يعرض 1 - 8 نتائج من 8 نتيجة بحث عن '"О. А. Клочкова"', وقت الاستعلام: 0.80s تنقيح النتائج
  1. 1
    دورية أكاديمية

    المساهمون: Not specified., Отсутствует.

    المصدر: Pediatric pharmacology; Том 20, № 6 (2023); 588–596 ; Педиатрическая фармакология; Том 20, № 6 (2023); 588–596 ; 2500-3089 ; 1727-5776

    وصف الملف: application/pdf

    العلاقة: https://www.pedpharma.ru/jour/article/view/2383/1553Test; Макарова М.Р., Лядов К.В., Кочетков А.В. Тренажерные аппараты и устройства в двигательной реабилитации неврологических больных // Доктор.ру. — 2012. — № 10. — С. 54–62.; Довгань В.И., Темкин И.Б. Механотерапия. — М.: Медицина; 1981. — 128 с.; Герцик Ю.Г., Иванова Г.А., Суворов А.Ю. Методики и аппаратура для активно-пассивной механотерапии в здоровье сберегающих технологиях // Гуманитарный вестник. — 2013. — Вып. 4. — C. 1–10.; Adkins DL, Boychuk J, Remple MS, Kleim JA. Motor training induces experience-specific patterns of plasticity across motor cortex and spinal cord. J Appl Physiol (1985). 2006;101(6):1776–1782. doi: https://doi.org/10.1152/japplphysiol.00515.2006Test; Клочкова О.А., Куренков А.Л. Ботулинотерапия при детском церебральном параличе: практические советы и ультразвуковой контроль. — М.: МЕДпресс-информ; 2020. — 248 с.; Живолупов C.А., Самарцев И.Н. Нейропластичность: патофизиологические аспекты и возможности терапевтической модуляции // Журнал неврологии и психиатрии им. C.C. Корсакова. — 2009. — Т. 109. — № 4. — С. 78–85.; Johansson BB. Brain plasticity and stroke rehabilitation. The Willis lecture. Stroke. 2000;31(1):223–230. doi: https://doi.org/10.1161/01.str.31.1.223Test; Liepert J, Graef S, Uhde I, et al. Training-induced changes of motor cortex representations in stroke patients. Acta Neurol Scand. 2000;101(5):321–326. doi: https://doi.org/10.1034/j.1600-0404.2000.90337a.xTest; Reid LB, Rose SE, Boyd RN. Rehabilitation and neuroplasticity in children with unilateral cerebral palsy. Nat Rev Neurol. 2015;11(7):390–400. doi: https://doi.org/10.1038/nrneurol.2015.97Test; Mundkur N. Neuroplasticity in children. Indian J Pediatr. 2005;72(10):855–857. doi: https://doi.org/10.1007/BF02731115Test; Christine C, Dolk H, Platt MJ, et al. Recommendations from the SCPE collaborative group for defining and classifying cerebral palsy. Dev Med Child Neurol Suppl. 2007;109:35–38. doi: https://doi.org/10.1111/j.1469-8749.2007.tb12626.xTest; Register ACPR. Report of the Australian Cerebral Palsy Register: birth years 1995–2012. November 2018. Available online: https://cpregister.com/wp-content/uploads/2019/02/Report-of-theAustralian-Cerebral-Palsy-Register-Birth-Years-1995-2012.pdfTest. Accessed on December 11, 2023.; Novak I, Morgan C, Fahey M, et al. State of the Evidence Traffic Lights 2019: Systematic Review of Interventions for Preventing and Treating Children with Cerebral Palsy. Curr Neurol Neurosci Rep. 2020;20(2):3. doi: https://doi.org/10.1007/s11910-020-1022-zTest; Hägglund G, Wagner P. Development of spasticity with age in a total population of children with cerebral palsy. BMC Musculoskelet Disord. 2008;9:150. doi: https://doi.org/10.1186/1471-2474-9-150Test; Wissel J, Ward AB, Erztgaard P, et al. European consensus table on the use of botulinum toxin type A in adult spasticity. J Rehabil Med. 2009;41(1):13–25. doi: https://doi.org/10.2340/16501977-0303Test; Клочкова О.А., Куренков А.Л. Мышечная слабость и утрата двигательных навыков у пациентов с детским церебральным параличом // Вопросы современной педиатрии. — 2020. — Т. 19. — № 2. — С. 107–115. — doi: https://doi.org/10.15690/vsp.v19i2.2103Test; Einspieler C, Marschik PB. Early markers for cerebral palsy. In: Cerebral palsy: a multidisciplinary approach. Panteliadis CP, ed. Cham: Springer Cham; 2018. doi: https://doi.org/10.1007/978-3-319-67858-0_9Test; Mockford M, Caulton JM. The pathophysiological basis of weakness in children with cerebral palsy. Pediatr Phys Ther. 2010;22(2):222–233. doi: https://doi.org/10.1097/PEP.0b013e3181dbaf96Test; Баиндурашвили А.Г., Кенис В.М., Иванов С.В., Икоева Г.А. Реабилитация детей с нейроортопедической патологией на этапах хирургического лечения с применением роботизированной механотерапии // Вестник восстановительной медицины. — 2012. — № 2. — С. 57–60.; Tedroff K, Löwing K, Jacobson DN, Åström E. Does loss of spasticity matter? A 10-year follow-up after selective dorsal rhizotomy in cerebral palsy. Dev Med Child Neurol. 2011;53(8):724–729. doi: https://doi.org/10.1111/j.1469-8749.2011.03969.xTest; Tedroff K, Löwing K, Åström E. A prospective cohort study investigating gross motor function, pain, and health-related quality of life 17 years after selective dorsal rhizotomy in cerebral palsy. Dev Med Child Neurol. 2015;57(5):484–490. doi: https://doi.org/10.1111/dmcn.12665Test; Клочкова О.А., Колесникова Е.П., Зиненко Д.Ю., Бердичевская Е.М. Селективная дорзальная ризотомия в лечении спастичности у пациентов с детским церебральным параличом // Вопросы современной педиатрии. — 2022. — Т. 21. — № 1. — С. 19–28. — doi: https://doi.org/10.15690/vsp.v21i1.2382Test; Reynard F, Gerber F, Favre C, Al-Khodairy A. Movement analysis with a new robotic device — The MotionMaker™: A case report. Gait & Posture. 2009;30(2):S149–S150. doi: https://doi.org/10.1016/j.gaitpost.2009.08.224Test; De Mauro A. Carrasco E, Oyarzun D, et al. Advanced Hybrid Technology for Neurorehabilitation: The HYPER Project. In: Advances in Robotics and Virtual Reality. Gulrez T, Hassanien AE, eds. Intelligent Systems Reference Library. Vol. 26. Heidelberg: Springer Berlin; 2012. pp. 89–108. doi: https://doi.org/10.1007/978-3-642-23363-0_4Test; Bouri M, Clavel R. Risk analysis of a rehabilitation medical robot. IMT-2011. Lausanne; 2011. p. 348; Лобзин Ю.В., Иванова М.В., Скрипченко Н.В. и др. Опыт применения роботизированной механотерапии в реабилитации детей с двигательными нарушениями различного генеза // Медицина экстремальных ситуаций. — 2015. — № 1. — С. 22–26.; Лисовский Е.В., Кусаинова К.К. Метод динамической проприоцептивной коррекции в реабилитации пациентов с детским церебральным параличом // Клиническая Медицина Казахстана. — 2016. — № 2. — С. 31-35.; Молчанова Т.В., Кохан С.Т. Анализ опыта применения метода динамической проприоцептивной коррекции в центре медикосоциальной реабилитации инвалидов «Росток» Забайкальского края // Состояние здоровья: медицинские, психолого-педагогические и социальные аспекты: материалы IX Международной научно-практической интернет-конференции, Чита, 23–29 апреля 2018 г. — Чита: Забайкальский государственный университет; 2018. — С. 113–117.; Кирьянова В.