يعرض 1 - 10 نتائج من 127 نتيجة بحث عن '"белки теплового шока"', وقت الاستعلام: 1.13s تنقيح النتائج
  1. 1
    دورية أكاديمية
  2. 2
    دورية أكاديمية
  3. 3
    دورية أكاديمية
  4. 4
    دورية أكاديمية
  5. 5
    دورية أكاديمية
  6. 6
    دورية أكاديمية

    المساهمون: The work was financially supported by fundamental scientific research of the Ministry of Science and Higher Education of the Russian Federation within the state assignment of the Federal Research Center for Animal Husbandry named after Academy Member L. K. Ernst (FGGN 0445-2021-0002), the registration number of the EGISU of the research topic GZ 2021-2023 is 121052600314-1. The authors thank the reviewers for their contribution to the peer review of this work., Работа выполнялась при финансовой поддержке Министерства науки и высшего образования РФ в рамках выполнения государственного задания ФГБНУ «Федеральный исследовательский центр животноводства – ВИЖ имени академика Л. К. Эрнста» (FGGN 0445-2021-0002), регистрационный номер ЕГИСУ темы НИР ГЗ 2021-2023-121052600314-1.

    المصدر: Agricultural Science Euro-North-East; Том 24, № 6 (2023); 1038-1048 ; Аграрная наука Евро-Северо-Востока; Том 24, № 6 (2023); 1038-1048 ; 2500-1396 ; 2072-9081

