يعرض 1 - 5 نتائج من 5 نتيجة بحث عن '"Татьяна Владимировна Глушкова"', وقت الاستعلام: 1.20s تنقيح النتائج
  1. 1
    دورية أكاديمية

    المساهمون: The reported study was funded by RFBR and BRFBR, project number 20-53-04032., Исследование выполнено при финансовой поддержке РФФИ в рамках научного проекта № 20-53-04032.

    المصدر: Complex Issues of Cardiovascular Diseases; Том 12, № 4S (2023); 90-101 ; Комплексные проблемы сердечно-сосудистых заболеваний; Том 12, № 4S (2023); 90-101 ; 2587-9537 ; 2306-1278

    وصف الملف: application/pdf

    العلاقة: https://www.nii-kpssz.com/jour/article/view/1444/868Test; Teo A.J.T., Mishra A., Park I., Kim Y.-J., Park W.-T., Yoon Y.-J. Polymeric Biomaterials for Medical Implants and Devices. ACS Biomater. Sci. Eng. 2016; 2(4): 454–472. doi:10.1021/acsbiomaterials.5b00429; Tetali S.S.V., Fricker A.T.R., van Domburg Y.A., Roy I. Intelligent biomaterials for cardiovascular applications. Curr. Opin. Biomed. Eng. 2023; 28: 100474. doi:10.1016/j.cobme.2023.100474; Huab X., Wangab T., Li F., Mao X. Surface modifications of biomaterials in different applied fields. RSC Adv. 2023; 13: 20495-20511. doi:10.1039/D3RA02248J; Narayan R. Nanobiomaterials; Woodhead Publishing: Cambridge, UK; 2018. pp. 357–384.; Shahbaz A., Hussain N., Mahmood T., Iqbal H.M.N., Emran T.B., Show P.L., Bilal M. Polymer nanocomposites for biomedical applications. In Micro and Nano Technologies, Smart Polymer Nanocomposites Design, Synthesis, Functionalization, Properties, and Applications. Editor(s): Ali N., Bilal M., Khan A., Nguyen T.A., Gupta R.K. Elsevier; 2023. pp. 379-394. doi:10.1016/B978-0-323-91611-0.00012-8; Maiti D., Tong X., Mou X., Yang K. Carbon-Based Nanomaterials for Biomedical Applications: A Recent Study. Front. Pharmacol. 2019; 9: 1401. doi:10.3389/fphar.2018.01401; Eatemadi A., Daraee H., Karimkhanloo H., Kouhi M., Zarghami N., Akbarzadeh A., Abasi M., Hanifehpour Y., Joo S.W. Carbon nanotubes: Properties, synthesis, purification, and medical applications. Nanoscale Res. Lett. 2014; 9: 393. doi:10.1186/1556-276X-9-393; Kalakonda P., Banne S., Kalakonda P. Enhanced mechanical properties of multiwalled carbon nanotubes/thermoplastic polyurethane nanocomposites. Nanomater. Nanotechnol. 2019; 9: 184798041984085. doi: 1847980419840858; Crosby A.J., Lee J. Polymer Nanocomposites: The “Nano” Effect on Mechanical Properties. Polym. Rev. 2007; 47(2): 217–229. doi:10.1080/15583720701271278; Tjong S.C. Structural and mechanical properties of polymer nanocomposites. Mater. Sci. Eng. R Rep. 2006; 53(3-4): 73–197. doi:10.1016/j.mser.2006.06.001; Jumaili A., Alancherry S., Bazaka K., Jacob M. Review on the Antimicrobial Properties of Carbon Nanostructures. Materials. 2017; 10(9): 1066. doi:10.3390/ma10091066; Mohd Nurazzi N., Asyraf M.R.M., Khalina A., Abdullah N., Sabaruddin F.A., Kamarudin S.H., Ahmad S., Mahat A.M., Lee C.L., Aisyah H.A. Fabrication, Functionalization, and Application of Carbon Nanotube-Reinforced Polymer Composite: An Overview. Polymers. 2021; 13(7): 1047. doi:10.3390/polym13071047; Alshehri R., Ilyas A.M., Hasan A., Arnaout A., Ahmed F., Memic A. Carbon Nanotubes in Biomedical Applications: Factors, Mechanisms, and Remedies of Toxicity. J. Med. Chem. 2016; 59(18): 8149–8167. doi:10.1021/acs.jmedchem.5b01770; Mishra M.K., Sar-Mishra B., Kennedy J.P. Polym. Bull. 1986; 16: 47-53. doi:10.1007/BF01046608; Rezvova M.A., Yuzhalin A.E., Glushkova T.V., Makarevich M.I., Nikishau P.A., Kostjuk S.V., Klyshnikov K.Yu., Matveeva V.G., Khanova M.Yu., Ovcharenko E.A. Biocompatible Nanocomposites Based on Poly(styrene-block-isobutylene-block-styrene) and Carbon Nanotubes for Biomedical Application. Polymers. 2020; 12(9): 2158. doi:10.3390/polym12092158; Pinchuk L., Wilson G.J., Barry J.J., Schoephoerster R.T., Parel J.M., Kennedy J.P. Medical applications of poly(styrene-block-isobutylene-block-styrene) (“SIBS”). Biomaterials. 2008; 29(4): 448–460. doi:10.1016/j.biomaterials.2007.09.041; Silva M., Alves N.M., Paiva, M.C. Graphene-polymer nanocomposites for biomedical applications. Polym. Adv. Technol. 2017; 29(2): 687–700. doi:10.1002/pat.4164; Gilmore K.J., Moulton S.E., Wallace G.G. Incorporation of carbon nanotubes into the biomedical polymer poly(styrene-β-isobutylene-β-styrene). Carbon. 2007; 45(2): 402–410. doi:10.1016/j.carbon.2006.09.015; Nezami R.F., Athanasiou L.S., Edelman E.R. Chapter 28 - Endovascular drug-delivery and drug-elution systems, Editor(s): Jacques Ohayon, Gerard Finet, Roderic Ivan Pettigrew, In Biomechanics of Living Organs, Biomechanics of Coronary Atherosclerotic Plaque, Academic Press. 2021; 4: 595-631.; Salah N., Alfawzan A.M., Saeed A., Alshahrie A., Allafi W. Effective reinforcements for thermoplastics based on carbon nanotubes of oil fly ash. Sci. Rep. 2019; 9: 20288. doi:10.1038/s41598-019-56777-1.; Zhang J., Jiang D. Interconnected multi-walled carbon nanotubes reinforced polymer-matrix composites. Composites Science and Technology. 2011; 71(4): 466–470. doi:10.1016/j.compscitech.2010.12.020.; Gaharwar A.K., Patel A., Dolatshahi-Pirouz A., Zhang H., Rangarajan K., Iviglia, G., Shin S.-R., Hussain M.A., Khademhosseini A. Elastomeric nanocomposite scaffolds made from poly(glycerol sebacate) chemically crosslinked with carbon nanotubes. Biomater. Sci. 2015; 3: 46–58.; https://www.nii-kpssz.com/jour/article/view/1444Test

  2. 2
    دورية أكاديمية

    المساهمون: Работа выполнена в рамках комплексной программы фундаментальных научных исследований СО РАН по фундаментальной теме НИИ КПССЗ № 0419-2022-0001 «Молекулярные, клеточные и биомеханические механизмы патогенеза сердечно-сосудистых заболеваний в разработке новых методов лечения заболеваний сердечно-сосудистой системы на основе персонифицированной фармакотерапии, внедрения малоинвазивных медицинских изделий, биоматериалов и тканеинженерных имплантатов».

