يعرض 1 - 5 نتائج من 5 نتيجة بحث عن '"Х. М. Каримова"', وقت الاستعلام: 0.81s تنقيح النتائج
  1. 1
    دورية أكاديمية

    المصدر: Current Pediatrics; Том 16, № 1 (2017); 39-48 ; Вопросы современной педиатрии; Том 16, № 1 (2017); 39-48 ; 1682-5535 ; 1682-5527

    وصف الملف: application/pdf

    العلاقة: https://vsp.spr-journal.ru/jour/article/view/1729/680Test; Koman LA, Smith BP, Shilt JS. Cerebral palsy. Lancet. 2004;363(9421):1619–1631. doi:10.1016/S0140-6736(04)16207-7.; Семенова К.А. Восстановительное лечение детей с перинатальным поражением нервной системы и детским церебральным параличом. — М.: Закон и порядок; 2007. — 616 с. [Semenova KA. Vosstanovitel’noe lechenie detei s perinatal’nym porazheniem nervnoi sistemy i detskim tserebral’nym paralichom. Moscow: Zakon i poryadok; 2007. 616 p. (In Russ).]; Bax M, Goldstein M, Rosenbaum P, et al. Proposed definition and classification of cerebral palsy, April 2005. Dev Med Child Neurol. 2005;47(8):571–576. doi:10.1017/s001216220 500112x.; SCPE. Prevalence and characteristics of children with cerebral palsy in Europe. Dev Med Child Neurol. 2002;44(9):633–640. doi:10.1111/j.1469-8749.2002.tb00848.x.; Wichers MJ, Odding E, Stam HJ, van Nieuwenhuizen O. Clinical presentation, associated disorders and aetiological moments in cerebral palsy: a Dutch population-based study. Disabil Rehabil. 2005;27(10):583–589. doi:10.1080/09638280400018445.; Leonard J, Graham HK. Treatment of motor disorders in cerebral palsy with botulinum neurotoxin. In: Jankovic J, editor. Botulinum toxin: Therapeutic clinical practice and science. Philadelphia:Saunders Elsevier; 2009. p. 172–191. doi:10.1016/b978-1-4160-4928-9.00014-7.; Heinen F, Desloovere K, Schroeder AS, et al. The updated European Consensus 2009 on the use of Botulinum toxin for children with cerebral palsy. Eur J Paediatr Neurol. 2010;14(1): 45–66. doi:10.1016/j.ejpn.2009.09.005.; Novak I, McIntyre S, Morgan C, et al. A systematic review of interventions for children with cerebral palsy: state of the evidence. Dev Med Child Neurol. 2013;55(10):885–910. doi:10.1111/dmcn.12246.; Hagglund G, Wagner P. Development of spasticity with age in a total population of children with cerebral palsy. BMC Musculoskelet Disord. 2008;9:150. doi:10.1186/1471-2474-9-150.; Hagglund G, Andersson S, Duppe H, et al. Prevention of dislocation of the hip in children with cerebral palsy. The first ten years of a population-based prevention programme. J Bone Joint Surg Br. 2005;87:95–101. doi:10.1302/0301-620X.87B1.15146.; Pascual-Pascual S, Pascual-Castroviejo I. Safety of botulinum toxin type A in children younger than 2 years. Eur J Paediatr Neurol. 2009;13(6):511–515. doi:10.1016/j.ejpn.2008.10.006.; Druschel C, Althuizes HC, Funk JF, Placzek R. Off label use of botulinum toxin in children under two years of age: а systematic review. Toxins (Basel). 2013;5(1):60–72. doi:10.3390/toxins5010060.; Tilton AH. Evidence-based review of safety and efficacy in cerebral palsy. Toxicon. 2015;107(Pt A):105–108. doi:10.1016/j.toxicon.2015.09.020.; Simpson LL. Identification of the major steps in botulinum toxin action. Annu Rev Pharmacol Toxicol. 2004;44:167–193. doi:10.1146/annurev.pharmtox.44.101802.121554.; Scott AB. Development of botulinum toxin therapy. Dermatol Clin. 2004;22(2):131–133. doi:10.1016/s0733-8635(03)00019-6.; Koman LA, Mooney JF, Smith B, et al. Management of cerebral palsy with botulinum-A toxin: preliminary investigation. J Pediatr Orthop. 1993;13(4):489–495. doi:10.1097/01241398-199307000-00013.; Pascual-Pascual SI, Herrera-Galante A, Poo P, et al. [Guidelines for the treatment of child spasticity using botulinum toxin. (In Spanish).] Rev Neurol. 2007;44(5):303–309.; Arner M, Himmelmann K, Ponten E, et al. [Upper extremity botulinum toxin treatment in cerebral palsy. Treatment guidelines the first step towards national cooperation. (In Swedish).] Lakartidningen. 2008;105(43):3009–3013.; National Collaborating Centre for Women’s and Children’s Health (UK). Spasticity in children and young people with non-progressive brain disorders: management of spasticity and co-existing motor disorders and their early musculoskeletal complications. London: RCOG Press; 2012. p. 293.; Delgado M, Hirtz D, Aisen M, et al. Practice parameter: pharmacologic treatment of spasticity in children and adolescents with cerebral palsy (an evidence-based review): report of the Quality Standards Subcommittee of the American Academy of Neurology and the Practice Committee of the Child Neurology Society. Neurology. 2010;74(4):336–343. doi:10.1212/WNL.0b013e3181cbcd2f.; Placzek R. [Botulinum toxin A in children with infantile cerebral palsy: indications and treatment concepts. (In German).] Orthopade. 2010;39(1):23–30. doi:10.1007/s00132-009-1534-3.; Corry IS, Cosgrove AP, Duffy CM, et al. Botulinum toxin A compared with stretching casts in the treatment of spastic equinus: a randomised prospective trial. J Pediatr Orthop. 1998;18(3): 304–11. doi:10.1097/01241398-199805000-00006.; Graham HK, Aoki KR, Autti-Ramo I, et al. Recommendations for the use of botulinum toxin type A in the management of cerebral palsy. Gait Posture. 2000;11(1):67–79. doi:10.1016/S0966-6362(99)00054-5.; Molenaers G, Fagard K, Van Campenhout A, Desloovere K. Botulinum toxin A treatment of the lower extremities in children with cerebral palsy. J Child Orthop. 2013;7(5):383–387. doi:10.1007/s11832-013-0511-x.; Rathinam C, Bateman A, Peirson J, Skinner J. Observational gait assessment tools in paediatrics — a systematic review. Gait Posture. 2014;40(2):279–285. doi:10.1016/j.gaitpost.2014.04.187.; Metaxiotis D, Siebel A, Doederlein L. Repeated botulinum toxin A injections in the treatment of spastic equinus foot. Clin Orthop Relat Res. 2002;(394):177–185. doi:10.1097/00003086-200201000-00021.; Goldberg MJ. Botulinum toxin type a improved ankle function in children with cerebral palsy and dynamic equinus foot deformity. J Bone Joint Surg Am. 2000;82(6):874. doi:10.2106/00004623-200006000-00016.; Love SC, Valentine JP, Blair EM, et al. The effect of botulinum toxin type a on the functional ability of the child with spastic hemiplegia a randomized controlled trial. Eur J Neurol. 2001;8 Suppl 5: 50–58. doi:10.1046/j.1468-1331.2001.00038.x.; Fehlings D, Rang M, Glazier J, Steele C. Botulinum toxin type a injections in the spastic upper extremity of children with hemiplegia: Child characteristics that predict a positive outcome. Eur J Neurol. 2001;8 Suppl 5:145–149. doi:10.1046/j.1468-1331.2001.00047.x.; Wissel J, Heinen F, Schenkel A, et al. Botulinum toxin A in the management of spastic gait disorders in children and young adults with cerebral palsy: a randomized, double-blind study of «highdose » versus «low-dose» treatment. Neuropediatrics. 1999;30(3): 120–124. doi:10.1055/s-2007-973475.; Fazzi E, Maraucci I, Torrielli S, et al. Factors predicting the efficacy of botulinum toxin-a treatment of the lower limb in children with cerebral palsy. J Child Neurol. 2005;20(8):661–666. doi:10.1177/08830738050200080501.; Gough M, Fairhurst C, Shortland AP. Botulinum toxin and cerebral palsy: time for reflection? Dev Med Child Neurol. 2005;47(10): 709–712. doi:10.1017/S0012162205001453.; Cosgrove AP, Corry IS, Graham HK. Botulinum toxin in the management of the lower limb in cerebral palsy. Dev Med Child Neurol. 1994;36(5):386–396. doi:10.1111/j.1469-8749.1994. tb11864.x.; Heinen F, Molenaers G, Fairhurst C, et al. European consensus table 2006 on botulinum toxin for children with cerebral palsy. Eur J Paediatr Neurol. 2006;10:215–225. doi:10.1016/j.ejpn.2006.08.006.; Molenaers G, Schorkhuber V, Fagard K, et al. Long-term use of botulinum toxin type A in children with cerebral palsy: treatment consistency. Eur J Paediatr Neurol. 2009;13(5):421–429. doi:10.1016/j.ejpn.2008.07.008.; Naumann M, Albanese A, Heinen F, et al. Safety and efficacy of botulinum toxin type A following long-term use. Eur J Neurol. 2006; 13 Suppl 4:35–40. doi:10.1111/j.1468-1331.2006.01652.x.; Willis AW, Crowner B, Brunstrom JE, et al. High dose botulinum toxin A for the treatment of lower extremity hypertonicity in children with cerebral palsy. Dev Med Child Neurol. 2007;49(11):818–822. doi:10.1111/j.1469-8749.2007.00818.x.; Crowner BE, Brunstrom JE, Racette BA. Iatrogenic botulism due to therapeutic botulinum toxin A injection in a pediatric patient. Clin Neuropharmacol. 2007;30(5):310–313. doi:10.1097/WNF.0b013e31804b1a0d.; Naidu K, Smith K, Sheedy M, et al. Systemic adverse events following botulinum toxin A therapy in children with cerebral palsy. Dev Med Child Neurol. 2010;52(2):139–144. doi:10.1111/j.1469-8749.2009.03583.x.; Клочкова О.А., Куренков А.Л., Намазова-Баранова Л.С., и др. Общее моторное развитие и формирование функции рук у пациентов со спастическими формами детского церебрального паралича на фоне ботулинотерапии и комплексной реабилитации // Вестник Российской академии наук. — 2013. — Т. 68. —№ 11 — С. 38–48. [Klochkova OA, Kurenkov AL, Namazova-Baranova LS, et al. Development of motor functions and manual abilities in pediatric patients with spastic cerebral palsy after botulinum toxin treatment and complex rehabilitation. Annals of the Russian academy of medical sciences. 2013;68(11):38–48. (In Russ).] doi:10.15690/vramn.v68i11.842 (In Russ).]; Куренков А.Л., Клочкова О.А. Ботулинотерапия детского церебрального паралича. В кн.: Азбука ботулинотерапии / Под ред. С.Л. Тимербаевой. — М.: Практическая медицина; 2014. — С. 148—171. [Kurenkov AL, Klochkova OA. Botulinoterapiya detskogo tserebral’nogo paralicha. In: Timerbaeva S.L., editor. Azbuka botulinoterapii. Moscow: Prakticheskaya meditsina; 2014. p. 148–171. (In Russ).]; Калинина Л.В., Сологубов Е.Г., Лузинович В.М., Дутикова Е.М. Ботокс в комплексном лечении детского церебрального паралича // Журнал невропатологии и психиатрии им. С.С. Корсакова. — 2000. — Т. 100. — № 12 — С. 60–63. [Kalinina LV, Sologubov EG, Luzinovich VM, Dutikova EM. Botoks v kompleksnom lechenii detsko go tserebral’nogo paralicha. Zh Nevrol Psikhiatr Im S S Korsakova. 2000;100(12):60–63. (In Russ).]; Калинина Л.В., Дутикова Е.