    وصف الملف: application/pdf

    العلاقة: https://www.agronauka-sv.ru/jour/article/view/1489/730Test; Harris Z. L. Chapter 9 − Ceruloplasmin. Clinical and Translational Perspectives on Wilson Disease. Academic Press. 2019. pp. 77-84. DOI: https://doi.org/10.1016/B978-0-12-810532-0.00009-4Test; Helman S. L., Zhou J., Fuqua B. K., Lu Y., Collins J. F., Chen H., Vulpe C. D., Anderson G. J., Frazer D. M. The biology of mammalian multi-copper ferroxidases. BioMetals. 2022;36:263-281. DOI: https://doi.org/10.1007/s10534-022-00370-zTest; Vashchenko G., MacGillivray R. T. A. Multi-copper oxidases and human iron metabolism. Nutrients. 2013;5(7):2289-2313. DOI: https://doi.org/10.3390/nu5072289Test; Мошков К. А., Зайцев В. Н., Романовская Е. В., Стефанов В. Е. Церулоплазмин: внутримолекулярный перенос электронов и ферроксидазная активность. Фундаментальные исследования. 2014;(3-1):104-108. Режим доступа: https://www.elibrary.ru/item.asp?id=21291815Test EDN: RXYDRP; Puchkova L. V., Babich P. S., Zatulovskaia Y. A., Ilyechova E. Y., Di Sole F. Copper metabolism of newborns is adapted to milk ceruloplasmin as a nutritive source of copper: Overview of the current data. Nutrients. 2018;10(11):1591. DOI: https://doi.org/10.3390/nu10111591Test; Dobrzanski Z., Kolacz R., Górecka H., Chojnacka K., Bartkowiak A. The content of microelements and trace elements in raw milk from cows in the Silesian region. Polish Journal of Environmental Studies. 2005;14(5):685-689.; Szczubial M., Dabrowski R., Kankofer M., Bochniarz M., Komar M. Concentration of serum amyloid A and ceruloplasmin activity in milk from cows with subclinical mastitis caused by different pathogens. Polish Journal of Veterinary Sciences. 2012;15(2):291-296. DOI: https://doi.org/10.2478/v10181-011-0149-xTest; Воронина О. А., Боголюбова Н. В., Зайцев С. Ю. Минеральные элементы в составе молока коров - мини-обзор. Сельскохозяйственная биология. 2022;57(4):681-693. DOI: https://doi.org/10.15389/agrobiology.2022.4.681rusTest EDN: BMBZXD; Цымбаленко Н. В., Гюлиханданова Н. Е., Платонова Н. А., Бабич В. С., Евсюкова И. И., Пучкова Л. В. Регуляция активности гена церулоплазмина в клетках молочной железы. Генетика. 2009;45(3):390-400. Режим доступа: https://www.elibrary.ru/item.asp?id=11713826Test EDN: JWIRLR; Hussein H. A., Staufenbiel R. Variations in copper concentration and ceruloplasmin activity of dairy cows in relation to lactation stages with regard to ceruloplasmin to copper ratios. Biological trace element research. 2012;146:47-52. DOI: https://doi.org/10.1007/s12011-011-9226-3Test; Szczubial M., Dabrowski R., Kankofer M., Bochniarz M., Albera E. Concentration of serum amyloid A and activity of ceruloplasmin in milk from cows with clinical and subclinical mastitis. Bulletin of the Veterinary Institute in Puławy. 2008;3(52):391-395.; Saleh N., Allam T. S., Omran A., Abdelfattah A. M. Evaluation of Changes in Hemato-Biochemical, Inflammatory, and Oxidative Stress Indices as Reliable Diagnostic Biomarkers for Subclinical Mastitis in Cows. Alexandria Journal for Veterinary Sciences. 