يعرض 1 - 2 نتائج من 2 نتيجة بحث عن '"Поли(стирол-блок-изобутилен-блок-стирол)"', وقت الاستعلام: 0.74s تنقيح النتائج
  1. 1
    دورية أكاديمية

    المساهمون: The reported study was funded by RFBR and BRFBR, project number 20-53-04032., Исследование выполнено при финансовой поддержке РФФИ в рамках научного проекта № 20-53-04032.

    المصدر: Complex Issues of Cardiovascular Diseases; Том 12, № 4S (2023); 90-101 ; Комплексные проблемы сердечно-сосудистых заболеваний; Том 12, № 4S (2023); 90-101 ; 2587-9537 ; 2306-1278

    وصف الملف: application/pdf

    العلاقة: https://www.nii-kpssz.com/jour/article/view/1444/868Test; Teo A.J.T., Mishra A., Park I., Kim Y.-J., Park W.-T., Yoon Y.-J. Polymeric Biomaterials for Medical Implants and Devices. ACS Biomater. Sci. Eng. 2016; 2(4): 454–472. doi:10.1021/acsbiomaterials.5b00429; Tetali S.S.V., Fricker A.T.R., van Domburg Y.A., Roy I. Intelligent biomaterials for cardiovascular applications. Curr. Opin. Biomed. Eng. 2023; 28: 100474. doi:10.1016/j.cobme.2023.100474; Huab X., Wangab T., Li F., Mao X. Surface modifications of biomaterials in different applied fields. RSC Adv. 2023; 13: 20495-20511. doi:10.1039/D3RA02248J; Narayan R. Nanobiomaterials; Woodhead Publishing: Cambridge, UK; 2018. pp. 357–384.; Shahbaz A., Hussain N., Mahmood T., Iqbal H.M.N., Emran T.B., Show P.L., Bilal M. Polymer nanocomposites for biomedical applications. In Micro and Nano Technologies, Smart Polymer Nanocomposites Design, Synthesis, Functionalization, Properties, and Applications. Editor(s): Ali N., Bilal M., Khan A., Nguyen T.A., Gupta R.K. Elsevier; 2023. pp. 379-394. doi:10.1016/B978-0-323-91611-0.00012-8; Maiti D., Tong X., Mou X., Yang K. Carbon-Based Nanomaterials for Biomedical Applications: A Recent Study. Front. Pharmacol. 2019; 9: 1401. doi:10.3389/fphar.2018.01401; Eatemadi A., Daraee H., Karimkhanloo H., Kouhi M., Zarghami N., Akbarzadeh A., Abasi M., Hanifehpour Y., Joo S.W. Carbon nanotubes: Properties, synthesis, purification, and medical applications. Nanoscale Res. Lett. 2014; 9: 393. doi:10.1186/1556-276X-9-393; Kalakonda P., Banne S., Kalakonda P. Enhanced mechanical properties of multiwalled carbon nanotubes/thermoplastic polyurethane nanocomposites. Nanomater. Nanotechnol. 2019; 9: 184798041984085. doi: 1847980419840858; Crosby A.J., Lee J. Polymer Nanocomposites: The “Nano” Effect on Mechanical Properties. Polym. Rev. 2007; 47(2): 217–229. doi:10.1080/15583720701271278; Tjong S.C. Structural and mechanical properties of polymer nanocomposites. Mater. Sci. Eng. R Rep. 2006; 53(3-4): 73–197. doi:10.1016/j.mser.2006.06.001; Jumaili A., Alancherry S., Bazaka K., Jacob M. Review on the Antimicrobial Properties of Carbon Nanostructures. Materials. 2017; 10(9): 1066. doi:10.3390/ma10091066; Mohd Nurazzi N., Asyraf M.R.M., Khalina A., Abdullah N., Sabaruddin F.A., Kamarudin S.H., Ahmad S., Mahat A.M., Lee C.L., Aisyah H.A. Fabrication, Functionalization, and Application of Carbon Nanotube-Reinforced Polymer Composite: An Overview. Polymers. 