يعرض 1 - 10 نتائج من 2,821 نتيجة بحث عن '"белки"', وقت الاستعلام: 1.35s تنقيح النتائج
  1. 1
    دورية أكاديمية
  2. 2
    دورية أكاديمية
  3. 3
    دورية أكاديمية
  4. 4
    دورية أكاديمية

    المصدر: Сборник статей

    وصف الملف: application/pdf

    العلاقة: Актуальные вопросы современной медицинской науки и здравоохранения : Сборник статей IX Международной научно-практической конференции молодых ученых и студентов, 17-18 апреля 2024 г. Т. 1.; Бауэр, Э. К. Гигиеническая оценка питания детей в дошкольном учреждении / Э. К. Бауэр, О. В. Кишка. - Текст: электронный // Актуальные вопросы современной медицинской науки и здравоохранения : Сборник статей IX Международной научно-практической конференции молодых ученых и студентов, 17-18 апреля 2024 г. Т. 1. - Екатеринбург, 2024. – С. 408-411.; http://elib.usma.ru/handle/usma/21225Test

  5. 5
    دورية أكاديمية

    المصدر: Сборник статей

    وصف الملف: application/pdf

    العلاقة: Актуальные вопросы современной медицинской науки и здравоохранения : Сборник статей IX Международной научно-практической конференции молодых ученых и студентов, 17-18 апреля 2024 г. Т. 1.; Диетологические аспекты ведения пациентов гериатрического профиля / М. А. Тышковская, Л. В. Федотова, М. Г. Шестакова [и др.]. - Текст: электронный // Актуальные вопросы современной медицинской науки и здравоохранения : Сборник статей IX Международной научно-практической конференции молодых ученых и студентов, 17-18 апреля 2024 г. Т. 1. - Екатеринбург, 2024. – С. 350-354.; http://elib.usma.ru/handle/usma/21204Test

  6. 6
    دورية أكاديمية

    المصدر: Problems of Particularly Dangerous Infections; № 2 (2024); 76-82 ; Проблемы особо опасных инфекций; № 2 (2024); 76-82 ; 2658-719X ; 0370-1069

    وصف الملف: application/pdf

    العلاقة: https://journal.microbe.ru/jour/article/view/2001/1478Test; Rotz L.D., Khan A.S., Lillibridge S.R., Ostroff S.M., Hughes J.M. Public health assessment of potential biological terro¬ rism agents. Emerg. Infect. Dis. 2002; 8(2):225–30. DOI:10.3201/eid0802.010164.; Pearson T., Busch J.D., Ravel J., Read T.D., Rhoton S.D., U’Ren J.M., Simonson T.S., Kachur S.M., Leadem R.R., Cardon M.L., Van Ert M.N., Huynh L.Y., Fraser C.M., Keim P. Phylogenetic discovery bias in Bacillus anthracis using single-nucleotide polymorphisms from whole-genome sequencing. Proc. Natl Acad. Sci. USA. 2004; 101(37):13536–41. DOI:10.1073/pnas.0403844101.; Van Ert M.N., Easterday W.R., Huynh L.Y., Okinaka R.T., Hugh-Jones M.E., Ravel J., Zanecki S.R., Pearson T., Simonson T.S., U’Ren J.M., Kachur S.M., Leadem-Dougherty R.R., Rhoton S.D., Zinser G., Farlow J., Coker P.R., Smith K.L., Wang B., Kenefic L.J., Fraser-Liggett C.M., Wagner D.M., Keim P. Global genetic population structure of Bacillus anthracis. PLoS One. 2007; 2(5):e461. DOI:10.1371/journal.pone.0000461.; Sahl J.W., Pearson T., Okinaka R., Schupp J.M., Gillece J.D., Heaton H., Birdsell D., Hepp C., Fofanov V., Noseda R., Fasanella A., Hoffmaster A., Wagner D.M., Keim P. A Bacillus anthracis genome sequence from the Sverdlovsk 1979 autopsy specimens. mBio. 2016; 7(5):e01501-16. DOI:10.1128/mBio.01501-16.; Bruce S.A., Schiraldi N.J., Kamath P.L., Easterday W.R., Turner W.C. A classification framework for Bacillus anthracis defined by global genomic structure. Evol. Appl. 2020; 13(5):935–44. DOI:10.1111/eva.12911.; Pilo P., Frey J. Pathogenicity, population genetics and dissemination of Bacillus anthracis. Infect. Genet. Evol. 2018; 64:115– 25. DOI:10.1016/j.meegid.2018.06.024.; Leendertz F.H., Ellerbrok H., Boesch C., Couacy-Hymann E., Mätz-Rensing K., Hakenbeck R., Bergmann C., Abaza P., Junglen S., Moebius Y., Vigilant L., Formenty P., Pauli G. Anthrax kills wild chimpanzees in a tropical rainforest. Nature. 2004; 430(6998):451–2. DOI:10.1038/nature02722.; Klee S.R., Brzuszkiewicz E.B., Nattermann H., Brüggemann H., Dupke S., Wollherr A., Franz T., Pauli G., Appel B., Liebl W., Couacy-Hymann E., Boesch C., Meyer F.D., Leendertz F.H., Ellerbrok H., Gottschalk G., Grunow R., Liesegang H. The genome of a bacillus isolate causing anthrax in chimpanzees combines chromosomal properties of B. cereus with B. anthracis virulence plasmids. PLoS One. 2010; 5(7):e10986. DOI:10.1371/journal.pone.0010986.; Smith K.L., DeVos V., Bryden H., Price L.B., Hugh-Jones M.E., Keim P. Bacillus anthracis diversity in Kruger National Park. J. Clin. Microb. 2000; 38(10):3780–4. DOI:10.1128/JCM.38.10.3780-3784.2000.; Kassen R., Llewellyn M., Rainey P.B. Ecological constraints on diversification in a model adaptive radiation. Nature. 2004; 431(7011):984–8. DOI:10.1038/nature02923.; Еременко Е.И., Печковский Г.А., Рязанова А.Г., Писаренко С.В., Ковалев Д.А., Аксенова Л.Ю., Семенова О.В., Куличенко А.Н. Анализ in silico геномов штаммов Bacillus anthracis главных генетических линий. Журнал микробиологии, эпидемиологии и иммунобиологии. 2023; 100(3):155–65. DOI:10.36233/0372-9311-385.; Errington J. Bacillus subtilis sporulation: regulation of gene expression and control of morphogenesis. Microbiol. Rev. 1993; 57(1):1–33. DOI:10.1128/mr.57.1.1-33.1993.; Hoch J.A., Silhavy T.J., editors. Two-Component Signal Transduction. Washington, DC: American Society for Microbiology Press; 1995.; Stephenson K., Hoch J.A. Evolution of signalling in the sporulation phosphorelay. Mol. Microbiol. 2002; 46(2):297–304. DOI:10.1046/j.1365-2958.2002.03186.x.; Brunsing R.L., La Clair C., Tang S., Chiang C., Hancock L.E., Perego M., Hoch J.A. Characterization of sporulation histidine kinases of Bacillus anthracis. J. Bacteriol. 2005; 187(20):6972–81. DOI:10.1128/JB.187.20.6972-6981.2005.; Sastalla I., Rosovitz M.J., Leppla S.H. Accidental selection and intentional restoration of sporulation-deficient Bacillus anthracis mutants. Appl. Environ. Microbiol. 2010; 76(18):6318–21. DOI:10.1128/AEM.00950-10.; Strauch M., Webb V., Spiegelman G., Hoch J.A. The Spo0A protein of Bacillus subtilis is a repressor of the abrB gene. Proc. Natl Acad. Sci. USA. 1990; 87(5):1801–5. DOI:10.1073/pnas.87.5.1801.; https://journal.microbe.ru/jour/article/view/2001Test