2022;(72)2:23-34. DOI: https://doi.org/10.5455/ajvs.140786Test; Sadat A., Farag A. M., Elhanafi D., Awad A., Elmahallawy E. K., Alsowayeh N., El-khadragy M. F., Elshopakey G. E. Immunological and Oxidative Biomarkers in Bovine Serum from Healthy, Clinical, and SubClinical Mastitis Caused by Escherichia coli and Staphylococcus aureus Infection. Animals. 2023;13(5):892. DOI: https://doi.org/10.3390/ani13050892Test; Зыков А. А., Головнев Б. А., Зыкова А. А., Белкина О. М. Соотношение функционально активных белков в сыворотке крови и центральной лимфе в раннем периоде синдрома длительного сдавления. Здравоохранение Кыргызстана. 2012;(2):36-38. Режим доступа: https://www.elibrary.ru/item.asp?id=30682570Test EDN: XGHJTP; Сермягин А., Зиновьева Н., Ермилов А., Янчуков И. Инфракрасная спектроскопия молока. Животноводство России. 2019;(S1):65-68. DOI: https://doi.org/10.25701/ZZR.2019.17.64.008Test EDN: KUBFOZ; Воронина О. А. Уровень меди в молоке коров племенного хозяйства в зимний и весенний период. Ветеринария, зоотехния и биотехнология. 2022;(12-1):112-116. DOI: https://doi.org/10.36871/vet.zoo.bio.202212114Test EDN: YWWCBA; Фадейкина О. В., Волкова Р. А., Карпова Е. В. Статистическая обработка результатов аттестации биологических стандартных образцов: применение критерия Манна-Уитни. Химико-фармацевтический журнал. 2019;53(7):54-58. DOI: https://doi.org/10.30906/0023-1134-2019-53-7-54-58Test EDN: HQPGTD; Саадалов Т., Мырзаибраимов Р., Абдуллаева Ж. Д. Методика расчета коэффициента корреляции Фехнера и Пирсона, и их области применения. Бюллетень науки и практики. 2021;7(10):270-276. DOI: https://doi.org/10.33619/2414-2948/71/31Test EDN: GNMYZT; Хромова Л. Г., Аристов А. В., Байлова Н. В., Мусенко И. В. Особенности лактационной функции коров молочных пород в условиях беспривязной технологии содержания. Вестник Воронежского государственного аграрного университета. 2017;(4):79-88. DOI: https://doi.org/10.17238/issn2071-2243.2017.4.79Test EDN: YWLHVR; Петухов М. В., Соколов А. В., Костевич В. А., Самыгина В. Р. Олигомеризация церулоплазмина под действием ионов меди. Кристаллография. 2021;66(5):802-806. DOI: https://doi.org/10.31857/S0023476121050179Test EDN: FPRMZJ; https://www.agronauka-sv.ru/jour/article/view/1489Test

  7. 7
    دورية أكاديمية

    المساهمون: The Russian Federation within the state assignment of the L.K. Ernst Federal Research Center for Animal Husbandry (theme No. 121052600357-8). The authors thank the reviewers for their contribution to the expert evaluation of this work., Работа выполнена при поддержке Минобрнауки России в рамках Государственного задания ФГБНУ «Федеральный исследовательский центр животноводства – ВИЖ имени академика Л. К. Эрнста» (тема № 121052600357-8). Авторы благодарят рецензентов за их вклад в экспертную оценку этой работы.