    المصدر: Complex Issues of Cardiovascular Diseases; Том 12, № 4S (2023); 196-205 ; Комплексные проблемы сердечно-сосудистых заболеваний; Том 12, № 4S (2023); 196-205 ; 2587-9537 ; 2306-1278

    وصف الملف: application/pdf

    العلاقة: https://www.nii-kpssz.com/jour/article/view/1082/857Test; https://www.nii-kpssz.com/jour/article/downloadSuppFile/1082/926Test; https://www.nii-kpssz.com/jour/article/downloadSuppFile/1082/927Test; https://www.nii-kpssz.com/jour/article/downloadSuppFile/1082/928Test; Otto C.M., Nishimura R.A., Bonow R.O., Carabello B.A., Erwin J.P. 3rd, Gentile F., Jneid H., Krieger E.V., Mack M., McLeod C., O'Gara P.T., Rigolin V.H., Sundt T.M. 3rd, Thompson A., Toly C. 2020 ACC/AHA Guideline for the management of patients with valvular heart disease: a report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines. Circulation. 2021; 143(5):e72-e227. doi:10.1161/CIR.0000000000000923; Бокерия Л.А., Милиевская Е.Б., Куздоева З.Ф., Прянишникова В.В. Сердечно-сосудистая хирургия – 2017. Болезни и врождённые аномалии системы кровообращения. М.; 2018. 252с.; Bax J.J., Delgado V. Bioprosthetic heart valves, thrombosis, anticoagulation, and imaging surveillance. JACC Cardiovasc. Interv. 2017; 10(4): 388-390. doi:10.1016/j.jcin.2017.01.017; Manji R.A., Lee W., Cooper D.K.C. Xenograft bioprosthetic heart valves: past, present and future. Int. J. Surg. 2015; 23(Pt B):280-284. doi:10.1016/j.ijsu.2015.07.009; Dvir D., Bourguignon T., Otto C.M., Hahn R.T., Rosenhek R., Webb J.G. et al. Standardized definition of structural valve degeneration for surgical and transcatheter bioprosthetic aortic valves. Circulation. 2018; 137(4):388-399. doi:10.1161/CIRCULATIONAHA.117.030729; Барбараш Л.С., Журавлева И.Ю. Эволюция биопротезов клапанов сердца: достижения и проблемы двух десятилетий. Комплексные проблемы сердечно-сосудистых заболеваний. 2012; (1):4-11. doi:10.17802/2306-1278-2012-1-4-11; Schoen F.J., Levy R.J. Calcification of tissue heart valve substitutes: progress toward understanding and prevention. Ann. Thorac. Surg. 2005; 79(3):1072-1080. doi:10.1016/j.athoracsur.2004.06.033; Rodriguez-Gabella T., Voisine P., Puri R., Pibarot P., Rodés-Cabau J. Aortic bioprosthetic valve durability: incidence, mechanisms, predictors, and management of surgical and transcatheter valve degeneration. J. Am. Coll. Cardiol. 2017; 70(8):1013-1028. doi:10.1016/j.jacc.2017.07.715; Lisy M., Kalender G., Schenke-Layland K., Brockbank K.G., Biermann A., Stock U.A. Allograft heart valves: current aspects and future applications. Biopreserv. Biobank. 2017; 15(2):148-157. doi:10.1089/bio.2016.0070; Fiala R., Kochova P., Kubíkova T., Cimrman R., Tonar Z., Spatenka J., Fabián O., Burkert J. Mechanical and structural properties of human aortic and pulmonary allografts do not deteriorate in the first 10 years of cryopreservation and storage in nitrogen. Cell Tissue Bank. 2019; 20(2):221-241. doi:10.1007/s10561-019-09762-x; Mazine A., El-Hamamsy I., Verma S., Peterson M.D., Bonow R.O., Yacoub M.H., David T.E., Bhatt D.L. Ross procedure in adults for cardiologists and cardiac surgeons: JACC state-of-the-art review. J. Am. Coll. Cardiol. 2018; 72(22):2761-2777. doi:10.1016/j.jacc.2018.08.2200; Naso F., Gandaglia A., Bottio T., Tarzia V., Nottle M.B., d'Apice A.J., Cowan P.J., Cozzi E., Galli C., Lagutina I., Lazzari G., Iop L., Spina M., Gerosa G. First quantification of alpha-Gal epitope in current glutaraldehyde-fixed heart valve bioprostheses. Xenotransplantation. 2013; 20(4):252-261. doi:10.1111/xen.12044; Reuven E.M., Leviatan Ben-Arye S., Marshanski T., Breimer M.E., Yu H., Fellah-Hebia I., Roussel J.C., Costa C., Galiñanes M., Mañez R., Le Tourneau T., Soulillou J.P., Cozzi E., Chen X., Padler-Karavani V. Characterization of immunogenic Neu5Gc in bioprosthetic heart valves. Xenotransplantation. 2016; 23(5):381-92. doi:10.1111/xen.12260; Barone A., Benktander J., Whiddon C., Jin C., Galli C., Teneberg S., Breimer M. Glycosphingolipids of porcine, bovine, and equine pericardia as potential immune targets in bioprosthetic heart valve grafts. Xenotransplantation. 2018; 25(5):e12406. doi:10.1111/xen.12406; Galili U. Anti-Gal: an abundant human natural antibody of multiple pathogeneses and clinical benefits. Immunology. 