  7. 7
  8. 8
    دورية أكاديمية

    المساهمون: The author thanks Charles Banks from the Stowers Institute for Medical Research for assistance in protocol development. The work was supported by the Russian Foundation for Basic Research (project Nos. 05-04-89005-NWО and 14-04-00816). The equipment was provided by the Common Use Center “Biotechnology” of the All-Russian Research Institute of Agricultural Biotechnology (project No. RFMEFI62114X0003).

    المصدر: Vavilov Journal of Genetics and Breeding; Том 28, № 1 (2024); 74-79 ; Вавиловский журнал генетики и селекции; Том 28, № 1 (2024); 74-79 ; 2500-3259

    وصف الملف: application/pdf

    العلاقة: https://vavilov.elpub.ru/jour/article/view/4057/1808Test; Banks C.A.S., Boanca G., Lee Z.T., Eubanks C.G., Hattem G.L., PeakA., Weems L.E., Conkright J.J., Florens L., Washburn M.P. TNIP2 is a hub protein in the NF-κB network with both protein and RNA mediated interactions. Mol. Cell. Proteomics. 2016;15(11):3435-3449. DOI 10.1074/mcp.M116.060509; Brooks S.A., Rigby W.F.C. Characterization of the mRNA ligands bound by the RNA binding protein hnRNP A2 utilizing a novel in vivo technique. Nucleic Acids Res. 2000;28(10):e49. DOI 10.1093/nar/28.10.e49; Frydrych Capelari É., da Fonseca G.C., Guzman F., Margis R. Circular and micro RNAs from Arabidopsis thaliana flowers are simultaneously isolated from AGO-IP libraries. Plants. 2019;8(9):302. DOI 10.3390/plants8090302; Gu J., Wang M., Yang Y., Qiu D., Zhang Y., Ma J., Zhou Y., Hannon G.J., Yu Y. GoldCLIP: gel-omitted ligation-dependent CLIP. Genom. Proteom. Bioinform. 2018;16(2):136-143. DOI 10.1016/j.gpb.2018.04.003; Köster T., Meyer K. Plant ribonomics: proteins in search of RNA partners. Trends Plant Sci. 2018;23(4):352-365. DOI 10.1016/j.tplants.2018.01.004; Laemmli U.K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970;227(5259):680-685. DOI 10.1038/227680a0; Li X., Pritykin Y., Concepcion C.P., Lu Y., La Rocca G., Zhang M., King B., Cook P.J., Au Y.W., Popow O., Paulo J.A. Otis H.J., Mastroleo C., Ogrodowski P., Schreiner R., Haigis K.M., Betel D., Leslie C.S., Ventura A. High-resolution in vivo identification of miRNA targets by Halo-enhanced Ago2 pull-down. Mol. Cell. 2020; 79(1):167-179. DOI 10.1016/j.molcel.2020.05.009; Los G.V., Encell L.P., McDougall M.G., Hartzell D.D., Karassina N., Zimprich C., Wood M.G., Learish R., Ohana R.F., Urh M., Simpson D., Mendez J., Zimmerman K., Otto P., Vidugiris G., Zhu J., Darzins A., Klaubert D.H., Bulleit R.F., Wood K.V. HaloTag: a novel protein labeling technology for cell imaging and protein analysis. ACS Chem. Biol. 2008;3(6):373-382. DOI 10.1021/cb800025k; Petri R., Jakobsson J. Identifying miRNA targets using AGO-RIPseq. In: Lamandé S. (Ed.) mRNA Decay. Methods in Molecular Biology. Vol. 1720. New York: Humana Press, 2018;131-140. DOI 10.1007/978-1-4939-7540-2_9; Ramanathan M., Porter D.F., Khavari P.A. Methods to study RNA-protein interactions. Nat. Methods. 2019;16(3):225-234. DOI 10.1038/s41592-019-0330-1; Ren Z., Zhang D., Cao L., Zhang W., Zheng H., Liu Z., Han S., Dong Y., Zhu F., Liu H., Su H., Chen Y., Wu L., Zhu Y., Ku L. Functions and regulatory framework of ZmNST3 in maize under lodging and drought stress. Plant Cell Environ. 2020;43(9):2272-2286. DOI 10.1111/pce.13829; Samanta S., Thakur J.K. Characterization of mediator complex and its associated proteins from rice. In: Kaufmann K., Mueller-Roeber B. (Eds.) Plant Gene Regulatory Networks. Methods in Molecular Biology. Vol. 1629. New York: Humana Press, 2017;123-140. DOI 10.1007/978-1-4939-7125-1_9; Seo J.S., Chua N.H. Analysis of interaction between long noncoding RNAs and protein by RNA immunoprecipitation in Arabidopsis. In: Chekanova J.A., Wang H.-L.V. (Eds.) Plant Long Non-Coding RNAs. Methods in Molecular Biology. Vol. 1933. New York: Humana Press, 2019;289-295. DOI 10.1007/978-1-4939-9045-0_18; Sorenson R., Bailey-Serres J. Rapid immunopurification of ribonucleoprotein complexes of plants. In: Alonso J., Stepanova A. (Eds.) Plant Functional Genomics. Methods in Molecular Biology. Vol. 1284. New York: Humana Press, 2015;209-219. DOI 10.1007/978-1-4939-2444-8_10; Steffen A., Elgner M., Staiger D. Regulation of flowering time by the RNA-binding proteins AtGRP7 and AtGRP8. Plant Cell Physiol. 2019;60(9):2040-2050. DOI 10.1093/pcp/pcz124; Taranov V.V., Zlobin N.E., Evlakov K.I., Shamustakimova A.O., Babakov A.V. Contribution of Eutrema salsugineum cold shock domain structure to the interaction with RNA. Biochemistry (Moscow). 2018;83(11):1369-1379. DOI 10.1134/S000629791811007X; Urh M., Hartzell D., Mendez J., Klaubert D.H., Wood K. Methods for detection of protein–protein and protein–DNA interactions using HaloTagl™. In: Zachariou M. (Ed.) Affinity Chromatography. Methods in Molecular Biology. Vol. 421. New York: Humana Press, 2008;191-210. DOI 10.1007/978-1-59745-582-4_13; van Dijk M., Visser A., Buabeng K.M., Poutsma A., van der Schors R.C., Oudejans C.B. Mutations within the LINC-HELLP non-coding RNA differentially bind ribosomal and RNA splicing complexes and negatively affect trophoblast differentiation. Hum. Mol. Genet. 2015; 24(19):5475-5485. DOI 10.1093/hmg/ddv274; Xing D., Wang Y., Hamilton M., Ben-Hur A., Reddy A.S. Transcriptome-wide identification of RNA targets of Arabidopsis SERINE/ ARGININE-RICH45 uncovers the unexpected roles of this RNA binding protein in RNA processing. Plant Cell. 2015;27(12):3294-3308. DOI 10.1105/tpc.15.00641; https://vavilov.elpub.ru/jour/article/view/4057Test

  9. 9
    دورية أكاديمية

    المصدر: Medical Herald of the South of Russia; Том 15, № 1 (2024); 54-59 ; Медицинский вестник Юга России; Том 15, № 1 (2024); 54-59 ; 2618-7876 ; 2219-8075 ; 10.21886/2219-8075-2024-15-1