2021; 13(7): 1047. doi:10.3390/polym13071047; Alshehri R., Ilyas A.M., Hasan A., Arnaout A., Ahmed F., Memic A. Carbon Nanotubes in Biomedical Applications: Factors, Mechanisms, and Remedies of Toxicity. J. Med. Chem. 2016; 59(18): 8149–8167. doi:10.1021/acs.jmedchem.5b01770; Mishra M.K., Sar-Mishra B., Kennedy J.P. Polym. Bull. 1986; 16: 47-53. doi:10.1007/BF01046608; Rezvova M.A., Yuzhalin A.E., Glushkova T.V., Makarevich M.I., Nikishau P.A., Kostjuk S.V., Klyshnikov K.Yu., Matveeva V.G., Khanova M.Yu., Ovcharenko E.A. Biocompatible Nanocomposites Based on Poly(styrene-block-isobutylene-block-styrene) and Carbon Nanotubes for Biomedical Application. Polymers. 2020; 12(9): 2158. doi:10.3390/polym12092158; Pinchuk L., Wilson G.J., Barry J.J., Schoephoerster R.T., Parel J.M., Kennedy J.P. Medical applications of poly(styrene-block-isobutylene-block-styrene) (“SIBS”). Biomaterials. 2008; 29(4): 448–460. doi:10.1016/j.biomaterials.2007.09.041; Silva M., Alves N.M., Paiva, M.C. Graphene-polymer nanocomposites for biomedical applications. Polym. Adv. Technol. 2017; 29(2): 687–700. doi:10.1002/pat.4164; Gilmore K.J., Moulton S.E., Wallace G.G. Incorporation of carbon nanotubes into the biomedical polymer poly(styrene-β-isobutylene-β-styrene). Carbon. 2007; 45(2): 402–410. doi:10.1016/j.carbon.2006.09.015; Nezami R.F., Athanasiou L.S., Edelman E.R. Chapter 28 - Endovascular drug-delivery and drug-elution systems, Editor(s): Jacques Ohayon, Gerard Finet, Roderic Ivan Pettigrew, In Biomechanics of Living Organs, Biomechanics of Coronary Atherosclerotic Plaque, Academic Press. 2021; 4: 595-631.; Salah N., Alfawzan A.M., Saeed A., Alshahrie A., Allafi W. Effective reinforcements for thermoplastics based on carbon nanotubes of oil fly ash. Sci. Rep. 2019; 9: 20288. doi:10.1038/s41598-019-56777-1.; Zhang J., Jiang D. Interconnected multi-walled carbon nanotubes reinforced polymer-matrix composites. Composites Science and Technology. 2011; 71(4): 466–470. doi:10.1016/j.compscitech.2010.12.020.; Gaharwar A.K., Patel A., Dolatshahi-Pirouz A., Zhang H., Rangarajan K., Iviglia, G., Shin S.-R., Hussain M.A., Khademhosseini A. Elastomeric nanocomposite scaffolds made from poly(glycerol sebacate) chemically crosslinked with carbon nanotubes. Biomater. Sci. 2015; 3: 46–58.; https://www.nii-kpssz.com/jour/article/view/1444Test

  2. 2
    دورية أكاديمية

    المصدر: Russian Journal of Transplantology and Artificial Organs; Том 20, № 2 (2018); 100-111 ; Вестник трансплантологии и искусственных органов; Том 20, № 2 (2018); 100-111 ; 2412-6160 ; 1995-1191 ; 10.15825/1995-1191-2018-2

    وصف الملف: application/pdf

    العلاقة: https://journal.transpl.ru/vtio/article/view/888/715Test; Chambers J. Prosthetic heart valves. Int. J. Clin. Pract. 2014; 68 (10): 1227–1230. doi:10.1111/ijcp.12309. PMID: 24423099.; Lee S, Levy RJ, Christian AJ, Hazen SL, Frick NE, Lai EK et al. Calcifi cation and oxidative modifi cations are associated with progressive bioprosthetic heart valve dysfunction. Journal of the American Heart Association: Cardiovascular and Cerebrovascular Disease. 2017; 6 (5): e005648. doi:10.1161/JAHA.117.005648.; Manji RA, Ekser B, Menkis AH, Cooper DKC. Bioprosthetic heart valves of the future. Xenotransplantation. 2014; 21 (1): 1–10. Doi:10.1111/xen.12080. PMCID: PMC4890621.; Singhal P, Adriana L, Butany J. Bioprosthetic Heart Valves: Impact of Implantation on Biomaterials. ISRN Biomaterials. 