shmarina G., Dolgikh O., Kostyuk S.V. Quantification of cell-free DNA in blood plasma and DNA damage degree in lymphocytes to evaluate dysregulation of apoptosis in schizophrenia patients. J Psychiatr Res. 2017;87:15-22. doi:10.1016/j.jpsychires.2016.12.006.; Jung M., Kristiansen G., Dietrich D. DNA Methylation Analysis of Free-Circulating DNA in Body Fluids. Methods Mol Biol. 2018;1708:621-641. doi:10.1007/978-1-4939-7481-8_32.; Jiang J., Chen X., Sun L., Qing Y., Yang X., Hu X., Yang C., Xu T., Wang J., Wang .P, He L., Dong C., Wan C. Analysis of the concentrations and size distributions of cell-free DNA in schizophrenia using fluorescence correlation spectroscopy. Transl Psychiatry. 2018;8(1):104. doi:10.1038/s41398-018-0153-3.; Qi J., Chen L.Y., Shen X.J., Ju .SQ. Analytical Value of Cell-Free DNA Based on Alu in Psychiatric Disorders. Front Psychiatry. 2020;10:992. doi:10.3389/fpsyt.2019.00992.; Ouyang H., Huang M., Xu Y., Yao Q., Wu X., Zhou D. Reduced Cell-Free Mitochondrial DNA Levels Were Induced by Antipsychotics Treatment in First-Episode Patients With Schizophrenia. Front Psychiatry. 2021;12:652314. doi:10.3389/fpsyt.2021.652314.; Ershova E.S., Shmarina G.V., Porokhovnik L.N., Zakharova N.V., Kostyuk G.P., Umriukhin P.E., Kutsev S.I., Sergeeva V.A., Veiko N.N., Kostyuk S.V. In Vitro Analysis of Biological Activity of Circulating Cell-Free DNA Isolated from Blood Plasma of Schizophrenic Patients and Healthy Controls. Genes (Basel). 2022;13(3):551. doi:10.3390/genes13030551.; Chestkov I.V., Jestkova E.M., Ershova E.S., Golimbet V.E., Lezheiko T.V., Kolesina N.Y., Porokhovnik L.N., Lyapunova N.A., Izhevskaya V.L., Kutsev .SI., Veiko N.N., Kostyuk S.V. Abundance of ribosomal RNA gene copies in the genomes of schizophrenia patients. Schizophr Res. 2018;197:305-314. doi:10.1016/j.schres.2018.01.001.; Жесткова Е.М., Ершова Е.С., Мартынов А.В., Захарова Н.В., Костюк Г.П., Вейко Н.Н., Костюк С.В. Концентрация циркулирующей внеклеточной ДНК в плазме периферической крови больных с острыми психозами эндогенной и экзогенной этиологии. Психиатрия. 2021; 19(3): 6-14.; Костюк С.В. Роль внеклеточной ДНК в функциональной активности генома человека. Диссертация …. доктора биологических наук. Москва, 2014.- 450 с.; Kumar R., Sonkar V.K., Swamy J., Ahmed A., Sharathkumar A.A., Pierce G.L., Dayal S. DNase 1 Protects From Increased Thrombin Generation and Venous Thrombosis During Aging: Cross-Sectional Study in Mice and Humans. J Am Heart Assoc. 2022;11(2):e021188. doi:10.1161/JAHA.121.021188.; Dawulieti J., Sun M., Zhao Y., Shao D., Yan H., Lao Y.H., Hu H., Cui L., Lv X., Liu F., Chi C.W., Zhang Y., Li M., Zhang M., Tian H., Chen X., Leong K.W., Chen L. Treatment of severe sepsis with nanoparticulate cell-free DNA scavengers. Sci Adv. 2020;6(22):eaay7148. doi:10.1126/sciadv.aay7148.; Liang H., Peng B., Dong C., Liu L., Mao J., Wei S., Wang X., Xu H., Shen J., Mao H.Q., Gao X., Leong K.W., Chen Y. Cationic nanoparticle as an inhibitor of cell-free DNA-induced inflammation. Nat Commun. 2018;9(1):4291. doi:10.1038/s41467-018-06603-5.; Liu F., Sheng S., Shao D., Xiao Y., Zhong Y., Zhou J., Quek C.H., Wang Y., Hu Z., Liu H., Li Y., Tian H., Leong K.W., Chen X. A Cationic Metal-Organic Framework to Scavenge Cell-Free DNA for Severe Sepsis Management. Nano Lett. 2021;21(6):2461-2469. doi:10.1021/acs.nanolett.0c04759.; Chen Y., Wang Y., Jiang X., Cai J., Chen Y., Huang H., Yang Y., Zheng L., Zhao J., Gao M. Dimethylamino group modified polydopamine nanoparticles with positive charges to scavenge cell-free DNA for rheumatoid arthritis therapy. Bioact Mater. 2022;18:409-420. doi:10.1016/j.bioactmat.2022.03.028.; https://www.medgen-journal.ru/jour/article/view/2290Test

  5. 5
    دورية أكاديمية

    المصدر: Medical Genetics; Том 20, № 11 (2021); 25-35 ; Медицинская генетика; Том 20, № 11 (2021); 25-35 ; 2073-7998

    مصطلحات موضوعية: cell free DNA, TLR, внеклеточная ДНК

    وصف الملف: application/pdf