    المصدر: Agricultural Science Euro-North-East; Том 24, № 6 (2023); 1029-1037 ; Аграрная наука Евро-Северо-Востока; Том 24, № 6 (2023); 1029-1037 ; 2500-1396 ; 2072-9081

    وصف الملف: application/pdf

    العلاقة: https://www.agronauka-sv.ru/jour/article/view/1488/729Test; Somes R. G. International Registry of Poultry Genetic Stocks. The University of Connecticut Storrs, 1988. 98 p. URL: http://digitalcommons.uconn.edu/saes/29Test; Gul H., Habib G., Khan I. M., Rahman S. U., Khan N. M., Wang H., Khan N. U., Liu Y. Genetic resilience in chickens against bacterial, viral and protozoal pathogens. Frontiers in Veterinary Science. 2022;9:1032983. DOI: https://doi.org/10.3389/fvets.2022.1032983Test; Kheimar A., Klinger R., Bertzbach L. D., Sid H., Yu Y., Conradie A. M., Schade B., Böhm B., Preisinger R., Nair V., Kaufer B. B., Schusser B. A Genetically Engineered Commercial Chicken Line Is Resistant to Highly Pathogenic Avian Leukosis Virus Subgroup J. Microorganisms. 2021;9(5):1066. DOI: https://doi.org/10.3390/microorganisms9051066Test; Koslová A., Trefil P., Mucksová J., Reinišová M., Plachý J., Kalina J., Kučerová D., Geryk J., Krchlíková V., Lejčková B., Hejnar J. Precise CRISPR/Cas9 editing of the NHE1 gene renders chickens resistant to the J subgroup of avian leukosis virus. Proceedings of the National Academy of Sciences of the United States of America. 2020;117(4):2108-2112. DOI: https://doi.org/10.1073/pnas.1913827117Test; Challagulla A., Jenkins K. A., O'Neil T. E., Shi S., Morris K. R., Wise T. G., Paradkar P. N., Tizard M. L., Doran T. J., Schat K. A. In Vivo Inhibition of Marek's Disease Virus in Transgenic Chickens Expressing Cas9 and gRNA against ICP4. Microorganisms. 2021;9(1):164. DOI: https://doi.org/10.3390/microorganisms9010164Test; McGrew M. J., Sherman A., Ellard F. M., Lillico S. G., Gilhooley H. J., Kingsman A. J., Mitrophanous K. A., Sang H. Efficient production of germline transgenic chickens using lentiviral vectors. EMBO Reports. 2004;5(7):728-733. DOI: https://doi.org/10.1038/sj.embor.7400171Test; Barjesteh N., O'Dowd K., Vahedi S. M. Antiviral responses against chicken respiratory infections: Focus on avian influenza virus and infectious bronchitis virus. Cytokine. 2020;127:154961. DOI: https://doi.org/10.1016/j.cyto.2019.154961Test; Schilling M. A., Katani R., Memari S., Cavanaugh M., Buza J., Radzio-Basu J., Mpenda F. N., Deist M. S., Lamont S. J., Kapur V. Transcriptional Innate Immune Response of the Developing Chicken Embryo to Newcastle Disease Virus Infection. Frontiers in Genetics. 2018;9:61. DOI: https://doi.org/10.3389/fgene.2018.00061Test; Kaufman J., Salomonsen J. The "minimal essential ГКГ" revisited: both peptide-binding and cell surface expression level of ГКГ molecules are polymorphisms selected by pathogens in chickens. Hereditas. 1997;127(1-2):67-73. DOI: https://doi.org/10.1111/j.1601-5223.1997.t01-1-00067.xTest; Torigoe T., Tamura Y., Sato N. Heat shock proteins and immunity: application of hyperthermia for immunomodulation. International Journal of Hyperthermia. 2009;25(8):610-616. DOI: https://doi.org/10.3109/02656730903315831Test; Stewart G. R., Young D. B. Heat-shock proteins and the host-pathogen interaction during bacterial infection. Current Opinion in Immunology. 2004;16(4):506-510. DOI: https://doi.org/10.1016/j.coi.2004.05.007Test; Zhao F. Q., Zhang Z. W., Qu J. P., Yao H. D., Li M., Li S., Xu S. W. Cold stress induces antioxidants and HSPs in chicken immune organs. Cell Stress and Chaperones. 2014;19(5):635-648. DOI: https://doi.org/10.1007/s12192-013-0489-9Test; Станишевская О. И., Федорова Е. С. Сравнительная оценка особенностей стресс-реактивности организма кур русской белой породы с мутацией sw+ и амрокс на условия гипотермии в эмбриональном и раннем постнатальном периодах онтогенеза. Сельскохозяйственная биология. 2019;54(6):1135-1143. DOI: https://doi.org/10.15389/agrobiology.2019.6.1135rusTest EDN: JIVYWR; Stanishevskaya O. I., Fedorova E. S. Comparative evaluation of the peculiarities of stress reactivity of the Russian white breed chicken with sw+ mutation and Amrox in hypothermia conditions during embryonal and early postnatal periods of ontogenesis. Sel'skokhozyaystvennaya biologiya = Agricultural Biology. 2019;54(6):1135-1143. (In Russ.). DOI: https://doi.org/10.15389/agrobiology.2019.6.1135rusTest; De Maio A., Vazquez D. Extracellular heat shock proteins: a new location, a new function. Shock. 2013;40(4):239-246. DOI: https://doi.org/10.1097/SHK.0b013e3182a185abTest; Habich C., Burkart V. Heat shock protein 60: regulatory role on innate immune cells. Cellular and Molecular Life Sciences. 2007;64(6):742-751. DOI: https://doi.org/10.1007/s00018-007-6413-7Test; https://www.agronauka-sv.ru/jour/article/view/1488Test