В., Герасименко М.Ю., Шорохова М.Н., Горбачева К.В. Вибротерапия в лечебной практике // Физиотерапия, бальнеология и реабилитация. — 2020. — Т. 19. — № 3. — С. 171–177. — doi: https://doi.org/10.17816/1681-3456-2020-19-3-5Test; Котов С.В., Лиждвой В.Ю., Секирин А.Б., и др. Эффективность применения экзоскелета ExoAtlet для восстановления функции ходьбы у больных рассеянным склерозом // Журнал неврологии и психиатрии им. C.C. Корсакова. — 2017. — Т. 117. — № 10-2. — С. 41–47. — doi: https://doi.org/10.17116/jnevro201711710241-47Test; Yoo JW, Lee DR, Cha YJ, You SH. Augmented effects of EMG biofeedback interfaced with virtual reality on neuromuscular control and movement coordination during reaching in children with cerebral palsy. NeuroRehabilitation. 2017;40(2):175–185. doi: https://doi.org/10.3233/NRE-161402Test; Ларина Н.В., Павленко В.Б., Корсунская Л.Л. и др. Возможности реабилитации детей с синдромом ДЦП с применением роботизированных устройств и биологической обратной связи // Бюллетень сибирской медицины. — 2020. — Т. 19. — № 3. — С. 156–165. — doi: https://doi.org/10.20538/1682-0363-2020-3-156-165Test; Фролов А.А., Бобров П.Д. Интерфейс мозг-компьютер: нейрофизиологические предпосылки и клиническое применение // Журнал высшей нервной деятельности им. И.П. Павлова. — 2017. — Т. 67. — № 4. — С. 365–376. — doi: https://doi.org/10.7868/S0044467717040013Test; Kim TW, Lee BH. Clinical usefulness of brain-computer interfacecontrolled functional electrical stimulation for improving brain activity in children with spastic cerebral palsy: a pilot randomized controlled trial. J Phys Ther Sci. 2016;28(9):2491–2494. doi: https://doi.org/10.1589/jpts.28.2491Test; Фролов А.А., Мокиенко О.А., Люкманов Р.Х. и др. Предварительные результаты контролируемого исследования эффективности технологии ИМК-экзоскелет при постинсультном парезе руки // Вестник РГМУ. — 2016. — № 2. — С. 17–25.; Ang KK, Chua KS, Phua KS, et al. Randomized Controlled Trial of EEG-Based Motor Imagery Brain – Computer Interface Robotic Rehabilitation for Stroke. Clin EEG Neurosci. 2015;46(4):310–320. doi: https://doi.org/10.1177/1550059414522229Test; Ramos-Murguialday A, Broetz D, Rea M, et al. Brain – machine interface in chronic stroke rehabilitation: a controlled study. Ann Neurol. 2013;74(1):100–108. doi: https://doi.org/10.1002/ana.23879Test; Chen YP, Howard AM. Effects of robotic therapy on upper-extremity function in children with cerebral palsy: A systematic review. Dev Neurorehabil. 2016;19(1):64–71. doi: https://doi.org/10.3109/17518423.2014.899648Test; Fasoli SE, Fragala-Pinkham M, Hughes R, et al. Upper limb robotic therapy for children with hemiplegia. Am J Phys Med Rehabil. 2008;87(11):929–936. doi: https://doi.org/10.1097/PHM.0b013e31818a6aa4Test; Frascarelli F, Masia L, Di Rosa G, et al. The impact of robotic rehabilitation in children with acquired or congenital movement disorders. Eur J Phys Rehabil Med. 2009;45(1):135–1341.; Krebs HI, Fasoli SE, Dipietro L, et al. Motor learning characterizes habilitation of children with hemiplegic cerebral palsy. Neurorehabil Neural Repair. 2012;26(7):855–860. doi: https://doi.org/10.1177/1545968311433427Test; Qiu Q, Ramirez DA, Saleh S, et al. The New Jersey Institute of Technology Robot-Assisted Virtual Rehabilitation (NJIT-RAVR) system for children with cerebral palsy: A feasibility study. J Neuroeng Rehabil. 2009;6:40. doi: https://doi.org/10.1186/1743-0003-6-40Test; Мосина М.О., Тихонов С.В., Селиванова Е.А. и др. Роботизированные технологии в комплексной реабилитации детей с двигательными нарушениями // Детская и подростковая реабилитация. — 2021. — № 2. — С. 66–69.; Ковина М.В., Письменная Е.В., Петрушанская К.А., Батышева Т.Т. Комплексная абилитация детей раннего возраста с гемипаретической формой ДЦП с применением экзоскелета ExoAtlet Bambini-Mini // Детская и подростковая реабилитация. — 2022. — № 3. — С. 5–12.; Федоров А.В. Краткая история создания экзоскелетов // Наука, техника и образование. — 2017. — № 3. — С. 71–73.; Белова А.Н., Борзиков В.В., Кузнецов А.Н., Рукина Н.Н. Роботизированные устройства в нейрореабилитации: состояние вопроса // Вестник восстановительной медицины. — 2018. — № 2(84). — С. 94–107.; Delgado E, Cumplido C, Ramos J, et al. ATLAS2030 Pediatric Gait Exoskeleton: Changes on Range of Motion, Strength and Spasticity in Children With Cerebral Palsy. A Case Series Study. Front Pediatr. 2021;9:753226. doi: https://doi.org/10.3389/fped.2021.753226Test; Cumplido-Trasmonte C, Ramos-Rojas J, Delgado-Castillejo E, et al. Effects of ATLAS 2030 gait exoskeleton on strength and range of motion in children with spinal muscular atrophy II: a case series. J Neuroeng Rehabil. 2022;19(1):75. doi: https://doi.org/10.1186/s12984-022-01055-xTest; Palisano R, Rosenbaum P, Walter S, et al. Development and reliability of a system to classify gross motor function in children with cerebral palsy. Dev Med Child Neurol. 1997;39(4):214–223. doi: https://doi.org/10.1111/j.1469-8749.1997.tb07414.xTest; Приходько О.Г., Югова О.В. Система ранней помощи детям с ограниченными возможностями здоровья и их родителям / АНО «Совет по вопросам управления и развития». — М.: ООО «Деловые и юридические услуги “ЛексПраксис”»; 2015. — 144 c.; Бутко Г.А., Кательсон Т.А., Олту С.П. Развитие системы ранней комплексной помощи детям с ограниченными возможностями здоровья в учреждениях образования и здравоохранения // Вестник Мининского университета. — 2019. — Т. 7. — № 4. — С. 1–18.; Кочубей Г.Н., Устинова А.В., Меньшикова Т.Н. Опыт применения комплекса Lokomat у детей с ДЦП // Вестник физиотерапии и курортологии. — 2015. — Т. 21. — № 2. — С. 134.; Меркушева Е.П. Развитие двигательной сферы — важное условие эффективной коррекции детей с ограниченными возможностями здоровья // Образование и воспитание. — 2018. — № 5. — С. 54–60.; Graham D, Aquilina K, Mankad K, Wimalasundera N. Selective dorsal rhizotomy: current state of practice and the role of imaging. Quant Imaging Med Surg. 2018;8(2):209–218. doi: https://doi.org/10.21037/qims.2018.01.08Test; https://www.pedpharma.ru/jour/article/view/2383Test

  2. 2
    دورية أكاديمية

    المساهمون: Not specified., Не указан.