    العلاقة: https://www.medgen-journal.ru/jour/article/view/1996/1531Test; Galeazzi M., Morozzi G., Piccini J. et all. Dosage and characterization of circulating DNA: present usage and possible applications in systemic autoimmune disorders. Autoimmun Rev. 2003 Jan;2(1):50-5. doi:10.1016/s1568-9972(02)00101-5; van der Vaart M., Pretorius P.J. Characterization of circulating DNA in healthy human plasma. Clin Chim Acta. 2008 Sep;395(1-2):186. doi:10.1016/j.cca.2008.05.006.; Lu Y., Zhu X., Liang G.X., et all. Apelin-APJ induces ICAM-1, VCAM-1 and MCP-1 expression via NF-κB/JNK signal pathway in human umbilical vein endothelial cells. Amino Acids. 2012 Nov;43(5):2125-36. doi:10.1007/s00726-012-1298-7. Epub 2012 Apr 25. PMID: 22532031.; Elshimali Y.I., Khaddour H., Sarkissyan M., et all. The clinical utilization of circulating cell free DNA (CCFDNA) in blood of cancer patients. Int J Mol Sci. 2013 Sep 13;14(9):18925-58. doi:10.3390/ijms140918925; Forte V.A., Barrak D.K., Elhodaky M. et all. The potential for liquid biopsies in the precision medical treatment of breast cancer. Cancer Biol Med. 2016 Mar;13(1):19-40. doi:10.28092/j.issn.2095-3941.2016.0007.; Tamminga S., van Maarle M., Henneman L., et all. Maternal Plasma DNA and RNA Sequencing for Prenatal Testing. Adv Clin Chem. 2016;74:63-102. doi:10.1016/bs.acc.2015.12.004.; Ermakov A.V., Konkova M.S., Kostyuk S.V., et all. Oxidized extracellular DNA as a stress signal in human cells. Oxid Med Cell Longev. 2013;2013:649747. doi:10.1155/2013/649747.; Glebova K., Veiko N., Kostyuk S., et all. Oxidized extracellular DNA as a stress signal that may modify response to anticancer therapy. Cancer Lett. 2015 Jan 1;356(1):22-33. doi:10.1016/j.canlet.2013.09.005.; Korzeneva I.B., Kostuyk S.V., Ershova L.S., et all. Human circulating plasma DNA significantly decreases while lymphocyte DNA damage increases under chronic occupational exposure to low-dose gamma-neutron and tritium β-radiation. Mutat Res. 2015 Sep;779:1-15. doi:10.1016/j.mrfmmm.2015.05.004.; Kostyuk S.V., Tabakov V.J., Chestkov V.V., et all. Oxidized DNA induces an adaptive response in human fibroblasts. Mutat Res. 2013 Jul-Aug;747-748:6-18. doi:10.1016/j.mrfmmm.2013.04.007.; Loseva P., Kostyuk S., Malinovskaya E., et all. Extracellular DNA oxidation stimulates activation of NRF2 and reduces the production of ROS in human mesenchymal stem cells. Expert Opin Biol Ther. 2012 Jun;12 Suppl 1:S85-97. doi:10.1517/14712598.2012.688948.; Pisetsky D.S. The origin and properties of extracellular DNA: from PAMP to DAMP. Clin Immunol. 2012 Jul;144(1):32-40. doi:10.1016/j.clim.2012.04.006.; Chiu Y.H., Macmillan J.B., Chen Z.J. RNA polymerase III detects cytosolic DNA and induces type I interferons through the RIG-I pathway. Cell. 2009 Aug 7;138(3):576-91. doi:10.1016/j.cell.2009.06.015.; Li H., Wang J., Wang J., et all. Structural mechanism of DNA recognition by the p202 HINa domain: insights into the inhibition of Aim2-mediated inflammatory signalling. Acta Crystallogr F Struct Biol Commun. 2014 Jan;70(Pt 1):21-9. doi:10.1107/S2053230X1303135X.; Triantafilou K., Eryilmazlar D., Triantafilou M. Herpes simplex virus 2-induced activation in vaginal cells involves Toll-like receptors 2 and 9 and DNA sensors DAI and IFI16. Am J Obstet Gynecol. 2014 Feb;210(2):122.e1-122.e10. doi:10.1016/j.ajog.2013.09.034.; Keating S.E., Baran M., Bowie A.G. Cytosolic DNA sensors regulating type I interferon induction. Trends Immunol. 2011 Dec;32(12):574-81. doi:10.1016/j.it.2011.08.004.; Goulopoulou S., Matsumoto T., Bomfim G.F., et all. Toll-like receptor 9 activation: a novel mechanism linking placenta-derived mitochondrial DNA and vascular dysfunction in pre-eclampsia. Clin Sci (Lond). 2012 Oct;123(7):429-35. doi:10.1042/CS20120130.; Kostjuk S., Loseva P., Chvartatskaya O., et all. Extracellular GC-rich DNA activates TLR9- and NF-kB-dependent signaling pathways in human adipose-derived mesenchymal stem cells (haMSCs). Expert Opin Biol Ther. 2012 Jun;12 Suppl 1:S99-111. doi:10.1517/14712598.2012.690028.; Ghosh S., Dass J.F.P. Study of pathway cross-talk interactions with NF-κB leading to its activation via ubiquitination or phosphorylation: A brief review. Gene. 2016 Jun 10;584(1):97-109. doi:10.1016/j.gene.2016.03.008.; Bliksøen M., Mariero L.H., Torp M.K., et all. Extracellular mtDNA activates NF-κB via toll-like receptor 9 and induces cell death in cardiomyocytes. Basic Res Cardiol. 2016 Jul;111(4):42. doi:10.1007/s00395-016-0553-6.; Holm C.K., Paludan S.R., Fitzgerald K.A. DNA recognition in immunity and disease. Curr Opin Immunol. 2013 Feb;25(1):13-8. doi:10.1016/j.coi.2012.12.006.; Takagi M. Toll-like receptor--a potent driving force behind rheumatoid arthritis. J Clin Exp Hematop. 2011;51(2):77-92. doi:10.3960/jslrt.51.77.; Lee C.C., Avalos A.M., Ploegh H.L. Accessory molecules for Toll-like receptors and their function. Nat Rev Immunol. 