  8. 8
    دورية أكاديمية
  9. 9
    دورية أكاديمية

    المساهمون: LTR analyses were performed at the Multiple-access Center for Microscopy of Biological Objects (Institute of Cytology and Genetics SB RAS). This work was supported by budget project No. 0259-2021-0011.

    المصدر: Vavilov Journal of Genetics and Breeding; Том 26, № 2 (2022); 169-178 ; Вавиловский журнал генетики и селекции; Том 26, № 2 (2022); 169-178 ; 2500-3259 ; 2500-0462 ; 10.18699/VJGB-22-14

    وصف الملف: application/pdf

    العلاقة: https://vavilov.elpub.ru/jour/article/view/3293/1601Test; Amano A., Nakagawa I., Yoshimori T. Autophagy in innate immunity against intracellular bacteria. J. Biochem. 2006;140(2):161-166. DOI 10.1093/jb/mvj162.; Bainbridge S.P., Bownes M. Staging the metamorphosis of Drosophila melanogaster. J. Embryol. Exp. Morphol. 1981;66:57-80.; Barth J.M.I., Szabad J., Hafen E., Köhler K. Autophagy in Drosophila ovaries is induced by starvation and is required for oogenesis. Cell Death Differ. 2011;18:915-924. DOI 10.1038/cdd.2010.157.; Bjedov I., Cochemé H.M., Foley A., Wieser D., Woodling N.S., Castillo-Quan J.I., Norvaisas P., Lujan C., Regan J.C., Toivonen J.M.; Murphy M.P., Thornton J., Kinghorn K.J., Neufeld T.P., Cabreiro F., Partridge L. Fine-tuning autophagy maximises lifespan and is associated with changes in mitochondrial gene expression in Drosophila. PLoS Genet. 2020;16:e1009083. DOI 10.1371/journal.pgen.1009083.; Bolobolova E.U., Dorogova N.V., Fedorova S.A. Major scenarios of genetically regulated cell death during oogenesis in Drosophila melanogaster. Russ. J. Genet. 2020;56:655-665. DOI 10.1134/S1022795420060034.; Carra S., Boncoraglio A., Kanon B., Brunsting J.F., Minoia M., Rana A., Vos M.J., Seidel K., Sibon O.C., Kampinga H.H. Identification of the Drosophila ortholog of HSPB8. J. Biol. Chem. 2010;285:37811-37822. DOI 10.1074/jbc.M110.127498.; Clancy D.J., Gems D., Harshman L.G., Oldham S., Stocker H., Hafen E., Leevers S.J., Partridge L. Extension of life-span by loss of CHICO, a Drosophila insulin receptor substrate protein. Science. 2001;292(5514):104-106. DOI 10.1126/science.1057991.; Drummond-Barbosa D., Spradling A.C. Stem cells and their progeny respond to nutritional changes during Drosophila oogenesis. Dev. Biol. 2001;231(1):265-278. DOI 10.1006/dbio.2000.0135. Graze R.M., Tzeng R.-Y., Howard T.S., Arbeitman M.N. Perturbation of IIS/TOR signaling alters the landscape of sex-differential gene expression in Drosophila. BMC Genom. 2018;19:893. DOI 10.1186/s12864-018-5308-3.; Hercus M.J., Loeschcke V., Rattan S.I.S. Lifespan extension of Drosophila melanogaster through hormesis by repeated mild heat stress. Biogerontology. 2003;4:149-156. DOI 10.1023/A:1024197806855.; Hou Y.-C.C., Chittaranjan S., Barbosa S.G., McCall K., Gorski S.M. Effector caspase Dcp-1 and IAP protein Bruce regulate starvationinduced autophagy during Drosophila melanogaster oogenesis. J. Cell Biol. 2008;182:1127-1139. DOI 10.1083/jcb.200712091.; Izquierdo J.I. How does Drosophila melanogaster overwinter? Entomol. Exp. Appl. 1991;59:51-58. DOI 10.1111/j.1570-7458.1991.tb01485.x.; Jolly C., Morimoto R.I. Role of the heat shock response and molecular chaperones in oncogenesis and cell death. J. Natl. Cancer. Inst. 2000;92(19):1564-1572. DOI 10.1093/jnci/92.19.1564.; Kampinga H.H., Hageman J., Vos M.J., Kubota H., Tanguay R.M., Bruford E.A., Cheetham M.E., Chen B., Hightower L.E. Guidelines for the nomenclature of the human heat shock proteins. Cell Stress Chaperones. 2009;14:105-111. DOI 10.1007/s12192-008-0068-7.; Kapahi P., Zid B.M., Harper T., Koslover D., Sapin V., Benzer S. Regulation of lifespan in Drosophila by modulation of genes in the TOR signaling pathway. Curr. Biol. 2004;14(10):885-890. DOI 10.1016/j.cub.2004.03.059.; Klionsky D.J., Cuervo A.M., Seglen P.O. Methods for monitoring autophagy from yeast to human. Autophagy. 