    المصدر: Current Pediatrics; Том 19, № 2 (2020); 107-115 ; Вопросы современной педиатрии; Том 19, № 2 (2020); 107-115 ; 1682-5535 ; 1682-5527

    وصف الملف: application/pdf

    العلاقة: https://vsp.spr-journal.ru/jour/article/view/2376/933Test; Bax M, Goldstein M, Rosenbaum P, et al. Proposed definition and classification of cerebral palsy. Dev Med Child Neurol. 2005;47(8):571-576. doi:10.1017/s001216220500112x.; Rosenbaum P, Paneth N, Leviton A, et al. A report: the definition and classification of cerebral palsy April 2006. Dev Med Child Neurol Suppl. 2007;49(6):480. doi:10.1111/j.1469-8749.2007.tb12610.x.; Palisano R, Rosenbaum P, Walter S, et al. Development and reliability of a system to classify gross motor function in children with cerebral palsy. Dev Med Child Neurol. 1997;39(4):214-223. doi:10.1111/j.1469-8749.1997.tb07414.x.; Hanna SE, Rosenbaum PL, Bartlett DJ, et al. Stability and decline in gross motor function among children and youth with cerebral palsy aged 2 to 21 years. Dev Med Child Neurol. 2009;51(4):295-302. doi:10.1111/j.1469-8749.2008.03196.x.; Bottos M, Feliciangeli A, Sciuto L, et al. Functional status of adults with cerebral palsy and implications for treatment of children. Dev Med Child Neurol. 2001;43(8):516-528. doi:10.1017/s0012162201000950.; Morgan P, McGinley J. Gait function and decline in adults with cerebral palsy: a systematic review. Disabil Rehabil. 2014;36(1): 1-9. doi:10.3109/09638288.2013.775359.; Day SM, Wu YW, Strauss DJ, et al. Change in ambulatory ability of adolescents and young adults with cerebral palsy. Dev Med Child Neurol. 2007;49(9):647-653. doi:10.1111/j.1469-8749.2007.00647.x.; Ando N, Ueda S. Functional deterioration in adults with cerebral palsy. Clin Rehabil. 2000;14(3):300-306. doi:10.1191/026921500672826716.; Strauss D, Ojdana K, Shavelle R, Rosenbloom L. Decline in function and life expectancy of older persons with cerebral palsy. Neuro Rehabilitation. 2004;19(1):69-78. doi:10.3233/nre-2004-19108.; Morrell DS, Pearson JM, Sauser DD. Progressive bone and joint abnormalities of the spine and lower extremities in cerebral palsy. Radiographics. 2002;22(2):257-268. doi:10.1148/radiographics.22.2.g02mr19257.; Graham HK, Rosenbaum P, Paneth N, et al. Cerebral palsy. Nat Rev Dis Primers. 2016;2:15082. doi:10.1038/nrdp.2015.82.; Verschuren O, Smorenburg AR, Luiking Y, et al. Determinants of muscle preservation in individuals with cerebral palsy across the lifespan: a narrative review of the literature. J Cachexia Sarcopenia Muscle. 2018;9(3):453-464. doi:10.1002/jcsm.12287.; Heinen F, Desloovere K, Schroeder AS, et al. The updated European Consensus 2009 on the use of Botulinum toxin for children with cerebral palsy. Eur J Paediatr Neurol. 2010;14(1):45-66. doi:10.1016/j.ejpn.2009.09.005.; Ross SA, Engsberg JR. Relation between spasticity and strength in individuals with spastic diplegic cerebral palsy. Dev Med Child Neurol. 2002;44(3):148-157. doi:10.1017/s0012162201001852.; Mockford M, Caulton JM. The pathophysiological basis of weakness in children with cerebral palsy. Pediatr Phys Ther. 2010; 22(2):222-233. doi:10.1097/PEP.0b013e3181dbaf96.; Multani I, Manji J, Tang MJ, et al. Sarcopenia, cerebral palsy, and botulinum toxin Type A. JBJS Rev. 2019;7(8):e4. doi:10.2106/JBJS.RVW.18.00153.; Blair E, Langdon K, McIntyre S, et al. Survival and mortality in cerebral palsy: observations to the sixth decade from a data linkage study of a total population register and national death index. BMC Neurol. 2019;19(1):111. doi:10.1186/s12883-019-1343-1.; Tarsuslu T, Livanelioglu A. Relationship between quality of life and functional status of young adults and adults with cerebral palsy. Disabil Rehabil. 2010;32(20):1658-1665. doi:10.3109/09638281003649904.; Bakheit AM. Management of muscle spasticity. Crit Rev Phy Rehabil Med. 1996;8(3):235-252. doi:10.1615/critrevphysreha-bilmed.v8.i3.50.; Бер М., Фротшер М. Топический диагноз в неврологии по Петеру Дуусу: анатомия, физиология, клиника / Пер. с англ. под ред. З.А. Суслиной. 4-е изд. — М.: Практическая медицина, 2009. — С. 58.; Einspieler C, Marschik PB. Early markers for cerebral palsy. In: Cerebral palsy: a multidisciplinary approach (Ed. C.P. Panteliadis). Cham: Springer; 2018. Рр. 69-74. doi:10.1007/978-3-319-67858-0_9.; Фундаментальная и клиническая физиология: Учебник для студентов высших учебных заведений / Под ред. А.Г. Камкина, А.А. Каменского. — М.: Академия, 2004. — C. 307-346.; Damiano DL, Dodd K, Taylor NF. Should we be testing and training muscle strength in cerebral palsy? Dev Med Child Neurol. 2002;44(1):68-72. doi:10.1017/s0012162201001682.; Damiano DL, Quinlivan J, Owen BF, et al. Spasticity versus strength in cerebral palsy: relationships among involuntary resistance, voluntary torque, and motor function. Eur J Neurol. 2001; 8 Suppl 5:40-49. doi:10.1046/j.1468-1331.2001.00037.x.; Engsberg J, Olree K, Ross S, et al. Maximum active resultant knee joint torques in children with cerebral palsy. J Appl Biomech. 1998;14(1):52-61. doi:10.1123/jab.14.1.52.; Rose J, McGill KC. The motor unit in cerebral palsy. Dev Med Child Neurol. 1998;40(4):270-277. doi:10.1111/j.1469-8749.1998.tb15461.x.; Stackhouse SK, Binder-Macleod SA, Lee SC. Voluntary muscle activation, contractile properties, and fatigability in children with and without cerebral palsy. Muscle Nerve. 2005;31(5):594-601. doi:10.1002/mus.20302.; Eng JJ. Strength training in individuals with stroke. Physiother Can. 2004;56(4):189-201. doi:10.2310/6640.2004.00025.; Tammik K, Matlep M, Ereline J, et al. Quadriceps femoris muscle voluntary force and relaxation capacity in children with spastic diplegic cerebral palsy. Pediatr Exerc Sci. 2008;20(1):18-28. doi:10.1123/pes.20.1.18.; Mirbagheri MM, Barbeau H, Ladouceur M, Kearney RE. Intrinsic and reflex stiffness in normal and spastic, spinal cord injured subjects. Exp Brain Res. 2001;141(4):446-459. doi:10.1007/s00221-001-0901-z.; Скворцов И.А. Иллюстрированная неврология развития. — М.: МЕДпресс-информ, 2014. — 351 с.; Баранов А.А., Клочкова О.А., Куренков А.Л., и др. Роль пластичности головного мозга в функциональной адаптации организма при детском церебральном параличе с поражением рук // Педиатрическая фармакология. — 2012. — Т. 9. — № 6. — С. 24-32. doi:10.15690/pf.v9i6.515.; Staudt M. Reorganization after pre- and perinatal brain lesions. J Anat. 2010;217(4):469-474. doi:10.1111/j.1469-7580.2010.01262.x.; Vandermeeren Y, Sebire G, Grandin CB, et al. Functional reorganization of brain in children affected with congenital hemiplegia: fMRI study. Neuroimage. 