يعرض 1 - 10 نتائج من 11 نتيجة بحث عن '"С. С. Багненко"', وقت الاستعلام: 1.00s تنقيح النتائج
  1. 1
    دورية أكاديمية

    المصدر: Medical Visualization; Принято в печать ; Медицинская визуализация; Принято в печать ; 2408-9516 ; 1607-0763

    وصف الملف: application/pdf

    العلاقة: https://medvis.vidar.ru/jour/article/view/1408/876Test; https://medvis.vidar.ru/jour/article/downloadSuppFile/1408/2223Test; https://medvis.vidar.ru/jour/article/downloadSuppFile/1408/2224Test; https://medvis.vidar.ru/jour/article/downloadSuppFile/1408/2229Test; Трофимова Т.Н., Халиков А.Д., Семенова М.Д. Возможности магнитно-резонансной томографии в изучении формирования головного мозга плода. Лучевая диагностика и терапия. 2017; 4 (8): 6–16. https://doi.org/10.22328/2079-5343-2017-4-6-15Test; Amant F., Berveiller P., Boere I.A. et al. Gynecologic cancers in pregnancy: guidelines based on a third international consensus meeting. Ann. Oncol. 2019; 30 (10): 1601–1612. https://doi.org/10.1093/annonc/mdz228Test; Parpinel G., Laudani M.E., Giunta F.P. et al. Use of positron emission tomography for pregnancy-associated cancer assessment: a review. J. Clin. Med. 2022; 11 (13): 1–11. https://doi.org/10.3390/jcm11133820Test; de Haan J., Verheecke M., Van Calsteren K. et al. Oncological management and obstetric and neonatal outcomes for women diagnosed with cancer during pregnancy: a 20-year international cohort study of 1170 patients. Lancet Oncol. 2018; 19 (3): 337–346. https://doi.org/10.1016/S1470-2045Test(18)30059-7; Abramowicz J.S., Kremkau F.W., Merz E. Obstetrical ultrasound: can the fetus hear the wave and feel the heat? Ultraschall Med. 2012; 33 (3): 215–217. https://doi.org/10.1055/s-0032-1312759Test; Aiken C.E., Lees C.C. Long-term effects of in utero Doppler ultrasound scanning-a developmental programming perspective. Med. Hypotheses. 2012; 78 (4): 539–541. https://doi.org/10.1016/j.mehy.2012.01.030Test; Tirada N., Dreizin D., Khati N.J. et al. Imaging pregnant and lactating patients. RadioGraphics. 2015; 35 (6): 1751–1765. https://doi.org/10.1148/rg.2015150031Test; Wei K., Mulvagh S.L., Carson L. et al. The safety of definity and optison for ultrasound image enhancement: a retrospective analysis of 78,383 administered contrast doses. J. Am. Soc. Echocardiogr. 2008; 21 (11): 1202–1206. https://doi.org/10.1016/j.echo.2008.07.019Test; Piscaglia F., Bolondi L., Italian Society for Ultrasound in Medicine and Biology (SIUMB) study group on ultrasound contrast agents. The safety of Sonovue in abdominal applications: retrospective analysis of 23188 investigations. Ultrasound Med. Biol. 2006; 32 (9): 1369–1375. https://doi.org/10.1016/j.ultrasmedbio.2006.05.031Test; Sidhu P.S., Cantisani V., Dietrich C.F. et al. The EFSUMB guidelines and recommendations for the clinical practice of contrast-enhanced ultrasound (CEUS) in non-hepatic applications: update 2017 (Long Version). Ultraschall Med. 2018; 39 (2): e2–e44. https://doi.org/10.1055/a-0586-1107Test; Perelli F., Turrini I., Giorgi M.G. et al. Contrast agents during pregnancy: pros and cons when really needed. Int. J. Environ. Res. Public Health. 2022; 19 (24): 16699. https://doi.org/10.3390/ijerph192416699Test; Kanal E., Barkovich A.J., Bell C. et al.; ACR Blue Ribbon Panel on MR Safety. ACR guidance document for safe MR practices: 2007; Am. J. Roentgenol. 2007. 188 (6): 1447–1474. https://doi.org/10.2214/AJR.06.1616Test; Hartwig V., Giovannetti G., Vanello N. et al. Biological effects and safety in magnetic resonance imaging: a review. Int. J. Environ. Res. Public Health. 2009; 6 (6): 1778–1798. https://doi.org/10.3390/ijerph6061778Test; Chartier A.L., Bouvier M.J., McPherson D.R. et al. The safety of maternal and fetal MRI at 3T. Am. J. Roentgenol. 2019; 213 (5): 1170–1173. https://doi.org/10.2214/AJR.19.21400Test; Ray J.G., Vermeulen M.J., Bharatha A. et al. Association between MRI exposure during pregnancy and fetal and childhood outcomes. JAMA. 2016; 316 (9): 952–961. https://doi.org/10.1001/jama.2016.12126Test; Gomes M., Matias A., Macedo F. Risks to the fetus from diagnostic imaging during pregnancy: review and proposal of a clinical protocol. Pediatr. Radiol. 2015; 45 (13): 1916–1929. https://doi.org/10.1007/s00247-015-3403-zTest; Mervak B.M., Altun E., McGinty K.A. et al. MRI in pregnancy: Indications and practical considerations. J. Magn. Reson. Imaging. 2019; 49 (3): 621–631. https://doi.org/10.1002/jmri.26317Test; Синицын В.Е. Безопасность магнитно-резонансной томографии – современное состояние вопроса. Диагностическая и интервенционная радиология. 2010. 4 (3): 61–66. https://doi.org/10.25512/DIR.2010.04.3.10Test; Behzadi A.H., Zhao Y., Farooq Z., Prince M.R. Immediate allergic reactions to gadolinium-based contrast agents: a systematic review and meta-analysis. Radiology. 2018; 286 (2): 471–482. https://doi.org/10.1148/radiol.2017162740Test; Fraum T.J., Ludwig D.R., Bashir M.R., Fowler K.J. Gadolinium-based contrast agents: a comprehensive risk assessment. J. Magn. Reson. Imaging. 2017; 46 (2): 338–353. https://doi.org/10.1002/jmri.25625Test; Cheong B.Y.C., Wilson J.M., Preventza O.A., Muthupillai R. Gadolinium-based contrast agents: updates and answers to typical questions regarding gadolinium use. Tex. Heart Inst. J. 2022; 49 (3): e217680. https://doi.org/10.14503/THIJ-21-7680Test; Potts J., Lisonkova S., Murphy D.T., Lim K. Gadolinium magnetic resonance imaging during pregnancy associated with adverse neonatal and post-neonatal outcomes. J. Pediatr. 2017; 180: 291–294. https://doi.org/10.1016/j.jpeds.2016.10.061Test; Costello J.R., Kalb B., Martin D.R. Incidence and risk factors for gadolinium-based contrast agent immediate reactions. Top. Magn. Reson. Imaging. 2016; 25 (6): 257–263. https://doi.org/10.1097/RMR.0000000000000109Test; Cowper S.E., Boyer P.J. Nephrogenic systemic fibrosis: An update. Curr. Rheumatol. Rep. 2006; 8 (2): 151–157. https://doi.org/10.1007/s11926-006-0056-9Test; Kanal E., Tweedle M.F. Residual or retained gadolinium: practical implications for radiologists and our patients. Radiology. 2015; 275 (3): 630–634. https://doi.org/10.1148/radiol.2015150805Test; Kodzwa R. ACR manual on contrast media: 2018 updates. Radiol. Technol. 2019; 91 (1): 97–100.; De Santis M., Straface G., Cavaliere A.F. et al. Gadolinium periconceptional exposure: pregnancy and neonatal outcome. Acta Obstet. Gynecol. Scand. 2007; 86 (1): 99–101. https://doi.org/10.1080/00016340600804639Test; Thomsen H.S. ESUR guidelines on contrast agents version 10.0. Contrast Media Safety Committee, 2018; 44 p.; Gatta G., Di Grezia G., Cuccurullo V. et al. MRI in pregnancy and precision medicine: a review from literature. J. Pers. Med. 2021; 12 (1): 1–16. https://doi.org/10.3390/jpm12010009Test; Ghaghada K.B., Starosolski Z.A., Bhayana S. et al. Pre-clinical evaluation of a nanoparticle-based blood-pool contrast agent for MR imaging of the placenta. Placenta. 2017; 57: 60–70. https://doi.org/10.1016/j.placenta.2017.06.008Test; Семенова Е.С., Мащенко И.А., Труфанов Г.Е. Магнитно-резонансная томография при беременности: актуальные вопросы безопасности. Российский Электронный журнал лучевой диагностики. 2020; 10 (1): 216–230. https://doi.org/10.21569/2222-7415-2020-10-1-216-230Test; Ratnapalan S., Bentur Y., Koren G. Doctor, will that x-ray harm my unborn child? CMAJ. 2008; 179 (12): 1293–1296. https://doi.org/10.1503/cmaj.080247Test; Brent R.L. Protection of the gametes embryo/fetus from prenatal radiation exposure. Health Physics. 2015; 108 (2): 242–274. https://doi.org/10.1097/HP.0000000000000235Test; Санитарные правила и нормативы. Нормы радиационной безопасности (НРБ–99/2009): cанитарно-эпидемиологичeские правила и нормативы. Москва – Федеральный центр гигиены и эпидемиологии Роспотребнадзора. 2009. 100 c.; ACR-SPR practice parameter for imaging pregnant or potentially pregnant adolescents and women with ionizing radiation [Electronic resource]. URL: https://www.acr.org/Clinical-Resources/Radiology-Safety/Radiation-SafetyTest (accessed: 05.03.2023).; Публикация 103 Международной комиссии по радиационной защите (МКРЗ): Пер. с англ. / Под. общей ред. М.Ф. Киселёва, Н.К. Шандалы. М.: Изд-во ООО ПКФ “Алана”, 2009. 344 с.; Крылов А.С., Наркевич Б.Я., Рыжков А.Д. Определение дозы-облучения плода у беременных женщин с раком молочной железы при сцинтиграфии сторожевых лимфатических узлов. Онкологический журнал: лучевая диагностика, лучевая терапия. 2021; 4 (4); 78–87. https://doi.org/10.37174/2587-7593-2021-4-4-78-87Test; Raman S.P., Johnson P.T., Deshmukh S. et al. CT dose reduction applications: available tools on the latest generation of CT scanners. J. Am. Coll. Radiol. 2013. 10 (1): 37–41. https://doi.org/10.1016/j.jacr.2012.06.025Test; Colletti P.M., Micheli O.A., Lee K.H. To shield or not to shield: application of bismuth breast shields. Am. J. Roentgenol. 2013; 200 (3): 503–507. https://doi.org/10.2214/AJR.12.9997Test; Кондрашов И.А., Мандал В. Неионные низкоосмолярные мономерные йодированные рентгеноконтрастные средства: некоторые аспекты использования при проведении компьютерной томографии у детей. Медицинская визуализация. 2017; 6: 118–129. https://doi.org/10.24835/1607-0763-2017-6-118-129Test; Webb J.A., Thomsen H.S., Morcos S.K; Members of Contrast Media Safety Committee of European Society of Urogenital Radiology (ESUR). The use of iodinated and gadolinium contrast media during pregnancy and lactation. Eur. Radiol. 2005; 15 (6): 1234–1240. https://doi.org/10.1007/s00330-004-2583-yTest; Rajaram S., Exley C.E., Fairlie F., Matthews S. Effect of antenatal iodinated contrast agent on neonatal thyroid function. Br. J. Radiol. 2012; 85 (1015): e238–e242. https://doi.org/10.1259/bjr/29806327Test; Kochi M.H., Kaloudis E.V., Ahmed W., Moore W.H. Effect of in utero exposure of iodinated intravenous contrast on neonatal thyroid function. J. Comput. Assist. Tomogr. 2012; 36 (2): 165–169. https://doi.org/10.1097/rct.0b013e31824cc048Test; Зиновьев А.Н., Мотовилова Т.М., Качалина Т.С. Место количественной оценки проходимости маточных труб в определении прогноза лечения трубно-перитонеального бесплодия. РМЖ. Мать и дитя. 2013; 21 (14): 760.; American College of Radiology. Manual on contrast media, version 10.2; American College of Radiology: Reston, VA, USA, 2023. 148 p.; Wang P.I., Chong S.T., Kielar A.Z. et al. Imaging of pregnant and lactating patients: part 2, evidence-based review and recommendations. Am. J. Roentgenol. 2012; 198 (4): 785–792. https://doi.org/10.2214/AJR.11.8223Test; Despierres M., Boudy A.S., Selleret L. et al. Feasibility, safety and impact of (18F)-FDG PET/CT in patients with pregnancy-associated cancer: experience of the French CALG (Cancer Associé à La Grossesse) network. Acta Oncol. 2022; 61 (3): 302–308. https://doi.org/10.1080/0284186X.2021.2004323Test; Zanotti-Fregonara P., Champion C., Trébossen R. et al. Estimation of the beta+ dose to the embryo resulting from 18F-FDG administration during early pregnancy. J. Nucl. Med. 2008; 49 (4): 679–682. https://doi.org/10.2967/jnumed.107.048900Test; Benveniste H., Fowler J.S., Rooney W.D. et al. Maternal-fetal in vivo imaging: a combined PET and MRI study. J. Nucl. Med. 2003; 44 (9): 1522–1530.; Zanotti-Fregonara P., Ishiguro T., Yoshihara K. et al. 18F-FDG fetal dosimetry calculated with PET/MRI. J. Nucl. Med. 2022; 63 (10): 1592–1597. https://doi.org/10.2967/jnumed.121.263561Test; Gropper A.B., Calvillo K.Z., Dominici L. et al. Sentinel lymph node biopsy in pregnant women with breast cancer. Ann. Surg. Oncol. 2014; 21 (8): 2506–2511. https://doi.org/10.1245/s10434-014-3718-2Test; Han S.N., Amant F., Cardonick E.H. et al. Axillary staging for breast cancer during pregnancy: feasibility and safety of sentinel lymph node biopsy. Breast Cancer Res. Treat. 2018; 168 (2): 551–557. https://doi.org/10.1007/s10549-017-4611-zTest; Han S.N., Amant F., Michielsen K. et al. Feasibility of whole-body diffusion-weighted MRI for detection of primary tumour, nodal and distant metastases in women with cancer during pregnancy: a pilot study. Eur. Radiol. 2018; 28 (5): 1862–1874. https://doi.org/10.1007/s00330-017-5126-zTest; https://medvis.vidar.ru/jour/article/view/1408Test