М. Детский церебральный паралич. В кн.: Применение Ботокса (токсина ботулизма типа А) в клинической практике: руководство для врачей / Под ред. O.P. Орловой, H.H. Яхно. — М.: Каталог; 2001. — С. 86–107. [Kalinina LV, Dutikova EM. Detskii tserebral’nyi paralich. In: Orlova O.P., Yakhno N.N., editors. Primenenie Botoksa (toksina botulizma tipa A) v klinicheskoi praktike: rukovodstvo dlya vrachei. Moscow: Katalog; 2001. p. 86–107. (In Russ).]; Сальков В.Н., Лильин Е.Т., Степанченко О.В., и др. Ботокс при трицепс-синдроме у детей с детским церебральным параличом //Журнал неврологии и психиатрии им. С.С. Корсакова. — 2002. — Т. 102. — № 5 — С. 24–25. [Sal’kov VN, Lil’in ET, Stepanchenko OV, et al. Botoks pri tritseps-sindrome u detei s detskim tserebral’nym paralichom. Zh Nevrol Psikhiatr Im S S Korsakova. 2002;102(5): 24–25. (In Russ).]; Куренков А.Л., Батышева Т.Т., Никитин С.С., и др. Лечение спастичности у детей с церебральными параличами. Методические рекомендации № 15 Департамента здравоохранения города Москвы. — М.; 2011. — C. 3–5. [Kurenkov AL, Batysheva TT, Nikitin SS, et al. Lechenie spastichnosti u detei s tserebral’nymi paralichami. Metodicheskie rekomendatsii № 15 Departamenta zdravookhraneniya goroda Moskvy. Moscow; 2011. p. 3–5. (In Russ).]; Куренков А.Л., Батышева Т.Т., Виноградов А.В., Зюзяева Е.К. Спастичность при детском церебральном параличе: диагностика и стратегии лечения // Журнал неврологии и психиатрии им. С.С. Корсакова. — 2012. — Т. 112. — № 7–2 — С. 24–28. [Kurenkov AL, Batysheva TT, Vinogradov AV, Ziuziaeva EK. Spasticity in children cerebral palsy: diagnosis and treatment strategies. Zh Nevrol Psikhiatr Im S S Korsakova. 2012;112(7–2):24–28. (In Russ).]; Клочкова О.А., Куренков А.Л., Каримова Х.М., и др. Мно гоуровневые инъекции ботулинического токсина типа А (Або ботулотоксина) при лечении спастических форм детского церебрального паралича: ретроспективное исследование опыта 8 российских центров // Педиатрическая фармакология. — 2016. — Т. 13. — № 3 — С. 259–269. [Klochkova OA, Kurenkov AL, Karimova KhM, et al. Multilevel botulinum toxin A (abobotulinum toxin A) injections in spastic forms of cerebral palsy: retrospective analysis of 8 Russian centers experience. Pediatric pharmacology. 2016;13(3):259–269. (In Russ).] doi:10.15690/pf.v13i3.1576.; Куренков А.Л., Клочкова О.А., Бурсагова Б.И., и др. Применение препарата ботулинического токсина типа А (Ботокс) в лечении детского церебрального паралича // Нервно-мышечные болезни. — 2014. — № 3 — С. 28–41. [Kurenkov AL, Klochkova OA, Bursagova BI, et al. Use of botulinum toxin type A (Botox) in the treatment of infantile cerebral palsy. Nervno-myshechnye bolezni. 2014;(3):28–41. (In Russ).]; Куренков А.Л., Клочкова О.А., Змановская В.А., и др. Первый Российский консенсус по применению многоуровневых инъекций Abobotulinumtoxin A при лечении спастических форм детского церебрального паралича // Журнал неврологии и психиатрии им. С.С. Корсакова. — 2016. — Т. 116. — № 11 — С. 121–130. [Kurenkov AL, Klochkova OA, Zmanovskaya VA, et al. Pervyi Rossiiskii konsensus po primeneniyu mnogourovnevykh in»ektsii Abobotulinumtoxin A pri lechenii spasticheskikh form detskogo tserebral’nogo paralicha. Zh Nevrol Psikhiatr Im S S Korsa kova. 2016;116(11):121–130. (In Russ).]; Love SC, Novak I, Kentish M, et al. Botulinum toxin assessment, intervention and after-care for lower limb spasticity in children with cerebral palsy: international consensus statement. Eur J Neurol. 2010;17 Suppl 2:9–37. doi:10.1111/j.1468-1331.2010.03126.x.; Placzek R, Siebold D, Funk JF. Development of treatment concepts for the use of botulinum toxin A in children with cerebral palsy. Toxins (Basel). 2010;2(9):2258–2271. 10.3390/toxins2092258.; Placzek R, Salem KH, Meiss LA, et al. The key-muscle concept: a long-term low-dose injection strategy for botulinum toxin A treatment in cerebral palsy. Acta Orthop Belg. 2012;78(1):111–116.; Russell A, Cotton E, editors. The Peto system and its evolution in Britain. London, UK: Acorn Foundation Publications; 1994.; Russell D, Rosenbaum P. Gowland C, et al. Gross Motor Function Measure (GMFM). Toronto, Canada: Gross Motor Measures Group; 1993.; Wijnhoven TM, de Onis M, Onyango AW, et al. Assessment of gross motor development in the WHO Multicentre Growth Reference Study. Food Nutr Bull. 2004;25(1 Suppl):S37–S45. doi:10.1177/15648265040251S105.; Strobl W, Theologis T, Brunner R, et al. Best clinical practice in botulinum toxin treatment for children with cerebral palsy. Toxins (Basel). 2015;7(5):1629–1648. doi:10.3390/toxins7051629.; Rosenbaum PL, Walter SD, Hanna SE, et al. Prognosis for gross motor function in cerebral palsy: creation of motor development curves. JAMA. 2002;288(11):1357–1363. doi:10.1001/jama.288.11.1357.; Kargo WJ, Nitz DA. Early skill learning is expressed through selection and tuning of cortically represented muscle synergies. J Neurosci. 2003;23(35):11255–11269.; Hikosaka O, Nakamura K, Sakai K, Nakahara H. Central mechanisms of motor skill learning. Curr Opin Neurobiol. 2002;12(2): 217–222. doi:10.1016/S0959-4388(02)00307-0.; Баранов А.А., Клочкова О.А., Куренков А.Л., и др. Роль пластичности головного мозга в функциональной адаптации организма при детском церебральном параличе с поражением рук // Педиатрическая фармакология. — 2012. — Т. 9. — № 6 — С. 24–32. [Baranov AA, Klochkova OA, Kurenkov AL, et al. The role ofbrain plasticity in the functional adaptation of body at cerebral infantile paralysis with the affection of hands. Pediatric pharmacology. 2012;9(6):24–32. (In Russ).] doi:10.15690/pf.v9i6.515.; Tedroff K, Lowing K, Haglund-Akerlind Y, et al. Botulinum toxin a treatment in toddlers with cerebral palsy. Acta Paediatr. 2010;99(8):1156–1162. doi:10.1111/j.1651-2227.2010. 01767.x.; Olesch CA, Greaves S, Imms C, et al. Repeat botulinum toxin-A injections in the upper limb of children with hemiplegia: a randomized controlled trial. Dev Med Child Neurol. 2010;52(1):79–86. doi:10.1111/j.1469-8749.2009.03387.x.; Graham HK, Boyd R, Carlin JB, et al. Does botulinum toxin a combined with bracing prevent hip displacement in children with cerebral palsy and «hips at risk»? A randomized, controlled trial. J Bone Joint Surg Am. 2008;90(1):23–33. doi:10.2106/JBJS.F.01416.; Zhu DN, Wang MM, Wang J, et al. [Effect of botulinum toxin A injection in the treatment of gastrocnemius spasticity in children aged 9–36 months with cerebral palsy: a prospective study. (In Chinese).] Zhongguo Dang Dai Er Ke Za Zhi. 2016;18(2):123–129.; Pascual-Pascual SI. [Use of botulinum toxin in the preventive and palliative treatment of the hips in children with infantile cerebral palsy. (In Spanish).] Rev Neurol. 2003;37(1):80–82.; Scrutton D, Baird G, Smeeton N. Hip dysplasia in bilateral cerebral palsy: incidence and natural history in children aged 18 months to 5 years. Dev Med Child Neurol. 2001;43(9):586–600. doi:10.1017/s0012162201001086.; Pidcock FS, Fish DE, Johnson-Greene D, et al. Hip migration percentage in children with cerebral palsy treated with botulinum toxin type A. Arch Phys Med Rehabil. 2005;86(3):431–435. doi:10.1016/j.apmr.2004.03.034.; Jung NH, Heinen F, Westhoff B, et al. Hip lateralisation in children with bilateral spastic cerebral palsy treated with botulinum toxin type A: a 2-year follow-up. Neuropediatrics. 2011;42(1): 18–23. doi:10.1055/s-0031-1275344.; Chhina H, Howren A, Simmonds A, Alvarez CM. Onabotulinumtoxin A injections: a safety review of children with clubfoot under 2 years of age at BC Children’s Hospital. Eur J Paediatr Neurol. 2014;18(2):171–175. doi:10.1016/j.ejpn.2013.11.002.; Алборов О.И., Филатова Н.Б., Чочиев Г.М., и др. Ботокс в комплексной реабилитации больных с парезом Эрба // International Journal on Immunorehabilitation. — 2010. — Т. 12. — № 2 — С. 199a. [Alborov OI, Filatova NB, Chochiev GM, et al. Botoks v kompleksnoi reabilitatsii bol’nykh s parezom Erba. International Journal on Immunorehabilitation. 2010;12(2):199a. (In Russ).]; Ma J, Smith BP, Smith TL, et al. Juvenile and adult rat neuromuscular junctions: density, distribution, and morphology. Muscle Nerve. 2002;26(6):804–809. doi:10.1002/mus.10272.; Barrett RS, Lichtwark GA. Gross muscle morphology and structure in spastic cerebral palsy: a systematic review. Dev Med Child Neurol. 2010;52(9):794–804. doi:10.1111/j.1469-8749.2010.03686.x.; Cosgrove AP, Graham HK. Botulinum toxin A prevents the development of contractures in the hereditary spastic mouse. Dev Med Child Neurol. 1994;36(5):379–385. doi:10.1111/j.1469-8749.1994.tb11863.x.; Clowry GJ, Walker L, Davies P. The effects of botulinum neurotoxin A induced muscle paresis during a critical period upon muscle and spinal cord development in the rat. Exp Neurol. 2006;202(2): 456–469. doi:10.1016/j.expneurol.2006.07.008.; Eliasson P, Fahlgren A, Pasternak B, Aspenberg P. Unloaded rat Achilles tendons continue to grow, but lose viscoelasticity. J Appl Physiol (1985). 2007;103(2):459–463. doi:10.1152/japplphysiol.01333.2006.; Rauch F, Hamdy R. Effect of a single botulinum toxin injection on bone development in growing rabbits. J Musculoskelet Neuronal Interact. 2006;6(3):264–268.; Kwon TG, Park HS, Lee SH, et al. Influence of unilateral masseter muscle atrophy on craniofacial morphology in growing rabbits. J Oral Maxillofac Surg. 2007;65(8):1530–1537. doi:10.1016/j.joms.2006.10.059.; Garner CG, Straube A, Witt TN, et al. Time course of distant effects of local injections of botulinum toxin. Mov Disord. 1993;8(1):33–37. doi:10.1002/mds.870080106.; Gilio F, Curra A, Lorenzano C, et al. Effects of botulinum toxin type A on intracortical inhibition in patients with dystonia. Ann Neurol. 2000;48(1):20–26. doi:10.1002/1531-8249(200007) 48:13.3.co;2-l.; Boroojerdi B, Cohen LG, Hallett M. Effects of botulinum toxin on motor system excitability in patients with writer’s cramp. Neurology. 2003;61(11):1546–1550. doi:10.1212/01.wnl. 0000095965.36574; https://vsp.spr-journal.ru/jour/article/view/1729Test

  2. 2
    دورية أكاديمية

    المصدر: Pediatric pharmacology; Том 13, № 5 (2016); 452-467 ; Педиатрическая фармакология; Том 13, № 5 (2016); 452-467 ; 2500-3089 ; 1727-5776