    وصف الملف: application/pdf

    العلاقة: https://www.medicalherald.ru/jour/article/view/1905/1006Test; WHO Expert Consultation on Rabies: WHO TRS N°1012. 2018.; Ботвинкин А.Д. Бешенство. В кн.: Руководство по эпидемиологии инфекционных болезней. М.: МИА; 2019.; Полещук Е.М., Сидоров Г.Н., Березина Е.С. Бешенство в Российской Федерации. Информационно-аналитический бюллетень. Омск: ФБУН НИИПИ Роспотребнадзора, ФГБОУ ВПО ОмГПУ; 2013.; Полещук Е.М., Сидоров Г.Н., Нашатырева Д.Н., Градобоева Е.А, Пакскина Н.Д., Попова И.В. Бешенство в Российской Федерации. Информационно-аналитический бюллетень. Омск: ООО «Издательский центр КАН»; 2019.; Макенов М.Т., Михайлова О.А. Укусы людей собаками: общая характеристика. Журнал Сибирского федерального университета. Серия: Биология. 2013;6(1):32-43.; Сидоров Г.Н., Полещук Е.М., Сидорова Д.Г. Изменение роли млекопитающих в заражении людей бешенством в России за исторически обозримый период в 16–21 веках. Зоологический журнал. 2019;98(4):437–452.; Левина К.Ю., Симонова Е.Г. Эпидемиологическая значимость кошек в распространении вируса бешенства на территории Российской Федерации. XII Съезд Всероссийского научно-практического общества эпидемиологов, микробиологов и паразитологов; Октябрь 23-25, 2022; Москва.; Симонова Е.Г., Сабурова С.А., Левина К.Ю., Шабейкин А.А., Раичич С.Р., Ладный В.И. Современная ситуация и основные направления борьбы и профилактики бешенства в Российской Федерации. Лечащий врач. 2019;(6):74.; Мари Н.Н. Основы учения о зоонозах. Вып. 2. Бешенство. СПб.; 1909.; Сидоров Г.Н., Полещук Е.М., Сидорова Д.Г. Источники заражения людей бешенством в России за последние 5 веков. Здоровье населения и среда обитания. 2016;11(284):22–26.; Полещук Е.М., Сидоров Г.Н., Савкина Е.С. Эпизоотологоэпидемиологическая характеристика бешенства в России в 2019–2021 гг. Проблемы особо опасных инфекций. 2023;(2):49-60.; Сидоров Г.Н. Полещук Е.М., Сидорова Д.Г. Природные очаги бешенства в России в XX– начале XXI веков. Ветеринарная патология. 2004;3:86–101.; Саватеев А.И. Бешенство. Л.–М.: Госиздат; 1927.; Селимов М.А. Как предупредить заболевание бешенством. М.: Ин-т санитарного просвещения; 1960.; Кассал Б.Ю., Сидоров Г.Н., Макенов М.Т. Биотические отношения собак-парий с серыми крысами и другими животными. Ветеринарная патология. 2006;2(17):29-34.; Селимов М.А. Бешенство. М.: Медицина; 1978.; Selimov M.A. Rabies. Moscow: Medicine; 1978. (In Russ).; Сидоров Г.Н., Кассал Б.Ю., Гончарова О.В., Вахрушев А.В., Фролов К.В. Териофауна Омской области (промысловые грызуны). Омск: Амфора; 2011.; Дериглазов И.В., Скотников А.Л., Даренская А.Н. Обнаружение возбудителей туляремии и иерсиниоза у бурундука азиатского (tamias sibiricus) в Седельниковском районе Омской области. Дальневосточный журнал инфекционной патологии. 2019;37(37):60-61.; Боброва О.А., Березкина Г.В., Якименко В.В., Танцев А.К., Свердлова А.В., Каримов А.В. Изучение зараженности диких мелких млекопитающих Омской области природно-очаговыми бактериальными зоонозными инфекциями. Современные проблемы эпидемиологии, микробиологии и гигиены: Материалы XIV Всероссийской научно-практической конференции молодых ученых и специалистов Роспотребнадзора; Июнь 22-24, 2022; Москва.; Нурмагонбетова С.С., Сидоров Г.Н., Дериглазов И.В., Сидорова Д.Г., Путин А.В., Скотников А.Л. Роль полевой мыши в циркуляции возбудителей туляремии и других природно-очаговых инфекций в Омской области. Вестник Омского государственного аграрного университета. 2016;2(22):93–99.; https://www.medicalherald.ru/jour/article/view/1905Test

  10. 10
    دورية أكاديمية

    المصدر: Meditsinskiy sovet = Medical Council; Online First ; Медицинский Совет; Online First ; 2658-5790 ; 2079-701X