2012 Feb 3;12(3):168-79. doi:10.1038/nri3151.; Goulopoulou S., McCarthy C.G., Webb R.C. Toll-like Receptors in the Vascular System: Sensing the Dangers Within. Pharmacol Rev. 2016 Jan;68(1):142-67. doi:10.1124/pr.114.010090.; Lazaridis A., Gavriilaki E., Douma S., Gkaliagkousi E. Toll-Like Receptors in the Pathogenesis of Essential Hypertension. A Forthcoming Immune-Driven Theory in Full Effect. Int J Mol Sci. 2021 Mar 26;22(7):3451. doi:10.3390/ijms22073451.; Fitzgerald K.A., Kagan J.C. Toll-like receptors and the control of immunity. Cell (2020) 180(6):1044-66. 10.1016/j.cell.2020.02.041; Behzadi P., García-Perdomo H.A., Karpiński T.M. Toll-Like Receptors: General Molecular and Structural Biology. J Immunol Res. 2021 May 29; 2021:9914854. doi:10.1155/2021/9914854.; Miyake K., Shibata T., Ohto U., et all. Mechanisms controlling nucleic acid-sensing Toll-like receptors. Int Immunol. 2018 Mar 8; 30(2):43-51. doi:10.1093/intimm/dxy016.; Jung J.Y., Kim J.W., Suh C.H., et all. Roles of Interactions Between Toll-Like Receptors and Their Endogenous Ligands in the Pathogenesis of Systemic Juvenile Idiopathic Arthritis and Adult-Onset Still’s Disease. Front Immunol. 2020 Nov 5; 11:583513. doi:10.3389/fimmu.2020.583513.; Костюк С.В., Малиновская Е.М., Ермаков А.В., Смирнова Т.Д., Каменева Л.В., Чвартацкая О.В., Лосева П.А., Ершова Е.С., Любченко Л.Н., Вейко Н.Н. Фрагменты внеклеточной ДНК усиливают транскрипционную активность генома мезенхимальных стволовых клеток человека, активируют TLR-зависимый сигнальный путь и ингибируют апоптоз. Биомедицинская химия. 2012; 58(6): 673-683.; Shintani Y., Kapoor A., Kaneko M., et all. TLR9 mediates cellular protection by modulating energy metabolism in cardiomyocytes and neurons. Proc Natl Acad Sci U S A. 2013 Mar 26;110(13):5109-14. doi:10.1073/pnas.1219243110.; Harvey S.A., Dangi A., Tandon A., et all. The transcriptomic response of rat hepatic stellate cells to endotoxin: implications for hepatic inflammation and immune regulation. PLoS One. 2013 Dec 9;8(12):e82159. doi:10.1371/journal.pone.0082159; Mayer A.K., Muehmer M., Mages J., Gueinzius K., Hess C., Heeg K., Bals R., Lang R., Dalpke A.H. Differential recognition of TLR-dependent microbial ligands in human bronchial epithelial cells. J Immunol. 2007 Mar 1;178(5):3134-42. doi:10.4049/jimmunol.178.5.3134.; Lebre M.C., van der Aar A.M., van Baarsen L., et all. Human keratinocytes express functional Toll-like receptor 3, 4, 5, and 9. J Invest Dermatol. 2007 Feb;127(2):331-41. doi:10.1038/sj.jid.5700530.; Lv F., Yu Y., Zhang B., et all. Inhibitory effects of mild hyperthermia plus docetaxel therapy on ER(+/-) breast cancer cells and action mechanisms. J Huazhong Univ Sci Technolog Med Sci. 2013 Dec;33(6):870-876. doi:10.1007/s11596-013-1214-8.; Pevsner-Fischer M., Morad V., Cohen-Sfady M., et all. Toll-like receptors and their ligands control mesenchymal stem cell functions. Blood. 2007 Feb 15;109(4):1422-32. doi:10.1182/blood-2006-06-028704.; Brencicova E., Diebold S.S. Nucleic acids and endosomal pattern recognition: how to tell friend from foe? Front Cell Infect Microbiol. 2013 Jul 30;3:37. doi:10.3389/fcimb.2013.00037.; Swathi A., Dhinakar Raj G., Raja A., et all. Homology modeling and structural comparison of leucine rich repeats of Toll like receptors 1-10 of ruminants. J Mol Model. 2013 Sep;19(9):3863-74. doi:10.1007/s00894-013-1871-3.; Wang J., Shao Y., Bennett T.A., et all. The functional effects of physical interactions among Toll-like receptors 7, 8, and 9. J Biol Chem. 2006 Dec 8;281(49):37427-34. doi:10.1074/jbc.M605311200.; Liu Q., Ding J.L. The molecular mechanisms of TLR-signaling cooperation in cytokine regulation. Immunol Cell Biol. 2016 Jul;94(6):538-42. doi:10.1038/icb.2016.18. Epub 2016 Feb 10.; Köberlin M.S., Heinz L.X., Superti-Furga G. Functional crosstalk between membrane lipids and TLR biology. Curr Opin Cell Biol. 2016 Apr;39:28-36. doi:10.1016/j.ceb.2016.01.010.; Mohan S., Gupta D. Crosstalk of toll-like receptors signaling and Nrf2 pathway for regulation of inflammation. Biomed Pharmacother. 2018 Dec;108:1866-1878. doi:10.1016/j.biopha. 2018.10.019.; Kawai T., Akira S. Toll-like receptors and their crosstalk with other innate receptors in infection and immunity. Immunity. 2011 May 27;34(5):637-50. doi:10.1016/j.immuni.2011.05.006.; Liu Q., Zhu Y., Yong W.K., Sze N.S., Tan N.S., Ding J.L. Cutting edge: synchronization of IRF1, JunB, and C/EBPbeta activities during TLR3-TLR7 cross-talk orchestrates timely cytokine synergy in the proinflammatory response. J Immunol 2015; 195: 801-805.; https://www.medgen-journal.ru/jour/article/view/1996Test

  6. 6
    دورية أكاديمية
  7. 7
    دورية أكاديمية
  8. 8
    دورية أكاديمية
  9. 9
    دورية أكاديمية