2003;20(1):289-301. doi:10.1016/s1053-8119(03)00262-3.; Schiaffino S, Reggiani C. Molecular diversity of myofibrillar proteins: gene regulation and functional significance. Physiol Rev. 1996;76(2):371-423. doi:10.1152/physrev.1996.76.2.371.; Lieber RL, Roberts TJ, Blemker SS, et al. Skeletal muscle mechanics, energetics and plasticity. J Neuroeng Rehabil. 2017;14(1):108. doi:10.1186/s12984-017-0318-y.; Moore GE, Goldspink G. The effect of reduced activity on the enzymatic development of phasic and tonic muscles in the chicken. J Dev Physiol. 1985;7(6):381-386.; Baldwin KM, Haddad F. Skeletal muscle plasticity: cellular and molecular responses to altered physical activity paradigms. Am J Phys Med Rehabil. 2002;81(11 Suppl):S40-51. doi:10.1097/01.PHM.0000029723.36419.0D.; Jones D, Round J, de Haan A. Skeletal muscle from molecules to movement. London: Churchhill Livingstone; 2004. doi:10.1016/b978-0-443-07427-1.x5001-8.; Booth FW, Kelso JR. Effect of hind-limb immobilization on contractile and histochemical properties of skeletal muscle. Pflugers Arch. 1973;342(3):231-238. doi:10.1007/bf00591371.; Roy RR, Bello MA, Bouissou P, Edgerton VR. Size and metabolic properties of fibers in rat fasttwitch muscles after hindlimb suspension. J Appl Physiol. 1987;62(6):2348-2357. doi:10.1152/jappl.1987.62.6.2348.; Salmons S, Sreter FA. Significance of impulse activity in the transformation of skeletal muscle type. Nature. 1976;263(5572): 30-34. doi:10.1038/263030a0.; Eisenberg B, Salmons S. The reorganization of subcellular structure in muscle undergoing fast-to-slow type transformation. Cell Tissue Res. 1981;220(3):449-471. doi:10.1007/bf00216750.; Ito JI, Araki A, Tanaka H, et al. Muscle histopathology in spastic cerebral palsy. Brain Dev. 1996;18(4):299-303. doi:10.1016/0387-7604(96)00006-x.; Marbini A, Ferrari A, Cioni G, et al. Immunohistochemical study of muscle biopsy in children with cerebral palsy. Brain Dev. 2002; 24(2):63-66. doi:10.1016/s0387-7604(01)00394-1.; Sjostrom M, Fugl-Meyer AR, Nordin G, Wahlby L. Post-stroke hemiplegia; crural muscle strength and structure. Scand J Rehabil Med Suppl. 1980;7:53-67.; Castle ME, Reyman TA, Schneider M. Pathology of spastic muscle in cerebral palsy. Clin Orthop Relat Res. 1979;(142):223-232. doi:10.1097/00003086-197907000-00036.; Romanini L, Villani C, Meloni C, et al. Histological and morphological aspects of muscle in infantile cerebral palsy. Ital J Orthop Traumatol. 1989;15(1):87-93.; Berry MM, Standring SM, Bannister LM. The nervous system. In: Williams PL, Bannister LH, Berry MM, editors. Gray's Anatomy. 38th ed. London: Churchill Livingstone; 1995. Рр. 901-1398.; Middleton LT. Disorders of the neuromuscular junction. In: Schapira AH, Griggs RC, eds. Muscle Diseases. Boston: Butterworth Heinemann; 1999. Рр. 251-298.; Lieber RL, Friden J. Functional and clinical significance of skeletal muscle architecture. Muscle Nerve. 2000;23(11):1647-1666. doi:10.1002/1097-4598(200011)23:113.0.co;2-m.; Noble J, Charles-Edwards GD, Keevil SF, et al. Intramuscular fat in ambulant young adults with bilateral spastic cerebral palsy. BMC Musculoskelet Disord. 2014;15:236. doi:10.1186/1471-247415-236.; Johnson DL, Miller F, Subramanian P, Modlesky CM. Adipose tissue infiltration of skeletal muscle in children with cerebral palsy. J Pediatr. 2009;154:715-720. doi:10.1016/j.jpeds.2008.10.046.; Obst SJ, Boyd R, Read F, Barber L. Quantitative 3-D ultrasound of the medial gastrocnemius muscle in children with unilateral spastic cerebral palsy. Ultrasound Med Biol. 2017;43(12):2814-2823. doi:10.1016/j.ultrasmedbio.2017.08.929.; Foran J, Steinman S, Barash I, et al. Structural and mechanical alterations in spastic skeletal muscle. Dev Med Child Neurol. 2005;47:713-717. doi:10.1111/j.1469-8749.2005.tb01063.x.; Booth CM, Cortina-Borja MJ, Theologis TN. Collagen accumulation in muscles of children with cerebral palsy and correlation with severity of spasticity. Dev Med Child Neurol. 2001;43:314-320. doi:10.1111/j.1469-8749.2001.tb00211.x.; O'Dwyer NJ, Neilson PD, Nash J. Mechanisms of muscle growth related to muscle contracture in cerebral palsy. Dev Med Child Neurol. 2008;31(4):543-547. doi:10.1111/j.1469-8749.1989.tb04034.x.; Lieber RL, Friden J. Spasticity causes a fundamental rearrangement of muscle-joint interaction. Muscle Nerve. 2002;25(2): 265-270. doi:10.1002/mus.10036.; Labeit S, Kolmerer B. Titins: Giant proteins in charge of muscle ultrastructure and elasticity. Science. 1995;270(5234):293-296. doi:10.1126/science.270.5234.293.; Neagoe C, Kulke M, del Monte F, et al. Titin isoform switch in ischemic human heart disease. Circulation. 2002;106(11): 1333-1341. doi:10.1161/01.cir.0000029803.93022.93.; Lieber RL, Runesson E, Einarsson F, Friden J. Inferior mechanical properties of spastic muscle bundles due to hypertrophic but compromised extracellular matrix material. Muscle Nerve. 2003; 28(4):464-471. doi:10.1002/mus.10446.; Friden J, Lieber RL. Spastic muscle cells are shorter and stiffer than normal cells. Muscle Nerve. 2003;27(2):157-164. doi:10.1002/mus.10247.; Elder G, Kirk J, Stewart G, et al. Contributing factors to muscle weakness in children with cerebral palsy. Dev Med Child Neurol. 2003;45:542-550. doi:10.1111/j.1469-8749.2003.tb00954.x.; Клочкова О.А., Куренков А.Л., Кенис В.М. Формирование контрактур при спастических формах детского церебрального паралича: вопросы патогенеза // Ортопедия, травматология и восстановительная хирургия детского возраста. — 2018. — Т. 6. — № 1. — С. 58-66. doi:10.17816/PTORS6158-66.; Barrett RS, Lichtwark GA. Gross muscle morphology and structure in spastic cerebral palsy: a systematic review. Dev Med Child Neurol. 2010;52(9):794-804. doi:10.1111/j.1469-8749.2010.03686.x.; Herskind A, Ritterband-Rosenbaum A, Willerslev-Olsen M, et al. Muscle growth is reduced in 15-month-old children with cerebral palsy. Dev Med Child Neurol. 2016;58(5):485-491. doi:10.1111/dmcn.12950.; Noble JJ, Fry NR, Lewis AP, et al. Lower limb muscle volumes in bilateral spastic cerebral palsy. Brain Dev. 2014;36(4):294-300. doi:10.1016/j.braindev.2013.05.008.; Malaiya R, McNee AE, Fry NR, et al. The morphology of the medial gastrocnemius in typically developing children and children with spastic hemiplegic cerebral palsy. J Electromyogr Kinesiol. 2007;17(6):657-663. doi:10.1016/j.jelekin.2007.02.009.; Marzetti E, Calvani R, Tosato M, et al. SPRINTT Consortium. Sarcopenia: an overview. Aging Clin Exp Res. 2017;29(1):11-17. doi:10.1007/s40520-016-0704-5.; Shortland A. Muscle deficits in cerebral palsy and early loss of mobility: can we learn something from our elders? Dev Med Child Neurol. 2009;51 Suppl 4:59-63. doi:10.1111/j.1469-8749.2009.03434.x.; Hughes MA, Myers BS, Schenkman ML. The role of strength in rising from a chair in the functionally impaired elderly. J Biomech. 