    وصف الملف: application/pdf

    العلاقة: https://www.med-sovet.pro/jour/article/view/8162/7194Test; Najafi MB, Javanmard SH. Post-COVID-19 Syndrome Mechanisms, Prevention and Management. Int J Prev Med. 2023;14:59. https://doi.org/10.4103/ijpvm.ijpvm_508_21Test.; Ким ОТ, Драпкина ОМ, Родионова ЮВ. Публикационная активность исследователей по медицинским специальностям на русском языке во время пандемии COVID-19: «постковидный синдром». Кардиоваскулярная терапия и профилактика. 2022;21(6):3299. https://doi.org/10.15829/1728-8800-2022-3299Test.; Tsilingiris D, Vallianou NG, Karampela I, Christodoulatos GS, Papavasileiou G, Petropoulou D et al. Laboratory Findings and Biomarkers in Long COVID: What Do We Know So Far? Insights into Epidemiology, Pathogenesis, Therapeutic Perspectives and Challenges. Int J Mol Sci. 2023;24(13):10458. https://doi.org/10.3390/ijms241310458Test.; Shah W, Hillman T, Playford ED, Hishmeh L. Managing the long term effects of COVID-19: summary of NICE, SIGN, and RCGP rapid guideline. BMJ. 2021;372:n136. https://doi.org/10.1136/bmj.n136Test.; Sudre CH, Murray B, Varsavsky T, Graham MS, Penfold RS, Bowyer RC et al. Attributes and predictors of long COVID. Nat Med. 2021;27(4):626–631. https://doi.org/10.1038/s41591-021-01292-yTest.; Vanichkachorn G, Newcomb R, Cowl CT, Murad MH, Breeher L, Miller S et al. Post-COVID-19 Syndrome (Long Haul Syndrome): Description of a Multidisciplinary Clinic at Mayo Clinic and Characteristics of the Initial Patient Cohort. Mayo Clin Proc. 2021;96(7):1782–1791. https://doi.org/10.1016/j.mayocp.2021.04.024Test.; Pavli A, Theodoridou M, Maltezou HC. Post-COVID Syndrome: Incidence, Clinical Spectrum, and Challenges for Primary Healthcare Professionals. Arch Med Res. 2021;52(6):575–581. https://doi.org/10.1016/j.arcmed.2021.03.010Test.; Асфандиярова НС. Постковидный синдром. Клиническая медицина. 2021;99(7-8):429–435. https://doi.org/10.30629/0023-2149-2021-99-7-8-429-435Test.; Cirulli ET, Schiabor Barrett KM, Riffle S, Bolze A, Neveux I, Dabe S et al. Long-term COVID-19 symptoms in a large unselected population. medRxiv. 2020.10.07.20208702. https://doi.org/10.1101/2020.10.07.20208702Test.; Venturelli S, Benatti SV, Casati M, Binda F, Zuglian G, Imeri G et al. Surviving COVID-19 in Bergamo province: a post-acute outpatient re-evaluation. Epidemiol Infect. 2021;149:e32. https://doi.org/10.1017/S0950268821000145Test.; Moreno-Pérez O, Merino E, Leon-Ramirez JM, Andres M, Ramos JM, Arenas-Jiménez J et al. Post-acute COVID-19 syndrome. Incidence and risk factors: A Mediterranean cohort study. J Infect. 2021;82(3):378–383. https://doi.org/10.1016/j.jinf.2021.01.004Test.; Chiesa-Estomba CM, Lechien JR, Radulesco T, Michel J, Sowerby LJ, Hopkins C, Saussez S. Patterns of smell recovery in 751 patients affected by the COVID-19 outbreak. Eur J Neurol. 2020;27(11):2318–2321. https://doi.org/10.1111/ene.14440Test.; Bosworth M, Pawelek P, Ayoubkhani D. Prevalence of ongoing symptoms follow ing coronavirus (COVID-19) infection in the UK. Office for National Statistics; 2023. 8 p. Available at: https://www.ons.gov.uk/peoplepopulationandcommunity/healthandsocialcare/conditionsanddiseases/bulletins/prevalenceofongoingsymptomsfollowingcoronaviruscovid19infectionintheuk/30march2023Test.; Morin L, Savale L, Pham T, Colle R, Figueiredo S, Harrois A et al. Four-Month Clinical Status of a Cohort of Patients After Hospitalization for COVID-19. JAMA. 2021;325(15):1525–1534. https://doi.org/10.1001/jama.2021.3331Test.; Ghosn J, Piroth L, Epaulard O, Le Turnier P, Mentré F, Bachelet D, Laouénan C. Persistent COVID-19 symptoms are highly prevalent 6 months after hospitalization: results from a large prospective cohort. Clin Microbiol Infect. 