2013; 140(1):1-11. doi:10.1111/imm.12110; Taylor R.E., Gregg C.J., Padler-Karavani V., Ghaderi D., Yu H., Huang S., Sorensen R.U., Chen X., Inostroza J., Nizet V., Varki A. Novel mechanism for the generation of human xeno-autoantibodies against the nonhuman sialic acid N-glycolylneuraminic acid. J. Exp. Med. 2010; 207(8):1637-1646. doi:10.1084/jem.20100575; Lu T., Yang B., Wang R., Qin C. Xenotransplantation: current status in preclinical research. Front. Immunol. 2020; 10:3060. doi:10.3389/fimmu.2019.03060; Böer U., Buettner F.F.R., Schridde A., Klingenberg M., Sarikouch S., Haverich A., Wilhelmi M. Antibody formation towards porcine tissue in patients implanted with crosslinked heart valves is directed to antigenic tissue proteins and αGal epitopes and is reduced in healthy vegetarian subjects. Xenotransplantation. 2017; 24(2). doi:10.1111/xen.12288; Gates K.V., Xing Q., Griffiths L.G. Immunoproteomic identification of noncarbohydrate antigens eliciting graft-specific adaptive immune responses in patients with bovine pericardial bioprosthetic heart valves. Proteomics Clin. Appl. 2019; 13(4):e1800129. doi:10.1002/prca.201800129; Manji R.A., Ekser B., Menkis A.H., Cooper D.K.C. Bioprosthetic heart valves of the future. Xenotransplantation. 2014; 21(1):1-10. doi:10.1111/xen.12080; Nair V., Law K.B., Li A.Y., Phillips K.R., David T.E., Butany J. Characterizing the inflammatory reaction in explanted Medtronic Freestyle stentless porcine aortic bioprosthesis over a 6-year period. Cardiovasc. Pathol. 2012; 21(3):158-168. doi:10.1016/j.carpath.2011.05.003; Sakaue T., Nakaoka H., Shikata F., Aono J., Kurata M., Uetani T,. Hamaguchi M., Kojima A., Uchita S., Yasugi T., Higashi H., Suzuki J., Ikeda S, Higaki J., Higashiyama S., Izutani H. Biochemical and histological evidence of deteriorated bioprosthetic valve leaflets: the accumulation of fibrinogen and plasminogen. Biol. Open. 2018; 7(8):pii:bio034009. doi:10.1242/bio.034009; Shetty R., Pibarot P., Audet A., Janvier R., Dagenais F., Perron J., Couture C., Voisine P., Després J.P., Mathieu P. Lipid-mediated inflammation and degeneration of bioprosthetic heart valves. Eur. J. Clin. Invest. 2009; 39(6):471-480. doi:10.1111/j.1365-2362.2009.02132.x; Simionescu A., Simionescu D.T., Deac R.F. Matrix metalloproteinases in the pathology of natural and bioprosthetic cardiac valves. Cardiovasc. Pathol. 1996; 5(6):323-332.; Fournier P.E., Thuny F., Grisoli D., Lepidi H., Vitte J., Casalta J.P., Weiller P.J., Habib G., Raoult D. A deadly aversion to pork. Lancet. 2011; 377(9776):1542. doi:10.1016/S0140-6736(11)60021-4; Hoekstra F., Knoop C., Vaessen L., Wassenaar C., Jutte N., Bos E., Bogers A., Weimar W. Donor-specific cellular immune response against human cardiac valve allografts. J. Thorac. Cardiovasc. Surg. 1996; 112(2):281-286. doi:10.1016/S0022-5223(96)70250-7; Kneib C., von Glehn C.Q., Costa F.D., Costa M.T., Susin M.F. Evaluation of humoral immune response to donor HLA after implantation of cellularized versus decellularized human heart valve allografts. Tissue Antigens. 2012; 80(2):165-174. doi:10.1111/j.1399-0039.2012.01885.x; Dignan R., O'Brien M., Hogan P., Passage J., Stephens F., Thornton A., Harrocks S. Influence of HLA matching and associated factors on aortic valve homograft function. J. Heart Valve Dis. 2000; 9(4):504-511.; Saleem N., Das R., Tambur A.R. Molecular histocompatibility beyond tears: the next generation version. Hum Immunol. 2022; 83(3):233-240. doi:10.1016/j.humimm.2021.12.005; Lee W., Long C., Ramsoondar J., Ayares D., Cooper D.K., Manji R.A., Hara H. Human antibody recognition of xenogeneic antigens (NeuGc and Gal) on porcine heart valves: could genetically modified pig heart valves reduce structural valve deterioration? Xenotransplantation. 2016; 23(5):370-380. doi:10.1111/xen.12254; Perota A., Lagutina I., Duchi R., Zanfrini E., Lazzari G., Judor J.P., Conchon S., Bach J.M., Bottio T., Gerosa G., Costa C., Galiñanes M., Roussel J.C., Padler-Karavani V., Cozzi E., Soulillou J.P., Galli C. Generation of cattle knockout for galactose-α1,3-galactose and N-glycolylneuraminic acid antigens. Xenotransplantation. 2019; 26(5):e12524. doi:10.1111/xen.12524; Adams A.B., Kim S.C., Martens G.R., Ladowski J.M., Estrada J.L., Reyes L.M., Breeden C., Stephenson A., Eckhoff D.E., Tector M., Tector A.J. Xenoantigen deletion and chemical immunosuppression can prolong renal xenograft survival. Ann Surg. 2018; 268(4):564-573. doi:10.1097/SLA.0000000000002977; Längin M., Mayr T., Reichart B., Michel S., Buchholz S., Guethoff S. et al. Consistent success in life-supporting porcine cardiac xenotransplantation. Nature. 