1996;29:1509-1513. doi:10.1016/s0021-9290(96)80001-7.; Janssen I, Heymsfield SB, Ross R. Low relative skeletal muscle mass (sarcopenia) in older persons is associated with functional impairment and physical disability. J Am Geriatr Soc. 2002; 50(5):889-896. doi:10.1046/j.1532-5415.2002.50216.x.; Woo J. Sarcopenia. Clin Geriatr Med. 2017;33(3):305-314. doi:10.1016/j.cger.2017.02.003.; Short KR, Vittone JL, Bigelow ML, et al. Age and aerobic exercise training effects on whole body and muscle protein metabolism. Am J Physiol Endocrinol Metab. 2004;286:E92-E101. doi:10.1152/ajpendo.00366.2003.; Volpi E, Mittendorfer B, Rasmussen BB, Wolfe RR. The response of muscle protein anabolism to combined hyperaminoacidemia and glucose-induced hyperinsulinemia is impaired in the elderly. J Clin Endocrinol Metab. 2000;85:4481-4490. doi:10.1210/jc.85.12.4481.; Boirie Y. Fighting sarcopenia in older frail subjects: protein fuel for strength, exercise for mass. J Am Med Dir Assoc. 2013;14: 140-143. doi:10.1016/j.jamda.2012.10.017.; Franceschi C, Campisi J. Chronic inflammation (inflammaging) and its potential contribution to age-associated diseases. J Gerontol A Biol Sci Med Sci. 2014;69:S4-S9. doi:10.1093/gerona/glu057.; Wolfe RR. The underappreciated role of muscle in health and disease. Am J Clin Nutr. 2006;84:475-482. doi:10.1093/ajcn/84.3.475.; Stein TP, Wade CE. Metabolic consequences of muscle disuse atrophy. J Nutr. 2005;135:1824S-1828S. doi:10.1093/jn/135.7.1824s.; Aycicek A, Iscan A. Oxidative and antioxidative capacity in children with cerebral palsy. Brain Res Bull. 2006;69:666-668. doi:10.1016/j.brainresbull.2006.03.014.; Lexell J, Taylor CC, Sjostrom M. What is the cause of the ageing atrophy? Total number, size and proportion of different fiber types studied in whole vastus lateralis muscle from 15- to 83-year-old men. J Neurol Sci. 1988;84:275-294. doi:10.1016/0022-510x(88)90132-3.; Vandervoort AA. Aging of the human neuromuscular system. Muscle Nerve. 2002;25:17-25. doi:10.1002/mus.1215.; Ryan AS, Nicklas BJ. Age-related changes in fat deposition in mid-thigh muscle in women: relationships with metabolic cardiovascular disease risk factors. Int J Obes Relat Metab Disord. 1999;23:126-132. doi:10.1038/sj.ijo.0800777.; Edstrom E, Altun M, Bergman E, et al. Factors contributing to neuromuscular impairment and sarcopenia during aging. Physiol Behav. 2007;92:129-135. doi:10.1016/j.phys-beh.2007.05.040.; Short KR, Bigelow ML, Kahl J, et al. Decline in skeletal muscle mitochondrial function with aging in humans. Proc Natl Acad Sci U S A. 2005;102:5618-5623. doi:10.1073/pnas.0501559102.; Rooyackers OE, Adey DB, Ades PA, Nair KS. Effect of age on in vivo rates of mitochondrial protein synthesis in human skeletal muscle. Proc Natl Acad Sci U S A. 1996;93:15364-15369. doi:10.1073/pnas.93.26.15364.; Lanza I, Short D, Short K, et al. Endurance exercise as a countermeasure for aging. Diabetes. 2012;61(10):2653-2653. doi:10.2337/db12-er10.; Cruz-Jentoft AJ, Baeyens JP, Bauer JM, et al. Sarcopenia: European consensus on definition and diagnosis: report of the European Working Group on Sarcopenia in Older People. Age Ageing. 2010;39:412-423. doi:10.1093/ageing/afq034.; Sharkey JR, Giuliani C, Haines PS, et al. Summary measure of dietary musculoskeletal nutrient (calcium, vitamin D, magnesium, and phosphorus) intakes is associated with lower-extremity physical performance in homebound elderly men and women. Am J Clin Nutr. 2003;77:847-856. doi:10.1093/ajcn/77.4.847.; Mithal A, Bonjour JP, Boonen S, et al. Impact of nutrition on muscle mass, strength, and performance in older adults. Osteoporos Int. 2013;24(5):1555-1566. doi:10.1007/s00198-012-2236-y.; Robinson S, Cooper C, Aihie Sayer A. Nutrition and sarcopenia: a review of the evidence and implications for preventive strategies. J Aging Res. 2012;2012:510801 doi:10.1201/b19985-3.; Ter Borg S, de Groot LC, Mijnarends DM, et al. Differences in nutrient intake and biochemical nutrient status between sarcope-nic and nonsarcopenic older adults — results from the Maastricht Sarcopenia Study. J Am Med Dir Assoc. 2016;17:393-401. doi:10.1016/j.jamda.2015.12.015.; Verlaan S, Aspray TJ, Bauer JM, et al. Nutritional status, body composition, and quality of life in community-dwelling sarcopenic and non-sarcopenic older adults: a case-control study. Clin Nutr. 2017;36:267-274. doi:10.1016/j.clnu.2015.11.013.; Feart C, Jutand MA, Larrieu S, et al. Energy, macronutrient and fatty acid intake of French elderly community dwellers and association with socio-demographic characteristics: data from the Bordeaux sample of the Three-City Study. Br J Nutr. 2007;98:1046-1057. doi:10.1017/s0007114507756520.; Rousset S, Patureau Mirand P, Brandolini M, et al. Daily protein intakes and eating patterns in young and elderly French. Br J Nutr. 2003;90:1107-1115. doi:10.1079/bjn20031004.; Bollwein J, Diekmann R, Kaiser MJ, et al. Distribution but not amount of protein intake is associated with frailty: a cross-sectional investigation in the region of Nurnberg. Nutr J. 2013;12:109. doi:10.1186/1475-2891-12-109.; Rempel G. The importance of good nutrition in children with cerebral palsy. Phys Med Rehabil Clin N Am. 2015;26:39-56. doi:10.1016/j.pmr.2014.09.001.; Студеникин В.М., Букш А.А. Нарушения нутритивного статуса у детей с церебральным параличом // Лечащий врач. — 2016. — № 11. — С. 68.; Arrowsmith FE, Allen JR, Gaskin KJ, et al. Reduced body protein in children with spastic quadriplegic cerebral palsy. Am J Clin Nutr. 2006;83:613-618. doi:10.1093/ajcn.83.3.613.; Пак Л.А., Макарова С.Г., Чумбадзе Т.Р., Фисенко А.П. Нарушения нутритивного статуса и их коррекция у детей с детским церебральным параличом // Российский педиатрический журнал. — 2019. — Т. 22. — № 1. — С. 23-27. doi:10.18821/1560-9561-201922-1-23-27.; Камалова А.А., Рахмаева Р.Ф., Малиновская Ю.В. Гастроэнтерологические аспекты ведения детей с детским церебральным параличом (обзор литературы) // РМЖ. — 2019. — Т. 27. — № 5. — С. 30-35.; Kalra S, Aggarwal A, Chillar N, Faridi MM. Comparison of micronutrient levels in children with cerebral palsy and neurologically normal controls. Indian J Pediatr. 2015;82:140-144. doi:10.1007/s12098-014-1543-z.; Schoendorfer N, Tinggi U, Sharp N, et al. Protein levels in enteral feeds: do these meet requirements in children with severe cerebral palsy? Br J Nutr. 2012;107:1476-1481. doi:10.1017/S0007114511004533.; Verschuren O, Peterson MD. Nutrition and physical activity in people with cerebral palsy: opposite sides of the same coin. Dev Med Child Neurol. 2016;58:426. doi:10.1111/dmcn.13107.; Hamilton B. Vitamin D and human skeletal muscle. Scand J Med Sci Sports. 2010;20:182-190. doi:10.1111/j.1600-0838.2009.01016.x.; Salles J, Chanet A, Giraudet C, et al. 1,25(OH)2-vitamin D3 enhances the stimulating effect of leucine and insulin on protein synthesis rate through Akt/PKB and mTOR mediated pathways in murine C2C12 skeletal myotubes. Mol Nutr Food Res. 2013;57:2137-2146. doi:10.1002/mnfr.201300074.; Lee SH, Yu J. Risk factors of vitamin D deficiency in children with epilepsy taking anticonvulsants at initial and during follow-up. Ann Pediatr Endocrinol Metab. 2015;20:198-205. doi:10.6065/apem.2015.20.4.198.; Gillett J, Boyd R, Carty C, Barber L. The impact of strength training on skeletal muscle morphology and architecture in children and adolescents with spastic cerebral palsy: a systematic review. Res Dev Disabil. 2016;56:183-196. doi:10.1016/j.ridd.2016.06.003.; Amirmudin NA, Lavelle G, Theologis T, et al. Multilevel surgery for children with cerebral palsy: a meta-analysis. Pediatrics. 2019;143(4). pii: e20183390. doi:10.1542/peds.2018-3390.; https://vsp.spr-journal.ru/jour/article/view/2376Test