    المصدر: Russian Sklifosovsky Journal "Emergency Medical Care"; Том 9, № 1 (2020); 96-107 ; Журнал им. Н.В. Склифосовского «Неотложная медицинская помощь»; Том 9, № 1 (2020); 96-107 ; 2541-8017 ; 2223-9022 ; 10.23934/2223-9022-2020-9-1

    وصف الملف: application/pdf

    العلاقة: https://www.jnmp.ru/jour/article/view/909/747Test; https://www.jnmp.ru/jour/article/view/909/802Test; Кузовлев А.Н., Гречко А.В. Ингаляционные антибиотики в реаниматологии: состояние проблемы и перспективы развития. Общая реаниматология. 2017;13(5):69–84. https://doi.org/10.15360/1813-9779-2017-5-69-84Test; Востриков В.А., Кузовлев А.Н. Общедоступная дефибрилляция при внезапной остановке сердца. Общая реаниматология. 2018;14(1):58–67. https://doi.org/10.15360/1813-9779-2018-1-58-67Test; Jabaley CS, Blum JM, Groff RF, O’Reilly-Shah VN. Global trends in the awareness of sepsis: insights from search engine data between 2012 and 2017. Crit Care. 2018;22(1):7. PMID: 29343292 https://doi.org/10.1186/s13054-017-1914-8Test; Iwashyna TJ, Ely EW, Smith DM, Langa KM. Long-term Cognitive Impairment and Functional Disability Among Survivors of Severe Sepsis. JAMA. 2010; 304(16):1787–1794. PMID: 20978258 https://doi.orgTest/ 10.1001/jama.2010.1553; Gaudry S, Messika J, Ricard JD, Guillo S, Pasquet B, Dubief E, et al. Patient-important outcomes in randomized controlled trials in critically ill patients: a systematic review. Ann Intensive Care. 2017;7(1):28. PMID: 28271450 https://doi.orgTest/ 10.1186/s13613-017-0243-z; Jickling GC, Sharp FR. Blood biomarkers of ischemic stroke. Neurotherapeutics. 2011;8(3):349–360. PMID: 21671123 https://doi.org/10.1007/s13311-011-0050-4Test; Писарев В.М., Чумаченко А.Г., Филев А.Д., Ершова Е.С., Костюк С.В., Вейко Н.Н., и др. Комбинация молекулярных биомаркеров ДНК в прогнозе исхода критических состояний. Общая реаниматология. 2019;15(3):31–47. https://doi.org/10.15360/1813-9779-2019-3-31-47Test; Roca E, Nescolarde L, Lupón J Barallat J, Januzzi JL, Liu P, et al. The Dynamics of Cardiovascular Biomarkers in non-Elite Marathon Runners. J Cardiovasc Transl Res. 2017;10(2):206–208. PMID: 28382580https://doi.org/10.1007/s12265-017-9744-2; Дмитриева И.Б., Белобородова Н.В., Черневская Е.А. Биомаркеры прокальцитонин и белок S100β в клинико-лабораторном мониторинге при критических состояниях новорожденных. Общая реаниматология. 2013;9(3):58–65. https://doi.org/10.15360/1813-9779-2013-3-58Test; Boyapati RK, Tamborska A, Dorward DA, Ho GT. Advances in the understanding of mitochondrial DNA as a pathogenic factor in inflammatory diseases. F1000Res. 2017;6:169. PMID: 28299196 https://doi.org/10.12688/f1000research.10397.1Test; Тамакович С.Н., Власов В.В., Лактионов П.П. Циркулирующие дезоксирибонуклеиновые кислоты крови и их использование в медицинской диагностике. Молекулярная биология. 2008;42(1):12–23.; Хубутия М.Ш., Шабанов А.К., Скулачев М.В., Булава Г.В., Савченко И.М., Гребенников О.А. и др. Митохондриальная и ядерная ДНК у пострадавших с тяжелой сочетанной травмой. Общая реаниматология. 2013;9(6):24–35. https://doi.org/10.15360/1813-9779-2013-6-24Test; Мороз В.В., Мягкова Е.А., Жанатаев А.К., Рябов Г.А., Остапченко Д.А., Дурнев А.Д., и др. Повреждения ДНК и процессы клеточной гибели лейкоцитов у пострадавших с тяжелой травмой. Общая реаниматология. 2014;10(4):11–36. https://doi.org/10.15360/1813-9779-2014-4-11-36Test; Козлов В.А. Свободная внеклеточная ДНК в норме и при патологии. Медицинская иммунология. 2013;15(5):399–412. https://doi.org/10.15789/1563-0625-2013-5-399-412Test; Moore LD, Le T, Fan G. DNA methylation and its basic function. Neuropsychopharmacology. 2013;38(1):23–38. PMID: 22781841 https://doi.org/10.1038/npp.2012.112Test; Suelves M, Carrió E, Núñez-Álvarez Y, Peinado MA. DNA methylation dynamics in cellular commitment and differentiation. Brief Funct Genomics. 2016;15(6):443–453. PMID: 27416614 https://doi.org/10.1093/bfgp/elw017Test; Lehmann-Werman R, Neiman D, Zemmour H. Moss J, Magenheim J, Vaknin-Dembinsky A, et al. Identification of tissue-specific cell death using methylation patterns of circulating DNA. Proc Natl Acad Sci USA. 2016;113(13):E1826–34. PMID: 26976580 https://doi.org/10.1073/pnas.1519286113Test; Moss J, Magenheim J, Neiman D Zemmour H, Loyfer N, Korach A, et al. Comprehensive human cell-type methylation atlas reveals origins of circulating cell-free DNA in health and disease. Nat Commun. 2018;9(1):5068. PMID: 30498206 https://doi.orgTest/ 10.1038/s41467-018-07466-6; Pisetsky DS. The origin and properties of extracellular DNA: from PAMP to DAMP. Clin Immunol. 