2018; 564(7736):430-433. doi:10.1038/s41586-018-0765-z; Kuwaki K., Tseng Y.L., Dor F.J., Shimizu A., Houser S.L., Sanderson T.M., Lancos C.J., Prabharasuth D.D., Cheng J., Moran K., Hisashi Y., Mueller N., Yamada K., Greenstein J.L., Hawley R.J., Patience C., Awwad M., Fishman J.A., Robson S.C., Schuurman H.J., Sachs D.H., Cooper D.K. Heart transplantation in baboons using alpha1,3-galactosyltransferase gene-knockout pigs as donors: initial experience. Nat. Med. 2005; 11(1):29-31. doi:10.1038/nm1171; Reardon S. First pig-to-human heart transplant: what can scientists learn? Nature. 2022; 601(7893):305-306. doi:10.1038/d41586-022-00111-9; Zhang R., Wang Y., Chen L., Wang R., Li C., Li X., Fang B., Ren X., Ruan M., Liu J., Xiong Q., Zhang L., Jin Y., Zhang M., Liu X., Li L., Chen Q., Pan D., Li R., Cooper D.K.C., Yang H., Dai Y. Reducing immunoreactivity of porcine bioprosthetic heart valves by genetically-deleting three major glycan antigens, GGTA1/β4GalNT2/CMAH. Acta Biomater. 2018; 72:196-205. doi:10.1016/j.actbio.2018.03.055; McGregor C.G., Kogelberg H., Vlasin M., Byrne G.W. Gal-knockout bioprostheses exhibit less immune stimulation compared to standard biological heart valves. J. Heart Valve Dis. 2013; 22(3):383-390.; McGregor C., Byrne G., Rahmani B., Chisari E., Kyriakopoulou K., Burriesci G. Physical equivalency of wild type and galactose α 1,3 galactose free porcine pericardium; a new source material for bioprosthetic heart valves. Acta Biomater. 2016; 41:204-209. doi:10.1016/j.actbio.2016.06.007; Rahmani B., McGregor C., Byrne G., Burriesci G. A durable porcine pericardial surgical bioprosthetic heart valve: a proof of concept. J. Cardiovasc. Transl. Res. 2019; 12(4):331-337. doi:10.1007/s12265-019-09868-3; Crapo P.M., Gilbert T.W., Badylak S.F. An overview of tissue and whole organ decellularization processes. Biomaterials. 2011; 32(12):3233-3243. doi:10.1016/j.biomaterials.2011.01.057; Kim M.S., Lim H.G., Kim Y.J. Calcification of decellularized and alpha-galactosidase-treated bovine pericardial tissue in an alpha-Gal knock-out mouse implantation model: comparison with primate pericardial tissue. Eur. J. Cardiothorac. Surg. 2016; 49(3):894-900. doi:10.1093/ejcts/ezv189; Helder M.R.K., Stoyles N.J., Tefft B.J., Hennessy R.S., Hennessy R.R.C., Dyer R., Witt T., Simari R.D., Lerman A. Xenoantigenicity of porcine decellularized valves. J. Cardiothorac. Surg. 2017; 12(1):56. doi:10.1186/s13019-017-0621-5; Heuschkel M.A., Leitolis A., Roderjan J.G., Suss P.H., Luzia C.A.O., da Costa F.D.A., Correa A., Stimamiglio M.A. In vitro evaluation of bovine pericardium after a soft decellularization approach for use in tissue engineering. Xenotransplantation. 2019; 26(2):e12464. doi:10.1111/xen.12464; Wu L.C., Kuo Y.J., Sun F.W., Chen C.H., Chiang C.J., Weng P.W., Tsuang Y.H., Huang Y.Y. Optimized decellularization protocol including α-Gal epitope reduction for fabrication of an acellular porcine annulus fibrosus scaffold. Cell Tissue Bank. 2017; 18(3):383-396. doi:10.1007/s10561-017-9619-4; Bloch O., Golde P., Dohmen P.M., Posner S., Konertz W., Erdbrügger W. Immune response in patients receiving a bioprosthetic heart valve: lack of response with decellularized valves. Tissue Eng. Part A. 2011; 17(19-20):2399-405. doi:10.1089/ten.TEA.2011.0046; Bibevski S., Ruzmetov M., Fortuna R.S., Turrentine M.W., Brown J.W., Ohye R.G. Performance of SynerGraft decellularized pulmonary allografts compared with standard cryopreserved allografts: results from multiinstitutional data. Ann. Thorac. Surg. 2017; 103(3):869-874. doi:10.1016/j.athoracsur.2016.07.068; Sarikouch S., Horke A., Tudorache I., Beerbaum P., Westhoff-Bleck M., Boethig D., Repin O., Maniuc L., Ciubotaru A., Haverich A., Cebotari S. Decellularized fresh homografts for pulmonary valve replacement: a decade of clinical experience. Eur. J. Cardiothorac. Surg. 2016; 50(2):281-290. doi:10.1093/ejcts/ezw050; Manji R.A., Zhu L.F., Nijjar N.K., Rayner D.C., Korbutt G.S., Churchill T.A., Rajotte R.V., Koshal A., Ross D.B. Glutaraldehyde-fixed bioprosthetic heart valve conduits calcify and fail from xenograft rejection. Circulation. 2006; 114(4):318-327. doi:10.1161/CIRCULATIONAHA.105.549311; Eishi K., Ishibashi-Ueda H., Nakano K., Kosakai Y., Sasako Y., Kobayashi J., Yutani C. Calcific degeneration of bioprosthetic aortic valves in patients receiving steroid therapy. J. Heart Valve Dis. 1996; 5(6):668-672.; https://www.nii-kpssz.com/jour/article/view/1082Test