  2. 2
    دورية أكاديمية

    المصدر: Diagnostic radiology and radiotherapy; Том 14, № 1 (2023); 73-81 ; Лучевая диагностика и терапия; Том 14, № 1 (2023); 73-81 ; 2079-5343

    وصف الملف: application/pdf

    العلاقة: https://radiag.bmoc-spb.ru/jour/article/view/835/590Test; Cazzato R.L., Arrigoni F., Boatta E., Bruno F. et al. Percutaneous management of bone metastases: state of the art, interventional strategies and joint position statement of the Italian College of MSK Radiology (ICoMSKR) and the Italian College of Interventional Radiology (ICIR) // Radiology Med. 2019. Vol. 124, No. 1. Р. 34– 49. doi:10.1007/s11547-018-0938-8.; Shimohira M., Nagai K., Hashizume T., Nakagawa M. et al. Preoperative transarterial embolization using gelatin sponge for hypervascular bone and soft tissue tumors in the pelvis or extremities // Acta Radiologica. 2016. Vol. 57, No. 4. Р. 457–462. doi:10.1177/0284185115590435.; Kickuth R., Waldherr C., Hoppe H., Bonel H.M. et al. Interventional management of hypervascular osseous metastasis: role of embolotherapy before orthopedic tumor resection and bone stabilization // AJR American Journal of Roentgenology. 2008. Vol. 191, No. 6. Р. 240–247. doi:10.2214/AJR.07.4037. PMID: 19020210.; Dalili D., Isaac A., Bazzocchi A., Åström G., Bergh J. et al. Interventional Techniques for Bone and Musculoskeletal Soft Tissue Tumors: Current Practices and Future Directions. Part I. Ablation // Semin Musculoskelet Radiol. 2020. Vol. 24, No. 6. Р. 692–709. doi:10.1055/s-0040–1719103. Epub 2020 Dec 11. PMID: 33307585.; Barile A., Arrigoni F., Bruno F., Palumbo P. et al. Present role and future perspectives of interventional radiology in the treatment of painful bone lesions // Future Oncolgy. 2018. Vol. 14. Р. 2945–2955. doi:10.2217/fon-2017-0657.; Arrigoni F., De Cataldo C., Bruno F., Palumbo P. et al. Ablation, consolidation and radiotherapy for the management of metastatic lesions of the spine: Impact on the quality of life in a mid-term clinical and diagnostic follow-up in a pilot study // Medical Oncology. 2020. Vol. 37. Р. 53. doi:10.1007/s12032-020-01378-6.; Di Staso M., Zugaro L., Gravina G.L., Bonfili P. et al. A feasibility study of percutaneous radiofrequency ablation followed by radiotherapy in the management of painful osteolytic bone metastases // European Radiology, 2011. Vol. 21. Р. 2004–2010. doi:10.1007/s00330-011-2133-3.; Macedo F., Ladeira K., Pinho F., Saraiva N., Bonito N., Pinto L., Goncalves F. Bone Metastases: An Overview // Oncology Reviews. 2017. Vol. 11, No. 1. Р. 321. doi:10.4081/oncol.2017.321.; Hillen T.J., Anchala P., Friedman M.V., Jennings J.W. Treatment of metastatic posterior vertebral body osseous tumors by using a targeted bipolar radiofrequency ablation device: technical note // Radiology. 2014. Vol. 273, No. 1. Р. 261–267. doi:10.1148/radiol.14131664. Epub 2014 Jun 13. PMID: 24927327.; Prologo J.D., Passalacqua M., Patel I., Bohnert N., Corn D.J. Image-guided cryoablation for the treatment of painful musculoskeletal metastatic disease: a singlecenter experience // Skeletal Radiology. 2014. Vol. 43, No. 11. Р. 1551–1559. doi:10.1007/s00256-014-1939-x. Epub 2014 Jun 28. PMID: 24972918.; Thacker P.G., Callstrom M.R., Curry T.B., Mandrekar J.N. et al. Palliation of painful metastatic disease involving bone with imaging-guided treatment: comparison of patients’ immediate response to radiofrequency ablation and cryoablation // AJR American Journal of Roentgenology. 2011. Vol. 197, No. 2. Р. 510–515. doi:10.2214/AJR.10.6029. PMID: 21785102.; Goetz M.P., Callstrom M.R., Charboneau J.W., Farrell M.A. et al. Percutaneous image-guided radiofrequency ablation of painful metastases involving bone: a multicenter study // Journal of Clinical Oncology, 2004. Vol. 22, No. 2. Р. 300–306. doi:10.1200/JCO.2004.03.097. PMID: 14722039.; Dupuy D.E., Liu D., Hartfeil D., Hanna L., Blume J.D. et al. Percutaneous radiofrequency ablation of painful osseous metastases: a multicenter American College of Radiology Imaging Network trial // Cancer. 2010. Vol. 116, No. 4. Р. 989–997. doi:10.1002/cncr.24837. PMID: 20041484; PMCID: PMC2819592.; Callstrom M.R., Dupuy D.E., Solomon S.B., Beres R.A. et al. Percutaneous image-guided cryoablation of painful metastases involving bone: multicenter trial // Cancer. 2013. Vol. 119, No. 5. Р. 1033–1041. doi:10.1002/cncr.27793. Epub 2012 Oct 12. PMID: 23065947; PMCID: PMC5757505.; Буровик И.А., Прохоров Г.Г., Мелдо А.А., Багненко С.С. Стереотаксическая криоабляция при метастатическом поражении грудины // Онкология. Журнал им. П. А. Герцена. 2022. № 11 (2). С. 40–45. [Burovik I.A., Prokhorov G.G., Meldo A.A., Bagnenko S.S. Stereotactic cryoablation in metastatic lesions of the sternum. Oncology. Journal n. a. P. A. Herzen, 2022, No. 11 (2). Р. 40–45 (In Russ.)].; Буровик И.А., Прохоров Г.Г., Багненко С.С., Васильев А.В. Пункционная чрескожная криоабляция при метастатическом поражении ребер // Креативная хирургия и онкология. 2022. Т. 12, № 3. С. 187–192. [Burovik I.A., Prokhorov G.G., Bagnenko S.S., Vasiliev A.V. Puncture percutaneous cryoablation for metastatic ribs. Creative Surgery and Oncology, 2022, Vol. 12, No. 3, pp. 187–192 (In Russ.)]. doi:10.24060/2076-3093-2022-12-3-187-192.; Saifuddin A., Palloni V., du Preez H., Junaid S.E. Review article: the current status of CT-guided needle biopsy of the spine // Skeletal Radiology. 2021. Vol. 50, No. 2. Р. 281–299. doi:10.1007/s00256-020-03584-9. Epub 2020 Aug 19. PMID: 32815040.; Theodorescu D. Cancer cryotherapy: evolution and biology. Reviews in Urology. 2004. Vol. 6, Suppl. 4. S9-S19. PMID: 16985871; PMCID: PMC1472868.; Kurup A.N., Morris J.M., Boon A.J., Strommen J.A. et al. Motor evoked potential monitoring during cryoablation of musculoskeletal tumors // Journal of Vascular Interventional Radiology. 2014. Vol. 25, No. 11. Р. 1657–1664. doi:10.1016/j.jvir.2014.08.006. Epub 2014 Sep 22. PMID: 25245367.; Masala S., Chiocchi M., Taglieri A., Bindi A. et al. Combined use of percutaneous cryoablation and vertebroplasty with 3D rotational angiograph in treatment of single vertebral metastasis: comparison with vertebroplasty. Neuroradiology. 2013. Vol. 55, No. 2. Р. 193–200. doi:10.1007/s00234-012-1096-7. Epub 2012 Sep 27. PMID: 23014893.; Tomasian A., Wallace A., Northrup B., Hillen T.J., Jennings J.W. Spine Cryoablation: Pain Palliation and Local Tumor Control for Vertebral Metastases // AJNR American Journal of Neuroradiology. 2016. Vol. 37, No. 1. Р. 189–195. doi:10.3174/ajnr.A4521. Epub 2015 Oct 1. PMID: 26427837; PMCID: PMC7960222; https://radiag.bmoc-spb.ru/jour/article/view/835Test

  3. 3
    دورية أكاديمية

    المصدر: Medical Visualization; Том 28, № 1 (2024); 141-156 ; Медицинская визуализация; Том 28, № 1 (2024); 141-156 ; 2408-9516 ; 1607-0763