  3. 3
    دورية أكاديمية

    المصدر: Current Pediatrics; Том 16, № 1 (2017); 39-48 ; Вопросы современной педиатрии; Том 16, № 1 (2017); 39-48 ; 1682-5535 ; 1682-5527

    وصف الملف: application/pdf

    العلاقة: https://vsp.spr-journal.ru/jour/article/view/1729/680Test; Koman LA, Smith BP, Shilt JS. Cerebral palsy. Lancet. 2004;363(9421):1619–1631. doi:10.1016/S0140-6736(04)16207-7.; Семенова К.А. Восстановительное лечение детей с перинатальным поражением нервной системы и детским церебральным параличом. — М.: Закон и порядок; 2007. — 616 с. [Semenova KA. Vosstanovitel’noe lechenie detei s perinatal’nym porazheniem nervnoi sistemy i detskim tserebral’nym paralichom. Moscow: Zakon i poryadok; 2007. 616 p. (In Russ).]; Bax M, Goldstein M, Rosenbaum P, et al. Proposed definition and classification of cerebral palsy, April 2005. Dev Med Child Neurol. 2005;47(8):571–576. doi:10.1017/s001216220 500112x.; SCPE. Prevalence and characteristics of children with cerebral palsy in Europe. Dev Med Child Neurol. 2002;44(9):633–640. doi:10.1111/j.1469-8749.2002.tb00848.x.; Wichers MJ, Odding E, Stam HJ, van Nieuwenhuizen O. Clinical presentation, associated disorders and aetiological moments in cerebral palsy: a Dutch population-based study. Disabil Rehabil. 2005;27(10):583–589. doi:10.1080/09638280400018445.; Leonard J, Graham HK. Treatment of motor disorders in cerebral palsy with botulinum neurotoxin. In: Jankovic J, editor. Botulinum toxin: Therapeutic clinical practice and science. Philadelphia:Saunders Elsevier; 2009. p. 172–191. doi:10.1016/b978-1-4160-4928-9.00014-7.; Heinen F, Desloovere K, Schroeder AS, et al. The updated European Consensus 2009 on the use of Botulinum toxin for children with cerebral palsy. Eur J Paediatr Neurol. 2010;14(1): 45–66. doi:10.1016/j.ejpn.2009.09.005.; Novak I, McIntyre S, Morgan C, et al. A systematic review of interventions for children with cerebral palsy: state of the evidence. Dev Med Child Neurol. 2013;55(10):885–910. doi:10.1111/dmcn.12246.; Hagglund G, Wagner P. Development of spasticity with age in a total population of children with cerebral palsy. BMC Musculoskelet Disord. 2008;9:150. doi:10.1186/1471-2474-9-150.; Hagglund G, Andersson S, Duppe H, et al. Prevention of dislocation of the hip in children with cerebral palsy. The first ten years of a population-based prevention programme. J Bone Joint Surg Br. 2005;87:95–101. doi:10.1302/0301-620X.87B1.15146.; Pascual-Pascual S, Pascual-Castroviejo I. Safety of botulinum toxin type A in children younger than 2 years. Eur J Paediatr Neurol. 2009;13(6):511–515. doi:10.1016/j.ejpn.2008.10.006.; Druschel C, Althuizes HC, Funk JF, Placzek R. Off label use of botulinum toxin in children under two years of age: а systematic review. Toxins (Basel). 2013;5(1):60–72. doi:10.3390/toxins5010060.; Tilton AH. Evidence-based review of safety and efficacy in cerebral palsy. Toxicon. 2015;107(Pt A):105–108. doi:10.1016/j.toxicon.2015.09.020.; Simpson LL. Identification of the major steps in botulinum toxin action. Annu Rev Pharmacol Toxicol. 2004;44:167–193. doi:10.1146/annurev.pharmtox.44.101802.121554.; Scott AB. Development of botulinum toxin therapy. Dermatol Clin. 2004;22(2):131–133. doi:10.1016/s0733-8635(03)00019-6.; Koman LA, Mooney JF, Smith B, et al. Management of cerebral palsy with botulinum-A toxin: preliminary investigation. J Pediatr Orthop. 1993;13(4):489–495. doi:10.1097/01241398-199307000-00013.; Pascual-Pascual SI, Herrera-Galante A, Poo P, et al. [Guidelines for the treatment of child spasticity using botulinum toxin. (In Spanish).] Rev Neurol. 2007;44(5):303–309.; Arner M, Himmelmann K, Ponten E, et al. [Upper extremity botulinum toxin treatment in cerebral palsy. Treatment guidelines the first step towards national cooperation. (In Swedish).] Lakartidningen. 2008;105(43):3009–3013.; National Collaborating Centre for Women’s and Children’s Health (UK). Spasticity in children and young people with non-progressive brain disorders: management of spasticity and co-existing motor disorders and their early musculoskeletal complications. London: RCOG Press; 2012. p. 293.; Delgado M, Hirtz D, Aisen M, et al. Practice parameter: pharmacologic treatment of spasticity in children and adolescents with cerebral palsy (an evidence-based review): report of the Quality Standards Subcommittee of the American Academy of Neurology and the Practice Committee of the Child Neurology Society. Neurology. 2010;74(4):336–343. doi:10.1212/WNL.0b013e3181cbcd2f.; Placzek R. [Botulinum toxin A in children with infantile cerebral palsy: indications and treatment concepts. (In German).] Orthopade. 2010;39(1):23–30. doi:10.1007/s00132-009-1534-3.; Corry IS, Cosgrove AP, Duffy CM, et al. Botulinum toxin A compared with stretching casts in the treatment of spastic equinus: a randomised prospective trial. J Pediatr Orthop. 1998;18(3): 304–11. doi:10.1097/01241398-199805000-00006.; Graham HK, Aoki KR, Autti-Ramo I, et al. Recommendations for the use of botulinum toxin type A in the management of cerebral palsy. Gait Posture. 2000;11(1):67–79. doi:10.1016/S0966-6362(99)00054-5.; Molenaers G, Fagard K, Van Campenhout A, Desloovere K. Botulinum toxin A treatment of the lower extremities in children with cerebral palsy. J Child Orthop. 2013;7(5):383–387. doi:10.1007/s11832-013-0511-x.; Rathinam C, Bateman A, Peirson J, Skinner J. Observational gait assessment tools in paediatrics — a systematic review. Gait Posture. 2014;40(2):279–285. doi:10.1016/j.gaitpost.2014.04.187.; Metaxiotis D, Siebel A, Doederlein L. Repeated botulinum toxin A injections in the treatment of spastic equinus foot. Clin Orthop Relat Res. 2002;(394):177–185. doi:10.1097/00003086-200201000-00021.; Goldberg MJ. Botulinum toxin type a improved ankle function in children with cerebral palsy and dynamic equinus foot deformity. J Bone Joint Surg Am. 2000;82(6):874. doi:10.2106/00004623-200006000-00016.; Love SC, Valentine JP, Blair EM, et al. The effect of botulinum toxin type a on the functional ability of the child with spastic hemiplegia a randomized controlled trial. Eur J Neurol. 