  3. 3
    دورية أكاديمية

    المساهمون: Результаты получены при поддержке Министерства науки и высшего образования РФ в рамках соглашения о предоставлении из федерального бюджета грантов в форме субсидий от 30 сентября 2022 г. № 075-15-2022-1202, комплексной научно-технической программы полного инновационного цикла «Разработка и внедрение комплекса технологий в областях разведки и добычи твердых полезных ископаемых, обеспечения промышленной безопасности, биоремедиации, создания новых продуктов глубокой переработки из угольного сырья при последовательном снижении экологической нагрузки на окружающую среду и рисков для жизни населения» (утвержденной распоряжением Правительства Российской Федерации от 11 мая 2022 г. № 1144-р).

    المصدر: Complex Issues of Cardiovascular Diseases; Том 12, № 4S (2023); 120-130 ; Комплексные проблемы сердечно-сосудистых заболеваний; Том 12, № 4S (2023); 120-130 ; 2587-9537 ; 2306-1278

    وصف الملف: application/pdf

    العلاقة: https://www.nii-kpssz.com/jour/article/view/1350/859Test; https://www.nii-kpssz.com/jour/article/downloadSuppFile/1350/1361Test; https://www.nii-kpssz.com/jour/article/downloadSuppFile/1350/1362Test; https://www.nii-kpssz.com/jour/article/downloadSuppFile/1350/1363Test; Pashneh-Tala S., MacNeil S., Claeyssens F. The Tissue-Engineered Vascular Graft-Past, Present, and Future. Tissue Eng Part B Rev. 2016; 22(1): 68–100. doi:10.1089/ten.teb.2015.0100.; Benjamin E.J., Muntner P., Alonso A., Bittencourt M.S., Callaway C.W., Carson A.P., et.al. American Heart Association Council on Epidemiology and Prevention Statistics Committee and Stroke Statistics Subcommittee. Heart Disease and Stroke Statistics-2019 Update: A Report From the American Heart Association. Circulation. 2019; 139(10): 56–528. doi:10.1161/CIR.0000000000000659.; Virani S.S., Alonso A., Benjamin E.J., Bittencourt M.S., Callaway C.W., Carson A.P., et.al. American Heart Association Council on Epidemiology and Prevention Statistics Committee and Stroke Statistics Subcommittee. Heart Disease and Stroke Statistics-2020 Update: A Report From the American Heart Association. Circulation. 2020; 141(9): 139–596. doi:10.1161/CIR.0000000000000757.; Roth G.A., Mensah G.A., Johnson C.O., Addolorato G., Ammirati E., Baddour L.M., et.al. Global Burden of Cardiovascular Diseases Writing Group. Global Burden of Cardiovascular Diseases and Risk Factors, 1990-2019: Update From the GBD 2019 Study. J Am Coll Cardiol. 2020; 76(25):2982–3021. doi:10.1016/j.jacc.2020.11.010.; Taggart D.P. Current status of arterial grafts for coronary artery bypass grafting. Ann. Cardiothorac Surg. 2013; 2(4):427–430. doi:10.3978/j.issn.2225-319X.2013.07.21.; Elliott M.B., Ginn B., Fukunishi T., Bedja D., Suresh A., Chen T., Inoue T., Dietz H.C., Santhanam L., Mao H.Q., Hibino N., Gerecht S. Regenerative and durable small-diameter graft as an arterial conduit. Proc Natl Acad Sci USA. 2019; 116(26):12710-12719. doi:10.1073/pnas.1905966116.; Kimicata M., Swamykumar P., Fisher J.P. Extracellular Matrix for Small-Diameter Vascular Grafts. Tissue Eng Part A. 2020; 26(23-24):1388–1401. doi:10.1089/ten.TEA.2020.0201.; Matsushita H., Inoue T., Abdollahi S., Yeung E., Ong C.S., Lui C., Pitaktong I., Nelson K., Johnson J., Hibino N. Corrugated nanofiber tissue-engineered vascular graft to prevent kinking for arteriovenous shunts in an ovine model. JVS Vasc Sci. 2020; 1:100–108. doi:10.1016/j.jvssci.2020.03.003.; Matsuzaki Y., Ulziibayar A., Shoji T., Shinoka T. Heparin-Eluting Tissue-Engineered Bioabsorbable Vascular Grafts. Applied Sciences. 2021; 11(10): 4563. doi:10.3390/app11104563; Ren X., Feng Y., Guo J., Wang H., Li Q., Yang J., Hao X., Lv J., Ma N., Li W. Surface modification and endothelialization of biomaterials as potential scaffolds for vascular tissue engineering applications. Chem. Soc. Rev. 2015; 44(15): 5680–5742. doi:10.1039/c4cs00483c.; Wissing T.B., Bonito V., Bouten C.V.C., Smits A.I.P.M. Biomaterial-driven in situ cardiovascular tissue engineering-a multi-disciplinary perspective. NPJ Regen Med. 2017; 2:18. doi:10.1038/s41536-017-0023-2.; Shoji T., Shinoka T. Tissue engineered vascular grafts for pediatric cardiac surgery. Translational Pediatrics. 7(2):188–195. doi:10.21037/tp.2018.02.01.; Song H.G., Rumma R.T., Ozaki C.K., Edelman E.R., Chen C.S. Vascular Tissue Engineering: Progress, Challenges, and Clinical Promise. Cell Stem Cell. 2018; 22(3): 340–354. doi:10.1016/j.stem.2018.02.009.; Malik S., Sundarrajan S., Hussain T., Nazir A., Ramakrishna S. Fabrication of Highly Oriented Cylindrical Polyacrylonitrile, Poly(lactide-co-glycolide), Polycaprolactone and Poly(vinyl acetate) Nanofibers for Vascular Graft Applications. Polymers. 2021; 13(13): 2075. doi:10.3390/polym13132075.; Drews J.D., Pepper V.K., Best C.A., Szafron J.M., Cheatham J.P., Yates A.R., et.al. Spontaneous reversal of stenosis in tissue-engineered vascular grafts. Sci Transl Med. 2020; 12(537):eaax6919. doi:10.1126/scitranslmed.aax6919.; Cui H., Zhu W., Huang Y., Liu C., Yu Z.X., Nowicki M., Miao S., Cheng Y., Zhou X., Lee S.J., Zhou Y., Wang S., Mohiuddin M., Horvath K., Zhang L.G. In Vitro and in vivo evaluation of 3D bioprinted small-diameter vasculature with smooth muscle and endothelium. Biofabrication. 