    وصف الملف: application/pdf

    العلاقة: https://medvis.vidar.ru/jour/article/view/1341/854Test; FIGO Committee on Gynecologic Oncology. Revised FIGO staging for carcinoma of the vulva, cervix, and endometrium. Int. J. Gynaecol. Obstet. 2009; 105 (2): 103–104. http://doi.org/10.1016/j.ijgo.2009.02.012Test; FIGO Committee on Gynecologic Oncology. Revised FIGO staging for carcinoma of the cervix uteri. Int. J. Gynaecol. Obstet. 2019; 145 (1): 129–135. http://doi.org/10.1002/ijgo.12749Test; Bhatla N., Aoki D., Sharma D.N., Sankaranarayanan R. Cancer of the cervix uteri. Int. J. Gynaecol. Obstet. 2018; 143 (Suppl. 2): 22–36. http://doi.org/10.1002/ijgo.12611Test; Berek J.S., Matsuo K., Grubbs B.H. et al. Multidisciplinary perspectives on newly revised 2018 FIGO staging of cancer of the cervix uteri. J. Gynecol. Oncol. 2019; 30 (2): e40. http://doi.org/10.3802/jgo.2019.30.e40Test; Bhatla N., Aoki D., Sharma D.N., Sankaranarayanan R. Corrigendum to “Revised FIGO staging for carcinoma of the cervix uteri”. Int. J. Gynecol. Obstet. 2019; 145: 129–135. http://doi.org/10.1002/ijgo.12969Test; Lee S.I., Atri M. 2018 FIGO staging system for uterine cervical cancer: enter cross-sectional imaging. Radiology. 2019; 292 (1): 15–24. http://doi.org/10.1148/radiol.2019190088Test; Olawaiye A.B., Baker T.P., Washington M.K., Mutch D.G. The new (Version 9) American Joint Committee on Cancer tumor, node, metastasis staging for cervical cancer. CA Cancer J. Clin. 2021; 71 (4): 287–298. http://doi.org/10.3322/caac.21663Test; FIGO CANCER REPORT 2021 Cancer of the cervix uteri: 2021 update International Journal of Obstetrics and Gynaecology. 155 (S1). Special Issue: FIGO Cancer Report 2021 October: 28–44. https://doi.org/10.1002/ijgo.13967Test; Клинические рекомендации, одобренные научным советом МЗ РФ, Рак шейки матки, 2020 г. 48 с. https://oncology.ru/specialist/treatment/references/actual/537.pdf?ysclid=lp6m9w7k57670993368Test; Tian Y., Luo H. Diagnostic accuracy of transvaginal ultrasound examination for local staging of cervical cancer: a systematic review and meta-analysis. Med. Ultrason. 2022; 24 (3): 348–355. http://doi.org/10.11152/mu-3246Test; Cibula D., Pötter R., Planchamp F. et al. The European Society of Gynaecological Oncology/European Society for Radiotherapy and Oncology/European Society of Pathology Guidelines for the Management of Patients With Cervical Cancer. Int. J. Gynecol. Cancer. 2018; 28 (4): 641–655. http://doi.org/10.1097/IGC.0000000000001216Test; Marth C., Landoni F., Mahner S. et al.; ESMO Guidelines Committee. Cervical cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann. Oncol. 2017; 28 (Suppl_4): iv72–iv83. http://doi.org/10.1093/annonc/mdx220Test; Chino J., Annunziata C.M., Beriwal S. et al. Radiation Therapy for Cervical Cancer: Executive Summary of an ASTRO Clinical Practice Guideline. Pract. Radiat. Oncol. 2020; 10 (4): 220–234. http://doi.org/10.1016/j.prro.2020.04.002Test; Hricak H., Gatsonis C., Chi D.S. et al. Role of imaging in pretreatment evaluation of early invasive cervical cancer: results of the intergroup study American College of Radiology Imaging Network 6651-Gynecologic Oncology Group 183. J. Clin. Oncol. 2005; 23 (36): 9329–9337. http://doi.org/10.1200/JCO.2005.02.0354Test; Xiao M., Yan B., Li Y. et al. Diagnostic performance of MR imaging in evaluating prognostic factors in patients with cervical cancer: a meta-analysis. Eur. Radiol. 2020; 30 (3): 1405–1418. http://doi.org/10.1007/s00330-019-06461-9Test; Thomeer M.G., Gerestein C., Spronk S. et al. Clinical examination versus magnetic resonance imaging in the pretreatment staging of cervical carcinoma:systematic review and meta-analysis. Eur. Radiol. 2013; 23: 2005–2018. http://doi.org/10.1007/s00330-013-2783-4Test; Manganaro L., Lakhman Y., Bharwani N. et al. Staging, recurrence and follow-up of uterine cervical cancer using MRI: Updated Guidelines of the European Society of Urogenital Radiology after revised FIGO staging 2018. Eur. Radiol. 2021; 31 (10): 7802–7816. http://doi.org/10.1007/s00330-020-07632-9Test. Erratum in: Eur. Radiol. 2021 Jun 17. PMID: 33852049; Bourgioti C., Chatoupis K., Moulopoulos L.A. Current imaging strategies for the evaluation of uterine cervical cancer. Wld J. Radiol. 2016; 8 (4): 342–354. http://doi.org/10.4329/wjr.v8.i4.342Test; Nogami Y., Iida M., Banno K. et al. Application of FDG-PET in cervical cancer and endometrial cancer: utility and future prospects. Anticancer Res. 2014; 34 (2): 585–592. PMID: 24510987; Mirpour S., Mhlanga J., Logeswaran P. et al. The role of PET/CT in the management of cervical cancer. Am. J. Roentgenol. 2013; 201 (2): W192–205. http://doi.org/10.2214/AJR.12.9830Test; Choi H.J., Ju W., Myung S.K., Kim Y. Diagnostic performance of computer tomography, magnetic resonance imaging, and positron emission tomography or positron emission tomography/computer tomography for detection of metastatic lymph nodes in patients with cervical cancer: meta-analysis. Cancer Sci. 2010; 101 (6): 1471–1479. http://doi.org/10.1111/j.1349-7006.2010.01532.xTest; Liu B., Gao S., Li S. A comprehensive comparison of CT, MRI, positron emission tomography or positron emission tomography/ CT, and diffusion weighted imaging-MRI for detecting the lymph nodes metastases in patients with cervical cancer: a metaanalysis based on 67 studies. Gynecol. Obstet Invest. 2017; 82 (3): 209–222. http://doi.org/10.1159/000456006Test; Ruan J., Zhang Y., Ren H. Meta-analysis of PET/CT Detect Lymph Nodes Metastases of Cervical Cancer. Open Med. (Wars.) 2018; 13: 436–442. http://doi.org/10.1515/med-2018-0065Test; Young P., Daniel B., Sommer G. et al. Intravaginal gel for staging of female pelvic cancers–preliminary report of safety, distention, and gel-mucosal contrast during magnetic resonance examination. J. Comput. Assist. Tomogr. 2012; 36 (2): 253–256. http://doi.org/10.1097/RCT.0b013e3182483c05Test; Van Hoe L., Vanbeckevoort D., Oyen R. et al. Cervical carcinoma: optimized local staging with intravaginal contrast-enhanced MR imaging–preliminary results. Radiology. 1999; 213 (2): 608–611. http://doi.org/10.1148/radiology.213.2.r99oc23608Test; Akata D., Kerimoglu U., Hazirolan T. et al. Efficacy of transvaginal contrast-enhanced MRI in the early staging of cervical carcinoma. Eur. Radiol. 2005; 15 (8): 1727–1733. https://doi.org/10.1007/s00330-005-2645-9Test; Li X., Wang L., Li Y., Song P. The value of diffusionweighted imaging in combination with conventional magnetic resonance imaging for improving tumor detection for early cervical carcinoma treated with fertility-sparing surgery. Int. J. Gynecol. Cancer. 2017; 27 (8):1761–1768. http://doi.org/10.1097/IGC.0000000000001113Test; Woo S., Moon M.H., Cho J.Y. et al. Diagnostic performance of MRI for assessing parametrial invasion in cervical cancer: a head-to-head comparison between oblique and true axial T2-weighted images. Korean J. Radiol. 2019; 20 (3): 378–384. http://doi.org/10.3348/kjr.2018.0248Test; Hori M., Kim T., Onishi H. et al Uterine tumors: comparison of 3D versus 2D T2-weighted turbo spin-echo MR imaging at 3.0 T-initial experience. Radiology. 2011; 258 (1): 154–163. http://doi.org/10.1148/radiol.10100866Test; Hwang J., Hong S.S., Kim H.J. et al. Reduced field-of-view diffusion-weighted MRI in patients with cervical cancer. Br. J. Radiol. 