2013; Article ID 728791: 14. Doi:10.5402/2013/728791.; Jaffer IH, Whitlock RP. A mechanical heart valve is the best choice. Heart. Asia. 2016; 8 (1): 62–64. Doi:10.1136/ heartasia-2015-010660. PMCID: PMC4898622.; Gürsoy MO, Kalçık M, Yesin M, Karakoyun S, Bayam E, Gündüz S et al. A global perspective on mechanical prosthetic heart valve thrombosis: Diagnostic and therapeutic challenges. Anatolian Journal of Cardiology. 2016; 16 (12): 980–989. doi:10.14744/AnatolJCardiol.2016.7486. PMCID: PMC5324921.; Yee HK, Lakshmi D, Ajit Y, Hwa L. Recent Advances in Polymeric Heart Valves Research. International Journal of Biomaterials Research and Engineering. 2011; 1: 1–17. doi:10.4018/ijbre.2011010101.; Овчаренко ЕА. Влияние конструктивных особенностей на клинические результаты имплантации транскатетерных биопротезов клапана аорты. Вестник хирургии им. И.И. Грекова. 2014; 173 (5): 86–90.; Lee S, Levy RJ, Christian AJ et al. Calcifi cation and Oxidative Modifi cations Are Associated With Progressive Bioprosthetic Heart Valve Dysfunction. Journal of the American Heart Association: Cardiovascular and Cerebrovascular Disease. 2017; 6 (5): e005648. doi:10.1161/JAHA.117.005648.; Niclauss L, von Segesser LK, Ferrari E. Aortic biological valve prosthesis in patients younger than 65 years of age: transition to a fl exible age limit? Interactive Cardiovascular and Thoracic Surgery. 2013; 16 (4): 501–507. doi:10.1093/icvts/ivs514.; Cheung DY, Duan B, Butcher JT. Current progress in tissue engineering of heart valves: multiscale problems, multiscale solutions. Expert. Opin. Biol. Ther. 2015; 15 (8): 1155–1172. doi:10.1517/14712598.2015.1051527. PubMed PMID: 26027436.; Ghanbari H, Viatge H, Kidane AG, Burriesci G, Tavakoli M, Seifalian AM. Polymeric heart valves: new materials, emerging hopes. Trends in Biotechnology. 2009; 27 (6): 359–367. PMID: 19406497. doi:10.1016/j.tibtech.2009.03.002.; Bezuidenhout D, Williams DF, Zilla P. Polymeric heart valves for surgical implantation, catheter-based technologies and heart assist devices. Biomaterials. 2015; 36: 6–25. PMID: 25443788. DOI:10.1016/j.biomaterials.2014.09.013.; Левашов НВ. Протез митрального клапана с односторонней фиксацией: Авт. св. № 122249, заявл. 29.12.1958, опубл. 1959 // Бюл. изобр. 1959; 17.; Колесников СА, Цукерман ГИ, Голиков ГТ и др. Полное протезирование митрального клапана. Грудн. хирургия. 1964; 4: 16–19.; Цукерман ВИ (ред.) Протезирование клапанов сердца. Научный обзор. М., 1971.; Roe BB, Kelly JPB, Myers JL, Moore DW. Tricuspid leaflet aortic valve prosthesis. Circulation. 1960; 33: 1124– 1130. PMID: 5933586.; Chetta GE, Lloyd JR. The design, fabrication and evaluation prosthetic heart valve. J. Biomech. Eng. 1980; 102: 34–41. PMID: 7382451.; Braunwald NS, Morrow AG. A late evaluation of fl exible tefl on prostheses utilized for total aortic valve replacement. Postoperative clinical, hemodynamic, and pathological assessments. J. Thorac. Cardiovasc. Surg. 1965; 49: 485–496. PMID: 14265964.; Nistal F, García-Martínez V, Arbe E, Fernández D, Artiñano E, Mazorra F et al. In vivo experimental assessment of polytetrafl uoroethylene trileafl et heart valve prosthesis. J. Thorac. Cardiovasc. Surg. 1990 Jun; 99 (6): 1074–1081. PMID: 2359324.; Ando M, Takahashi Y. Ten-year experience with handmade trileafl et polytetrafl uoroethylene valved conduit used for pulmonary reconstruction. J. Thorac. Cardiovasc. Surg. 2009; 137: 124–131. PMID: 19154914. DOI:10.1016/j.jtcvs.2008.08.060.; Yamagishi M, Kurosawa H, Nomura K, Kitamura N. Fan-shaped expanded polytetrafl uoroethylene valve in the pulmonary position. J. Cardiovasc. Surg. (Torino). 