2012;144(1):32–40. https://doi.org/10.1016/j.clim.2012.04.006Test; Peters DL, Pretorius PJ. Origin, translocation and destination of extracellular occurring DNA — a new paradigm in genetic behavior. Clin Chim Acta. 2011;412(11–12):806–11. https://doi.org/10.1016/j.cca.2011.01.026Test; Gahan PB, Anker P, Stroun M. Metabolic DNA as the origin of spontaneously released DNA? Ann N Y Acad Sci. 2008;1137:7–17. https://doi.org/10.1196/annals.1448.046Test; Brinkmann V, Reichard U, Goosmann C, Fauler B, Uhlemann Y, Weiss DS, et al. Neutrophil extracellular traps kill bacteria. Science. 2004;303(5663):1532–1535. https://doi.org/10.1126/science.1092385Test; Fuchs TA, Abed U, Goosmann C, Hurwitz R, Schulze I, Wahn V, et al. Novel cell death program leads to neutrophil extracellular traps. J Cell Biol. 2007;176(2):231–41. https://doi.org/10.1083/jcb.200606027Test; Jorch SK, Kubes P. An emerging role for neutrophil extracellular traps in noninfectious disease. Nat Med. 2017;23(3):279–287. PMID: 28267716 https://doi.org/10.1038/nm.4294Test; Ermakov AV, Kostyuk SV, Konkova MS Egolina NA, Malinovskaya EM, et al. Extracellular DNA fragments. Ann N Y Acad Sci. 2008;1137:41–46. PMID: 18837923 https://doi.org/10.1196/annals.1448.024Test; Van der Vaart M, Pretorius PJ. The origin of circulating free DNA. Clin Chem. 2007;53(12):2215. https://doi.org/10.1373/clinchem.2007.092734Test; Swarup V, Rajeswari MR. Circulating (cell-free) nucleic acids--a promising, non-invasive tool for early detection of several human diseases. FEBS Lett. 2007;581(5):795–799. PMID: 17289032 https://doi.orgTest/ 10.1016/j.febslet.2007.01.051; Zhivotosky B, Orrenius S. Assessment of apoptosis and necrosis by DNA fragmentation and morphological criteria. Curr Protoc Cell Biol. 2001;Ch18:18.3.1–18.3.23. PMID:18228342 https://doi.org/10.1002/0471143030.cb1803s12Test; Verhoven B, Schlegel RA, Williamson P. Mechanisms of phosphatidylserine exposure, a phagocyte recognition signal, on apoptotic T lymphocytes. J Exp Med. 1995;182(5)1597–1601. PMID: 7595231 https://doi.org/10.1084/jem.182.5.1597Test; Radic M, Marion TN. Neutrophil extracellular chromatin traps connect innate immune response to autoimmunity. Semin Immunopathol. 2013;35(4):465–480. PMID: 23595413 https://doi.org/10.1007/s00281-013-0376-6Test; Fernando MR, Jiang C, Krzyzanowski GD, Ryan WL. New evidence that a large proportion of human blood plasma cell-free DNA is localized in exosomes. PLoS One. 2017; 12(8):e0183915. PMID: 28850588 https://doi.org/10.1371/journal.pone.0183915Test; Anitei M, Wassmer T, Stange C, Hoflack B. Bidirectional transport between the trans-Golgi network and the endosomal system. Mol Membr Biol. 2010;27(8):443–456. PMID: 21054155 https://doi.org/10.3109/09687688.2010.522601Test; Raposo G, Nijman HW, Stoorvogel W, Liejendekker R, Harding CV, Melief CJ, et al. B lymphocytes secrete antigen-presenting vesicles. J Exp Med. 1996;183(3):1161–1172. PMID: 8642258 https://doi.org/10.1084/jem.183.3.1161Test; Valadi H, Ekström K, Bossios A Sjöstrand M, Lee JJ, Lötvall JO, et al. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol. 2007;9(6):654–659. PMID: 17486113 https://doi.org/10.1038/ncb1596Test; MacKenzie A, Wilson HL, Kiss-Toth E, Dower SK, North RA, Surprenant A, et al. Rapid secretion of interleukin-1beta by microvesicle shedding. Immunity. 2001;15(5):825–835. PMID: 11728343 https://doi.org/10.1016/s1074-7613Test(01)00229-1; Nunnari J, Suomalainen A. Mitochondria: in sickness and in health. Cell. 2012;148(6):1145–1159. PMID: 22424226 https://doi.org/10.1016/j.cell.2012.02.035Test; Hong EE, Okitsu CY, Smith AD, Hsieh CL. Regionally specific and genome-wide analyses conclusively demonstrate the absence of CpG methylation in human mitochondrial DNA. Mol Cell Biol. 2013;33(14):2683–2690. PMID: 23671186 https://doi.org/10.1128/MCB.00220-13Test; Shock LS, Thakkar PV, Peterson EJ, Moran RG, Taylor SM, et al. DNA methyltransferase 1, cytosine methylation, and cytosine hydroxymethylation in mammalian mitochondria. Proc Natl Acad Sci U S A. 2011;108(9):3630–3635. PMID: 21321201 https://doi.org/10.1073/pnas.1012311108Test; Di Carlo M, Giacomazza D, Picone P Nuzzo D, San Biagio PL. Are oxidative stress and mitochondrial dysfunction the key players in the neurodegenerative diseases? Free Radic Res. 2012;46(11):1327–1338. PMID: 22817279 https://doi.org/10.3109/10715762.2012.714466Test; Shimada K, Crother TR, Karlin J Dagvadorj J, Chiba N, Chen S, et al. Oxidized mitochondrial DNA activates the NLRP3 inflammasome during apoptosis. Immunity. 