2018; 91 (1087): 20170864. http://doi.org/10.1259/bjr.20170864Test; Huang J.-W., Song J.-C., Chen T. et al. Making the invisible visible: improving detectability of MRI-invisible residual cervical cancer after conisation by DCE-MRI. Clin. Radiol. 2019; 74 (2): 166.e15–166.e21. http://doi.org/10.1016/j.crad.2018.10.013Test; Bermudez A., Bhatla N., Leung E. FIGO cancer report 2015. Cancer of the cervix uteri. Int. J. Gynecol. Obstet. 2015; 131: S88–95. http://doi.org/10.1016/j.ijgo.2015.06.004Test; Bentivegna E., Gouy S., Maulard A. et al. Oncological outcomes after fertility-sparing surgery for cervical cancer: a systematic review. Lancet Oncol. 2016; 17 (6): e240–e253. http://doi.org/10.1016/S1470-2045Test(16)30032-8; Zhang Q., Li W., Kanis M.J. et al. Oncologic and obstetrical outcomes with fertility-sparing treatment of cervical cancer: a systematic review and meta-analysis. Oncotarget. 2017; 8 (28): 46580–46592. http://doi.org/10.18632/oncotarget.16233Test; Bentivegna E., Maulard A., Pautier P. et al. Fertility results and pregnancy outcomes after conservative treatment of cervical cancer: a systematic review of the Literature. Fertil Steril. 2016; 106 (5): 1195–1211.e5. https://doi.org/10.1016/j.fertnstert.2016.06.032Test; Koh W.J., Abu-Rustum N.R., Bean S. et al. Cervical Cancer, Version 3.2019, NCCN Clinical Practice Guidelines in Oncology. J. Natl. Compr. Canc. Netw. 2019; 17 (1): 64–84. http://doi.org/10.6004/jnccn.2019.0001Test; Engin G. Cervical cancer: MR imaging findings before, during, and after radiation therapy. Eur. Radiol. 2006; 16 (2): 313–324. http://doi.org/10.1007/s00330-005-2804-zTest; Hricak H., Yu K.K. Radiology in invasive cervical cancer. Am. J. Roentgenol. 1996; 167: 1101–1108. http://doi.org/10.2214/ajr.167.5.8911159Test; Lakhman Y., Akin O., Park K.J. et al. Stage IB1 cervical cancer: role of preoperative MR imaging in selection of patients for fertility-sparing radical trachelectomy. Radiology. 2013; 269 (1): 149–158. https://doi.org/10.1148/radiol.13121746Test; Noël P., Dubé M., Plante M., St-Laurent G. Early cervical carcinoma and fertility-sparing treatment options: MR imaging as a tool in patient selection and a follow-upmodality. Radiographics. 2014; 34 (4): 1099–1119. https://doi.org/10.1148/rg.344130009Test; Downey K., Attygalle A.D., Morgan V.A. et al. Comparison of optimised endovaginal vs external array coil T2-weighted and diffusion-weighted imaging techniques for detecting suspected early stage (IA/IB1) uterine cervical cancer. Eur. Radiol. 2016; 26 (4): 941–950. http://doi.org/10.1007/s00330-015-3899-5Test; DeSouza N.M., Rockall A., Freeman S. Functional MR imaging in gynecologic cancer. Magn. Reson. Imaging Clin. N. Am. 2016; 24 (1): 205–222. http://doi.org/10.1016/j.mric.2015.08.008Test; Woo S., Suh C.H., Kim S.Y. et al. Magnetic resonance imaging for detection of parametrial invasion in cervical cancer: an updated systematic review and meta-analysis of the literature between 2012 and 2016. Eur. Radiol. 2018; 28 (2): 530–541. http://doi.org/10.1007/s00330-017-4958-xTest; Park J.J., Kim C.K., Park S.Y., Park B.K. Parametrial invasion in cervical cancer: fused T2-weighted imaging and high-b-value diffusion-weighted imaging with background body signal suppression at 3 T. Radiology. 2015; 274 (3): 734–741. http://doi.org/10.1148/radiol.14140920Test; Sala E., Rockall A.G., Freeman S.J. et al. The Added Role of MR Imaging in Treatment Stratification of Patients with Gynecologic Malignancies: What the Radiologist Needs to Know. Radiology. 2013; 266: 717–740. http://doi.org/10.1148/radiol.12120315Test; Raithatha A., Papadopoulou I., Stewart V. et al. Cervical cancer staging: a resident’s primer: women’s imaging. Radiographics. 2016; 36 (3): 933–934. http://doi.org/10.1148/rg.2016150173Test; Eisenhauer E.A., Therasse P., Bogaerts J. et. al. New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1). Eur. J. Cancer. 2009; 45 (2): 228–247. http://doi.org/10.1016/j.ejca.2008.10.026Test; Zhang A., Song J., Ma Z., Chen T. Application of apparent diffusion coefficient values derived from diffusion-weighted imaging for assessing different sized metastatic lymph nodes in cervical cancers. Acta Radiol. 2020; 61 (6): 848–855. https://doi.org/10.1177/0284185119879686Test; Qi Y.F., He Y.L., Lin C.Y. et al. Diffusion-weighted imaging of cervical cancer: Feasibility of ultra-high b-value at 3T. Eur. J. Radiol. 2020; 124: 108779. http://doi.org/10.1016/j.ejrad.2019.108779Test; Elsholtz F.H.J., Asbach P., Haas M. et al. Introducing the Node Reporting and Data System 1.0 (Node-RADS): a concept for standardized assessment of lymph nodes in cancer. Eur. Radiol. 2021; 31 (8): 6116–6124. https://doi.org/10.1007/s00330-020-07572-4Test; Wong T.Z., Jones E.L., Coleman R.E. Positron emission tomography with 2-deoxy-2-[(18)F]fluoro-D-glucose for evaluating local and distant disease in patients with cervical cancer. Mol. Imaging Biol. 2004; 6 (1): 55–62. http://doi.org/10.1016/j.mibio.2003.12.004Test; Hameeduddin A., Sahdev A. Diffusion-weighted imaging and dynamic contrast-enhanced MRI in assessing response and recurrent disease in gynaecological malignancies. Cancer Imaging. 2015; 15 (1): 3. http://doi.org/10.1186/s40644-015-0037-1Test; Young H., Baum R., Cremerius U. et al. Measurement of clinical and subclinical tumour response using [18F]-fluorodeoxyglucose and positron emission tomography: review and 1999 EORTC recommendations. European Organization for Research and Treatment of Cancer (EORTC) PET Study Group. Eur. J. Cancer. 1999; 35 (13): 1773–1782. http://doi.org/10.1016/s0959-8049Test(99)00229-4; Wang X., Koch S. Positron emission tomography/ computed tomography potential pitfalls and artifacts. Curr. Probl. Diagn. Radiol. 2009; 38 (4): 156–169. http://doi.org/10.1067/j.cpradiol.2008.01.001Test; Amit A., Person O., Keidar Z. FDG PET/CT in monitoring response to treatment in gynecological malignancies. Curr. Opin. Obstet. Gynecol. 2013; 25 (1): 17–22. http://doi.org/10.1097/GCO.0b013e32835a7e96Test; American College of Radiology ACR Appropriateness Criteria: Pretreatment Planning of Invasive Cancer of the Cervix. https://acsearch.acr.org/docs/69461/NarrativeTest/; Moore K.N., Herzog T.J., Lewin S. et al. A comparison of cisplatin/paclitaxel and carboplatin/paclitaxel in stage IVB, recurrent or persistent cervical cancer. Gynecol. Oncol. 2007; 105 (2): 299–303. http://doi.org/10.1016/j.ygyno.2006.12.031Test; Lorusso D., Petrelli F., Coinu A. et al. A systematic review comparing cisplatin and carboplatin plus paclitaxel-based chemotherapy for recurrent or metastatic cervical cancer. Gynecol. Oncol. 2014; 133 (1): 117–123. http://doi.org/10.1016/j.ygyno.2014.01.042Test; Bodurka-Bevers D., Morris M., Eifel P.J. et al. Posttherapy surveillance of women with cervical cancer: an outcomes analysis. Gynecol. Oncol. 2000; 78 (2): 187–193. http://doi.org/10.1006/gyno.2000.5860Test.; Scottish Intercollegiate Guidelines Network. Management of cervical cancer/ (SIGN guideline no 99) 2008; National Comprehensive Cancer Network (NCCN) guidelines for cervical cancer/ 2022; https://medvis.vidar.ru/jour/article/view/1341Test