2002; 43: 779–786. PMID: 12483166.; Yamagishi M, Kurosawa H. Outfl ow reconstruction of tetralogy of Fallot using a Gore-Tex valve. Ann. Thorac. Surg. 1993; 56: 1414–1417. PMID: 8267454.; Miyazaki T, Yamagishi M, Maeda Y, Yamamoto Y, Taniguchi S, Sasaki Y et al. Expanded polytetrafl uoroethylene conduits and patches with bulging sinuses and fan-shaped valves in right ventricular outfl ow tract reconstruction: Multicenter study in Japan. J. Thorac. Cardiovasc. Surg. 2011; 142: 1122–1129. PMID: 21908008. DOI:10.1016/j.jtcvs.2011.08.018.; Lee C, Lee CH, Kwak JG. Polytetrafl uoroethylene bicuspid pulmonary valve replacement: A 5-year experience in 119 patients with congenital heart disease. Ann. Thorac. Surg. 2016; 102 (1): 163–169. PMID: 27083247. DOI:10.1016/j.athoracsur.2016.01.056.; Quintessenza JA, Jacobs JP, Chai PJ, Morell VO, Lindberg H. Polytetrafl uoroethylene bicuspid pulmonary valve implantation: experience with 126 patients. World. J. Pediatr. Congenit. Heart. Surg. 2010; 1 (1): 20–27. PMID: 23804719. DOI:10.1177/2150135110361509.; Базылев ВВ, Воеводин АБ, Раджабов ДА, Россейкин ЕВ. Первый опыт трансапикальной имплантации протеза аортального клапана «МедИнж». Бюллетень НЦССХ им. А.Н. Бакулева РАМН. Сердечно-сосудистые заболевания. 2016; 17 (6): 141.; Daebritz SH, Fausten B, Hermanns B, Franke A, Schroeder J, Groetzner J et al. New fl exible polymeric heart valve prostheses for the mitral and aortic positions. Heart. Surg. Forum. 2004; 7 (5): 525–532. PMID: 15799940. doi:10.1532/HSF98.20041083.; Christenson EM, Anderson JM, Hiltner AJ. Oxidative mechanisms of poly(carbonate urethane) and poly(ether urethane) biodegradation: in vivo and in vitro correlations. Biomed Mater Res A. 2004; 70 (2): 245–255. PMID: 15227669. doi:10.1002/jbm.a.30067.; Christenson EM, Dadsetan M, Wiggins M, Anderson JM, Hiltner A. Poly(carbonate urethane) and poly(ether urethane) biodegradation: in vivo studies. J. Biomed. Mater. Res. A. 2004; 69: 407–416. PMID: 15127387. doi:10.1002/jbm.a.30002.; Tang YW, Labow RS, Santerre JP. Enzyme-induced biodegradation of polycarbonate-polyurethanes: dependence on hard-segment chemistry. J. Biomed. Mater. Res. 2001; 57: 597–611. PMID: 11400129.; Jiang H, Campbell G, Boughner D, Wand WK, Quantz M. Design and manufacture of a polyvinyl alcohol (PVA) cryogel tri-leafl et heart valve prosthesis. Medical Engineering & Physics. 2004; 26: 269–277. PMID: 15121052. doi:10.1016/j.medengphy.2003.10.007.; Mohammadi H, Boughner D, Millon LE, Wan WK. Design and simulation of a poly(vinyl alcohol)–bacterial cellulose nanocomposite mechanical aortic heart valve prosthesis. Proc. IMechE Part H: J. Engineering in Medicine. 