    وصف الملف: application/pdf

    العلاقة: https://www.pedpharma.ru/jour/article/view/1464/852Test; Fatemi A, Wilson MA, Johnston MV. Hypoxic ischemic encephalopathy in the term infant. Clin Perinatol. 2009;36(4):835–858. doi:10.1016/j.clp.2009.07.011.; Volpe JJ. Perinatal brain injury: from pathogenesis to neuroprotection. Ment Retard Dev Disabil Res Rev. 2001;7(1):56–64. doi:10.1002/1098-2779(200102)7:13.0.co;2-a.; Cotten CM, Shankaran S. Hypothermia for hypoxic-ischemic encephalopathy. Expert Rev Obstet Gynecol. 2010;5(2):227–239. doi:10.1586/eog.10.7.; Allen KA, Brandon DH. Hypoxic ischemic encephalopathy: pathophysiology and experimental treatments. Newborn Infant Nurs Rev. 2011;11(3):125–133. doi:10.1053/j.nainr.2011.07.004.; Dixon BJ, Reis C, Ho WM, et al. Neuroprotective strategies after neonatal hypoxic ischemic encephalopathy. Int J Mol Sci. 2015;16(9):22368–22401. doi:10.3390/ijms160922368.; Hassell KJ, Ezzati M, Alonso-Alconada D, et al. New horizons for newborn brain protection: enhancing endogenous neuroprotection. Arch Dis Child Fetal Neonatal Ed. 2015;100(6):F541–552. doi:10.1136/archdischild-2014-306284.; Alvarez-Diaz A, Hilario E, de Cerio FG, et al. Hypoxic-ischemic injury in the immature brain- key vascular and cellular players. Neonatology. 2007;92(4):227–235. doi:10.1159/000103741.; Iwata O, Iwata S, Thornton JS, et al. Therapeutic time window duration decreases with increasing severity of cerebral hypoxia-ischaemia under normothermia and delayed hypothermia in newborn piglets. Brain Res. 2007;1154:173–180. doi:10.1016/j.brainres.2007.03.083.; Azzopardi D, Wyatt JS, Cady EB, et al. Prognosis of newborn infants with hypoxic-ischemic brain injury assessed by phosphorus magnetic resonance spectroscopy. Pediatr Res. 1989;25(5): 445–451. doi:10.1203/00006450-198905000-00004.; Lorek A, Takei Y, Cady EB, et al. Delayed (secondary) cerebral energy failure after acute hypoxia-ischemia in the newborn piglet: continuous 48-hour studies by phosphorus magnetic resonance spectroscopy. Pediatr Res. 1994;36(6):699–706. doi:10.1203/00006450-199412000-00003.; Martin E, Buchli R, Ritter S, et al. Diagnostic and prognostic value of cerebral 31P magnetic resonance spectroscopy in neonates with perinatal asphyxia. Pediatr Res. 1996;40(5):749–758. doi: .10.1203/00006450-199611000-00015.; Fleiss B, Gressens P. Tertiary mechanisms of brain damage: a new hope for treatment of cerebral palsy. Lancet Neurol. 2012; 11(6):556–566. doi:10.1016/s1474-4422(12)70058-3.; Robertson NJ, Cox IJ, Cowan FM, et al. Cerebral intracellular lactic alkalosis persisting months after neonatal encephalopathy measured by magnetic resonance spectroscopy. Pediatr Res. 1999;46(3): 287–296. doi:10.1203/00006450-199909000-00007.; Barkovich AJ, Westmark K, Partridge C, et al. Perinatal asphyxia: MR findings in the first 10 days. AJNR Am J Neuroradiol. 1995; 16(3):427–438.; Takeoka M, Soman TB, Yoshii A, et al. Diffusion-weighted images in neonatal cerebral hypoxic-ischemic injury. Pediatr Neurol. 2002;26(4):274–281. doi:10.1016/s0887- 8994(01)00403-9.; Zhu W, Zhong W, Qi J, et al. Proton magnetic resonance spectroscopy in neonates with hypoxic-ischemic injury and its prognostic value. Transl Res. 2008;152(5):225–232. doi:10.1016/j.trsl.2008.09.004.; Van Doormaal PJ, Meiners LC, ter Horst HJ, et al. The prognostic value of multivoxel magnetic resonance spectroscopy determined metabolite levels in white and grey matter brain tissue for adverse outcome in term newborns following perinatal asphyxia. Eur Radiol. 2012;22(4):772–778. doi:10.1007/s00330-011-2315-z.; Nakajima W, Ishida A, Lange MS, et al. Apoptosis has a prolonged role in the neurodegeneration after hypoxic ischemia in the newborn rat. J Neurosci. 2000;20(21):7994–8004.; Shankaran S. Therapeutic hypothermia for neonatal encephalopathy. Curr Opin Pediatr. 2015;27(2):152–157. doi:10.1097/mop.0000000000000199.; Douglas-Escobar M, Weiss MD. Hypoxic-ischemic encephalopathy: a review for the clinician. JAMA Pediatr. 2015;169(4): 397–403. doi:10.1001/jamapediatrics.2014.3269.; Saliba E, Fakhri N, Debillon T. Establishing a hypothermia service for infants with suspected hypoxic-ischemic encephalopathy. Semin Fetal Neonatal Med. 2015;20(2):80–86. doi:10.1016/j.siny.2015.01.008.; Wallace BK, Foroutan S, O’Donnell ME. Ischemia-induced stimulation of Na-K-Cl cotransport in cerebral microvascular endothelial cells involves AMP kinase. Am J Physiol Cell Physiol. 2011;301(2):C316–326. doi:10.1152/ajpcell.00517.2010.; Chen YJ, Wallace BK, Yuen N, et al. Blood-brain barrier KCa3.1 channels: evidence for a role in brain Na uptake and edema in ischemic stroke. Stroke. 2015;46(1):237–244. doi:10.1161/strokeaha.114.007445.; Brillault J, Lam TI, Rutkowsky JM, et al. Hypoxia effects on cell volume and ion uptake of cerebral microvascular endothelial cells. Am J Physiol Cell Physiol. 2008;294(1):C88–96. doi:10.1152/ajpcell.00148.2007.; Hausmann R, Seidl S, Betz P. Hypoxic changes in Purkinje cells of the human cerebellum. Int J Legal Med. 2007;121(3):175–183. doi:10.1007/s00414-006-0122-x.; Bonfoco E, Krainc D, Ankarcrona M, et al. Apoptosis and necrosis: two distinct events induced, respectively, by mild and intense insults with N-methyl-D-aspartate or nitric oxide/superoxide in cortical cell cultures. Proc Natl Acad Sci U S A. 1995;92(16):7162–7166. doi:10.1073/pnas.92.16.7162.; Sun X, Crawford R, Liu C, et al. Development-dependent regulation of molecular chaperones after hypoxia-ischemia. Neurobiol Dis. 2015;82:123–131. doi:10.1016/j.nbd.2015.06.001.; Blomgren K, Leist M, Groc L. Pathological apoptosis in the developing brain. Apoptosis. 2007;12(5):993–1010. doi:10.1007/s10495-007-0754-4.; Portera-Cailliau C, Price DL, Martin LJ. Excitotoxic neuronal death in the immature brain is an apoptosis-necrosis morphological continuum. J Comp Neurol. 1997;378(1):70–87. doi:10.1002/(sici)1096-9861(19970203)378:13.0.co;2-n.; Northington FJ, Zelaya ME, O’Riordan DP, et al. Failure to complete apoptosis following neonatal hypoxia-ischemia manifests as «continuum » phenotype of cell death and occurs with multiple manifestations of mitochondrial dysfunction in rodent forebrain. Neuroscience. 2007;149(4):822–833. doi:10.1016/j.neuroscience.2007.06.060.; Baburamani AA, Hurling C, Stolp H, et al. Mitochondrial optic atrophy (OPA) 1 processing is altered in response to neonatal hypoxic- ischemic brain injury. Int J Mol Sci. 2015;16(9):22509–22526. doi:10.3390/ijms160922509.; Blomgren K, Hagberg H. Free radicals, mitochondria, and hypoxia-ischemia in the developing brain. Free Radic Biol Med. 2006;40(3):388–397. doi:10.1016/j.freeradbiomed.2005.08.040.; Wang X, Carlsson Y, Basso E, et al. Developmental shift of cyclophilin D contribution to hypoxic-ischemic brain injury. J Neurosci. 2009;29(8):2588–2596. doi:10.1523/jneurosci.5832-08.2009.; Cao G, Xing J, Xiao X, et al. Critical role of calpain I in mitochondrial release of apoptosis- inducing factor in ischemic neuronal injury. J Neurosci. 2007;27(35):9278–9293. doi:10.1523/jneurosci.2826-07.2007.; Wang X, Karlsson JO, Zhu C, et al. Caspase-3 activation after neonatal rat cerebral hypoxia-ischemia. Biol Neonate. 2001; 79(3–4):172–179. doi:10.1159/000047087.; Rossiter JP, Anderson LL, Yang F, Cole GM. Caspase-3 activation and caspase-like proteolytic activity in human perinatal hypoxicischemic brain injury. Acta Neuropathol. 2002;103(1):66–73. doi:10.1007/s004010100432.; Strasser A, Jost PJ, Nagata S. The many roles of FAS receptor signaling in the immune system. Immunity. 2009;30(2):180–192. doi:10.1016/j.immuni.2009.01.001.; Andrabi SA, Dawson TM, Dawson VL. Mitochondrial and nuclear cross talk in cell death: parthanatos. Ann N Y Acad Sci. 2008; 1147:233–241. doi:10.1196/annals.1427.014.; Mandir AS, Poitras MF, Berliner AR, et al. NMDA but not non-NMDA excitotoxicity is mediated by Poly(ADP-ribose) polymerase. J Neurosci. 2000;20(21):8005–8011.; Ducrocq S, Benjelloun N, Plotkine M, et al. Poly(ADP-ribose) synthase inhibition reduces ischemic injury and inflammation in neonatal rat brain. J Neurochem. 2000;74(6):2504– 2511. doi:10.1046/j.1471-4159.2000.0742504.x.; Hagberg H, Wilson MA, Matsushita H, et al. PARP-1 gene disruption in mice preferentially protects males from perinatal brain injury. J Neurochem. 2004;90(5):1068– 1075. doi:10.1111/j.1471-4159.2004.02547.x.; McCullough LD, Zeng Z, Blizzard KK, et al. Ischemic nitric oxide and poly (ADP-ribose) polymerase-1 in cerebral ischemia: male toxicity, female protection. J Cereb Blood Flow Metab. 2005;25(4): 502–512. doi:10.1038/sj.jcbfm.9600059.; Li H, Pin S, Zeng Z, et al. Sex differences in cell death. Ann Neurol. 2005;58(2):317–321. doi:10.1002/ana.20538.; Du L, Hickey RW, Bayir H, et al. Starving neurons show sex difference in autophagy. J Biol Chem. 2009;284(4):2383–2396. doi:10.1074/jbc.m804396200.; Thompson DK, Warfield SK, Carlin JB, et al. Perinatal risk factors altering regional brain structure in the preterm infant. Brain. 2007;130(3):667–677. doi:10.1093/brain/awl277.; Ment LR, Vohr BR, Makuch RW, et al. Prevention of intraventricular hemorrhage by indomethacin in male preterm infants. J Pediatr. 2004;145(6):832–834. doi:10.1016/j.jpeds.2004.07.035.; Thomazi AP, Boff B, Pires TD, et al. Profile of glutamate uptake and cellular viability in hippocampal slices exposed to oxygen and glucose deprivation: developmental aspects and protection by guanosine. Brain Res. 2008;1188:233–240. doi:10.1016/j.brainres.2007.10.037.; Johnston MV. Excitotoxicity in perinatal brain injury. Brain Pathol. 