  4. 4
    دورية أكاديمية

    المصدر: Medical Visualization; Том 27, № 2 (2023); 53-61 ; Медицинская визуализация; Том 27, № 2 (2023); 53-61 ; 2408-9516 ; 1607-0763

    وصف الملف: application/pdf

    العلاقة: https://medvis.vidar.ru/jour/article/view/1312/782Test; Scott D.S., Justina C. W., Linda D.G. Essential echocardiographya. Companion to Braunwald’s Heart Disease, Illustration Editor Bernard E. Bulwer, Inc. All rights reserved Elsevier Philadelphia, 2019.; Christoph F.D., Jouke T.A., Paul C. et al. Ultrasound techniques in the evaluation of the mediastinum, part I: endoscopic ultrasound (EUS), endobronchial ultrasound (EBUS) and transcutaneous mediastinal ultrasound (TMUS), introduction into ultrasound techniques, Journal of Thoracic Disease. All rights reserved. J. Thorac. Dis. 2015; 7 (9): 311–325. https://doi:10.3978/j.issn.2072-1439.2015.09.40Test; Islam A., Asad R., Wallisa R. et al. Cardiac ultrasound: an anatomical and clinical review. Translat. Res. Anatomy. 2021; 22: 100083. https://doi.org/10.1016/j.tria.2020.100083Test; Miyamoto T., Watanabe S., Obayashi T. Microcavitation contrast method for the drainage of bloody pericardial effusion. Circulation. 2009; 120 (21): e166. https://doi.org/10.1161/CIRCULATIONAHA.109.896563Test; Durant T.M. Negative (gas) contrast angiocardiography. Am. Heart J. 1961; 61: 1–4. https://doi.org/10.1016/0002-8703Test(61)90509-9; Astapow B.M., Drosdowski B.J., Zyb A.F. Double contrast examination of the pericardial cavity in a case of exsudative pericarditis. Radiologe. 1979; 19 (12): 537–542.; Mäurer W., Rauch B., Schwarz F. et al. Direkte Kontrastmitteldarstellung akuter und chronischer Perikardergüsse sowie des Herzbeutels. Dtsch. Med. Wschr. 1981. 106 (47): 1571–1575. https://doi.org/10.1055/s-2008-1070556Test; Ong C.C., Teo L.L.S. Imaging of anterior mediastinal tumors. Cancer Imaging. 2012; 12 (3): 506–515. https://doi.org/10.1102/1470-7330.2012.0039Test; Seo J.S., Kim Y.J., Choi B.W., Choe K.O. Usefulness of magnetic resonance imaging for evaluation of cardiovascular invasion: evaluation of sliding motion between thoracic mass and adjacent structures on cine MR images. J. Magn. Reson. Imaging. 2005; 22: 234–241. https://doi.org/10.1002/jmri.20378Test; Амелина И.Д., Нестеров Д.В., Шевкунов Л.Н., Карачун А.М., Артемьева А.С., Багненко С.С., Трофимов С.Л. Компьютерно-томографическая пневмогастрография в определении типов рака желудка по классификации Lauren. Злокачественные опухоли. 2021; 11 (2): 13–26. https://doi.org/10.18027/2224-5057-2021-11-2-13-26Test; Мутовкина Н.И., Калинин П.С., Данилов В.В., Мищенко А.В. Магнитно-резонансная томография в диагностике рака пищевода (обзор литературы). Медицинская визуализация. 2019; 3: 28–43. https://doi.org/10.24835/1607-0763-2019-3-28-43Test; Буровик И.А., Прохоров Г.Г., Лушина П.А., Васильев А.В., Дегтярёва Е.А. Робот-ассистированные чрескожные вмешательства под КТ-контролем: первый опыт. Медицинская визуализация. 2019; 2: 27–35. https://doi.org/10.24835/1607-0763-2019-2-27-35Test; Калинин П.С., Кушнарев В.А., Балкаров А.Х., Артемьева А.С. Легочный гистиоцитоз из клеток Лангерганса, симулирующий метастазы в легкие гиганто клеточной остеобластической саркомы (клиническое наблюдение). Медицинская визуализация. 2019; 2: 44–48. https://doi.org/10.24835/1607-0763-2019-2-44-48Test; Розенгауз В.В., Караханова А.Г., Нестеров Д.В. Особенности паттерна контрастирования гепатоцеллюлярного рака при тромбозе воротной вены. Медицинская визуализация. 2019; 4: 68–75. https://doi.org/10.24835/1607-0763-2019-4-68-75Test; Seo J.S., Kim Y.J., Choi B.W., Choe K.O. Usefulness of magnetic resonance imaging for evaluation of cardiovascular invasion: evaluation of sliding motion between thoracic mass and adjacent structures on cine MR images. J. Magn. Reson. Imaging. 2005; 22: 234–241. https://doi:10.1002/jmri.20378Test. PMid:16028243; Murata K., Takahashi M., Mori M. et al. Chest wall and mediastinal invasion by lung cancer: evaluation with multisection expiratory dynamic CT. Radiology. 1994; 191: 251–255. https://doi.org/10.1148/radiology.191.1.8134583Test; Bacha E.A., Chapelier A.R., Macchiarini P. et al. Surgery for invasive primary mediastinal tumors. Ann. Thorac. Surg. 1998; 66: 234–239. https://doi.org/10.1016/s0003-4975Test(98)00350-6; https://medvis.vidar.ru/jour/article/view/1312Test