2009; 223: 697–711. PMID: 19743636. doi:10.1243/09544119JEIM493.; Gallocher SL, Aguirre AF, Kasyanov V, Pinchuk L, Schoephoerster RT. A novel polymer for potential use in a trileafl et heart valve. J. Biomed. Mater. Res. B. Appl. Biomater. 2006; 79 (2): 325–334. PMID: 16649171. doi:10.1002/jbm.b.30546.; Pinchuk L, Wilson GJ, Barry JJ, Schoephoerster RT, Parel JM, Kennedy JP. Medical applications of poly(styreneblock-isobutylene-block-styrene) («SIBS»). Biomaterials. 2008; 29 (4): 448–460. PMID: 17980425. doi:10.1016/j.biomaterials.2007.09.041.; Fray ME, Prowans P, Puskas JE, Altsta V. Biocompatibility and Fatigue Properties of Polystyrene-Polyisobutylene-Polystyrene, an Emerging Thermoplastic Elastomeric Biomaterial. Biomacromolecules. 2006; 7: 844–850. PMID: 16529422. doi:10.1021/bm050971c.; Claiborne TE, Xenos M, Sheriff J, Chiu WC, Soares J, Alemu Y et al. Toward optimization of a novel trileaflet polymeric prosthetic heart valve via device thrombogenicity emulation. ASAIO J. 2013; 59 (3): 275–283. PMID: 23644615. PMCID: PMC3648888. doi:10.1097/ MAT.0b013e31828e4d80.; Sheriff J, Claiborne TE, Tran PL, Kothadia R, George S, Kato YP et al. Physical Characterization and Platelet Interactions under Shear Flows of a Novel Thermoset Polyisobutylene-based Co-polymer. ACS Appl. Mater. Interfaces. 2015; 7 (39): 22058–22066. PMID: 26398588. PMCID: PMC4608843. doi:10.1021/acsami.5b07254.; Claiborne TE, Sheriff J, Kuetting M, Steinseifer U, Slepian MJ, Bluestein DJ. In vitro evaluation of a novel hemodynamically optimized trileafl et polymeric prosthetic heart valve. Biomech. Eng. 2013; 135 (2): 021021. PMID: 23445066. PMCID: PMC5413125. doi:10.1115/1.4023235.; Simmonsa A, Hyvarinena J, Odella RA, Martinc DJ, Gunatillakeb PA, Noblea KR et al. Long-term in vivo biostability of poly(dimethylsiloxane)/ poly(hexamethylene oxide) mixed macrodiol-based polyurethane elastomers. Biomaterials. 2004; 25: 4887–4900. PMID: 15109849. doi:10.1016/j.biomaterials.2004.01.004.; Dabagh M, Abdekhodaie MJ, Khorasani MT. Effects of Polydimethylsiloxane grafting on the calcifi cation, physical properties, and biocompatibility of polyurethane in a heart valve. Journal of Applied Polymer Science. 2005; 98: 758–766. doi:10.1002/app.22132.; Kannan RY, Salacinski HJ, Butler PE, Seifalian AM. Polyhedral oligomeric silsesquioxane nanocomposites: the next generation material for biomedical applications. Acc. Chem. Res. 2005; 38: 879–884. PMID: 16285710. doi:10.1021/ar050055b.; Kidane AG, Burriesci G, Edirisinghe M, Ghanbari H, Bonhoeffer P et al. A novel nanocomposite polymer for development of synthetic heart valve leafl ets. Acta Biomaterialia 2009; 5: 2409–2417. PMID: 19497802. doi:10.1016/j.actbio.2009.02.025.; Ghanbari H, Kidane AG, Burriesci G, Ramesh B, Darbyshir A, Seifalian AM. The anti-calcifi cation potential of a silsesquioxane nanocomposite polymer under in vitro conditions: Potential material for synthetic leafl et heart valve. Acta Biomaterialia. 2010; 6: 4249–4260. PMID: 20601232. doi:10.1016/j.actbio.2010.06.015.; Цукерман ГИ. Развитие хирургии приобретенных пороков сердца в Научном центре сердечно-сосудистой хирургии им. А.Н. Бакулева. Грудн. хирургия. 1999; 6: 20–29.; Евдокимов СВ, Филиппов АН, Гончаров ЭВ. Эволюция протеза клапана сердца «Мединж». Протезы клапанов сердца «Мединж» в хирургии клапанных пороков сердца. 