2005;15(3):234–240. doi:10.1111/j.1750-3639.2005.tb00526.x.; McDonald JW, Silverstein FS, Johnston MV. Magnesium reduces N-methyl-D-aspartate (NMDA)-mediated brain injury in perinatal rats. Neurosci Lett. 1990;109(1–2):234–238. doi:10.1016/0304-3940(90)90569-u.; McDonald JW, Silverstein FS, Johnston MV. Neuroprotective effects of MK-801, TCP, PCP and CPP against N-methyl-D-aspartate induced neurotoxicity in an in vivo perinatal rat model. Brain Res. 1989;490(1):33–40. doi:10.1016/0006-8993(89)90427-7.; McDonald JW, Johnston MV. Pharmacology of N-methyl-Daspartate-induced brain injury in an in vivo perinatal rat model. Synapse. 1990;6(2):179–188. doi:10.1002/syn.890060210.; McDonald JW, Roeser NF, Silverstein FS, Johnston MV. Quantitative assessment of neuroprotection against NMDA-induced brain injury. Exp Neurol. 1989;106(3):289–296. doi:10.1016/0014-4886(89)90162-3.; Talos DM, Fishman RE, Park H, et al. Developmental regulation of alpha-amino-3- hydroxy-5-methyl-4-isoxazole-propionic acid receptor subunit expression in forebrain and relationship to regional susceptibility to hypoxic/ischemic injury. I. Rodent cerebral white matter and cortex. J Comp Neurol. 2006;497(1):42–60. doi:10.1002/cne.20972.; McCarran WJ, Goldberg MP. White matter axon vulnerability to AMPA/kainate receptor- mediated ischemic injury is developmentally regulated. J Neurosci. 2007;27(15):4220–4229. doi:10.1523/jneurosci.5542-06.2007.; Deng W, Rosenberg PA, Volpe JJ, Jensen FE. Calcium-permeable AMPA/kainate receptors mediate toxicity and preconditioning by oxygen-glucose deprivation in oligodendrocyte precursors. Proc Natl Acad Sci U S A. 2003;100(11):6801–6806. doi:10.1073/pnas.1136624100.; Johnston MV, Ferriero DM, Vannucci SJ, Hagberg H. Models of cerebral palsy: which ones are best? J Child Neurol. 2005;20(12): 984–987. doi:10.1177/08830738050200121001.; McDonald JW, Trescher WH, Johnston MV. Susceptibility of brain to AMPA induced excitotoxicity transiently peaks during early postnatal development. Brain Res. 1992;583(1– 2):54–70. doi:10.1016/s0006-8993(10)80009-5.; Dammann O, O’Shea TM. Cytokines and perinatal brain damage. Clin Perinatol. 2008;35(4):643–663. doi:10.1016/j.clp.2008.07.011.; Bartha AI, Foster-Barber A, Miller SP, et al. Neonatal encephalopathy: association of cytokines with MR spectroscopy and outcome. Pediatr Res. 2004;56(6):960–966. doi:10.1203/01.pdr.0000144819.45689.bb.; Bona E, Andersson AL, Blomgren K, et al. Chemokine and inflammatory cell response to hypoxia-ischemia in immature rats. Pediatr Res. 1999;45(4 Pt 1):500–509. doi:10.1203/00006450-199904010-00008.; Hedtjarn M, Mallard C, Hagberg H. Inflammatory gene profiling in the developing mouse brain after hypoxia-ischemia. J Cereb Blood Flow Metab. 2004;24(12):1333–1351. doi:10.1097/01.wcb.0000141559.17620.36.; Wang X, Hagberg H, Nie C, et al. Dual role of intrauterine immune challenge on neonatal and adult brain vulnerability to hypoxia-ischemia. J Neuropathol Exp Neurol. 2007;66(6):552–561. doi:10.1097/01.jnen.0000263870.91811.6f.; Lafemina MJ, Sheldon RA, Ferriero DM. Acute hypoxia-ischemia results in hydrogen peroxide accumulation in neonatal but not adult mouse brain. Pediatr Res. 2006;59(5):680– 683. doi:10.1203/01.pdr.0000214891.35363.6a.; Hagberg H, Andersson P, Lacarewicz J, et al. Extracellular adenosine, inosine, hypoxanthine, and xanthine in relation to tissue nucleotides and purines in rat striatum during transient ischemia. J Neurochem. 1987;49(1):227–231. doi:10.1111/j.1471-4159.1987.tb03419.x.; Guglielmotto M, Aragno M, Autelli R, et al. The up-regulation of BACE1 mediated by hypoxia and ischemic injury: role of oxidative stress and HIF1alpha. J Neurochem. 2009;108(4):1045–1056. doi:10.1111/j.1471-4159.2008.05858.x.; Vinas JL, Sola A, Hotter G. Mitochondrial NOS upregulation during renal I/R causes apoptosis in a peroxynitrite-dependent manner. Kidney Int. 2006;69(8):1403–1409. doi:10.1038/sj.ki.5000361.; Ishida A, Ishiwa S, Trescher WH, et al. Delayed increase in neuronal nitric oxide synthase immunoreactivity in thalamus and other brain regions after hypoxic-ischemic injury in neonatal rats. Exp Neurol. 2001;168(2):323–333. doi:10.1006/exnr.2000.7606.; Boya P, Gonzalez-Polo RA, Poncet D, et al. Mitochondrial membrane permeabilization is a critical step of lysosome-initiated apoptosis induced by hydroxychloroquine. Oncogene. 2003;22(25): 3927–3936. doi:10.1038/sj.onc.1206622.; Ferriero DM, Holtzman DM, Black SM, Sheldon RA. Neonatal mice lacking neuronal nitric oxide synthase are less vulnerable to hypoxic-ischemic injury. Neurobiol Dis. 1996;3(1):64– 71. doi:10.1006/nbdi.1996.0006.; Muramatsu K, Sheldon RA, Black SM, et al. Nitric oxide synthase activity and inhibition after neonatal hypoxia ischemia in the mouse brain. Brain Res Dev. 2000;123(2):119–127. doi:10.1016/s0165-3806(00)00088-2.; Kaminski A, Kasch C, Zhang L, et al. Endothelial nitric oxide synthase mediates protective effects of hypoxic preconditioning in lungs. Respir Physiol Neurobiol. 2007;155(3):280–285. doi:10.1016/j.resp.2006.06.005.; Huang Z, Huang PL, Ma J, et al. Enlarged infarcts in endothelial nitric oxide synthase knockout mice are attenuated by nitro- L-arginine. J Cereb Blood Flow Metab. 1996;16(5):981–987. doi:10.1097/00004647-199609000-00023.; Van Laerhoven H, de Haan TR, Offringa M, et al. Prognostic tests in term neonates with hypoxic-ischemic encephalopathy: a systematic review. Pediatrics. 2013;131(1):88–98. doi:10.1542/peds.2012-1297.; Lv H, Wang Q, Wu S, et al. Neonatal hypoxic ischemic encephalopathy-related biomarkers in serum and cerebrospinal fluid. Clin Chim Acta. 2015;450:282–297. doi:10.1016/j.cca.2015.08.021.; clinicaltrials.gov [Internet]. Study Record Detail. Developmental Outcomes [cited 2016 Sep 9]. Available from: https://clinicaltrialsTest. gov/ct2/show/NCT02264808? term=Cord+Blood++HIE&rank=11.; Nanavati T, Seemaladinne N, Regier M, et al. Can we predict functional outcome in neonates with hypoxic ischemic ence phalopathy by the combination of neuroimaging and electro ence phalography? Pediatr Neonatol. 2015;56(5):307–316. doi:10.1016/j.pedneo.2014.12.005.; clinicaltrials.gov [Internet]. Study Record Detail. BiHiVE2 Study. The Investigation and Validation of Predictive Biomarkers in Hypo xicischaemic Encephalopathy. (BiHiVE2) [cited 2016 Sep 9]. Available from: https://clinicaltrials.gov/ct2/show/NCT02019147?term=Cord+Blood++HIE&rank=9Test.; Wang B, Armstrong JS, Reyes M, et al. White matter apoptosis is increased by delayed hypothermia and rewarming in a neonatal piglet model of hypoxic ischemic encephalopathy. Neuroscience. 2016;316:296–310. doi:10.1016/j.neuroscience.2015.12.046.; Wassink G, Gunn ER, Drury PP, et al. The mechanisms and treatment of asphyxial encephalopathy. Front Neurosci. 2014;8:40. doi:10.3389/fnins.2014.00040.; Kimura A, Sakurada S, Ohkuni H, et al. Moderate hypothermia delays proinflammatory cytokine production of human peripheral blood mononuclear cells. Crit Care Med. 2002;30(7):1499–1502. doi:10.1097/00003246-200207000-00017.; Rossouw G, Irlam J, Horn AR. Therapeutic hypothermia for hypoxic ischaemic encephalopathy using low-technology methods: a systematic review and meta-analysis. Acta Paediatr. 2015; 104(12):1217–1228. doi:10.1111/apa.1283.; Shah PS. Hypothermia: a systematic review and meta-analysis of clinical trials. Semin Fetal Neonatal Med. 2010;15(5):238–246. doi:10.1016/j.siny.2010.02.003.; Azzopardi D, Strohm B, Edwards AD, et al. Steering Group and TOBY Cooling Register participants. Treatment of asphyxiated newborns with moderate hypothermia in routine clinical practice: how cooling is managed in the UK outside a clinical trial. Arch Dis Child Fetal Neonatal Ed. 2009;94(4):F260–264. doi:10.1136/adc.2008.146977.; Azzopardi D, Strohm B, Linsell L, et al. Implementation and conduct of therapeutic hypothermia for perinatal asphyxial encephalopathy in the UK-analysis of national data. PLoS One. 2012; 7(6):e38504. doi:10.1371/journal.pone.0038504.; Osredkar D, Thoresen M, Maes E, et al. Hypothermia is not neuroprotective after infection-sensitized neonatal hypoxic-ischemic brain injury. Resuscitation. 2014;85(4):567– 572. doi:10.1016/j.resuscitation.2013.12.006.; Villa P, Bigini P, Mennini T, et al. Erythropoietin selectively attenuates cytokine production and inflammation in cerebral ischemia by targeting neuronal apoptosis. J Exp Med. 2003;198(6):971–975. doi:10.1084/jem.20021067.; Wang L, Zhang Z, Wang Y, et al. Treatment of stroke with erythropoietin enhances neurogenesis and angiogenesis and impro ves neurological function in rats. Stroke. 2004;35(7):1732–1737. doi:10.1161/01.str.0000132196.49028.a4.; Juul SE. Hypothermia plus erythropoietin for neonatal neuro protection? Pediatr Res. 2013;73(1):10–11. doi:10.1038/pr.2012.148.; Juul SE, Yachnis AT, Rojiani AM, Christensen RD. Immu nohisto chemical localization of erythropoietin and its receptor in the developing human brain. Pediatr Dev Pathol. 1999;2(2):148–158. doi:10.1007/s100249900103.; Wu YW, Bauer LA, Ballard RA, et al. Erythropoietin for neuro protection in neonatal encephalopathy: safety and pharmacokinetics. Pediatrics. 2012;130(4):683–691. doi:10.1542/peds.2012-0498.; Kumral A, Uysal N, Tugyan K, et al. Erythropoietin improves longterm spatial memory deficits and brain injury following neonatal hypoxia-ischemia in rats. Behav Brain Res. 2004;153(1):77–86. doi:10.1016/j.bbr.2003.11.002.; Gonzalez FF, Abel R, Almli CR, et al. Erythropoietin sustains cognitive function and brain volume after neonatal stroke. Dev Neurosci. 