2019; 12(1):015004. doi:10.1088/1758-5090/ab402c.; Radke D., Jia W., Sharma D., Fena K., Wang G., Goldman J., Zhao F. Tissue Engineering at the Blood-Contacting Surface: A Review of Challenges and Strategies in Vascular Graft Development. Adv Healthc Mater. 2018; 7(15):e1701461. doi:10.1002/adhm.201701461.; Matsuzaki Y., Miyamoto S., Miyachi H., Iwaki R., Shoji T., Blum K., Chang Y.C., Kelly J., Reinhardt J.W., Nakayama H., Breuer C.K., Shinoka T. Improvement of a Novel Small-diameter Tissue-engineered Arterial Graft With Heparin Conjugation. Ann Thorac Surg. 2021; 111(4):1234–1241. doi:10.1016/j.athoracsur.2020.06.112.; Wang C., Li Z., Zhang L., Sun W., Zhou J. Long-term results of triple-layered small diameter vascular grafts in sheep carotid arteries. Med Eng Phys. 2020; 85:1-6. doi:10.1016/j.medengphy.2020.09.007.; Кривкина Е.О., Антонова Л.В. Результаты долгосрочной проходимости биодеградируемых сосудистых протезов малого диаметра с атромбогенным лекарственным покрытием на модели овцы. Комплексные проблемы сердечно-сосудистых заболеваний. 2021;10(2):36-39. doi:10.17802/2306-1278-2021-10-2S-36-39.; Kucinska-Lipka J., Gubanska I., Janik H., Sienkiewicz M. Fabrication of polyurethane and polyurethane based composite fibres by the electrospinning technique for soft tissue engineering of cardiovascular system. Mater Sci Eng C Mater Biol Appl. 2015;46:166-76. doi:10.1016/j.msec.2014.10.027.; Tatai L., Moore T.G., Adhikari R., Malherbe F., Jayasekara R., Griffiths I., Gunatillake P.A. Thermoplastic biodegradable polyurethanes: the effect of chain extender structure on properties and in-vitro degradation. Biomaterials. 2007; 28 (36): 5407–5417. doi:10.1016/j.biomaterials.2007.08.035.; Hergenrother R.W., Wabers H. D., Cooper S. L. Effect of hard segment chemistry and strain on the stability of polyurethanes: in vivo biostability. Biomaterials. 1993;14(6):449-58. doi:10.1016/0142-9612(93)90148-u.; LaPorte R. J. Hydrophilic polymer coatings for medical; devices. Routledge. Florida:CRC Press LLC; 2017. doi:10.1201/9780203751381.; Kheradvar A., Groves E.M., Dasi L.P., Alavi S.H., Tranquillo R., Grande-Allen K.J., Simmons C.A., Griffith B., Falahatpisheh A., Goergen C.J., Mofrad M.R., Baaijens F., Little S.H., Canic S. Emerging trends in heart valve engineering: part I. Solutions for future. Annals of biomedical engineering. 2015; 43(4): 833–843. doi:10.1007/s10439-014-1209-z.; Bergmeister H., Grasl C., Walter I., Plasenzotti R., Stoiber M., Schreiber C., Losert U., Weigel G., Schima H. Electrospun small‐diameter polyurethane vascular grafts: ingrowth and differentiation of vascular‐specific host cells. Artificial organs. 2012; 36(1): 54-61. doi:10.1111/j.1525-1594.2011.01297.x.; Grasl C., Bergmeister H., Stoiber M., Schima H., Weigel G. Electrospun polyurethane vascular grafts: in vitro mechanical behavior and endothelial adhesion molecule expression. J Biomed Mater Res A. 2010;93(2):716-23. doi:10.1002/jbm.a.32584.; Bergmeister H., Schreiber C., Grasl C., Walter I., Plasenzotti R., Stoiber M., Bernhard D., Schima H. Healing characteristics of electrospun polyurethane grafts with various porosities. Acta biomaterialia. 2013; 9 (4):6032–6040. doi:10.1016/j.actbio.2012.12.009.; Антонова Л.В., Кривкина Е.О., Ханова М.Ю., Великанова Е.А., Матвеева В.Г., Миронов А.В., Шабаев А.Р., Сенокосова Е.А., Глушкова Т.В., Синицкий М.Ю., Мухамадияров Р.А., Барбараш Л.С. Результаты преклинических испытаний биодеградируемых сосудистых протезов малого диаметра на модели овцы. Вестник трансплантологии и искусственных органов. 2022;24(3):80-93. doi:10.15825/1995-1191-2022-3-80-93; Antonova L.V., Mironov A.V., Yuzhalin A.E., Krivkina E.O., Shabaev A.R., Rezvova M.A., Tkachenko V.O., Khanova M.Yu., Sergeeva T.Yu., Krutitskiy S.S., Barbarash L.S. A Brief Report on an Implantation of Small-Caliber Biodegradable Vascular Grafts in a Carotid Artery of the Sheep. Pharmaceuticals (Basel). 2020; 21;13(5):101. doi:10.3390/ph13050101.; Антонова Л.В., Кривкина Е.О., Резвова М.А., Севостьянова В.В., Миронов А.В., Глушкова Т.В., Клышников К.Ю., Овчаренко Е.А., Кудрявцева Ю.А., Барбараш Л.С. Биодеградируемый сосудистый протез с армирующим внешним каркасом. Комплексные проблемы сердечно-сосудистых заболеваний. 2019;8(2):87-97. doi:10.17802/2306-1278-2019-8-2-87-97.; Matsushita H., Hayashi H., Nurminsky K., Dunn T., He Y., Pitaktong I., Koda Y., Xu S., Nguyen V., Inoue T., Rodgers D., Nelson K., Johnson J., Hibino N. Novel reinforcement of corrugated nanofiber tissue-engineered vascular graft to prevent aneurysm formation for arteriovenous shunts in an ovine model. JVS Vasc Sci. 2022; 22;3:182-191. doi:10.1016/j.jvssci.2022.01.002.; https://www.nii-kpssz.com/jour/article/view/1350Test