2007;3(3):181-206. DOI 10.4161/auto.3678.; Kroemer G., Mariño G., Levine B. Autophagy and the integrated stress response. Mol. Cell. 2010;40(2):280-293. DOI 10.1016/j.molcel.2010.09.023.; Le Bourg É. Using Drosophila melanogaster to study the positive effects of mild stress on aging. Exp. Gerontol. 2011;46:345-348. DOI 10.1016/j.exger.2010.08.003.; Lin Y.-J., Seroude L., Benzer S. Extended life-span and stress resistance in the Drosophila mutant methuselah. Science. 1998;282(5390): 943-946. DOI 10.1126/science.282.5390.943.; Lindquist S. The heat-shock response. Annu. Rev. Biochem. 1986;55: 1151-1191. DOI 10.1146/annurev.bi.55.070186.005443.; Malkeyeva D., Kiseleva E., Fedorova S. Small heat shock protein Hsp67Bc plays a significant role in Drosophila melanogaster cold stress tolerance. J. Exp. Biol. 2020;223(Pt.21):jeb219592. DOI 10.1242/jeb.219592.; Malkeyeva D.A., Kiseleva E.V., Fedorova S.A. Loss of Hsp67Bc leads to autolysosome enlargement in the Drosophila brain. Cell Biol. Int. 2021. DOI 10.1002/cbin.11721.; Masoro E.J. Caloric restriction and aging: an update. Exp. Gerontol. 2000;35:299-305. DOI 10.1016/S0531-5565(00)00084-X.; Nezis I.P., Lamark T., Velentzas A.D., Rusten T.E., Bjørkøy G., Johansen T., Papassideri I.S., Stravopodis D.J., Margaritis L.H., Stenmark H., Brech A. Cell death during Drosophila melanogaster early oogenesis is mediated through autophagy. Autophagy. 2009;5: 298-302. DOI 10.4161/auto.5.3.7454.; Parzych K.R., Klionsky D.J. An overview of autophagy: morphology, mechanism, and regulation. Antioxid. Redox Signal. 2014;20(3): 460-473. DOI 10.1089/ars.2013.5371.; Raut S., Mallik B., Parichha A., Amrutha V., Sahi C., Kumar V. RNAimediated reverse genetic screen identified Drosophila chaperones regulating eye and neuromuscular junction morphology. G3: Genes Genomes Genetics. (Bethesda). 2017;7(7):2023-2038. DOI 10.1534/g3.117.041632.; Sarikaya D.P., Belay A.A., Ahuja A., Dorta A., Green D.A., Extavour C.G. The roles of cell size and cell number in determining ovariole number in Drosophila. Dev. Biol. 2012;363:279-289. DOI 10.1016/j.ydbio.2011.12.017.; Sarkar S., Singh M.D., Yadav R., Arunkumar K.P., Pittman G.W. Heat shock proteins: molecules with assorted functions. Front. Biol. (Beijing). 2011;6(4):312. DOI 10.1007/s11515-011-1080-3.; Sarup P., Sørensen P., Loeschcke V. The long-term effects of a life-prolonging heat treatment on the Drosophila melanogaster transcriptome suggest that heat shock proteins extend lifespan. Exp. Gerontol. 2014;50:34-39. DOI 10.1016/j.exger.2013.11.017.; Scott R.C., Schuldiner O., Neufeld T.P. Role and regulation of starvation-induced autophagy in the Drosophila fat body. Dev. Cell. 2004;7(2):167-178. DOI 10.1016/j.devcel.2004.07.009.; Sørensen J.G., Kristensen T.N., Loeschcke V. The evolutionary and ecological role of heat shock proteins. Ecol. Lett. 2003;6:1025-1037. DOI 10.1046/j.1461-0248.2003.00528.x.; Tatar M., Kopelman A., Epstein D., Tu M.-P., Yin C.-M., Garofalo R.S. A mutant Drosophila insulin receptor homolog that extends life-span and impairs neuroendocrine function. Science. 2001;292(5514): 107-110. DOI 10.1126/science.1057987.; Vos M.J., Carra S., Kanon B., Bosveld F., Klauke K., Sibon O.C.M., Kampinga H.H. Specific protein homeostatic functions of small heat-shock proteins increase lifespan. Aging Cell. 2016;15:217-226. DOI 10.1111/acel.12422.; Wang J., Wang Z., Zhang Z., Hua Q., Wang M., Shi C., Xue L., Zhang R., Xie X. Methuselah regulates longevity via dTOR: a pathway revealed by small-molecule ligands. J. Mol. Cell Biol. 2015; 7:280-282. DOI 10.1093/jmcb/mjv018.; Wit J., Kristensen T.N., Sarup P., Frydenberg J., Loeschcke V. Laboratory selection for increased longevity in Drosophila melanogaster reduces field performance. Exp. Gerontol. 2013;48:1189-1195. DOI 10.1016/j.exger.2013.07.012.; Yamamoto R., Palmer M., Koski H., Curtis-Joseph N., Tatar M. Aging modulated by the Drosophila insulin receptor through distinct structure-defined mechanisms. Genetics. 2021;217(2):iyaa037. DOI 10.1093/genetics/iyaa037.; https://vavilov.elpub.ru/jour/article/view/3293Test

  10. 10
    دورية أكاديمية