2009;31(5):403–411. doi:10.1159/000232558.; Zhu C, Kang W, Xu F, et al. Erythropoietin improved neurologic outcomes in newborns with hypoxic-ischemic encephalopathy. Pediatrics. 2009;124(2):e218–226. doi:10.1542/peds.2008-3553.; Rogers EE, Bonifacio SL, Glass HC, et al. Erythropoietin and hypothermia for hypoxic- ischemic encephalopathy. Pediatr Neurol. 2014;51(5):657–662. doi:10.1016/j.pediatrneurol.2014.08.010.; Elmahdy H, El-Mashad AR, El-Bahrawy H, et al. Human recombinant erythropoietin in asphyxia neonatorum: pilot trial. Pediatrics. 2010;125(5):e1135–1142. doi:10.1542/peds.2009-2268.; clinicaltrials.gov [Internet]. Study Record Detail. Neonatal Erythropoietin And Therapeutic Hypothermia Outcomes in Newborn Brain Injury (NEATO) (NEATO) [cited 2016 Sep 9]. Available from: https://clinicaltrials.gov/ct2/show/NCT01913340Test.; clinicaltrials.gov [Internet]. Study Record Detail. Efficacy of Erythropoietin to Improve Survival and Neurological Outcome in Hypoxic Ischemic Encephalopathy (Neurepo) [cited 2016 Sep 9]. Available from: https://clinicaltrials.gov/ct2/show/NCT01732146Test.; Leuchter RH, Gui L, Poncet A, et al. Association between early administration of high- dose erythropoietin in preterm infants and brain MRI abnormality at term-equivalent age. JAMA. 2014;312(8): 817–824. doi:10.1001/jama.2014.9645.; Ohls RK, Kamath-Rayne BD, Christensen RD, et al. Cognitive outcomes of preterm infants randomized to darbepoetin, erythropoietin, or placebo. Pediatrics. 2014;133(6):1023–1030. doi:10.1542/peds.2013-4307.; Dworschak M. Pharmacologic neuroprotection-is xenon the light at the end of the tunnel? Crit Care Med. 2008;36(8):2477–2479. doi:10.1097/ccm.0b013e31818113d2.; Istaphanous GK, Loepke AW. General anesthetics and the developing brain. Curr Opin Anaesthesiol. 2009;22(3):368–373. doi:10.1097/aco.0b013e3283294c9e.; David HN, Haelewyn B, Rouillon C, et al. Neuroprotective effects of xenon: a therapeutic window of opportunity in rats subjected to transient cerebral ischemia. FASEB J. 2008;22(4):1275–1286. doi:10.1096/fj.07-9420com.; Ma D, Hossain M, Chow A, et al. Xenon and hypothermia combine to provide neuroprotection from neonatal asphyxia. Ann Neurol. 2005;58(2):182–193. doi:10.1002/ana.20547.; Thoresen M, Hobbs CE, Wood T, et al. Cooling combined with immediate or delayed xenon inhalation provides equivalent longterm neuroprotection after neonatal hypoxia- ischemia. Cereb Blood Flow Metab. 2009;29(4):707–714. doi:10.1038/jcbfm.2008.163.; Dingley J, Tooley J, Liu X, et al. Xenon ventilation during therapeutic hypothermia in neonatal encephalopathy: a feasibility study. Pediatrics. 2014;133(5):809–818. doi:10.1542/peds.2013-0787.; Azzopardi D, Robertson NJ, Bainbridge A, et al. Moderate hypothermia within 6 h of birth plus inhaled xenon versus moderate hypothermia alone after birth asphyxia (TOBY- Xe): a proof-ofconcept, open-label, randomised controlled trial. Lancet Neurol. 2016;(15)2:145–153. doi:10.1016/s1474-4422(15)00347-6.; Alonso-Alconada D, Alvarez A, Arteaga O, et al. Neuroprotective effect of melatonin: a novel therapy against perinatal hypoxiaischemia. Int J Mol Sci. 2013;14(5):9379–9395. doi:10.3390/ijms14059379.; Carloni S, Perrone S, Buonocore G, et al. Melatonin protects from the long-term consequences of a neonatal hypoxic-ischemic brain injury in rats. J Pineal Res. 2008;44(2):157–164. doi:10.1111/j.1600-079x.2007.00503.x.; Robertson NJ, Faulkner S, Fleiss B, et al. Melatonin augments hypothermic neuroprotection in a perinatal asphyxia model. Brain. 2013;136(1):90–105. doi:10.1093/brain/aws285.; Aly H, Elmahdy H, El-Dib M, et al. Melatonin use for neuroprotection in perinatal asphyxia: a randomized controlled pilot study. J Perinatol. 2015;35(3):186–191. doi:10.1038/jp.2014.186.; Merchant NM, Azzopardi DV, Hawwa AF, McElnay JC, Middleton B, et al. Pharmacokinetics of melatonin in preterm infants. Br J Clin Pharmacol. 2013;76(5):725–33.; Zalewska T, Jaworska J, Ziemka-Nalecz M. Current and experimental pharmacological approaches in neonatal hypoxic- ischemic encephalopathy. Curr Pharm Des. 2015;21(11):1433–1439. doi:10.2174/1381612820999141029162457.; Shea KL, Palanisamy A. What can you do to protect the newborn brain? Curr Opin Anaesthesiol. 2015;28(3):261–266. doi:10.1097/aco.0000000000000184.; Liao Y, Cotten M, Tan S, et al. Rescuing the neonatal brain from hypoxic injury with autologous cord blood. Bone Marrow Transplant. 2013;48(7):890–900. doi:10.1038/bmt.2012.169.; Sun J, Allison J, McLaughlin C, et al. Differences in quali ty between privately and publicly banked umbilical cord blood units: a pilot study of autologous cord blood infusion in children with acquired neurologic disorders. Transfusion. 2010;50(9):1980–1987. doi:10.1111/j.1537-2995.2010.02720.x.; Escolar ML, Poe MD, Provenzale JM, et al. Transplantation of umbilical-cord blood in babies with infantile Krabbe’s disease. N Engl J Med. 2005;352(20):2069–2081. doi:10.1056/nejmoa042604.; Cotten CM, Murtha AP, Goldberg RN, et al. Feasibility of autologous cord blood cells for infants with hypoxic-ischemic encephalopathy. J Pediatr. 2014;164(5):973–979.e1. doi:10.1016/j.jpeds.2013.11.036.; clinicaltrials.gov [Internet]. Study Record Detail. Cord Blood for Neonatal Hypoxic- ischemic Encephalopathy [cited 2016 Sep 9]. Available from: https://clinicaltrials.gov/ct2/show/NCT00593242?term=NCT00593242&rank=1Test.; clinicaltrials.gov [Internet]. Study Record Detail. Autologous Cord Blood Cell Therapy for Neonatal Encephalopathy [cited 2016 Sep 9]. Available from: https://clinicaltrials.gov/ct2/show/NCT02256618?term=Cord+Blood++HIE&rank=7Test.; clinicaltrials.gov [Internet]. Study Record Detail. Autologous Cord Blood and Human Placental Derived Stem Cells in Neonates With Severe Hypoxic-Ischemic Encephalopathy (HPDSC+HIE) [cited 2016 Sep 9]. Available from: https://clinicaltrials.gov/ct2/show/NCT02434965?term=Cord+Blood++HIE&rank=2Test.; clinicaltrials.gov [Internet]. Study Record Detail. Cytokines Associated With Cord Blood Cell Therapy for Neonatal Encephalopathy [cited 2016 Sep 9]. Available from: https://clinicaltrials.gov/ct2/show/NCT02455830?term=Cord+Blood++HIE&rank=8Test.; Doycheva D, Shih G, Chen H, et al. Granulocyte-colony stimulating factor in combination with stem cell factor confers greater neuroprotection after hypoxic-ischemic brain damage in the neonatal rats than a solitary treatment. Transl Stroke Res. 2013; 4(2):171–178. doi:10.1007/s12975-012-0225-2.; Katsuragi S, Ikeda T, Date I, et al. Implantation of encapsulated glial cell line-derived neurotrophic factor-secreting cells prevents long-lasting learning impairment following neonatal hypoxic-ischemic brain insult in rats. Am J Obstet Gynecol. 2005;192(4):1028– 1037. doi:10.1016/j.ajog.2004.09.099.; Shank RP, Gardocki JF, Streeter AJ, Maryanoff BE. An overview of the preclinical aspects of topiramate: pharmacology, pharmacokinetics, and mechanism of action. Epilepsia. 2000;41 Suppl 1:S3–9. doi:10.1111/j.1528-1157.2000.tb02163.x.; Ozyener F, Cetinkaya M, Alkan T, et al. Neuroprotective effects of melatonin administered alone or in combination with topiramate in neonatal hypoxic-ischemic rat model. Restor Neurol Neurosci. 2012;30(5):435–444.; Noh MR, Kim SK, Sun W, et al. Neuroprotective effect of topiramate on hypoxic ischemic brain injury in neonatal rats. Exp Neurol. 2006;201(2):470–478. doi:10.1016/j.expneurol.2006.04.038.; Sfaello I, Baud O, Arzimanoglou A, Gressens P. Topiramate prevents excitotoxic damage in the newborn rodent brain. Neurobiol Dis. 2005;20(3):837–848. doi:10.1016/j.nbd.2005.05.019.; Filippi L, Fiorini P, Daniotti M, et al. Safety and efficacy of topiramate in neonates with hypoxic ischemic encephalopathy treated with hypothermia (NeoNATI). BMC Pediatr. 2012;12:144. doi:10.1186/1471-2431-12-144.; clinicaltrials.gov [Internet]. Study Record Detail. Topiramate in Neonates Receiving Whole Body Cooling for Hypoxic Ischemic Encephalopathy [cited 2016 Sep 9]. Available from: https://clinicaltrialsTest. gov/ct2/show/NCT01765218?term=NCT01765218&rank=1.; Zeevalk GD, Nicklas WJ. Evidence that the loss of the voltage-dependent Mg2+ block at the N-methyl-D-aspartate receptor underlies receptor activation during inhibition of neuronal metabolism. J Neurochem. 1992;59(4):1211–1220. doi:10.1111/j.1471- 4159.1992.tb08430.x.; Sugimoto J, Romani AM, Valentin-Torres AM, et al. Magnesium decreases inflammatory cytokine production: a novel innate immunomodulatory mechanism. J Immunol. 2012;188(12):6338–6346. doi:10.4049/jimmunol.1101765.; Hoffman DJ, Marro PJ, McGowan JE, et al. Protective effect of MgSO4 infusion on nmda receptor binding characteristics during cerebral cortical hypoxia in the newborn piglet. Brain Res. 1994;644(1):144–149. doi:10.1016/0006-8993(94)90357-3.; Shokry M, Elsedfy GO, Bassiouny MM, et al. Effects of antenatal magnesium sulfate therapy on cerebral and systemic hemodynamics in preterm newborns. Acta Obstet Gynecol Scand. 2010;89(6):801–806. doi:10.3109/00016341003739542.; Conde-Agudelo A, Romero R. Antenatal magnesium sulfate for the prevention of cerebral palsy in preterm infants less than 34 weeks’ gestation: a systematic review and metaanalysis. Am J Obstet Gynecol. 2009;200(6):595–609. doi:10.1016/j.ajog.2009.04.005.; Zhu H, Meloni BP, Bojarski C, et al. Post-ischemic modest hypothermia (35 degrees C) combined with intravenous magnesium is more effective at reducing CA1 neuronal death than either treatment used alone following global cerebral ischemia in rats. Exp Neurol. 