  4. 4
    دورية أكاديمية

    المساهمون: Результаты получены при поддержке Российской Федерации в лице Министерства науки и высшего образования РФ в рамках соглашения о предоставлении из федерального бюджета грантов в форме субсидий от 30 сентября 2022 г. № 075-15-2022-1202, комплексной научно-технической программы полного инновационного цикла «Разработка и внедрение комплекса технологий в областях разведки и добычи твердых полезных ископаемых, обеспечения промышленной безопасности, биоремедиации, создания новых продуктов глубокой переработки из угольного сырья при последовательном снижении экологической нагрузки на окружающую среду и рисков для жизни населения» (утвержденной распоряжением Правительства Российской Федерации от 11 мая 2022 г. № 1144-р).

    المصدر: Complex Issues of Cardiovascular Diseases; Том 12, № 4S (2023); 102-109 ; Комплексные проблемы сердечно-сосудистых заболеваний; Том 12, № 4S (2023); 102-109 ; 2587-9537 ; 2306-1278

    وصف الملف: application/pdf

    العلاقة: https://www.nii-kpssz.com/jour/article/view/1440/864Test; Salaun E., Pibarot P., Rodés-Cabau J. Transcatheter Aortic Valve Replacement: Procedure and Outcomes. Cardiol Clin. 2020;38(1):115-128.doi:10.1016/j.ccl.2019.09.007; Ганюков В.И., Тарасов Р.С., Верещагин И.Е., Кочергин Н.А., Стасев А.Н., Нагирняк О.А., Барбараш Л.С. Транскатетерная имплантация аортального клапана и открытая хирургия аортального порока: сравнительная оценка результатов. Евразийский Кардиологический Журнал. 2018;(4):4-18. doi:10.38109/2225-1685-2018-4-4-18.; Malik A.H., Zaid S., Ahmad H., Goldberg J., Dutta T., Undemir C., Cohen M., Aronow W.S., Lansman S.L. A meta-analysis of 1-year outcomes of transcatheter versus surgical aortic valve replacement in low-risk patients with severe aortic stenosis. Journal of geriatric cardiology : JGC. 2020; 17(1): 43–50. doi:10.11909/j.issn.1671-5411.2020.01.005; Алекян Б.Г., Григорьян А.М., Стаферов А.В., Карапетян Н.Г. Рентгенэндоваскулярная диагностика и лечение заболеваний сердца и сосудов в Российской Федерации – 2021 год. Эндоваскулярная хирургия. 2022;9: 1–254. doi:10.24183/2409-4080-2022-9S; Попова И.Н., Сергеева Т.Л. Импортозамещение в современной России: проблемы и перспективы. Beneficium. 2022; 2(43): 73–84. doi:10.34680/BENEFICIUM.2022.2(43).73-84; Prendergast P.J., Lally C., Lennon A.B. Finite element modelling of medical devices. Medical Engineering & Physics. 2009; 31(4): 419. doi:10.1016/j.medengphy.2009.03.002; Cicciù M. Bioengineering Methods of Analysis and Medical Devices: A Current Trends and State of the Art. Materials. 2020; 13(3): 797. doi:10.3390/ma13030797; Driscoll M. The Impact of the Finite Element Method on Medical Device Design. Journal of Medical and Biological Engineering. 2019; 39(2): 171–172. doi:10.1007/s40846-018-0428-4; Marrey R., Baillargeon B., Dreher M.L., Weaver J.D., Nagaraja S., Rebelo N., Gong X.-Y. Validating Fatigue Safety Factor Calculation Methods for Cardiovascular Stents. Journal of biomechanical engineering. 2018; 140(6). doi:10.1115/1.4039173; Tzamtzis S., Viquerat J., Yap J., Mullen M.J., Burriesci G. Numerical analysis of the radial force produced by the Medtronic-CoreValve and Edwards-SAPIEN after transcatheter aortic valve implantation (TAVI). Medical Engineering and Physics. 2013; doi:10.1016/j.medengphy.2012.04.009; Онищенко П.С., Глушкова Т.В., Костюнин А.Е., Резвова М.А., Барбараш Л.С. Физико-механические характеристики биоматериалов-лоскутов для задач численного моделирования. Журнал технической физики. 2022; 9(12): 1959–1966. doi:10.21883/JTF.2022.12.53763.174-22; Schultz C., Rodriguez-Olivares R., Bosmans J., Lefèvre T., De Santis G., Bruining N., Collas V., Dezutter T., Bosmans B., Rahhab Z., El Faquir N., Watanabe Y., Segers P., Verhegghe B., Chevalier B., Van Mieghem N., De Beule M., Mortier P., De Jaegere P. Patient-specific image-based computer simulation for the prediction of valve morphology and calcium displacement after TAVI with the Medtronic CoreValve and the Edwards SAPIEN valve. EuroIntervention. EuroIntervention; 2016; 11(9): 1044–1052. doi:10.4244/EIJV11I9A212; Rocatello G., El Faquir N., De Santis G., Iannaccone F., Bosmans J., De Backer O., Sondergaard L., Segers P., De Beule M., De Jaegere P., Mortier P. Patient-Specific Computer Simulation to Elucidate the Role of Contact Pressure in the Development of New Conduction Abnormalities After Catheter-Based Implantation of a Self-Expanding Aortic Valve. Circulation. Cardiovascular interventions. Circ Cardiovasc Interv; 2018; 11(2). doi:10.1161/CIRCINTERVENTIONS.117.005344; Gunning P.S., Vaughan T.J., McNamara L.M. Simulation of self expanding transcatheter aortic valve in a realistic aortic root: implications of deployment geometry on leaflet deformation. Annals of biomedical engineering. United States; 2014; 42(9): 1989–2001. doi:10.1007/s10439-014-1051-3; Russ C., Hopf R., Hirsch S., Sundermann S., Falk V., Szekely G., Gessat M. Simulation of transcatheter aortic valve implantation under consideration of leaflet calcification. Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS. 2013; : 711–714. doi:10.1109/EMBC.2013.6609599; Bailey J., Curzen N., Bressloff N.W. Assessing the impact of including leaflets in the simulation of TAVI deployment into a patient-specific aortic root. Computer methods in biomechanics and biomedical engineering. England; 2016; 19(7): 733–744. doi:10.1080/10255842.2015.1058928; Nappi F., Mazzocchi L., Spadaccio C., Attias D., Timofeva I., Macron L., Iervolino A., Morganti S., Auricchio F. CoreValve vs. Sapien 3 Transcatheter Aortic Valve Replacement: A Finite Element Analysis Study. Bioengineering. 2021; 8(5): 52. doi:10.3390/bioengineering8050052; Bianchi M., Marom G., Ghosh R.P., Fernandez H.A., Taylor J.R.J., Slepian M.J., Bluestein D. Effect of Balloon-Expandable Transcatheter Aortic Valve Replacement Positioning: A Patient-Specific Numerical Model. Artificial organs. 2016; 40(12): E292–E304. doi:10.1111/aor.12806; Tzamtzis S., Viquerat J., Yap J., Mullen M.J., Burriesci G. Numerical analysis of the radial force produced by the Medtronic-CoreValve and Edwards-SAPIEN after transcatheter aortic valve implantation (TAVI). Medical Engineering & Physics. 2013; 35(1): 125–130. doi:10.1016/j.medengphy.2012.04.009; https://www.nii-kpssz.com/jour/article/view/1440Test

  5. 5
    دورية أكاديمية

    المساهمون: Research Institute for Complex Issues of Cardiovascular Diseases, 650002, 6 Sosnovy Boulevard, Kemerovo, Russian Federation., Работа выполнена в рамках комплексной программы фундаментальных научных исследований СО РАН по фундаментальной теме НИИ КПССЗ № 0419-2022-0001 «Молекулярные, клеточные и биомеханические механизмы патогенеза сердечно-сосудистых заболеваний в разработке новых методов лечения заболеваний сердечно-сосудистой системы на основе персонифицированной фармакотерапии, внедрения малоинвазивных медицинских изделий, биоматериалов и тканеинженерных имплантатов».

    المصدر: Complex Issues of Cardiovascular Diseases; Том 12, № 3 (2023); 173-180 ; Комплексные проблемы сердечно-сосудистых заболеваний; Том 12, № 3 (2023); 173-180 ; 2587-9537 ; 2306-1278