2012;36(3):401–414. PMID: 22342844 https://doi.org/10.1016/j.immuni.2012.01.009Test; Zhong Z, Liang S, Sanchez-Lopez E He F, Shalapour S, Lin XJ, et al. New mitochondrial DNA synthesis enables NLRP3 inflammasome activation. Nature. 2018;560(7717):198–203. PMID: 30046112 https://doi.org/10.1038/s41586-018-0372-zTest; Phaniendra A, Jestadi DB, Periyasamy L. Free Radicals: Properties, Sources, Targets, and Their Implication in Various Diseases. Indian J Clin Biochem. 2015;30(1):11–26. https://doi.org/10.1007/s12291-014-0446-0Test; Jackson SP, Bartek J. The DNA-damage response in human biology and disease. Nature. 2009;461(7267):1071–1078. PMID: 19847258 https://doi.org/10.1038/nature08467Test; Hegde ML, Hazra TK, Mitra S. Early Steps in the DNA Base Excision/ Single-Strand Interruption Repair Pathway in Mammalian Cells. Cell Res. 2008;18(1):27–47. PMID: 18166975 https://doi.org/10.1038/cr.2008.8Test; Hegde ML, Izumi T, Mitra S. Oxidized Base Damage and Single-Strand Break Repair in Mammalian Genomes: Role of Disordered Regions and Posttranslational Modifications in Early Enzymes. Prog Mol Biol Transl Sci. 2012;110:123–153. PMID: 22749145 https://doi.org/10.1016/B978-0-12-387665-2.00006-7Test; Jaruga P, Rozalski R, Jawien A Migdalski A, Olinski R, Dizdaroglu M. DNA damage products (5’R)- and (5’S)-8,5’-cyclo-2’-deoxyadenosines as potential biomarkers in human urine for atherosclerosis. Biochemistry. 2012;51(9):1822–1824. PMID: 22360777 https://doi.org/10.1021/bi201912cTest; Filev AD, Shmarina GV, Ershova E, Veiko NN, Martynov AV, Borzikova MA, et al. Oxidized Cell-Free DNA Role in the Antioxidant Defense Mechanisms under Stress. Hindawi. Oxid Med Cell Longev. 2019(4):1–13. PMID: 31360293 https://doi.org/10.1155/2019/1245749Test; Zhang L, Deng S, Zhao S , Ai Y, Zhang L, Pan P, et al. Intra-Peritoneal Administration of Mitochondrial DNA Provokes Acute Lung Injury and Systemic Inflammation via Toll-Like Receptor 9. Int J Mol Sci. 2016;17(9). pii: E1425. PMID: 27589725 https://doi.org/10.3390/ijms17091425Test; Pallen MJ. Time to recognise that mitochondria are bacteria? Trends Microbiol. 2011;19(2):58–64. PMID: 21123072 https://doi.org/10.1016/j.tim.2010.11.001Test; Gunter TE, Buntinas L, Sparagna GC, Gunter KK. The Ca2+ transport mechanisms of mitochondria and Ca2+ uptake from physiological-type Ca2+ transients. Biochim Biophys Acta. 1998;1366(1–2):5–15. PMID: 9714709 https://doi.org/10.1016/s0005-2728Test(98)00117-0; Hockenbery D, Nuñez G, Milliman C Schreiber RD, Korsmeyer SJ, et al. Bcl-2 is an inner mitochondrial membrane protein that blocks programmed cell death. Nature. 1990;348(6299):334–336. PMID: 2250705 https://doi.org/10.1038/348334a0Test; Rodríguez-Nuevo A, Zorzano A. The sensing of mitochondrial DAMPs by non-immune cells. Cell Stress. 2019;3(6):195–207. PMID:31225514 https://doi.org/10.15698/cst2019.06.190Test; de Jong SD, Basha G, Wilson KD Kazem M, Cullis P, Jefferies W, et al. The immunostimulatory activity of unmethylated and methylated CpG oligodeoxynucleotide is dependent on their ability to colocalize with TLR9 in late endosomes. J Immunol. 2010;184(11):6092–6102. PMID: 20427776 https://doi.org/10.4049/jimmunol.0802442Test; Hemmi H, Takeuchi O, Kawai T Kaisho T, Sato S, Sanjo H, et al. A Tolllike receptor recognizes bacterial DNA. Nature. 2000;408(6813):740–745. PMID: 11130078 https://doi.org/10.1038/35047123Test; Lund J, Sato A, Akira S, Medzhitov R, Iwasaki A, et al. Toll-like receptor 9-mediated recognition of Herpes simplex virus-2 by plasmacytoid dendritic cells. J Exp Med. 2003;198(3):513–520. PMID: 12900525 https://doi.org/10.1084/jem.20030162Test; Bird AP, Taggart MH, Nicholls RD, Higgs DR. Non-methylated CpG-rich islands at the human alpha-globin locus: implications for evolution of the alpha-globin pseudogene. EMBO J. 1987;6(4):999–1004. PMID: 3595568; Broz P, Dixit VM. Inflammasomes: mechanism of assembly, regulation and signalling. Nat Rev Immunol. 2016;16(7):407–420. PMID: 27291964 https://doi.org/10.1038/nri.2016.58Test; Gould TJ, Vu TT, Stafford AR Dwivedi DJ, Kim PY, Fox-Robichaud AE, et al. Cell-Free DNA Modulates Clot Structure and Impairs Fibrinolysis in Sepsis. Arterioscler Thromb Vasc Biol. 2015;35(12):2544–2553. PMID: 26494232 https://doi.org/10.1161/ATVBAHA.115.306035Test; Mai SH, Khan M, Dwivedi DJ, Ross CA, Zhou J, Gould TJ, et al. Canadian Critical Care Translational Biology Group. Delayed but not Early Treatment with DNase Reduces Organ Damage and Improves Outcome in a Murine Model of Sepsis. Shock. 