2021;27(7):1041.e1–1041.e4. https://doi.org/10.1016/j.cmi.2021.03.012Test.; Augustin M, Schommers P, Stecher M, Dewald F, Gieselmann L, Gruell H et al. Post-COVID syndrome in non-hospitalised patients with COVID-19: a longitudinal prospective cohort study. Lancet Reg Health Eur. 2021;6:100122. https://doi.org/10.1016/j.lanepe.2021.100122Test.; Lopez-Leon S, Wegman-Ostrosky T, Perelman C, Sepulveda R, Rebolledo PA, Cuapio A, Villapol S. More than 50 long-term effects of COVID-19: a systematic review and meta-analysis. Sci Rep. 2021;11(1):16144. https://doi.org/10.1038/s41598-021-95565-8Test.; Marwaha B. Role of Tau protein in long COVID and potential therapeutic targets. Front Cell Infect Microbiol. 2023;13:1280600. https://doi.org/10.3389/fcimb.2023.1280600Test.; Арутюнов ГП, Тарловская ЕИ, Арутюнов АГ, Беленков ЮН, Конради АО, Лопатин ЮМ и др. Клинические особенности постковидного периода. Результаты международного регистра «Анализ динамики коморбидных заболеваний у пациентов, перенесших инфицирование SARS-CoV-2 (АКТИВ SARSCoV-2)». Предварительные данные (6 месяцев наблюдения). Российский кардиологический журнал. 2021;26(10):4708. https://doi.org/10.15829/1560-4071-2021-4708Test.; Игнатенко ГА, Багрий АЭ, Приколота ОА, Приколота АВ, Могилевская КЭ. Сахароснижаю щая терапия и течение постковидного синдрома, есть ли связь? Архивъ внутренней медицины. 2023;13(2):129–135. https://doi.org/10.20514/2226-6704-2023-13-2-129-135Test.; Abumayyaleh M, Núñez Gil IJ, Viana-LLamas MC, Raposeiras Roubin S, Romero R, Alfonso-Rodríguez E et al. Post-COVID-19 syndrome and diabetes mellitus: a propensity-matched analysis of the International HOPE-II COVID-19 Registry. Front Endocrinol (Lausanne). 2023;14:1167087. https://doi.org/10.3389/fendo.2023.1167087Test.; Notarte KI, de Oliveira MHS, Peligro PJ, Velasco JV, Macaranas I, Ver AT et al. Age, Sex and Previous Comorbidities as Risk Factors Not Associated with SARS-CoV-2 Infection for Long COVID-19: A Systematic Review and Meta-Analysis. J Clin Med. 2022;11(24):7314. https://doi.org/10.3390/jcm11247314Test.; Tsampasian V, Elghazaly H, Chattopadhyay R, Debski M, Naing TKP, Garg P et al. Risk Factors Associated With Post-COVID-19 Condition: A Systematic Review and Meta-analysis. JAMA Intern Med. 2023;183(6):566–580. https://doi.org/10.1001/jamainternmed.2023.0750Test.; Lee SH, Shin HS, Park HY, Kim JL, Lee JJ, Lee H et al. Depression as a Mediator of Chronic Fatigue and Post-Traumatic Stress Symptoms in Middle East Respiratory Syndrome Survivors. Psychiatry Investig. 2019;16(1):59–64. https://doi.org/10.30773/pi.2018.10.22.3Test.; Mizrahi B, Sudry T, Flaks-Manov N, Yehezkelli Y, Kalkstein N, Akiva P et al. Long covid outcomes at one year after mild SARS-CoV-2 infection: nation-wide cohort study. BMJ. 2023;380:e072529. https://doi.org/10.1136/bmj-2022-072529Test.; Канорский СГ. Постковидный синдром: распространенность и патогенез органных поражений, направления коррекции. Систематический обзор. Кубанский научный медицинский вестник. 2021;28(6):90–116. https://doi.org/10.25207/1608-6228-2021-28-6-90-116Test.; Ahmad FB, Anderson RN, Cisewski JA, Sutton PD. Identification of deaths with post-acute sequelae of COVID-19 from death certificate literal text: United States, January 1, 2020 – June 30, 2022. In: NVSS vital statistics rapid release. Report No. 25. 2022. 8 p. https://doi.org/10.15620/cdc:121968Test.; Raveendran AV, Misra A. Post COVID-19 Syndrome (“Long COVID”) and Diabetes: Challenges in Diagnosis and Management. Diabetes Metab Syndr. 2021;15(5):102235. https://doi.org/10.1016/j.dsx.2021.102235Test.; Feldman EL, Savelieff MG, Hayek SS, Pennathur S, Kretzler M, Pop-Busui R. COVID-19 and Diabetes: A Collision and Collusion of Two Diseases. Diabetes. 2020;69(12):2549–2565. https://doi.org/10.2337/dbi20-0032Test.; Klok FA, Boon GJAM, Barco S, Endres M, Geelhoed JJM, Knauss S et al. The Post-COVID-19 Functional Status scale: a tool to measure functional status over time after COVID-19. Eur Respir J. 2020;56(1):2001494. https://doi.org/10.1183/13993003.01494-2020Test.; Rizvi AA, Kathuria A, Al Mahmeed W, Al-Rasadi K, Al-Alawi K, Banach M et al. Post-COVID syndrome, inflammation, and diabetes. J Diabetes Complications. 