2005;193(2):361–368. doi:10.1016/j.expneurol.2005.01.022.; Tataranno ML, Perrone S, Longini M, Buonocore G. New antioxidant drugs for neonatal brain injury. Oxid Med Cell Longev. 2015;2015:108251. doi:10.1155/2015/108251.; Ovbiagele B, Kidwell CS, Starkman S, Saver JL. Potential role of neuroprotective agents in the treatment of patients with acute ischemic stroke. Curr Treat Options Neurol. 2003;5(5):367–375. doi:10.1007/s11940-003-0027-7.; Costantine MM, Weiner SJ. Effects of antenatal exposure to magnesium sulfate on neuroprotection and mortality in preterm infants: a meta-analysis. Obstet Gynecol. 2009;114(2 Pt 1): 354–364. doi:10.1097/aog.0b013e3181ae98c2.; Magee L, Sawchuck D, Synnes A, et al. Magnesium sulphate for fetal neuroprotection. J Obstet Gynaecol Can. 2011;33(5): 516–529. doi:10.1016/S1701-2163(16)34886-1.; Ramsey PS, Rouse DJ. Magnesium sulfate as a tocolytic agent. Semin Perinatol. 2001;25(4):236–247. doi:10.1053/sper. 2001.27546.; Galinsky R, Bennet L, Groenendaal F, et al. Magnesium is not consistently neuroprotective for perinatal hypoxia-ischemia in terme quivalent models in preclinical studies: a systematic review. Dev Neurosci. 2014;36(2):73–82. doi:10.1159/000362206.; clinicaltrials.gov [Internet]. Study Record Detail. Efficacy Study of Hypothermia Plus Magnesium Sulphate(MgSO4) in the Management of Term and Near Term Babies With Hypoxic Ischemic Encephalopathy (MagCool) [cited 2016 Sep 9]. Available from: https://clinicaltrials.gov/ct2/show/NCT01646619?term=NCT01646619&rank=1Test.; Levene M, Blennow M, Whitelaw A, et al. Acute effects of two different doses of magnesium sulphate in infants with birth asphyxia. Arch Dis Child Fetal Neonatal Ed. 1995;73(3):F174–177. doi:10.1136/fn.73.3.f174.; Robertson NJ, Tan S, Groenendaal F, et al. Which neuroprotective agents are ready for bench to bedside translation in the newborn infant? J Pediatr. 2012;160(4):544–552.e4. doi:10.1016/j.jpeds.2011.12.052.; Peeters-Scholte C, Braun K, Koster J, et al. Effects of allopurinol and deferoxamine on reperfusion injury of the brain in newborn piglets after neonatal hypoxia-ischemia. Pediatr Res. 2003;54(4):516–522. doi:10.1203/01.pdr.0000081297.53793.c6.; Marro PJ, Mishra OP, Delivoria-Papadopoulos M. Effect of allopurinol on brain adenosine levels during hypoxia in newborn piglets. Brain Res. 2006;1073–1074:444–450. doi:10.1016/j.brainres.2005.11.061.; Palmer C, Towfighi J, Roberts RL, Heitjan DF. Allopurinol administered after inducing hypoxia-ischemia reduces brain injury in 7-day-old rats. Pediatr Res. 1993;33(4):405–411. doi:10.1203/00006450-199333040-00018.; Peeters C, Hoelen D, Groenendaal F, et al. Deferoxamine, allopurinol and oxypurinol are not neuroprotective after oxygen/ glucose deprivation in an organotypic hippocampal model, lacking functional endothelial cells. Brain Res. 2003;963(1–2):72–80. doi:10.1016/s0006-8993(02)03843-x.; Benders MJ, Bos AF, Rademaker CM, et al. Early postnatal allopurinol does not improve short term outcome after severe birth asphyxia. Arch Dis Child Fetal Neonatal Ed. 2006;91(3):F163–165. doi:10.1136/adc.2005.086652.; Kaandorp JJ, van Bel F, Veen S, et al. Long-term neuroprotective effects of allopurinol after moderate perinatal asphyxia: follow-up of two randomised controlled trials. Arch Dis Child Fetal Neonatal Ed. 2012;97(3):F162–166. doi:10.1136/archdischild-2011-300356.; Juul SE, Ferriero DM. Pharmacologic neuroprotective strategies in neonatal brain injury. Clin Perinatol. 2014 Mar;41(1):119–131. doi:10.1016/j.clp.2013.09.004.; Kaandorp JJ, Benders MJ, Schuit E, et al. Maternal allopurinol administration during suspected fetal hypoxia: a novel neuroprotective intervention? A multicentre randomised placebo controlled trial. Arch Dis Child Fetal Neonatal Ed. 2015;100(3): F216–223. doi:10.1136/archdischild-2014-306769.; Torrance HL, Benders MJ, Derks JB, et al. Maternal allopurinol during fetal hypoxia lowers cord blood levels of the brain injury marker S100B. Pediatrics. 2009;124(1):350–357. doi:10.1542/peds.2008-2228.; Gunes T, Ozturk MA, Koklu E, et al. Effect of allopurinol sup plementation on nitric oxide levels in asphyxiated new borns. Pediatr Neurol. 2007;36(1):17–24. doi:10.1016/j.pediatrneurol.2006.08.005.; Lee TF, Tymafichuk CN, Bigam DL, Cheung PY. Effects of postresuscitation N- acetylcysteine on cerebral free radical production and perfusion during reoxygenation of hypoxic newborn piglets. Pediatr Res. 2008;64(3):256–261. doi:10.1203/pdr.0b013e31817cfcc0.; Aremu DA, Madejczyk MS, Ballatori N. N-acetylcysteine as a potential antidote and biomonitoring agent of methylmercury exposure. Environ Health Perspect. 2008;116(1):26– 31. doi:10.1289/ehp.10383.; Wang X, Svedin P, Nie C, et al. N-acetylcysteine reduces lipopolysaccharide-sensitized hypoxic-ischemic brain injury. Ann Neurol. 2007;61(3):263–271. doi:10.1002/ana.21066.; Jenkins DD, Wiest DB, Mulvihill DM, et al. Fetal and neonatal effects of n- acetylcysteine when used for neuroprotection in maternal chorioamnionitis. J Pediatr. 2016;168:67–76.e6. doi:10.1016/j.jpeds.2015.09.076.; Marzocchi B, Perrone S, Paffetti P, et al. Nonprotein-bound iron and plasma protein oxidative stress at birth. Pediatr Res. 2005;58(6):1295–1299. doi:10.1203/01.pdr.0000183658.17854.28.; Wayenberg JL, Ransy V, Vermeylen D, et al. Nitrated plasma albumin as a marker of nitrative stress and neonatal encephalopathy in perinatal asphyxia. Free Radic Biol Med. 2009;47(7): 975–982. doi:10.1016/j.freeradbiomed.2009.07.003.; Liu Y, Belayev L, Zhao W, et al. Neuroprotective effect of treatment with human albumin in permanent focal cerebral ischemia: histopathology and cortical perfusion studies. Eur J Pharmacol. 2001;428(2):193–201. doi:10.1016/s0014-2999(01)01255-9.; Ginsberg MD, Hill MD, Palesch YY, et al. The ALIAS Pilot Trial: a dose-escalation and safety study of albumin therapy for acute ischemic stroke I: Physiological responses and safety results. Stroke. 2006;37(8):2100–2106. doi:10.1161/01.str.0000231388.72646.05.; van Velthoven CT, Heijnen CJ, van Bel F, Kavelaars А. Osteopontin enhances endogenous repair after neonatal hypoxicischemic brain injury. Stroke. 2011;42(8):2294– 2301. doi:10.1161/strokeaha.110.608315.; Chen W, Ma Q, Suzuki H, et al. Osteopontin reduced hypoxiaischemia neonatal brain injury by suppression of apoptosis in a rat pup model. Stroke. 2011;42(3):764–769. doi:10.1161/strokeaha.110.599118.; Albertsson AM, Zhang X, Leavenworth J, et al. The effect of osteopontin and osteopontin-derived peptides on preterm brain injury. J Neuroinflammation. 2014;11:197. doi:10.1186/s12974-014-0197-0.; Bonestroo HJ, Nijboer CH, van Velthoven CT, et al. The neonatal brain is not protected by osteopontin peptide treatment after hypoxia-ischemia. Dev Neurosci. 2015;37(2):142– 152. doi:10.1159/000369093.; Fathali N, Khatibi NH, Ostrowski RP, Zhang JH. The evolving landscape of neuroinflammation after neonatal hypoxia-ischemia. In: Zhang J, Colohan A, editors. Intracerebral hemorrhage research. Acta Neurochirurgica Supplementum. V. 111. Vienna: Springer Vienna; 2011. p. 93–100. doi:10.1007/978-3-7091-0693-8_15.; Veldhuis WB, Floris S, van der Meide PH, et al. Interferonbeta prevents cytokine- induced neutrophil infiltration and attenuates blood-brain barrier disruption. J Cereb Blood Flow Metab. 2003;23(9): 1060–1069. doi:10.1097/01.wcb.0000080701.47016.24.; Inacio AR, Liu Y, Clausen BH, et al. Endogenous IFN- signaling exerts anti-inflammatory actions in experimentally induced focal cerebral ischemia. J Neuroinflammation. 2015;12:211. doi:10.1186/s12974-015-0427-0.; Maier CM, Yu F, Nishi T, et al. Interferon-beta fails to protect in a model of transient focal stroke. Stroke. 2006;37(4):1116–1119. doi:10.1161/01.str.0000208214.46093.d5.; Bogoyevitch MA, Boehm I, Oakley A, et al. Targeting the JNK MAPK cascade for inhibition: basic science and therapeutic potential. Biochim Biophys Acta. 2004;1697(1– 2):89–101. doi:10.1016/j.bbapap.2003.11.016.; Dhanasekaran DN, Reddy EP. JNK signaling in apoptosis. Oncogene. 2008;27(48):6245–6251. doi:10.1038/onc.2008.301.; Nijboer CH, Heijnen CJ, Groenendaal F, et al. Alternate pathways preserve tumor necrosis factor-alpha production after nuclear factor-kappa B inhibition in neonatal cerebral hypoxiaischemia. Stroke. 2009;40(10):3362–3368. doi:10.1161/strokeaha.109.560250.; Nijboer CH, Bonestroo HJ, Zijlstra J, et al. Mitochondrial JNK phosphorylation as a novel therapeutic target to inhibit neuroinflammation and apoptosis after neonatal ischemic brain damage. Neurobiol Dis. 2013;54:432–444. doi:10.1016/j.nbd.2013.01.017.; Noor JI, Ikeda T, Mishima K, et al. Short-term administration of a new free radical scavenger, Edaravone, is more effective than its long-term administration for the treatment of neonatal hypoxicischemic encephalopathy. Stroke. 2005;36(11):2468–2474. doi:10.1161/01.str.0000185653.49740.c6.; Takizawa Y, Miyazawa T, Nonoyama S, et al. Edaravone inhibits DNA peroxidation and neuronal cell death in neonatal hypoxicischemic encephalopathy model rat. Pediatr Res. 2009;65(6): 636–641. doi:10.1203/pdr.0b013e3181a16a9f.; Noor JI, Ueda Y, Ikeda T, Ikenoue T. Edaravone inhibits lipid peroxidation in neonatal hypoxic-ischemic rats: an in vivo microdialysis study. Neurosci Lett. 2007;414(1):5–9. doi:10.1016/j.neulet.2006.10.024.; Ni X, Yang ZJ, Carter EL, et al. Striatal neuroprotection from neonatal hypoxia-ischemia in piglets by antioxidant treatment with EUK-134 or Edaravone. Dev Neurosci. 2011;33(3– 4):299–311. doi:10.1159/000327243.; https://www.pedpharma.ru/jour/article/view/1464Test