2015;44(2):166–172. PMID: 26009820 https://doi.org/10.1097/SHK.0000000000000396Test; Meng W, Paunel-Görgülü A, Flohé S, Hoffmann A, Witte I, MacKenzie C, et al. Depletion of neutrophil extracellular traps in vivo results in hypersusceptibility to polymicrobial sepsis in mice. Crit Care. 2012;16(4):R137. PMID: 22835277 https://doi.org/10.1186/cc11442Test; Motwani M, Pesiridis S, Fitzgerald KA. DNA sensing by the cGAS-STING pathway in health and disease. Nat Rev Genet. 2019;20(11):657–674. PMID: 31358977 https://doi.org/10.1038/s41576-019-0151-1Test; Tsai NW, Lin TK, Chen SD, Chang WN, Wang HC, Yang TM, et al. The value of serial plasma nuclear and mitochondrial DNA levels in patients with acute ischemic stroke. Clin Chim Acta. 2011;412(5–6):476–479. PMID: 21130757 https://doi.org/10.1016/j.cca.2010.11.036Test; Конорова И.Л., Максимова М.Ю., Смирнова И.Н., Болотова Т.А., Ершова Е.С., Вейко Н.Н., и др. Циркулирующая в плазме крови внеклеточная ДНК в патогенезе ишемического инсульта: роль транскрибируемой области рибосомного повтора. Патологическая физиология и экспериментальная медицина. 2014;(2):13–23.; O’Connell GC, Petrone AB, Tennant CS, Lucke-Wold N, Kabbani Y, Tarabishy AR, et al. Circulating extracellular DNA levels are acutely elevated in ischaemic stroke and associated with innate immune system activation. Brain Inj. 2017;31(10):1369–1375. PMID: 28585898 https://doi.org/10.1080/02699052.2017.1312018Test; Glebova KV, Veiko NN, Nikonov AA. Porokhovnik LN, Kostuyk SV, et al. Cell-free DNA as a biomarker in stroke: Current status, problems and perspectives. Crit Rev Clin Lab Sci. 2018;55(1):55–70. PMID: 29303618 https://doi.org/10.1080/10408363.2017.1420032Test; Hummel EM, Hessas E, Müller S, Beiter T, Fisch M, Eibl A, et al. Cell-free DNA release under psychosocial and physical stress conditions. Transl Psychiatry. 2018;8(1):236. PMID: 30374018 https://doi.org/10.1038/s41398-018-0264-xTest; Rannikko J, Seiskari T, Huttunen R, Tarkiainen I, Jylhävä J, Hurme M, et al. Plasma cell-free DNA and qSOFA score predict 7-day mortality in 481 emergency department bacteraemia patients. J Intern Med. 2018;284(4):418–426. PMID: 29687943 https://doi.orgTest/ 0.1111/joim.12766; Schneck E, Samara O, Koch C, Hecker A, Padberg W, Lichtenstern C, et al. Plasma DNA and RNA differentially impact coagulation during abdominal sepsis-an explorative study. J Surg Res. 2017;210:231–243. PMID: 28457334 https://doi.org/10.1016/j.jss.2016.11.044Test; Jackson Chornenki NL, Coke R, Kwong AC, Dwivedi DJ, Xu MK, McDonald E, et al. Comparison of the source and prognostic utility of cfDNA in trauma and sepsis. Intensive Care Med Exp. 2019;7(1):29. PMID: 31119471 https://doi.org/10.1186/s40635-019-0251-4Test; Базеко Н.П., Алексеенко Ю.В.; Всемирная Организация Здравоохранения. Инсульт: программа возврата к активной жизни. Москва: Медицинская литература; 2004.; Silva GS, Koroshetz WJ, González RG, Schwamm LH. Causes of Ischemic Stroke. In: González R, Hirsch J, Lev M, Schaefer P, Schwamm L. (eds.) Acute Ischemic Stroke. Imaging and Intervention. Springer, Berlin, Heidelberg; 2011. p.25–42.; Arai K, Lok J, Guo S, Hayakawa K, Xing C, Lo EH. Cellular mechanisms of neurovascular damage and repair after stroke. J Child Neurol. 2011; 6(9):1193–1198. PMID: 21628695 https://doi.org/10.1177/0883073811408610Test; Oldendorf WH, Cornford ME, Brown WJ. The large apparent work capability of the blood-brain barrier: a study of the mitochondrial content of capillary endothelial cells in brain and other tissues of the rat. Ann Neurol. 1977;1(5):409–17. PMID: 617259 https://doi.org/10.1002/ana.410010502Test; Khatri R, McKinney AM, Swenson B, Janardhan V. Blood-brain barrier, reperfusion injury, and haemorrhagic transformation in acute ischemic stroke. Neurology. 2012;79(13 Suppl 1):S52–57. PMID: 23008413 https://doi.org/10.1212/WNL.0b013e3182697e70Test; del Zoppo GJ. The neurovascular unit, matrix proteases, and innate inflammation. Ann N Y Acad Sci. 2010;1207:46–49. PMID: 20955425 https://doi.org/10.1111/j.1749-6632.2010.05760.xTest; Kago T, Takagi N, Date I, Takenaga Y, Takagi K, Takeo S. Cerebral ischemia enhances tyrosine phosphorylation of occludin in brain capillaries. Biochem Biophys Res Commun. 2006;339(4):1197–1203. PMID: 16338221 DOI:10.1016/j.bbrc.2005.11.133; Grossmann J. Molecular mechanisms of «detachment-induced apoptosis – Anoikis». Apoptosis. 2002;7(3):247–260. PMID: 11997669; Boyko M, Ohayon S, Goldsmith T, Douvdevani A, Gruenbaum BF, Melamed I, et al. Cell-free DNA-a marker to predict ischemic brain damage in a rat stroke experimental model. J Neurosurg Anesthesiol. 