2004; 134–143.; Nosal M, Poruban R, Valentík P, Sagat M, Nagi AS, Kantorova A. Initial experience with polytetrafl uoroethylene leafl et extensions for aortic valve repair. European Journal of Cardio-Thoracic Surgery. 2012; 41: 1255–1258. PMID: 22241004. doi:10.1093/ejcts/ezr214.; Zhang B, Chen X, Xu T, Zhang Z, Li X, Han L et al. Transcatheter pulmonary valve replacement by hybrid approach using a novel polymeric prosthetic heart valve: proof of concept in sheep. PLoS ONE. 2014; 9 (6): e100065. doi:10.1371/journal.pone.0100065.; Turmanova S, Minchev M, Vassilev K, Danev G. Surface grafting polymerization of vinyl monomers on poly(tetrafl uoroethylene) fi lms by plasma treatment. Journal of Polymer Research. 2008; 15 (4): 309–318. doi:10.1007/s10965-007-9172-0.; Gupta B, Plummera C, Bisson I, Frey P, Hilborn J. Plasma-induced graft polymerization of acrylic acid onto poly(ethylene terephthalate) fi lms: characterization and human smoothmuscle cell growthon grafted fi lms. Biomaterials. 2002; 23: 863–871. doi:10.1016/S01429612(01)00195-8.; Hoshia RA, Litha RV, Jena MC, Allenb JB, Lapidosa KA, Ameera G. The blood and vascular cell compatibility of heparin-modifi ed ePTFE vascular grafts. Biomaterials. 2013; 34 (1): 30–41. doi:10.1016/j. biomaterials.2012.09.046. PMID: 23069711. PMCID: PMC4065598.; Montaño-Machado V, Chevallier P, Mantovani D, Pauthe E. On the potential forfi bronectin/phosphorylcholine coatings on PTFE substrates to jointly modulate endothelial cell adhesion and hemocompatibility properties. Biomatter. 2015; 5: e979679. PMID: 25785369. PMCID: PMC4581125. doi:10.4161/21592535.2014.979679.; Braunwald NS, Cooper T, Morrow AG. Complete replacement of the mitral valve. Successful clinical application of a fl exible polyurethane prosthesis. J. Thorac. Cardiovasc. Surg. 1960; 40: 1–11. PMID: 13804040.; Wheatleya DJ, Raco L, Bernacca GM, Sim I, Belchera PR, Boyd JS. Polyurethane: material for the next generation of heart valve prostheses. European Journal of Cardio-thoracic Surgery. 2000; 17: 440–448. PMID: 10773568.; Bernacca GM, Mackay TG, Wilkinson R, Wheatley DJ. Polyurethane heart valves: fatigue failure, calcifcation and polyurethane structure. J. Biomed. Mater. Res. 1997; 34: 371–379. PMID: 9086407.; Kütting M, Roggenkamp J, Urban U, Schmitz-Rode T, Steinseifer U. Polyurethane heart valves: past, present and future. Expert. Rev. Med. Devices. 2011; 8: 227–233. PMID: 21381912. doi:10.1586/erd.10.79.; Stokes K, McVenes R, Anderson JM. Polyurethane elastomer biostability. J. Biomater. 1995; 9 (4): 321–354. PMID: 9309503. doi:10.1177/088532829500900402.; Santerre JP, Woodhouse K, Laroche G, Labow RS. Understanding the biodegradation of polyurethanes: from classical implants to tissue engineering materials. Biomaterials. 