  3. 3
    دورية أكاديمية

    المصدر: Pediatric pharmacology; Том 13, № 3 (2016); 259-269 ; Педиатрическая фармакология; Том 13, № 3 (2016); 259-269 ; 2500-3089 ; 1727-5776

    وصف الملف: application/pdf

    العلاقة: https://www.pedpharma.ru/jour/article/view/1425/798Test; Heinen F, Desloovere K, Schroeder AS, et al. The updated European Consensus 2009 on the use of Botulinum toxin for children with cerebral palsy. Eur J Paediatr Neurol. 2010;14(1): 45–66. doi:10.1016/j.ejpn.2009.09.005.; Molenaers G, Desloovere K, Fabry G, De Cock P. The effects of quantitative gait assessment and botulinum toxin A on musculoskeletal surgery in children with cerebral palsy. J Bone Joint Surg [Am]. 2006;88(1):161–170. doi:10.2106/jbjs.c.01497.; Novak I, McIntyre S, Morgan C, et al. A systematic review of interventions for children with cerebral palsy: state of the evidence. Dev Med Child Neurol. 2013;55(10):885–910. doi:10.1111/ dmcn.12246.; Кенис В.М. Эффективность использования препаратов бутолотоксина при коррекции динамической эквинусной и эквиноварусной деформации стопы у детей с гемипаретической формой церебрального паралича // Журнал неврологии и психиатрии им. С.С. Корсакова. — 2012. — Т. 112. — №7–2. —С. 29–33. [Kenis VM. Efficacy of botulinum toxin in the treatment of dynamic equinus and equinovarus foot deformities in children with hemiplegic cerebral palsy. Zh Nevrol Psikhiatr Im SS Korsakova. 2012;112(7–2):29–33. (In Russ).]; Simpson DM, Gracies JM, Graham HK, et al. Therapeutics and Technology Assessment Subcommittee of the American Academy of Neurology. Assessment: Botulinum neurotoxin for the treatment of spasticity (an evidence-based review): report of the Therapeutics and Technology Assessment Subcommittee of the American Academy of Neurology. Neurology. 2008;70(19):1691–1698. doi:10.1212/ 01.wnl.0000311391.00944.c4.; Delgado MR, Hirtz D, Aisen M, et al. Practice parameter: pharmacologic treatment of spasticity in children and adolescents with cerebral palsy (an evidence-based review): report of the Quality Standards Subcommittee of the American Academy of Neurology and; the Practice Committee of the Child Neurology Society. Neurology. 2010;74(4):336–343. doi:10.1212/wnl.0b013e3181cbcd2f.; Schroeder AS, Berweck S, Lee SH, Heinen F. Botulinum toxin treatment of children with cerebral palsy – a short review of different injection techniques. Neurotox Res. 2006;9(2– 3):189–96. Review. doi:10.1007/bf03033938.; Molenaers G, Van Campenhout A, Fagard K, et al. The use of botulinum toxin A in children with cerebral palsy, with a focus on the lower limb. J Child Orthop. 2010;4(3):183–195. doi:10.1007/ s11832-010-0246-x.; Куренков А.Л., Клочкова О.А., Каримова Х.М., и др. Выбор дозы препарата ботулинического токсина типа А при лечении спастических форм детского церебрального паралича // Журнал неврологии и психиатрии им. С.С. Корсакова. — 2015. — Т. 115. — №5–2. — С. 35—41. [Kurenkov AL, Klochkova OA, Karimova KhM, et al. Selection of a dose of the botulinum toxin A in spastic forms of cerebral palsy. Zh Nevrol Psikhiatr Im SS Korsakova. 2015;115(5–2):35–41. (In Russ).]; Клочкова О.А., Куренков А.Л., Каримова Х.М., и др. Опыт многоуровневых повторных инъекций ботулинического токсина типа А (Abobotulinum toxin A) при спастических формах детского церебрального паралича // Вестник РАМН. — 2014. — Т. 69. — №9–10. — С. 57—63. [Klochkova OA, Kurenkov AL, Karimova KM,et al. Clinical experience of the repeated multilevel injections of the botulinum toxin type A (abobotulinum toxin A) in the spastic forms of Cerebral palsy. Vestn Ross Akad Med Nauk. 2014;69(9–10):57– 63. (In Russ).] doi:10.15690/vramn.v69i9-10.1132.; Strobl W, Theologis T, Brunner R, et al. Best clinical practice in botulinum toxin treatment for children with cerebral palsy. Toxins (Basel). 2015;7(5):1629–1648. doi:10.3390/toxins7051629.; Куренков А.Л., Клочкова О.А., Бурсагова Б.И., и др. При менение препарата ботулинического токсина типа А (Ботокс) в лечении детского церебрального паралича // Нервно-мышечные болезни. — 2014. — №3. — С. 28—41. [Kurenkov AL, Klochkova OA, Bursagova BI, et al. Use of botulinum toxin type A (Botox) in the treatment of infantile cerebral palsy. Nervnomyshechnye bolezni. 2014;(3):28–41. (In Russ).]; Sakzewski L, Ziviani J, Boyd R. Systematic review and metaanalysis of therapeutic management of upper-limb dysfunction in children with congenital hemiplegia. Pediatrics. 2009;123(6): 1111–1122. doi:10.1542/peds.2008-3335.; Palisano R, Rosenbaum P, Walter S, et al. Development and reliability of a system to classify gross motor function in children with cerebral palsy. Dev Med Child Neurol. 1997;39(4):214–223. doi:10.1111/j.1469-8749.1997.tb07414.x.; Баранов А.А., Намазова-Баранова Л.С., Куренков А.Л., и др. Комплексная оценка двигательных функций у пациентов с детским церебральным параличом. Учебно- методическое пособие. Федеральное государственное бюджетное научное учреждение «Научный центр здоровья детей». — М.: ПедиатрЪ; 2014. 84 с. [Baranov AA, Namazova-Baranova LS, Kurenkov AL, et al. Kompleksnaya otsenka dvigatel’nykh funktsii u patsientov s detskim tserebral’nym paralichom. Uchebno-metodicheskoe posobie.; Federal’noe gosudarstvennoe byudzhetnoe nauchnoe uchrezhdenie «Nauchnyi tsentr zdorov’ya detei». Moscow: Pediatr, 2014. 84 p. (In Russ).]; Fehlings D, Novak I, Berweck S, et al. Botulinum toxin assessment, intervention and follow-up for paediatric upper limb hyperto - nicity: international consensus statement. Eur J Neurol. 2010;17 (Suppl. 2):38-56. doi:10.1111/j.1468-1331.2010.03127.x.; Love SC, Novak I, Kentish M, et al. Botulinum toxin assessment, intervention and after- care for lower limb spasticity in children with cerebral palsy: international consensus statement. Eur J Neurol. 2010;17(Suppl. 2):9-37. doi:10.1111/j.1468-1331.2010.03126.x.; Hoare BJ, Wallen MA, Imms C, et al. Botulinum toxin A as an adjunct to treatment in the management of the upper limb in children with spastic cerebral palsy (UPDATE). Cochrane Database Syst Rev. 2010;(1):CD003469. doi:10.1002/14651858.cd003469.pub4.; Berweck S, Kirschner J, Heinen F. Therapy with botulinum toxin. In: Paediatric Neurology. Theory and practice. Panteliadis CP, Korinthenberg R, editors. Stuttgart, New York: Thieme; 2005. P. 925–951.; Bakheit AM. Botulinum toxin in the management of childhood muscle spasticity: comparison of clinical practice of 17 treatment centers. Eur J Neurol. 2003;10(4):415-419. doi:10.1046/j.1468- 1331.2003.00619.x.; Pascual Pascual SI. Paralisis cerebral infantil: aspestos clinicos, clasificaciones y tratamientos. Madrid: EDICIONES MAYO, S.A.; 2012. 28 p.; Mall V, Heinen F, Siebel A, et al. Treatment of adductor spasticity with BTX-A in children with CP: a randomized, double-blind, placebocontrolled study. Dev Med Child Neurol. 2006;48(1):10-13. doi:10.1017/s0012162206000041.; rosminzdrav.ru [интернет]. Инструкция по медицинскому применению лекарственного препарата Диспорт [доступ от 13.06.2016]. Доступ по ссылке http://grls.rosminzdrav.ru/Grls_View_v2.aspx?idReg=27864&tTest=; https://www.pedpharma.ru/jour/article/view/1425Test

  4. 4
    دورية أكاديمية

    المصدر: Pediatric pharmacology; Том 12, № 4 (2015); 398-406 ; Педиатрическая фармакология; Том 12, № 4 (2015); 398-406 ; 2500-3089 ; 1727-5776

    العلاقة: Bax M., Goldstein M., Rosenbaum P., Leviton A., Paneth N., Dan B., Jacobsson B., Damiano D. Proposed definition and classifi ca tion of cerebral palsy. Dev Med Child Neurol. 2005; 47 (8): 571–576.; Johnson H., Scott A. Saliva Management. In Dysphagia: Foundation, Theory and Practice. Eds. Cichero J. A. Y., Murdoch B. F. Chichester: J Wiley & Sons, Ltd. 2006. 126 р.; Левицкий Г. Н., Алёхин А. В., Сердюк А. В., Моргунова М. С., Коне ва О. Н., Скворцова В. И. Возможности медикаментозной терапии слюнотечения при болезни двигательного нейрона. Журнал неврологии и психиатрии им. C. C. Корсакова. 2005; 105 (3): 19–22.; Blasco P. A., Allaire J. H. Drooling in the developmentally disabled: management practices and recommendations. Consortium on Drooling. Dev Med Child Neurol. 1992; 34 (10): 849–862.; Бер М., Фротшер М. Топический диагноз в неврологии по Петеру Дуусу: анатомия, физиология, клиника. Пер. с англ. Под ред. З. А. Суслиной. 4-е изд. М.: Практическая медицина. 2009. С. 163–164.; Scully C., Limeres J., Gleeson M., Tomas I., Diz P. Drooling. J Oral Pathol Med. 2009; 38 (4): 321–327.; Erasmus C. E., Van Hulst K., Rotteveel L. J., Jongerius P. H., Van Den Hoogen F. J., Roeleveld N., Rotteveel J. J. Drooling in cerebral palsy: hypersalivation or dysfunctional oral motor control? Dev Med Child Neurol. 2009; 51 (6): 454–459.; Tahmassebi J. F., Curzon M. E. The cause of drooling in children with cerebral palsy hypersalivation or swallowing defect? Int J Paediatr Dent. 2003; 13 (2): 106–111.; Dodds W. J. Physiology of swallowing. Dysphagia. 1989; 3: 171–178.; Senner J. E., Logemann J., Zecker S., Gaebler-Spira D. Drooling, saliva production, and swallowing in cerebral palsy. Dev Med Child Neurol. 2004; 46 (12): 801–806.; Tahmassebi J. F., Curzon M. E. Prevalence of drooling in children with cerebral palsy attending special schools. Dev Med Child Neurol. 2003; 45 (9): 613–617.; Parkes J., Hill N., Platt M. J., Donnelly C. Oromotor dysfunction and communication impairments in children with cerebral palsy: a register study. Dev Med Child Neurol. 2010; 52 (12): 1113–1119.; Lin Y. C., Shieh J. Y., Cheng M. L., Yang P. Y. Botulinum toxin type A for control of drooling in Asian patients with cerebral palsy. Neurology. 2008; 70 (4): 316–318.; Lakraj A. A., Moghimi N., Jabbari B. Sialorrhea: anatomy, pathophysiology and treatment with emphasis on the role of botulinum toxins. Toxins (Basel). 2013; 5 (5): 1010–1031.; Fairhurst C. B., Cockerill H. Management of drooling in children. Arch Dis Child Educ. Pract Ed. 2011; 96 (1): 25–30.; Клочкова О. А., Куренков А. Л., Намазова-Баранова Л. С., Мамедъяров А. М. Паттерны спастичности мышц верхних конечностей и применение ботулинотерапии у пациентов с детским церебральным параличом с поражением рук. Педиатрическая фармакология. 2013; 10 (5): 31–39.; Reddihough D., Erasmus C. E., Johnson H., McKellar G. M., Jon gerius P. H. Cereral Palsy Institute. Botulinum toxin assessment, intervention and aftercare for paediatric and adult drooling: international consensus statement. Eur J Neurol. 2010; 17 (Suppl. 2): 109–121.; Naumann M., So Y., Argoff C. E., Childers M. K., Dykstra D. D., Gronseth G. S., Jabbari B., Kaufmann H. C., Schurch B., Silber stein S. D., Simpson D. M. Botulinum neurotoxin in the treatment of autonomic disorders and pain (an evidence based review): report of the Therapeutics and Technology Assessment Subcommittee of the American Academy of Neurology. Neurology. 2008; 70 (19): 1707–1714.; Rodwell K., Edwards P., Ware R. S., Boyd R. Salivary gland botulinum toxin injections for drooling in children with cerebral palsy and neurodevelopmental disability: a systematic review. Dev Med Child Neurol. 2012; 54 (11): 977–987.; Naumann M., Dressler D., Hallett M., Jankovic J., Schiavo G., Segal K. R., Truong D. Evidence based review and assessment of botulinum neurotoxin for the treatment of secretory disorders. Toxicon. 2013; 67: 141–152.; Walshe M., Smith M., Pennington L. Interventions for drooling in children with cerebral palsy. Cochrane Database Syst Rev. 2012; 2: CD008624. Doi:10.1002/14651858.CD008624.pub2.; Носко А. С., Зыков В. П., Комарова И. Б. Коррекция сиалореи в нейропедиатрии. Фокус на препаратах ботулинического токсина типа А как метод первого ряда выбора. Детская и подростковая реабилитация. 2013; 2 (21): 33–38.; Palisano R., Rosenbaum P. L., Walter S., Russell D., Wood E., Galuppi B. Development and reliability of a system to classify gross motor function in children with cerebral palsy. Dev Med Child Neurol. 1997; 39 (4): 214–223.; Reid S. M., Johnson H. M., Reddihough D. S. The Drooling Impact Scale: a measure of the impact of drooling in children with developmental disabilities. Dev Med Child Neurol. 2010; 52 (2): 23–28.; Reid S. M., Johnstone B. R., Westbury C., Rawicki B., Reddihough D. S. Randomized trial of botulinum toxin injections into the salivary glands to reduce drooling in children with neurological disorders. Dev Med Child Neurol. 2008; 50 (2):123–128.; Banerjee K. J., Glasson C., O’Flaherty S. J. Parotid and submandibular botulinum toxin A injections for sialorrhoea in children with cerebral palsy. Dev Med Child Neurol. 2006; 48 (11): 883–887.; Savarese R., Diamond M., Elovic E., Millis S. R. Intraparotid injection of botulinum toxin A as a treatment to control sialorrhea in children with cerebral palsy. Am J Phys Med Rehabil. 2004; 83 (4): 304–311.; Alrefai A. H., Aburahma S. K., Khader Y. S. Treatment of sialorrhea in children with cerebral palsy: a double blind placebo controlled trial. Clin Neurol Neurosurg. 2009; 111 (1): 79–82.; Lagalla G., Millevolte M., Capecci M., Provinciali L., Cera volo M. G. Botulinum toxin type A for drooling in Parkinson’s disease: a double blind, randomized, placebo controlled study. Mov Disord. 2006; 21 (5): 704–707.; Kalf J. G., Smit A. M., Bloem B. R., Zwarts M. J., Mulleners W. M., Munneke M. Botulinum toxin A for drooling in Parkinson’s disease: a pilot study to compare submandibular to parotid gland injections. Parkinsonism Relat Disord. 2007; 13 (8): 532–534.; Jongerius P. H., van den Hoogen F. J., van Limbeek J., Gabreels F. J., van Hulst K., Rotteveel J. J. Effect of botulinum toxin in the treatment of drooling: a controlled clinical trial. Pediatrics. 2004; 114 (3): 620–627.; Harris S. R., Purdy A. H. Drooling and its management in cerebral palsy. Dev Med Child Neurol. 1987; 29 (6): 807–811.; Erasmus C. E., Scheffer A. R., van Hulst K., van Limbeek J., van den Hoogen F. J., Rotteveel J. J., Jongerius P. H. Does motor perfor mance matter in botulinum toxin efficacy for drooling? Pediatr Neurol. 2011; 45 (2): 95–99.; https://www.pedpharma.ru/jour/article/view/508Test