2011;23(3):222–228. PMID: 21593692 https://doi.org/10.1097/ANA.0b013e31821b536aTest; Guidelines for the Early Management of Patients With Acute Ischemic Stroke: 2019 Update to the 2018 Guidelines for the Early Management of Acute Ischemic Stroke: A Guideline for Healthcare Professionals From the American Heart Association/American Stroke Association. Stroke. 2019;50(12):e440–e441. PMID: 3176529 https://doi.org/10.1161/STR.0000000000000215Test; Vajpeyee A, Wijatmiko T, Vajpeyee M, Taywade O. Cell free DNA: A Novel Predictor of Neurological Outcome after Intravenous Thrombolysis and/or Mechanical Thrombectomy in Acute Ischemic Stroke Patients. Neurointervention. 2018;13(1):13–19. PMID: 29535894 https://doi.org/10.5469/neuroint.2018.13.1.13Test; Bhaskar S, Stanwell P, Cordato D, Attia J, Levi C, et al. Reperfusion therapy in acute ischemic stroke: dawn of a new era? BMC Neurol. 2018;18(1):8. PMID: 29338750 https://doi.org/10.1186/s12883-017-1007-yTest; Wang L, Xie L, Zhang Q, Cai X, Tang Y, Wang L, et al. Plasma nuclear and mitochondrial DNA levels in acute myocardial infarction patients. Coron Artery Dis. 2015; 26(4):296–300. PMID: 25714070 https://doi.org/10.1097/MCA.0000000000000231Test; Zemmour H, Planer D, Magenheim J, Moss J, Neiman D, Gilon D, et al. Non-invasive detection of human cardiomyocyte death using methylation patterns of circulating DNA. Nat Commun. 2018;9(1):1443. PMID: 29691397 https://doi.org/10.1038/s41467-018-03961-yTest; Omar AS, Mahmoud K, Hanoura S, Osman H, Sivadasan P, Sudarsanan S, et al. Acute kidney injury induces high-sensitivity troponin measurement changes after cardiac surgery. BMC Anesthesiol. 2017;17(1):15. PMID: 28143401 https://doi.org/10.1186/s12871-017-0307-5Test; Vallabhajosyula S, Sakhuja A, Geske JB Kumar M, Poterucha JT, Kashyap R, et al. Role of Admission Troponin-T and Serial Troponin-T Testing in Predicting Outcomes in Severe Sepsis and Septic Shock. J Am Heart Assoc. 2017;6(9).pii: e005930. PMID: 28889100 https://doi.org/10.1161/JAHA.117.005930Test; Herman DS, Kavsak PA, Greene DN. Variability and Error in Cardiac Troponin Testing: An ACLPS Review. Am J Clin Patrol. 2017;148(4):281–295. PMID: 28967956 DOI:10.1093/ajcp/aqx066; Xie J, Yang J, Hu P. Correlations of Circulating Cell-Free DNA With Clinical Manifestations in Acute Myocardial Infarction. Am J Med Sci. 2018;356(2):121–129. PMID: 30219153 https://doi.org/10.1016/j.amjms.2018.04.007Test; Singer M, Deutschman CS, Seymour CW Shankar-Hari M, Annane D, Bauer M, et al. The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). JAMA. 2016; 315(8):801–810. PMID: 26903338 https://doi.org/10.1001/jama.2016.0287Test; Angus DC, Seymour CW, Coopersmith CM, Deutschman CS, Klompas M, Levy MM, et al. A framework for the development and interpretation of different sepsis definitions and clinical criteria. Crit Care Med. 2016;44(3):e113–e121. PMID: 26901559 https://doi.org/10.1097/CCM.0000000000001730Test; Avriel A, Paryente Wiessman M, Almog Y Perl Y, Novack V, Galante O, et al. Admission cell free DNA levels predict 28-day mortality in patients with severe sepsis in intensive care. PLoS One. 2014;9(6):e100514. PMID: 24955978 https://doi.org/10.1371/journal.pone.0100514Test; Dwivedi DJ, Toltl LJ, Swystun LL Pogue J, Liaw KL, Weitz JI, et al. Canadian Critical Care Translational Biology Group. Prognostic utility and characterization of cell-free DNA in patients with severe sepsis. Crit Care. 2012;16(4):R151. PMID: 22889177 https://doi.org/10.1186/cc11466Test; Wheeler AP, Bernard GR. Treating patients with severe sepsis. N Engl J Med. 1999;340(3):207–214. PMID: 9895401 https://doi.org/10.1056/NEJM199901213400307Test; Hotchkiss RS, Karl IE. The pathophysiology and treatment of sepsis. N Engl J Med. 2003;348(2):138–150. PMID: 12519925 https://doi.org/10.1056/NEJMra021333Test; Gould TJ, Vu TT, Swystun LL Dwivedi DJ, Mai SH, Weitz JI, et al. Neutrophil extracellular traps promote thrombin generation through platelet-dependent and platelet-independent mechanisms. Arterioscler Thromb Vasc Biol. 2014;34(9):1977–1984. PMID: 25012129 https://doi.org/10.1161/ATVBAHA.114.304114Test; Trigg RM, Martinson LJ, Parpart-Li S, Shaw JA. Factors that influence quality and yield of circulating-free DNA: A systematic review of the methodology literature. Heliyon. 2018;4(7):e00699. PMID: 30094369 https://doi.org/10.1016/j.heliyon.2018.e00699Test; https://www.jnmp.ru/jour/article/view/909Test

  10. 10
    دورية أكاديمية