2001;8 Suppl 5: 50–58. doi:10.1046/j.1468-1331.2001.00038.x.; Fehlings D, Rang M, Glazier J, Steele C. Botulinum toxin type a injections in the spastic upper extremity of children with hemiplegia: Child characteristics that predict a positive outcome. Eur J Neurol. 2001;8 Suppl 5:145–149. doi:10.1046/j.1468-1331.2001.00047.x.; Wissel J, Heinen F, Schenkel A, et al. Botulinum toxin A in the management of spastic gait disorders in children and young adults with cerebral palsy: a randomized, double-blind study of «highdose » versus «low-dose» treatment. Neuropediatrics. 1999;30(3): 120–124. doi:10.1055/s-2007-973475.; Fazzi E, Maraucci I, Torrielli S, et al. Factors predicting the efficacy of botulinum toxin-a treatment of the lower limb in children with cerebral palsy. J Child Neurol. 2005;20(8):661–666. doi:10.1177/08830738050200080501.; Gough M, Fairhurst C, Shortland AP. Botulinum toxin and cerebral palsy: time for reflection? Dev Med Child Neurol. 2005;47(10): 709–712. doi:10.1017/S0012162205001453.; Cosgrove AP, Corry IS, Graham HK. Botulinum toxin in the management of the lower limb in cerebral palsy. Dev Med Child Neurol. 1994;36(5):386–396. doi:10.1111/j.1469-8749.1994. tb11864.x.; Heinen F, Molenaers G, Fairhurst C, et al. European consensus table 2006 on botulinum toxin for children with cerebral palsy. Eur J Paediatr Neurol. 2006;10:215–225. doi:10.1016/j.ejpn.2006.08.006.; Molenaers G, Schorkhuber V, Fagard K, et al. Long-term use of botulinum toxin type A in children with cerebral palsy: treatment consistency. Eur J Paediatr Neurol. 2009;13(5):421–429. doi:10.1016/j.ejpn.2008.07.008.; Naumann M, Albanese A, Heinen F, et al. Safety and efficacy of botulinum toxin type A following long-term use. Eur J Neurol. 2006; 13 Suppl 4:35–40. doi:10.1111/j.1468-1331.2006.01652.x.; Willis AW, Crowner B, Brunstrom JE, et al. High dose botulinum toxin A for the treatment of lower extremity hypertonicity in children with cerebral palsy. Dev Med Child Neurol. 2007;49(11):818–822. doi:10.1111/j.1469-8749.2007.00818.x.; Crowner BE, Brunstrom JE, Racette BA. Iatrogenic botulism due to therapeutic botulinum toxin A injection in a pediatric patient. Clin Neuropharmacol. 2007;30(5):310–313. doi:10.1097/WNF.0b013e31804b1a0d.; Naidu K, Smith K, Sheedy M, et al. Systemic adverse events following botulinum toxin A therapy in children with cerebral palsy. Dev Med Child Neurol. 2010;52(2):139–144. doi:10.1111/j.1469-8749.2009.03583.x.; Клочкова О.А., Куренков А.Л., Намазова-Баранова Л.С., и др. Общее моторное развитие и формирование функции рук у пациентов со спастическими формами детского церебрального паралича на фоне ботулинотерапии и комплексной реабилитации // Вестник Российской академии наук. — 2013. — Т. 68. —№ 11 — С. 38–48. [Klochkova OA, Kurenkov AL, Namazova-Baranova LS, et al. Development of motor functions and manual abilities in pediatric patients with spastic cerebral palsy after botulinum toxin treatment and complex rehabilitation. Annals of the Russian academy of medical sciences. 2013;68(11):38–48. (In Russ).] doi:10.15690/vramn.v68i11.842 (In Russ).]; Куренков А.Л., Клочкова О.А. Ботулинотерапия детского церебрального паралича. В кн.: Азбука ботулинотерапии / Под ред. С.Л. Тимербаевой. — М.: Практическая медицина; 2014. — С. 148—171. [Kurenkov AL, Klochkova OA. Botulinoterapiya detskogo tserebral’nogo paralicha. In: Timerbaeva S.L., editor. Azbuka botulinoterapii. Moscow: Prakticheskaya meditsina; 2014. p. 148–171. (In Russ).]; Калинина Л.В., Сологубов Е.Г., Лузинович В.М., Дутикова Е.М. Ботокс в комплексном лечении детского церебрального паралича // Журнал невропатологии и психиатрии им. С.С. Корсакова. — 2000. — Т. 100. — № 12 — С. 60–63. [Kalinina LV, Sologubov EG, Luzinovich VM, Dutikova EM. Botoks v kompleksnom lechenii detsko go tserebral’nogo paralicha. Zh Nevrol Psikhiatr Im S S Korsakova. 2000;100(12):60–63. (In Russ).]; Калинина Л.В., Дутикова Е.М. Детский церебральный паралич. В кн.: Применение Ботокса (токсина ботулизма типа А) в клинической практике: руководство для врачей / Под ред. O.P. Орловой, H.H. Яхно. — М.: Каталог; 2001. — С. 86–107. [Kalinina LV, Dutikova EM. Detskii tserebral’nyi paralich. In: Orlova O.P., Yakhno N.N., editors. Primenenie Botoksa (toksina botulizma tipa A) v klinicheskoi praktike: rukovodstvo dlya vrachei. Moscow: Katalog; 2001. p. 86–107. (In Russ).]; Сальков В.Н., Лильин Е.Т., Степанченко О.В., и др. Ботокс при трицепс-синдроме у детей с детским церебральным параличом //Журнал неврологии и психиатрии им. С.С. Корсакова. — 2002. — Т. 102. — № 5 — С. 24–25. [Sal’kov VN, Lil’in ET, Stepanchenko OV, et al. Botoks pri tritseps-sindrome u detei s detskim tserebral’nym paralichom. Zh Nevrol Psikhiatr Im S S Korsakova. 2002;102(5): 24–25. (In Russ).]; Куренков А.Л., Батышева Т.Т., Никитин С.С., и др. Лечение спастичности у детей с церебральными параличами. Методические рекомендации № 15 Департамента здравоохранения города Москвы. — М.; 2011. — C. 3–5. [Kurenkov AL, Batysheva TT, Nikitin SS, et al. Lechenie spastichnosti u detei s tserebral’nymi paralichami. Metodicheskie rekomendatsii № 15 Departamenta zdravookhraneniya goroda Moskvy. Moscow; 2011. p. 3–5. (In Russ).]; Куренков А.Л., Батышева Т.Т., Виноградов А.В., Зюзяева Е.К. Спастичность при детском церебральном параличе: диагностика и стратегии лечения // Журнал неврологии и психиатрии им. С.С. Корсакова. — 2012. — Т. 112. — № 7–2 — С. 24–28. [Kurenkov AL, Batysheva TT, Vinogradov AV, Ziuziaeva EK. Spasticity in children cerebral palsy: diagnosis and treatment strategies. Zh Nevrol Psikhiatr Im S S Korsakova. 2012;112(7–2):24–28. (In Russ).]; Клочкова О.А., Куренков А.Л., Каримова Х.М., и др. Мно гоуровневые инъекции ботулинического токсина типа А (Або ботулотоксина) при лечении спастических форм детского церебрального паралича: ретроспективное исследование опыта 8 российских центров // Педиатрическая фармакология. — 2016. — Т. 13. — № 3 — С. 259–269. [Klochkova OA, Kurenkov AL, Karimova KhM, et al. Multilevel botulinum toxin A (abobotulinum toxin A) injections in spastic forms of cerebral palsy: retrospective analysis of 8 Russian centers experience. Pediatric pharmacology. 2016;13(3):259–269. (In Russ).] doi:10.15690/pf.v13i3.1576.; Куренков А.Л., Клочкова О.А., Бурсагова Б.И., и др. Применение препарата ботулинического токсина типа А (Ботокс) в лечении детского церебрального паралича // Нервно-мышечные болезни. — 2014. — № 3 — С. 28–41. [Kurenkov AL, Klochkova OA, Bursagova BI, et al. Use of botulinum toxin type A (Botox) in the treatment of infantile cerebral palsy. Nervno-myshechnye bolezni. 