2022;36(11):108336. https://doi.org/10.1016/j.jdiacomp.2022.108336Test.; Vasbinder A, Anderson E, Shadid H, Berlin H, Pan M, Azam TU et al. Inflammation, Hyperglycemia, and Adverse Outcomes in Individuals With Diabetes Mellitus Hospitalized for COVID-19. Diabetes Care. 2022;45(3):692–700. https://doi.org/10.2337/dc21-2102Test.; Chen N, Zhou M, Dong X, Qu J, Gong F, Han Y et al. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. Lancet. 2020;395(10223):507–513. https://doi.org/10.1016/S0140-6736Test(20)30211-7.; Müller JA, Groß R, Conzelmann C, Krüger J, Merle U, Steinhart J et al. SARS-CoV-2 infects and replicates in cells of the human endocrine and exocrine pancreas. Nat Metab. 2021;3(2):149–165. https://doi.org/10.1038/s42255-021-00347-1Test.; Kusmartseva I, Wu W, Syed F, Van Der Heide V, Jorgensen M, Joseph P et al. Expression of SARS-CoV-2 Entry Factors in the Pancreas of Normal Organ Donors and Individuals with COVID-19. Cell Metab. 2020;32(6):1041–1051. e6. https://doi.org/10.1016/j.cmet.2020.11.005Test.; Sathish T, Cao Y, Kapoor N. Newly diagnosed diabetes in COVID-19 patients. Prim Care Diabetes. 2021;15(1):194. https://doi.org/10.1016/j.pcd.2020.08.014Test.; Akter F, Mannan A, Mehedi HMH, Rob MA, Ahmed S, Salauddin A et al. Clinical characteristics and short term outcomes after recovery from COVID-19 in patients with and without diabetes in Bangladesh. Diabetes Metab Syndr. 2020;14(6):2031–2038. https://doi.org/10.1016/j.dsx.2020.10.016Test.; Kamal M, Abo Omirah M, Hussein A, Saeed H. Assessment and characterisation of Post-COVID-19 manifestations. Int J Clin Pract. 2021;75(3):e13746. https://doi.org/10.1111/ijcp.13746Test.; Sinha N, Singh Chawla MP, Deepak D, Suri A, Jain P, Agarwal A, Bhakhar MK. Post COVID-19 syndrome and new onset diseases: A prospective observational study. Singapore Med J. 2023. https://doi.org/10.4103/singaporemedj.SMJ-2022-055Test.; Mondal S, DasGupta R, Lodh M, Gorai R, Choudhury B, Hazra AK, Ganguly A. Predictors of new-onset diabetic ketoacidosis in patients with moderate to severe COVID-19 receiving parenteral glucocorticoids: A prospective single-centre study among Indian type 2 diabetes patients. Diabetes Metab Syndr. 2021;15(3):795–801. https://doi.org/10.1016/j.dsx.2021.03.022Test.; Yang JK, Lin SS, Ji XJ, Guo LM. Binding of SARS coronavirus to its receptor damages islets and causes acute diabetes. Acta Diabetol. 2010;47(3):193–199. https://doi.org/10.1007/s00592-009-0109-4Test.; Farag AA, Hassanin HM, Soliman HH, Sallam A, Sediq AM, Abd Elbaser ES, Elbanna K. Newly Diagnosed Diabetes in Patients with COVID-19: Different Types and Short-Term Outcomes. Trop Med Infect Dis. 2021;6(3):142. https://doi.org/10.3390/tropicalmed6030142Test.; Østergaard L. SARS CoV-2 related microvascular damage and symptoms during and after COVID-19: Consequences of capillary transit-time changes, tissue hypoxia and inflammation. Physiol Rep. 2021;9(3):e14726. https://doi.org/10.14814/phy2.14726Test.; Proal AD, VanElzakker MB. Long COVID or Post-acute Sequelae of COVID-19 (PASC): An Overview of Biological Factors That May Contribute to Persistent Symptoms. Front Microbiol. 2021;12:698169. https://doi.org/10.3389/fmicb.2021.698169Test.; Unnikrishnan R, Misra A. Infections and diabetes: Risks and mitigation with reference to India. Diabetes Metab Syndr. 2020;14(6):1889–1894. https://doi.org/10.1016/j.dsx.2020.09.022Test.; Raveendran AV, Jayadevan R, Sashidharan S. Long COVID: An overview. Diabetes Metab Syndr. 2021;15(3):869–875. https://doi.org/10.1016/j.dsx.2021.04.007Test.; Mrigpuri P, Sonal S, Spalgais S, Goel N, Menon B, Kumar R. Uncontrolled diabetes mellitus: A risk factor for post COVID fibrosis. Monaldi Arch Chest Dis. 2021;91(1). https://doi.org/10.4081/monaldi.2021.1607Test.; Anagnostis P, Gkekas NK, Achilla C, Pananastasiou G, Taouxidou P, Mitsiou M et al. Type 2 Diabetes Mellitus is Associated with Increased Risk of Sarcopenia: A Systematic Review and Meta-analysis. Calcif Tissue Int. 2020;107(5):453–463. https://doi.org/10.1007/s00223-020-00742-yTest.; Hume DA, Irvine KM, Pridans C. The Mononuclear Phagocyte System: The Relationship between Monocytes and Macrophages. Trends Immunol. 