  5. 5
    دورية أكاديمية

    المصدر: Medical Visualization; Том 27, № 1 (2023); 89-98 ; Медицинская визуализация; Том 27, № 1 (2023); 89-98 ; 2408-9516 ; 1607-0763

    وصف الملف: application/pdf

    العلاقة: https://medvis.vidar.ru/jour/article/view/1333/788Test; Чиссов В.И., Давыдов М.И. Онкология: Национальное руководство. Краткое издание. М.: ГЭОТАР-Медиа, 2017. 576 с.; Носов А.К., Лушина П.А. Анализ заболеваемости и смертности от рака почки в России и Санкт-Петербурге. Сибирский онкологический журнал. 2017; 16 (5): 95–103. https://doi.org/10.21294/1814-4861-2017-16-5-95-103Test; Nouhaud F.X., Bernhard J.C., Bigot P. et al. Contemporary assessment of the correlation between Bosniak classification and histological characteristics of surgically removed atypical renal cysts (UroCCR–12 study). Wld J. Urol. 2018; 36 (10): 1643–1649. https://doi.org/10.1007/s00345-018-2307-6Test; Helenon O., Crosnier A., Verkarre V. Simple and complex renal cysts in adults: Classification system for renal cystic masses. Diagn. Interv. Imaging. 2018; 99 (4): 189–218. https://doi.org/10.1016/j.diii.2017.10.005Test; Буровик И.А., Локшина А.А., Кулева С.А. Оптимизация методики мультиспиральной компьютерной томографии при динамическом наблюдении онкологических больных. Медицинская визуализация. 2015; 2: 129–134.; Silverman S.G., Pedrosa I., Ellis J.H. et al. Bosniak Classification of Cystic Renal Masses, Version 2019: An Update Proposal and Needs Assessment. Radiology. 2019; 292 (2): 475–488. https://doi.org/10.1148/radiol.2019182646Test; Буровик И.А., Мищенко А.В., Кулева С.А., Мелдо А.А. Характеристики контрастного усиления при различных методиках мультиспиральной компьютерной томографии. Вопросы онкологии. 2016; 62 (3): 460–464.; Nicolau C., Antunes N, Paño B. et al. Imaging Characterization of Renal Masses. Medicina (Kaunas). 2021; 57 (1): 51. https://doi.org/10.3390/medicina57010051Test; Schoots I.G., Zaccai K., Hunink M.G. et al. Bosniak classification for complex renal cysts reevaluated: a systematic review. J. Urol. 2017; 198 (1): 12–21. https://doi.org/10.1016/j.juro.2016.09.160Test; Smith A.D., Carson J.D., Sirous R. et al. Active surveillance versus nephronsparing surgery for a Bosniak IIF or III renal cyst: a cost–effectiveness analysis. Am. J. Roentgenol. 2019; 212 (4): 830–838. https://doi.org/10.2214/AJR.18.20415Test; Кадырлеев Р.А., Багненко С.С., Бусько Е.А., Костромина Е.В., Шевкунов Л.Н., Козубова К.В., Гончарова А.Б. Возможности мультипараметрического ультразвукового исследования в диагностике кистозных образований почек. Онкологический журнал: лучевая диагностика, лучевая терапия. 2021; 4 (3): 35–43. https://doi.org/10.37174/2587-7593-2021-4-3-35-43Test; Krishna S., Leckie A., Kielar A. et al. Imaging of Renal Cancer. Semin Ultrasound CT MR. 2020; 41 (2): 152–169. https://doi.org/10.1053/j.sult.2019.12.004Test; Bertolotto M., Bucci S., Valentino M. et al. Contrast-enhanced Ultrasound for characterizing renal masses. Eur. J. Radiol. 2018; 105: 41–48. https://doi.org/10.1016/j.ejrad.2018.05.015Test; Бусько Е.А., Козубова К.В., Багненко С.С., Карачун А.М., Буровик И.А., Гончарова А.Б., Костромина Е.В., Кадырлеев Р.А., Курганская И.Х., Шевкунов Л.Н. Сравнительный анализ эффективности КТ и контрастно-усиленного УЗИ в диагностике метастазов колоректального рака в печени. Анналы хирургической гепатологии. 2022; 27 (1): 22–32. https://doi.org/10.16931/1995-5464.2022-1-22-32Test; Асатурян М.А., Атаев А.Г., Багненко С.С. и др. Общая и военная рентгенология. СПб.: Военно-мед. акад., 2008. 480 с.; Sidhu P.S., Cantisani V., Dietrich C.F. et al. The EFSUMB Guidelines and Recommendations for the Clinical Practice of Contrast-Enhanced Ultrasound (CEUS) in Non-Hepatic Applications: Update 2017 (Long Version). Ultraschall Med. 2018; 39 (2): e2–e44. https://doi.org/10.1055/a-0586-1107Test; Como G., Valotto C., Tulipano Di Franco F. et al. Role of contrast-enhanced ultrasound in assessing indeterminate renal lesions and Bosniak ≥2F complex renal cysts found incidentally on CT or MRI. Br. J. Radiol. 2021; 94 (1127): 20210707. https://doi.org/10.1259/bjr.20210707Test; Багненко С.С., Ефимцев А.Ю., Железняк И.С. и др. Практическая ультразвуковая диагностика: Руководство для врачей. В 5 томах. М.:ГЭОТАР-Медиа, 2016. 240 с.; Трофимова Т.Н., Назинкина Ю.В., Баулин И.А. и др. Современные стандарты анализа лучевых изображений и принципы построения заключения: Руководство для врачей. СПб: Балтийский медицинский образовательный центр, 2019. 290 с.; https://medvis.vidar.ru/jour/article/view/1333Test

  6. 6
    دورية أكاديمية

    المصدر: Medical Visualization; Том 27, № 1 (2023); 46-56 ; Медицинская визуализация; Том 27, № 1 (2023); 46-56 ; 2408-9516 ; 1607-0763