  5. 5
    دورية أكاديمية

    المصدر: Neuromuscular Diseases; № 1 (2014); 54-61 ; Нервно-мышечные болезни; № 1 (2014); 54-61 ; 2413-0443 ; 2222-8721 ; 10.17650/2222-8721-2014-0-1

    وصف الملف: application/pdf

    العلاقة: https://nmb.abvpress.ru/jour/article/view/12/8Test; Толстова В.Д., Капранов Н.И. Муковисцидоз: современные аспекты диагностики и лечения. Педиатр фармакол 2006;3(4):50–5.; Толстова В.Д., Каширская Н.Ю., Капранов Н.И. Массовый скрининг новорожденных на муковисцидоз в России. Фарматека 2008;1:38–44.; Красовский С.А., Самойленко В.А., Амелина Е.Л. Муковисцидоз: диагностика, клиника, основные принципы терапии. Атмосфера. Пульмонол и аллергол 2013;1: 42–6.; Петров А., Лаудж Д., Васецкий Е. Генетика и эпигенетика лице-лопаточно-бедренной прогрессирующей мышечной дистрофии Ландузи–Дежерина. Генетика 2003;39(2):202–206 .; Кириллова Л.Г., Шевченко А.А., Яковлева С.М. и др. Лице-лопаточно-плечевая миодистрофия Ландузи–Дежерина в клинике нейропедиатрии. Здоровье ребенка 2011;1:124–8.; Morton N.E., Chung C.S. Formal genetics of muscular dystrophy. Am J Hum Genet 1959;11:360–79.; Landouzy L., Dejerine J. De la myopathie atrophique progressiove (myopathie hereditaire debutant dans l'enfance par la face, sans alteration des systèmes nerveux. CR Acad Sei 1884;98:53–5.; Duchenne G.-B. Album de photographies pathologiques complementaire de liver initule de l'electrisation localisee. Paris: J.-B. Bailliere (pub.), 1862.; Руденко Д.И. Взаимосвязь лице-плечевой и лице-лопаточно-перонеальной мышечных дистрофий, сцепленных с хромосомой 4q35 (история, клиника, генетика и дифференциальная диагностика): автореф. дис. . д-ра мед. наук. СПб., 2009. 42 с.; Zeng W., de Greef J.C., Chen Y.-Y. et al. Specific loss of histone H3 lysine 9 trimethylation and HP1-gamma/cohesin binding at D4Z4 repeats is associated with facioscapulohumeral dystrophy (FSHD). PLoS Genet. 5: e1000559, 2009.; Mostacciuolo M.L., Pastorello E., Vazza G. et al. Facioscapulohumeral muscular dystrophy: epidemiological and molecular study in a north-east Italian population sample. Clin Genet 2009;75:550–5.; Zatz M., Marie S.K., Passos-Bueno M.R. et al. High proportion of new mutations and possible anticipation in Brazilian facioscapulohumeral muscular dystrophy families. Am J Hum Genet 1995;56:99–105.; Pou A., Munoz J.A., Cano A. et al. Phenotype-genotype correlations studies in facioscapulohumeral muscular dystrophy. Acta Myol 1999;III:95.; Lunt P.W., Jardine P.E., Koch M. et al. Phenotype-genotype correlation will assist genetic counseling in 4q35-facioscapulohumeral muscular dystrophy. Muscle Nerve 1995a; Suppl 2:103–9.; Tawil R., Forrester J., Griggs R.C. et al. Evidence for anticipation and association of deletion size with severity in facioscapulohumeral muscular dystrophy. Ann Neurol 1996;39:744–8.; Ricci E., Galuzzi G., Deidda G. et al. Progress in the molecular diagnosis of facioscapulohumeral muscular dystrophy and correlation between the number of Kpnl repeats at the 4q35 locus and clinical phenotype. Ann Neurol 1999;45:751–7.; Tonini M.M.O., Pavanello R.C.M., Gurgel-Giannetti J. et al. Homozygosity for autosomal dominant facioscapulohumeral muscular dystrophy (FSHD) does not result in a more severe phe-notype. J Med Genet 2004; 41:17.; Sposito Rt., Pasquali L., Galluzzi F. et al. Facioscapulohumeral muscular dystrophy type 1A in northwestern Tuscany: a molecular genetics based epidemiological and genotypephenotype study. Genet Test 2005;9:30–6.; van der Maarel S.M., Deidda G., Lemmers R.J.L.F. De novo facioscapulohumeral muscular dystrophy: frequent somatic mosaicism, sex-dependent phenotype, and the role of mitotic transchromosomal repeat interaction between chromosomes 4 and 10. Am J Hum Genet 2000;66:26–35.; Lemmers R.J.L.F., van der Wielen M.J.R., Bakker E. et al. Somatic mosaicism in FSHD often goes undetected. Ann Neurol 2004;55:845–50.; Slipetz D.M., Aprille J.R., Goodyer P.R., Rozen R. Deficiency of complex III of the mitochondrial respiratory chain in a patient with facioscapulohumeral disease. Am J Hum Genet 1991;48:502–10.; Reed P., Porter N. C., Strong J. et al. Sarcolemmal reorganization in facioscapulohumeral muscular dystrophy. Ann Neurol 2006;59:289–97.; Awerbuch G.I., Nigro M.A., Wishnow R. Beevor's sign and facioscapulohumeral dystrophy. Arch Neurol 1990;47:1208–9.; Wohlgemuth M., de Swart B.J.M., Kalf J.G. et al. Dysphagia in facioscapulohumeral muscular dystrophy. Neurology 2006;66:1926–8.; Justin-Besancon L., Pequignot H., Contamin F. et al. Myopathie du type Landouzy- Dejerine. Rapport d'une observation historique. Sem Hop. Paris, 1964;40:2990–9.; Yamanaka G., Goto K., Matsumura T. et al. Tongue atrophy in facioscapulohumeral muscular dystrophy. Neurology 2001;57:733–5.; Reardon W., Temple I.K., Harwood G., Baraitser M. Atypical facio-scapulo-humeral muscular dystrophy – a counselling dilemma. Clin Genet 1991;39:172–7.; Small R.G. Coats' disease and muscular dystrophy. Trans Am Acad Ophthal Otolaryng 1968;72:225–31.; Meyerson M.D., Lewis E., Ill K. Facioscapulohumeral muscular dystrophy and accompanying hearing loss. Arch Otolaryng 1984;110:261–6.; Fitzsimons R.B., Gurwin E.B., Bird A.C. Retinal vascular abnormalities in facioscapulohumeral muscular dystrophy: a general association with genetic and therapeutic implications. Brain 1987;110:631–48.; Voit T., Lamprecht A., Lenard H.G., Goebel H. H. Hearing loss in facioscapulohumeral dystrophy. Europ J Pediat 1986;145:280–5.; Brouwer O.F., Padberg G.W., Ruys C.J.M. et al. Hearing loss in facioscapulohumeral muscular dystrophy. Neurology 1991;41:1878–81.; Padberg G.W., Brouwer O.F., de Keizer R.J.W. et al. Retinal vascular disease and sensorineural deafness are part of facioscapulohumeral muscular dystrophy (abstr). Am J Hum Genet 1992;51 (suppl):104.; Shields C.L., Zahler J., Falk N. et al. Neovascular glaucoma from advanced Coats disease as the initial manifestation of facioscapulohumeral dystrophy in a 2-year-old child. Arch Ophthal 2007;125:840–2.; Matsuzaka T., Sakuragawa N., Terasawa K., Kuwabara H. Facioscapulohumeral dystrophy associated with mental retardation, hearing loss, and tortuosity of retinal arterioles. J Child Neurol 1986;1:218–23.; Shen E.N., Madsen T. Facioscapulohumeral muscular dystrophy and recurrent pacemaker lead dislodgment. Am Heart J 1991;122:1167–9.; Miura K., Kumagai T., Matsumoto A. et al. Two cases of chromosome 4q35-linked early onset facioscapulohumeral muscular dystrophy with mental retardation and epilepsy. Neuropediatrics 1998;29:239–41.; Zatz M., Marie S.K., Cerqueira A. et al. The facioscapulohumeral muscular dystrophy (FSHD1) gene affects males more severely and more frequently than females. Am J Med Genet 1998;77:155–61.; Krasnianski M., Eger K., Neudecker S. et al. Atypical phenotypes in patients with facioscapulohumeral muscular dystrophy 4q35 deletion. Arch Neurol 2003;60:1421–5.; Tupler R., Barbierato L., Memmi M. et al. Identical de novo mutation at the D4F104S1 locus in monozygotic male twins affected by facioscapulohumeral muscular dystrophy (FSHD) with different clinical expression. J Med Genet 1998;35:778–83.; Bodensteiner J.B., Schochet S.S. Facioscapulohumeral muscular dystrophy: the choice of a biopsy site. Muscle Nerve 1986;9:544–7.; Richards M., Coppee F., Thomas N. et al. Facioscapulohumeral muscular dystrophy (FSHD): an enigma unravelled? Hum Genet 2012;131:325–40.; https://nmb.abvpress.ru/jour/article/view/12Test