    وصف الملف: application/pdf

    العلاقة: https://www.nii-kpssz.com/jour/article/view/1141/819Test; https://www.nii-kpssz.com/jour/article/downloadSuppFile/1141/1068Test; https://www.nii-kpssz.com/jour/article/downloadSuppFile/1141/1069Test; https://www.nii-kpssz.com/jour/article/downloadSuppFile/1141/1070Test; https://www.nii-kpssz.com/jour/article/downloadSuppFile/1141/1071Test; https://www.nii-kpssz.com/jour/article/downloadSuppFile/1141/1072Test; Тимченко Т.П. Бисфосфонаты как потенциальные ингибиторы кальцификации биопротезов клапанов сердца (обзор). Современные технологии в медицине. 2022; 14(2):68-79. doi:10.17691/stm2022.14.2.07; Head S.J., Çelik M., Kappetein A.P. Mechanical versus bioprosthetic aortic valve replacement. Eur. Heart J. 2017; 38(28):2183-2191. doi:10.1093/eurheartj/ehx141; Fatima B., Mohananey D., Khan F.W., Jobanputra Y., Tummala R., Banerjee K., Krishnaswamy A., Mick S., Tuzcu E.M., Blackstone E., Svensson L., Kapadia S. Durability data for bioprosthetic surgical aortic valve: a systematic review. JAMA Cardiol. 2019; 4(1):71-80. doi:10.1001/jamacardio.2018.4045; Capodanno D., Petronio A.S., Prendergast B., Eltchaninoff H., Vahanian A., Modine T., Lancellotti P., Sondergaard L., Ludman P.F., Tamburino C., Piazza N., Hancock J., Mehilli J., Byrne R.A., Baumbach A., Kappetein A.P., Windecker S., Bax J., Haude M. Standardized definitions of structural deterioration and valve failure in assessing long-term durability of transcatheter and surgical aortic bioprosthetic valves: a consensus statement from the European Association of Percutaneous Cardiovascular Interventions (EAPCI) endorsed by the European Society of Cardiology (ESC) and the European Association for Cardio-Thoracic Surgery (EACTS). Eur. Heart J. 2017; 38(45):3382-3390. doi:10.1093/eurheartj/ehx303; Dvir D., Bourguignon T., Otto C.M., Hahn R.T., Rosenhek R., Webb J.G., Treede H., Sarano M.E., Feldman T., Wijeysundera H.C., Topilsky Y., Aupart M., Reardon M.J., Mackensen G.B., Szeto W.Y., Kornowski R., Gammie J.S., Yoganathan A.P., Arbel Y., Borger M.A., Simonato M., Reisman M., Makkar R.R., Abizaid A., McCabe J.M., Dahle G., Aldea G.S., Leipsic J., Pibarot P., Moat N.E., Mack M.J., Kappetein A.P., Leon M.B.; VIVID (Valve in Valve International Data) Investigators Standardized definition of structural valve degeneration for surgical and transcatheter bioprosthetic aortic valves. Circulation. 2018; 137(4):388-399. doi:10.1161/CIRCULATIONAHA.117.030729; Bozso, S.J., Kang, J.J., Basu, R. Adam B., Dyck J.R.B., Oudit G.Y., Moon M.C., Freed D.H., Nagendran J., Nagendran J. Structural valve deterioration is linked to increased immune infiltrate and chemokine expression. J Cardiovasc Trans Res. 2021;14:503-512. doi:10.1007/s12265-020-10080-x; Bozso S.J., El-Andari R., Al-Adra D., Moon M.C., Freed D.H., Nagendran J., Nagendran J. A review of the immune response stimulated by xenogenic tissue heart valves. Scand J Immunol. 2021; 93(4):e13018. doi:10.1111/sji.13018; Senage T., Paul A., Le Tourneau T., Fellah-Hebia I., Vadori M., Bashir S. et al. The role of antibody responses against glycans in bioprosthetic heart valve calcification and deterioration. Nat Med. 2022; 28(2):283-294. doi:10.1038/s41591-022-01682-w; Barone A., Benktander J., Whiddon C., Jin C., Galli C., Teneberg S., Breimer M.E. Glycosphingolipids of porcine, bovine, and equine pericardia as potential immune targets in bioprosthetic heart valve grafts. Xenotransplantation. 2018; 25(5):e12406. doi:10.1111/xen.12406; Reuven E.M., Leviatan Ben-Arye S., Marshanski T., Breimer M.E., Yu H., Fellah-Hebia I., Roussel J.C., Costa C., Galiñanes M., Mañez R., Le Tourneau T., Soulillou J.P., Cozzi E., Chen X., Padler-Karavani V. Characterization of immunogenic Neu5Gc in bioprosthetic heart valves. Xenotransplantation. 2016; 23(5):381-92. doi:10.1111/xen.12260; Барбараш Л.С., Журавлева И.Ю. Эволюция биопротезов клапанов сердца: достижения и проблемы двух десятилетий. Комплексные проблемы сердечно-сосудистых заболеваний. 2012; (1):4-11. doi:10.17802/2306-1278-2012-1-4-11; Костюнин А.Е., Резвова М.А. Роль остаточных ксеноантигенов в дегенерации ксеногенных биопротезов клапанов сердца. Иммунология. 2019; 40(4):56-63. doi:10.24411/0206-4952-2019-14005; Altman M.O., Gagneux P. Absence of Neu5Gc and presence of anti-Neu5Gc antibodies in humans – an evolutionary perspective. Front Immunol. 2019; 10:789. doi:10.3389/fimmu.2019.00789; Zhu A., Hurst R. Anti-N-glycolylneuraminic acid antibodies identified in healthy human serum. Xenotransplantation. 2002; 9(6):376-381. doi:10.1034/j.1399-3089.2002.02138.x; Marro M., Kossar A.P., Xue Y., Frasca A., Levy R.J., Ferrari G. Noncalcific mechanisms of bioprosthetic structural valve degeneration. J Am Heart Assoc. 2021; 10(3):e018921. doi:10.1161/JAHA.120.018921; Naso F., Gandaglia A., Bottio T., Tarzia V., Nottle M.B., d'Apice A.J., Cowan P.J., Cozzi E., Galli C., Lagutina I., Lazzari G., Iop L., Spina M., Gerosa G. First quantification of alpha-Gal epitope in current glutaraldehyde-fixed heart valve bioprostheses. Xenotransplantation. 2013; 20(4):252-261. doi:10.1111/xen.12044; Мухамадияров Р.А., Рутковская Н.В., Сидорова О.Д., Барбараш Л.С. Исследование клеточного состава кальцинированных биопротезов клапанов сердца. Вестник РАМН. 2015; 70(6):662-668. doi:10.15690/vramn560; Kostyunin A., Mukhamadiyarov R., Glushkova T., Bogdanov L., Shishkova D., Osyaev N. Ovcharenko E., Kutikhin A. Ultrastructural pathology of atherosclerosis, calcific aortic valve disease, and bioprosthetic heart valve degeneration: commonalities and differences. Int J Mol Sci. 2020; 21(20):7434. doi:10.3390/ijms21207434; Gates K.V., Xing Q., Griffiths L.G. Immunoproteomic identification of noncarbohydrate antigens eliciting graft-specific adaptive immune responses in patients with bovine pericardial bioprosthetic heart valves. Proteomics Clin. Appl. 2019; 13(4):e1800129. doi:10.1002/prca.201800129; Fournier P.E., Thuny F., Grisoli D., Lepidi H., Vitte J., Casalta J.P., Weiller P.J., Habib G., Raoult D. A deadly aversion to pork. Lancet. 2011; 377(9776):1542. doi:10.1016/S0140-6736(11)60021-4; Heuschkel M.A., Leitolis A., Roderjan J.G., Suss P.H., Luzia C.A.O., da Costa F.D.A., Correa A., Stimamiglio M.A. In vitro evaluation of bovine pericardium after a soft decellularization approach for use in tissue engineering. Xenotransplantation. 2019; 26(2):e12464. doi:10.1111/xen.12464; Wu L.C., Kuo Y.J., Sun F.W., Chen C.H., Chiang C.J., Weng P.W., Tsuang Y.H., Huang Y.Y. Optimized decellularization protocol including α-Gal epitope reduction for fabrication of an acellular porcine annulus fibrosus scaffold. Cell Tissue Bank. 2017; 18(3):383-396. doi:10.1007/s10561-017-9619-4; https://www.nii-kpssz.com/jour/article/view/1141Test