2005; 26 (35): 7457–7470. PMID: 16024077 doi:10.1016/j.biomaterials.2005.05.079.; Sachweh JS, Daebritz SH. Novel «biomechanical» polymeric valve prostheses with special design for aortic and mitral position: a future option for pediatric patients? ASAIO J. 2006; 52 (5): 575–580. PMID: 16966862. doi:10.1097/01.mat.0000237695.87457.2a.; Daebritz SH, Fausten B, Hermanns B, Schroeder J, Groetzner J, Autschbach R et al. Introduction of a fl exible polymeric heart valve prosthesis with special design for aortic position. Eur. J. Cardiothorac. Surg. 2004; 25: 946–952. PMID: 15144993. doi:10.1016/j. ejcts.2004.02.040.; Mohammadi H. Nanocomposite biomaterial mimicking aortic heart valve leafl et mechanical behaviour. Proc. Inst. Mech. Eng. H. 2011; 225: 718e22. PMID: 15144993. doi:10.1016/j.ejcts.2004.02.040.; Mohammadi H, Boughner D, Millon LE, Wan WK. Design and simulation of a poly(vinyl alcohol)-bacterial cellulose nanocomposite mechanical aortic heart valve prosthesis. Proc. Inst. Mech. Eng. H. 2009; 223: 697– 711. PMID: 19743636. doi:10.1243/09544119JEIM493.; Cacciola G, Peters GW, Baaijens FP. A synthetic fi berreinforced stentless heart valve. J. Biomech. 2000; 33: 653–658. PMID: 10807985.; Claiborne TE, Slepian MJ, Hossainy S, Bluestein D. Polymeric trileafl et prosthetic heart valves: evolution and path to clinical reality. Expert. Rev. Med. Devices. 2012; 9 (6): 577–594. doi:10.1586/erd.12.51. PMID: 23249154. PMCID: PMC3570260.; Wang Q, McGoron AJ, Bianco R, Kato Y, Pinchuk L, Schoephoerster RT. In vivo assessment of a novel polymer (SIBS) trileafl et heart valve. J. Heart. Valve Dis. 2010; 19: 499–505. PMID: 20845899.; Duraiswamy N, Choksi TD, Pinchuk L, Schoephoerster RT. A phospholipid-modifi ed polystyrene-polyisobutylene-polystyrene (SIBS) triblock polymer for enhanced emocompatibility and potential use in artifi cial heart valves. J. Biomater. Appl. 2009; 23 (4): 367–379. doi:10.1177/0885328208093854.; Brubert J, Krajewski S, Wende HP, Nair S, Stasiak J, Moggridge GD. Hemocompatibility of styrenic block copolymers for use in prosthetic heart valves. J. Mater. Sci: Mater. Med. 2016; 27: 32. PMID: 26704549. PMCID: PMC4690832. doi:10.1007/s10856-0155628-7.; Claiborne TE, Girdhar G, Gallocher-Lowe S, Sheriff J, Kato YP, Pinchuk L et al. Thrombogenic potential of Innovia polymer valves versus Carpentier-Edwards Perimount Magna aortic bioprosthetic valves. ASAIO J. 2011; 57 (1): 26–31 PMID: 20930618. doi:10.1097/ MAT.0b013e3181fcbd86.; Zheng X, Lee H, Weisgraber TH, Shusteff M, DeOtte J, Duoss EB et al. Ultralight, ultrastiff mechanical metamaterials. Science. 2014; 344 (6190): 1373–1377. DOI:10.1126/science.1252291. PubMed PMID: 24948733.; Smith M, Cantwell WJ, Guan Z, Tsopanos S, Theobald MD, Nurick GN et al. The quasi-static and blast response of steel lattice structures. Journal of Sandwich Structures and Materials. 2011; 13 (4): 479–501. doi:10.1177/1099636210388983.; Hawreliak JA, Lind J, Maddox B, Barham M, Messner M, Barton N et al. Dynamic Behavior of Engineered Lattice Materials. Sci Rep. 2016; 6: 28094. DOI:10.1038/ srep28094. PubMed PMID: 27321697. PubMed Central PMCID: PMC4913358.; Zheng X, Smith W, Jackson J, Moran B, Cui H, Chen D, Ye J et al. Multiscale metallic metamaterials. Nat. Mater. 2016; 15 (10): 1100–1106. doi:10.1038/nmat4694. PubMed PMID: 27429209.; Jang D, Meza LR, Greer F, Greer JR. Fabrication and deformation of three-dimensional hollow ceramic nanostructures. Nat. Mater. 2013; 12 (10): 893–898. doi:10.1038/nmat3738. PubMed PMID: 23995324.; https://journal.transpl.ru/vtio/article/view/888Test