2019;40(2):98–112. https://doi.org/10.1016/j.it.2018.11.007Test.; Hopkins FR, Govender M, Svanberg C, Nordgren J, Waller H, Nilsdotter-Augustinsson Å et al. Major alterations to monocyte and dendritic cell subsets lasting more than 6 months after hospitalization for COVID-19. Front Immunol. 2023;13:1082912. https://doi.org/10.3389/fimmu.2022.1082912Test.; Kapellos TS, Bonaguro L, Gemünd I, Reusch N, Saglam A, Hinkley ER, Schultze JL. Human Monocyte Subsets and Phenotypes in Major Chronic Inflammatory Diseases. Front Immunol. 2019;10:2035. https://doi.org/10.3389/fimmu.2019.02035Test.; Anbazhagan K, Duroux-Richard I, Jorgensen C, Apparailly F. Transcriptomic network support distinct roles of classical and non-classical monocytes in human. Int Rev Immunol. 2014;33(6):470–489. https://doi.org/10.3109/08830185.2014.902453Test.; Lee J, Tam H, Adler L, Ilstad-Minnihan A, Macaubas C, Mellins ED. The MHC class II antigen presentation pathway in human monocytes differs by subset and is regulated by cytokines. PLoS ONE. 2017;12(8):e0183594. https://doi.org/10.1371/journal.pone.0183594Test.; Tolouei Semnani R, Moore V, Bennuru S, McDonald-Fleming R, Ganesan S, Cotton R et al. Human monocyte subsets at homeostasis and their perturbation in numbers and function in filarial infection. Infect Immun. 2014;82(11):4438–4446. https://doi.org/10.1128/IAI.01973-14Test.; Veglia F, Sanseviero E, Gabrilovich DI. Myeloid-derived suppressor cells in the era of increasing myeloid cell diversity. Nat Rev Immunol. 2021;21(8):485–498. https://doi.org/10.1038/s41577-020-00490-yTest.; Maher AK, Burnham KL, Jones EM, Tan MMH, Saputil RC, Baillon L et al. Transcriptional reprogramming from innate immune functions to a pro-thromboti c signature by monocytes in COVID-19. Nat Commun. 2022;13(1):7947. https://doi.org/10.1038/s41467-022-35638-yTest.; Zhang D, Guo R, Lei L, Liu H, Wang Y, Wang Y et al. Frontline Science: COVID-19 infection induces readily detectable morphologic and inflammation-related phenotypic changes in peripheral blood monocytes. J Leukoc Biol. 2021;109(1):13–22. https://doi.org/10.1002/JLB.4HI0720-470RTest.; Zhou Y, Fu B, Zheng X, Wang D, Zhao C, Qi Y et al. Pathogenic T-cells and inflammatory monocytes incite inflammatory storms in severe COVID-19 patients. Natl Sci Rev. 2020;7(6):998–1002. https://doi.org/10.1093/nsr/nwaa041Test.; Jafarzadeh A, Chauhan P, Saha B, Jafarzadeh S, Nemati M. Contribution of monocytes and macrophages to the local tissue inflammation and cytokine storm in COVID-19: Lessons from SARS and MERS, and potential therapeutic interventions. Life Sci. 2020;257:118102. https://doi.org/10.1016/j.lfs.2020.118102Test.; Vanderbeke L, Van Mol P, Van Herck Y, De Smet F, Humblet-Baron S, Martinod K et al. Monocyte-driven atypical cytokine storm and aberrant neutrophil activation as key mediators of COVID-19 disease severity. Nat Commun. 2021;12(1):4117. https://doi.org/10.1038/s41467-021-24360-wTest.; Leng A, Shah M, Ahmad SA, Premraj L, Wildi K, Li Bassi G et al. Pathogenesis Underlying Neurological Manifestations of Long COVID Syndrome and Potential Therapeutics. Cells. 2023;12(5):816. https://doi.org/10.3390/cells12050816Test.; Maher AK, Burnham KL, Jones EM, Tan MMH, Saputil RC, Baillon L et al. Transcriptional reprogramming from innate immune functions to a pro-thrombotic signature by monocytes in COVID-19. Nat Commun. 2022;13(1):7947. https://doi.org/10.1038/s41467-022-35638-yTest.; Садовский ИС, Круглова ОС, Савченко АА, Собко ЕА, Каспаров ЭВ, Демко ИВ, Борисов АГ. Комплексные показатели воспаления у больных с постковидным синдромом. Российский иммунологический журнал. 2022;26(1):77–86. https://doi.org/10.46235/1028-7221-1186-CIITest.; Lai YJ, Liu SH, Manachevakul S, Lee TA, Kuo CT, Bello D. Biomarkers in long COVID-19: A systematic review. Front Med (Lausanne). 2023;10:1085988. https://doi.org/10.3389/fmed.2023.1085988Test.; Yong SJ, Halim A, Halim M, Liu S, Aljeldah M, Al Shammari BR et al. Inflammatory and vascular biomarkers in Post-COVID-19 syndrome: A systematic review and meta-analysis of over 20 biomarkers. Rev Med Virol. 