    وصف الملف: application/pdf

    العلاقة: https://medvis.vidar.ru/jour/article/view/1301/771Test; Атаев А.Г., Багненко С.С., Бойков И.В. и др. Лучевая диагностика: Учебник для студентов медицинских вузов / Под ред. Г.Е. Труфанова. М.: ГЭОТАР-Медиа, 2009. 416 с.; Семиглазов В.Ф., Семиглазов В.В. Скрининг рака молочной железы. Практическая онкология. 2010; 11 (2): 61–62.; Evans A. Breast ultrasound: recommendations for information to women and referring physicians by the European Society of Breast Imaging. Insights Imaging. 2018; Vol 9: 449–461. https://doi.org/10.1007/s13244-018-0636-zTest.; Мазо М.Л., Рожкова Н.И., Прокопенко С.П., Бурдина И.И., Запирова С.Б., Якобс О.Э. Инвазивная лучевая диагностика рака молочной железы. Тонкоигольная биопсия или трепан-биопсия? Медицинская визуализация. 2015; 4: 79–86.; Бусько Е.А., Семиглазов В.В., Аполлонова В.С. и др. Интервенционные технологии в онкомаммологии. СПб.: ФГБУ НМИЦ онкологии им. Н.Н. Петрова Минздрава России, 2020. 84 с.; Ульянова Р.Х., Чёрная А.В., Криворотько П.В., Новиков С.Н., Канаев С.В., Артемьева А.С., Шевкунов Л.Н., Тятьков С.А., Данилов В.В. Дифференциальная диагностика патологии молочной железы с помощью типов накопления контрастного препарата при контрастной спектральной двухэнергетической маммографии. Вопросы онкологии. 2020; 66 (3): 252–261. https://doi.org/10.37469/0507-3758-2020-66-3-252-261Test; Jung I., Han K., Kim M.J. et al. Annual Trends in Ultrasonography-Guided 14-Gauge Core Needle Biopsy for Breast Lesions. Korean J. Radiol. 2020; 21 (3): 259–267. https://doi.org/10.3348/kjr.2019.0695Test; Серебрякова С.В., Труфанов Г.Е., Фокин В.А., Юхно Е.А. Магнитно-резонансная томография с контрастным усилением в дифференциальной диагностике узловых образований молочных желез. Трансляционная медицина. 2016; 3 (5): 82–94. https://doi.org/10.18705/2311-4495-2016-3-5-82-94Test; Дитцель М., Мазо М.Л., Рожкова Н.И., Хоружик С.А., Куплевацкая Д.И., Бусько Е.А., Ходикян Г.К., Бальтцер П.А.Т. Как использовать шкалу кай зера для принятия диагностических решений при мультипарамет рической МРТ молочной железы. REJR. 2020; 10 (3): 58–76. https://doi.org/10.21569/2222-7415-2020-10-3-58-76Test; Шумакова Т.А., Савелло В.Е. Комплексная лучевая диагностика рака молочной железы у женщин после увеличивающей маммопластики силиконовыми гелевыми имплантатами. Опухоли женской репродуктивной системы. 2014; 3: 36–46. https://doi.org/10.17650/1994-4098-2014-0-3-36-46Test; Papalouka V., Kilburn-Toppin F., Gaskarth M., Gilbert F. MRI-guided breast biopsy: a review of technique, indications, and radiological-pathological correlations. Clin. Radiol. 2018; 73 (10): 908.e17-908.e25. https://doi.org/10.1016/j.crad.2018.05.029Test; Мазо М.Л., Якобс О.Э., Пучкова О.С., Фельдшеров М.В., Кондратьев Е.В. Первый опыт применения вакуумной аспирационной биопсии молочной железы под МТР-наведением. Медицинский алфавит. 2020; 29: 25–31. https://doi.org/10.33667/2078-5631-2020-29-25-31Test; Jung E.M., Friedrich C., Hoffstetter P. et al. Volume navigation with contrast enhanced ultrasound and image fusion for percutaneous interventions: first results. PLoS One. 2012; 7 (3): e33956. / https://doi.org/10.1371/journal.pone.0033956Test; Kuru T.H., Tulea C., Simpfendörfer T. et al. MRT-navigierte stereotaktische Prostatabiopsie : Echtzeitfusion von MRT und transrektalem Ultraschall zu perinealen Prostatastanzbiopsien [MRI navigated stereotactic prostate biopsy: fusion of MRI and real-time transrectal ultrasound images for perineal prostate biopsies]. Urologe A. 2012; 51 (1): 50–56. https://doi.org/10.1007/s00120-011-2707-3Test; Park A.Y., Seo B.K. Real-Time MRI Navigated Ultrasound for Preoperative Tumor Evaluation in Breast Cancer Patients: Technique and Clinical Implementation. Korean J. Radiol. 2016; 17 (5): 695–705. https://doi.org/10.3348/kjr.2016.17.5.695Test; Nakashima K., Uematsu T., Harada T.L. et al. MRIdetected breast lesions: clinical implications and evaluation based on MRI/ultrasonography fusion technology. Jpn J. Radiol. 2019; 37: 685–693. https://doi.org/10.1007/s11604-019-00866-8Test; Тухбатуллин М.Г. Fusion технологии в многопрофильной клинике. Практическая медицина. 2018; 1 (112): 65–68.; Fausto A., Fanizzi A., Volterrani L. et al. Feasibility, Image Quality and Clinical Evaluation of Contrast-Enhanced Breast MRI Performed in a Supine Position Compared to the Standard Prone Position. Cancers. 2020; 12 (9): 2364. https://doi.org/10.3390/cancers12092364Test; Рons E.P., Azcón F.M., Casas M.C. et al. Real-time MRI navigated US: role in diagnosis and guided biopsy of incidental breast lesions and axillary lymph nodes detected on breast MRI but not on second look US. Eur. J. Radiol. 2014; 83 (6): 942–950. https://doi.org/10.1016/j.ejrad.2014.03.006Test; Goto M., Nakano S., Saito M. et al. Evaluation of an MRI/ US fusion technique for the detection of non-mass enhancement of breast lesions detected by MRI yet occult on conventional B-mode second-look US. J. Med. Ultrason. 2022; 49 (2): 269–278. https://doi.org/10.1007/s10396-021-01175-2Test; https://medvis.vidar.ru/jour/article/view/1301Test

  7. 7
    دورية أكاديمية

    المصدر: Medical Visualization; Том 27, № 1 (2023); 25-34 ; Медицинская визуализация; Том 27, № 1 (2023); 25-34 ; 2408-9516 ; 1607-0763

    وصف الملف: application/pdf

    العلاقة: https://medvis.vidar.ru/jour/article/view/1314/784Test; Sprague B.L., Gangnon R.E., Burt V. et al. Prevalence of mammographically dense breasts in the United States. J. Natl. Cancer Inst. 2014; 106 (10): dju255. http://doi.org/10.1093/jnci/dju255Test; Kolb T.M., Lichy J., Newhouse J.H. Comparison of the performance of screening mammography, physical examination, and breast US and evaluation of factors that influence them: an analysis of 27,825 patient evaluations. Radiology. 2002; 225 (1): 165–175. http://doi.org/10.1148/radiol.2251011667Test; Bertrand K.A., Tamimi R.M., Scott C.G. et al. Mammographic density and risk of breast cancer by age and tumor characteristics. Breast Cancer Res. 2013; 15 (6): R104. http://doi.org/10.1186/bcr3570Test; Sartor H., Zackrisson S., Elebro K. et al. Mammographic density in relation to tumor biomarkers, molecular subtypes, and mode of detection in breast cancer. Cancer Causes Control. 2015; 26 (6): 931–939. http://doi.org/10.1007/s10552-015-0576-6Test; Sung H., Ren J., Li J. et al. Breast cancer risk factors and mammographic density among high-risk women in urban China. NPJ Breast Cancer. 2018; 4 (1): 3. http://doi.org/10.1038/s41523-018-0055-9Test; Huppe A.I., Mehta A.K., Brem R.F. Molecular breast imaging: a comprehensive review. Semin Ultrasound CT MR. 2018; 39 (1): 60–69. http://doi.org/10.1053/j.sult.2017.10.001Test; Чёрная А.В., Канаев С.В., Новиков С.Н., Крживицкий П.И., Криворотько П.В., Жукова Л., Бусько Е.А. Диагностическая значимость маммографии и маммосцинтиграфии с 99m Тс-MIBI при выявлении минимального рака молочной железы. Вопросы онкологии. 2017; 63 (2): 274–280. https://doi.org/10.37469/0507-3758-2017-63-2-274-280Test; Adrada B.E., Candelaria R., Rauch G.M. MRI for the Staging and Evaluation of Response to Therapy in Breast Cancer. Top Magn. Reson. Imaging. 2017; 26 (5): 211–218. https://doi.org/10.1097/RMR.0000000000000147Test; Семиглазов В.Ф., Комяхов А.В., Семиглазов В.В., Дашян Г.А., Петренко О.Л., Петрова А.С. Магнитно-резонансная томография в первичной диагностике и оценке эффективности неоадъювантной терапии у больных раком молочной железы. Эффективная фармакотерапия. 2015; 10: 44–53.; Чёрная А.В., Новиков С.Н., Криворотько П.В., Ульянова Р.Х., Данилов В.В. Новые технологии при выявлении рака молочной железы – контрастная двухэнергетическая спектральная маммография. Медицинская визуализация. 2019; 2: 49–61. https://doi.org/10.24835/1607-0763-2019-2-49-61Test; Patel B.K., Naylor M.E., Kosiorek H.E. et al. Clinical utility of contrast-enhanced spectral mammography as an adjunct for tomosynthesis-detected architectural distortion. Clin. Imaging. 2017; 46: 44–52. https://doi.org/10.1016/j.clinimag.2017.07.003Test; Чёрная А.В., Ульянова Р.Х., Криворотько П.В., Артемьева А.С., Багненко С.С., Жильцова Е.К., Новиков С.Н., Данилов В.В., Крживицкий П.И., Семиглазов В.Ф. Возможности контрастной спектральной двухэнергетической маммографии в диагностике мультицентричного рака молочной железы. Опухоли женской репро дуктивной системы. 2021; 17 (4): 20–28. https://doi.org/10.17650/1994-4098-2021-17-4-20-28Test; Чёрная А.В, Бусько Е.А., Канаев С.Н., Новиков С.Н., Криворотько П.В., Крживицкий П.И., Попова Н.С., Артемьева А.С., Шумакова Т.А. Маммография и маммосцинтиграфия с 99m Тс-MIBI в диагностике мультицентричного рака молочной железы. Вопросы онкологии. 2017; 63 (6): 876–881.; Чёрная А.В., Крживицкий П.И., Бусько Е.А., Криворотько П.В., Артемьева А.С., Попова Н.С., Данилов В.В., Семиглазов В.Ф., Новиков С.Н., Канаев С.В. Роль цифровой маммографии, маммосцинтиграфии с 99m-метоксиизобутилизонитрилом (MIBI) и ультразвукового исследования в диагностике мультицентричного рака молочной железы. Опухоли женской репродуктивной системы. 2019; 15 (4): 12–22. https://doi.org/10.17650/1994-4098-2019-15-4-12-22Test; https://medvis.vidar.ru/jour/article/view/1314Test

  8. 8
    دورية أكاديمية

    المصدر: Creative surgery and oncology; Том 12, № 3 (2022); 187-192 ; Креативная хирургия и онкология; Том 12, № 3 (2022); 187-192 ; 2076-3093 ; 2307-0501

    وصف الملف: application/pdf

    العلاقة: https://www.surgonco.ru/jour/article/view/712/504Test; Macedo F., Ladeira K., Pinho F., Saraiva N., Bonito N., Pinto L., et al. Bone metastases: an overview. Oncol Rev. 2017;11(1):321. DOI:10.4081/oncol.2017.321; Hernandez R.K., Wade S.W., Reich A., Pirolli M., Liede A., Lyman G.H. Incidence of bone metastases in patients with solid tumors: analysis of oncology electronic medical records in the United States. BMC Cancer. 2018;18(1):44. DOI:10.1186/s12885-017-3922-0; Janssen S.J., Pereira N.R.P., Thio Q.C.B.S., Raskin K.A., Bramer J.A.M., Lozano-Calderon S.A., et al. Physical function and pain intensity in patients with metastatic bone disease. J Surg Oncol. 2019;120(3):376–81. DOI:10.1002/jso.25510; Kurup A.N., Callstrom M.R. Image-guided percutaneous ablation of bone and soft tissue tumors. Semin Intervent Radiol. 2010;27(3):276–84. DOI:10.1055/s-0030-1261786; Ahmad I., Ahmed M.M., Ahsraf M.F., Naeem A., Tasleem A., Ahmed M., et al. Pain management in metastatic bone disease: a literature review. Cureus. 2018;10(9):e3286. DOI:10.7759/cureus.3286; Bennett M.I., Eisenberg E., Ahmedzai S.H., Bhaskar A., O’Brien T., Mercadante S., et al. Standards for the management of cancer-related pain across Europe-A position paper from the EFIC Task Force on Cancer Pain. Eur. J Pain. 2019;23(4):660–8. DOI:10.1002/ejp.1346; Jennings J.W., Prologo J.D., Garnon J., Gangi A., Buy X., Palussière J., et al. Cryoablation for palliation of painful bone metastases: the MOTION multicenter study. Radiol Imaging Cancer. 2021;3(2):e200101. DOI:10.1148/rycan.2021200101; Буровик И.А., Прохоров Г.Г., Багненко С.С., Шевкунов Л.Н., Мелдо А.А., Гильфанова Р.Р. и др. Пункционная чрескожная стереотаксическая криоаблация в купировании боли при метастатическом поражении костей. Онкологический журнал: лучевая диагностика, лучевая терапия. 2022;5(1):65–73. DOI:10.37174/2587-7593-2022-5-1-65-73; Буровик И.А., Прохоров Г.Г., Оконечникова Д.В. Пункционные доступы для чрескожных миниинвазивных вмешательств под КТ контролем при опухолях костей таза. Диагностическая и интервенционная радиология. 2021;15(2):9–17. DOI:10.25512/DIR.2021.15.2.01; Barzilai O., Versteeg A.L., Sahgal A., Rhines L.D., Bilsky M.H., Sciubba D.M., et al. Survival, local control, and health-related quality of life in patients with oligometastatic and polymetastatic spinal tumors: A multicenter, international study. Cancer. 2019;125(5):770–8. DOI:10.1002/cncr.31870; Maisano R., Pergolizzi S., Cascinu S. Novel therapeutic approaches to cancer patients with bone metastasis. Crit Rev Oncol Hematol. 2001;40(3):239–50. DOI:10.1016/s1040-8428(01)00092-0; Errani C., Mavrogenis A.F., Cevolani L., Spinelli S., Piccioli A., Maccauro G., et al. Treatment for long bone metastases based on a systematic literature review. Eur J Orthop Surg Traumatol. 2017;27(2):205–11. DOI:10.1007/s00590-016-1857-9; Carlson C.L. Effectiveness of the World Health Organization cancer pain relief guidelines: an integrative review. J Pain Res. 2016;9:515–34. DOI:10.2147/JPR.S97759; Fallon M., Giusti R., Aielli F., Hoskin P., Rolke R., Sharma M., et al. ESMO Guidelines Committee. Electronic address: clinicalguidelines@esmo.org. Management of cancer pain in adult patients: ESMO Clinical Practice Guidelines. Ann Oncol. 2018;29(4):iv166–91. DOI:10.1093/annonc/mdy152; Chow R., Hoskin P., Hollenberg D., Lam M., Dennis K., Lutz S., et al. Efficacy of single fraction conventional radiation therapy for painful uncomplicated bone metastases: a systematic review and meta-analysis. Ann Palliat Med. 2017;6(2):125–42. DOI:10.21037/apm.2016.12.04; von Moos R., Costa L., Ripamonti C.I., Niepel D., Santini D. Improving quality of life in patients with advanced cancer: Targeting metastatic bone pain. Eur J Cancer. 2017;71:80–94. DOI:10.1016/j.ejca.2016.10.021; Gennaro N., Sconfienza L.M., Ambrogi F., Boveri S., Lanza E. Thermal ablation to relieve pain from metastatic bone disease: a systematic review. Skeletal Radiol. 2019;48(8):1161–9. DOI:10.1007/s00256-018-3140-0; Kakhki V.R., Anvari K., Sadeghi R., Mahmoudian A.S., Torabian-Kakhki M. Pattern and distribution of bone metastases in common malignant tumors. Nucl Med Rev Cent East Eur. 2013;16(2):66–9. DOI:10.5603/NMR.2013.0037; https://www.surgonco.ru/jour/article/view/712Test

  9. 9
    دورية أكاديمية

    المصدر: Translational Medicine; Том 3, № 5 (2016); 75-81 ; Трансляционная медицина; Том 3, № 5 (2016); 75-81 ; 2410-5155 ; 2311-4495 ; 10.18705/2311-4495-2016-3-5

    وصف الملف: application/pdf

    العلاقة: https://transmed.almazovcentre.ru/jour/article/view/228/222Test; Nikulin MP, Selchuk VYu, Chistyakov SS, Ibragimov T F. Pancreatic cancer. Bulletin of RONC n.a. N.N. Blokhin RAMS. 2006; 17(3) (app 1): 61. In Russian [Никулин М.П., Сельчук В.Ю., Чистяков С.С., И брагимов Т .Ф., Т итова Г .В. Рак поджелудочной железы. Вестник РО НЦ им. Н.Н.Блохина РА МН. 2006; 17(3) (прил.1): 61].; Vishnevskiy VA, Efanov MG, Paklina O V et al. Anatomic segmental resection for metastases of colorectal cancer to the liver. Annals of surgical Hepatol. 2010; 15(3): 48–57. In Russian [Вишневский В.А., Ефанов М.Г., Паклина О .В. и др. Анатомические сегментарные резекции при метастазах колоректального рака в печень. Анналы хирургической гепатологии. 2010; 15(3): 48–57].; Viganò L, Ferrero A, Lo T esoriere R, Capussotti L. Liver surgery for colorectal metastases: results after 10 years of follow-up. Long-term survivors, late recurrences, and prognostic role of morbidity. Ann Surg O ncol. 2008; 15(9):2458-64.; Einstein A, Smolukhovskiy M.M. Brownian motion. Collect. of articles. (transl. from gem. and french). 1936: 608. In Russian [Эйнштейн А ., Смолуховский М.М. Броуновское движение. Сборник статей [перевод с нем. и франц.]. 1936: 608].; Hahn EL. Spin echoes. Phys. Rev. 1950; 80:580-594.; Stejskal EO. Spin diffusion measurements: spin echoes in the presence of a time-dependent field gradient. J. Chem. Phys. 1965; 42:288-292.; Stejskal EO, T anner J. U se of spin echo in pulsed magnetic field gradient to study anisotropic restricted diffusion and flow. J. Chem. Phys. 1965; 43:3579-3603.; Sun X J, Quan X Y, Fan-Heng FH et al. Quantitative evaluation of diffusion-weighted magnetic resonance imaging of focal hepatic lesions. World J. Gastroenterol. 2008; 11(41):6535-6537.; https://transmed.almazovcentre.ru/jour/article/view/228Test

  10. 10
    دورية أكاديمية

    المصدر: The Scientific Notes of the Pavlov University; Том 20, № 4 (2013); 77-79 ; Учёные записки Первого Санкт-Петербургского государственного медицинского университета имени академика И. П. Павлова; Том 20, № 4 (2013); 77-79 ; 2541-8807 ; 1607-4181 ; 10.24884/1607-4181-2013-20-4

    وصف الملف: application/pdf

    العلاقة: https://www.sci-notes.ru/jour/article/view/206/196Test; Dezortova M. et al. Etiology and functional status of liver cirrhosis by 31P MR spectroscopy//World J. Gastroenterol. -2005. -Vol. 28. -№ 44. -P. 6926-6931.; Lim, A.K.P., Du Cane Rd., Patel N. The relationship of in vivo 31P MR spectroscopy to histology in chronic hepatitis C//Hepatology. -2003. -Vol. 37. -№ 4. -P. 788-794.; Menon D.K. et al. Effect of functional grade and ethiology on in vivo hepatic phosphorus-31 magnetic resonance spectroscopy in cirrhosis//Hepatology. -1995. -Vol. 21. -№ 2. -P. 417-427.; Menon D.K. et al. In vivo hepatic 31P magnetic resonance spectroscopy in chronic alcoholic abusters//Gastroenterology. -1995. -Vol. 108. -№ 3. -P. 776-788.; Noren B. et al. Separation of advanced from mild fibrosis in diffuse liver disease using 31P magnetic resonance spectroscopy//Eur. J. Radiol. -2008. -Vol. 66. -№ 2. -P. 313-320.; Wu B. et al. The relationship between 31P magnetic resonance spectroscopy and the histopathology of livers of chronic viral hepatitis patients//Zhonghua Gan Zang Bing Za Zhi. -2007. -Vol. 15. -№ 5. -P. 338-341.; https://www.sci-notes.ru/jour/article/view/206Test