2023;33(2):e2424. https://doi.org/10.1002/rmv.2424Test.; Dufrusine B, Valentinuzzi S, Bibbò S, Damiani V, Lanuti P, Pieragostino D et al. Iron Dyshomeostasis in COVID-19: Biomarkers Reveal a Functional Link to 5-Lipoxygenase Activation. Int J Mol Sci. 2022;24(1):15. https://doi.org/10.3390/ijms24010015Test.; Barbu E, Popescu MR, Popescu AC, Balanescu SM. Inflammation as A Precursor of Atherothrombosis, Diabetes and Early Vascular Aging. Int J Mol Sci. 2022;23(2):963. https://doi.org/10.3390/ijms23020963Test.; Xu E, Xie Y, Al-Aly Z. Risks and burdens of incident dyslipidaemia in long COVID: a cohort study. Lancet Diabetes Endocrinol. 2023;11(2):120–128. https://doi.org/10.1016/S2213-8587Test(22)00355-2.; Суханов СА, Сорокина ЮА, Занозина ОВ, Лагонская ВН, Нистратова МП. Белок Klotho как маркёр тяжести перенесённой новой короновирусной инфекции больными сахарным диабетом 2 типа. Кардиоваскулярная терапия и профилактика. 2022;21(2S):93. https://doi.org/10.15829/1728-8800-2022-S2Test.; Esendagli D, Topcu D, Gul E, Alperen C, Sezer R, Erol C, Akcay S. Can adipokines predict clinical prognosis and Post-COVID lung sequelae? Respir Investig. 2023;61(5):618–624. https://doi.org/10.1016/j.resinv.2023.06.001Test.; Patel MA, Knauer MJ, Nicholson M, Daley M, Van Nynatten LR, Martin C et al. Elevated vascular transformation blood biomarkers in Long-COVID indicate angiogenesis as a key pathophysiological mechanism. Mol Med. 2022;28(1):122. https://doi.org/10.1186/s10020-022-00548-8Test.; Da Silva R, de Sarges KML, Cantanhede MHD, da Costa FP, Dos Santos EF, Rodrigues FBB et al. Thrombophilia and Immune-Related Genetic Markers in Long COVID. Viruses. 2023;15(4):885. https://doi.org/10.3390/v15040885Test.; Lee Y, Riskedal E, Kalleberg KT, Istre M, Lind A, Lund-Johansen F et al. EWAS of Post-COVID-19 patients shows methylation differences in the immuneresponse associated gene, IFI44L, three months after COVID-19 infection. Sci Rep. 2022;12(1):11478. https://doi.org/10.1038/s41598-022-15467-1Test.; Fernández-de-Las-Peñas C, Arendt-Nielsen L, Díaz-Gil G, Gómez-Esquer F, Gil-Crujera A, Gómez-Sánchez SM et al. Genetic Association between ACE2 (rs2285666 and rs2074192) and TMPRSS2 (rs12329760 and rs2070788) Polymorphisms with Post-COVID Symptoms in Previously Hospitalized COVID-19 Survivors. Genes (Basel). 2022;13(11):1935. https://doi.org/10.3390/genes13111935Test.; Luo YS, Luo L, Li W, Chen Y, Wu GF, Chen F et al. Evaluation of a Functional Single Nucleotide Polymorphism of the SARS-CoV-2 Receptor ACE2 That Is Potentially Involved in Long COVID. Front Genet. 2022;13:931562. https://doi.org/10.3389/fgene.2022.931562Test.; Cheng ZS. Editorial: Genome-wide association studies of COVID-19 among diverse human populations. Front Genet. 2022;13:1088026. https://doi.org/10.3389/fgene.2022.1088026Test.; Udomsinprasert W, Nontawong N, Saengsiwaritt W, Panthan B, Jiaranai P, Thongchompoo N et al. Host genetic polymorphisms involved in long-term symptoms of COVID-19. Emerg Microbes Infect. 2023;12(2):2239952. https://doi.org/10.1080/22221751.2023.2239952Test.; Asanin M, Ercegovac M, Krljanac G, Djukic T, Coric V, Jerotic D et al. Antioxidant Genetic Variants Modify Echocardiography Indices in Long COVID. Int J Mol Sci. 2023;24(12):10234. https://doi.org/10.3390/ijms241210234Test.; Суханов СА, Кобалава МВ, Лагонская ВН, Сорокина ЮА, Семенова ТН, Ерохина МН и др. Возможная генетическая предрасположенность к неврологическим нарушениям у больных сахарным диабетом 2 типа после перенесенной новой короновирусной инфекции. В: Фундаментальная и клиническая диабетология в 21 веке: от теории к практике: сборник тезисов III конференции по лечению и диагностике сахарного диабета, Москва, 25–26 мая 2023 г. М.; 2023. С. 94.; Navami K, Sijina KP, Rajanikant G. Identifying diseases associated with Post-COVID syndrome through an integrated network biology approach. J Biomol Struct Dyn. 2024;42(2):652–671. https://doi.org/10.1080/07391102.2023.2195003Test.; https://www.med-sovet.pro/jour/article/view/8162Test