2014;(3):28–41. (In Russ).]; Куренков А.Л., Клочкова О.А., Змановская В.А., и др. Первый Российский консенсус по применению многоуровневых инъекций Abobotulinumtoxin A при лечении спастических форм детского церебрального паралича // Журнал неврологии и психиатрии им. С.С. Корсакова. — 2016. — Т. 116. — № 11 — С. 121–130. [Kurenkov AL, Klochkova OA, Zmanovskaya VA, et al. Pervyi Rossiiskii konsensus po primeneniyu mnogourovnevykh in»ektsii Abobotulinumtoxin A pri lechenii spasticheskikh form detskogo tserebral’nogo paralicha. Zh Nevrol Psikhiatr Im S S Korsa kova. 2016;116(11):121–130. (In Russ).]; Love SC, Novak I, Kentish M, et al. Botulinum toxin assessment, intervention and after-care for lower limb spasticity in children with cerebral palsy: international consensus statement. Eur J Neurol. 2010;17 Suppl 2:9–37. doi:10.1111/j.1468-1331.2010.03126.x.; Placzek R, Siebold D, Funk JF. Development of treatment concepts for the use of botulinum toxin A in children with cerebral palsy. Toxins (Basel). 2010;2(9):2258–2271. 10.3390/toxins2092258.; Placzek R, Salem KH, Meiss LA, et al. The key-muscle concept: a long-term low-dose injection strategy for botulinum toxin A treatment in cerebral palsy. Acta Orthop Belg. 2012;78(1):111–116.; Russell A, Cotton E, editors. The Peto system and its evolution in Britain. London, UK: Acorn Foundation Publications; 1994.; Russell D, Rosenbaum P. Gowland C, et al. Gross Motor Function Measure (GMFM). Toronto, Canada: Gross Motor Measures Group; 1993.; Wijnhoven TM, de Onis M, Onyango AW, et al. Assessment of gross motor development in the WHO Multicentre Growth Reference Study. Food Nutr Bull. 2004;25(1 Suppl):S37–S45. doi:10.1177/15648265040251S105.; Strobl W, Theologis T, Brunner R, et al. Best clinical practice in botulinum toxin treatment for children with cerebral palsy. Toxins (Basel). 2015;7(5):1629–1648. doi:10.3390/toxins7051629.; Rosenbaum PL, Walter SD, Hanna SE, et al. Prognosis for gross motor function in cerebral palsy: creation of motor development curves. JAMA. 2002;288(11):1357–1363. doi:10.1001/jama.288.11.1357.; Kargo WJ, Nitz DA. Early skill learning is expressed through selection and tuning of cortically represented muscle synergies. J Neurosci. 2003;23(35):11255–11269.; Hikosaka O, Nakamura K, Sakai K, Nakahara H. Central mechanisms of motor skill learning. Curr Opin Neurobiol. 2002;12(2): 217–222. doi:10.1016/S0959-4388(02)00307-0.; Баранов А.А., Клочкова О.А., Куренков А.Л., и др. Роль пластичности головного мозга в функциональной адаптации организма при детском церебральном параличе с поражением рук // Педиатрическая фармакология. — 2012. — Т. 9. — № 6 — С. 24–32. [Baranov AA, Klochkova OA, Kurenkov AL, et al. The role ofbrain plasticity in the functional adaptation of body at cerebral infantile paralysis with the affection of hands. Pediatric pharmacology. 2012;9(6):24–32. (In Russ).] doi:10.15690/pf.v9i6.515.; Tedroff K, Lowing K, Haglund-Akerlind Y, et al. Botulinum toxin a treatment in toddlers with cerebral palsy. Acta Paediatr. 2010;99(8):1156–1162. doi:10.1111/j.1651-2227.2010. 01767.x.; Olesch CA, Greaves S, Imms C, et al. Repeat botulinum toxin-A injections in the upper limb of children with hemiplegia: a randomized controlled trial. Dev Med Child Neurol. 2010;52(1):79–86. doi:10.1111/j.1469-8749.2009.03387.x.; Graham HK, Boyd R, Carlin JB, et al. Does botulinum toxin a combined with bracing prevent hip displacement in children with cerebral palsy and «hips at risk»? A randomized, controlled trial. J Bone Joint Surg Am. 2008;90(1):23–33. doi:10.2106/JBJS.F.01416.; Zhu DN, Wang MM, Wang J, et al. [Effect of botulinum toxin A injection in the treatment of gastrocnemius spasticity in children aged 9–36 months with cerebral palsy: a prospective study. (In Chinese).] Zhongguo Dang Dai Er Ke Za Zhi. 2016;18(2):123–129.; Pascual-Pascual SI. [Use of botulinum toxin in the preventive and palliative treatment of the hips in children with infantile cerebral palsy. (In Spanish).] Rev Neurol. 2003;37(1):80–82.; Scrutton D, Baird G, Smeeton N. Hip dysplasia in bilateral cerebral palsy: incidence and natural history in children aged 18 months to 5 years. Dev Med Child Neurol. 2001;43(9):586–600. doi:10.1017/s0012162201001086.; Pidcock FS, Fish DE, Johnson-Greene D, et al. Hip migration percentage in children with cerebral palsy treated with botulinum toxin type A. Arch Phys Med Rehabil. 2005;86(3):431–435. doi:10.1016/j.apmr.2004.03.034.; Jung NH, Heinen F, Westhoff B, et al. Hip lateralisation in children with bilateral spastic cerebral palsy treated with botulinum toxin type A: a 2-year follow-up. Neuropediatrics. 2011;42(1): 18–23. doi:10.1055/s-0031-1275344.; Chhina H, Howren A, Simmonds A, Alvarez CM. Onabotulinumtoxin A injections: a safety review of children with clubfoot under 2 years of age at BC Children’s Hospital. Eur J Paediatr Neurol. 2014;18(2):171–175. doi:10.1016/j.ejpn.2013.11.002.; Алборов О.И., Филатова Н.Б., Чочиев Г.М., и др. Ботокс в комплексной реабилитации больных с парезом Эрба // International Journal on Immunorehabilitation. — 2010. — Т. 12. — № 2 — С. 199a. [Alborov OI, Filatova NB, Chochiev GM, et al. Botoks v kompleksnoi reabilitatsii bol’nykh s parezom Erba. International Journal on Immunorehabilitation. 2010;12(2):199a. (In Russ).]; Ma J, Smith BP, Smith TL, et al. Juvenile and adult rat neuromuscular junctions: density, distribution, and morphology. Muscle Nerve. 2002;26(6):804–809. doi:10.1002/mus.10272.; Barrett RS, Lichtwark GA. Gross muscle morphology and structure in spastic cerebral palsy: a systematic review. Dev Med Child Neurol. 2010;52(9):794–804. doi:10.1111/j.1469-8749.2010.03686.x.; Cosgrove AP, Graham HK. Botulinum toxin A prevents the development of contractures in the hereditary spastic mouse. Dev Med Child Neurol. 1994;36(5):379–385. doi:10.1111/j.1469-8749.1994.tb11863.x.; Clowry GJ, Walker L, Davies P. The effects of botulinum neurotoxin A induced muscle paresis during a critical period upon muscle and spinal cord development in the rat. Exp Neurol. 2006;202(2): 456–469. doi:10.1016/j.expneurol.2006.07.008.; Eliasson P, Fahlgren A, Pasternak B, Aspenberg P. Unloaded rat Achilles tendons continue to grow, but lose viscoelasticity. J Appl Physiol (1985). 2007;103(2):459–463. doi:10.1152/japplphysiol.01333.2006.; Rauch F, Hamdy R. Effect of a single botulinum toxin injection on bone development in growing rabbits. J Musculoskelet Neuronal Interact. 2006;6(3):264–268.; Kwon TG, Park HS, Lee SH, et al. Influence of unilateral masseter muscle atrophy on craniofacial morphology in growing rabbits. J Oral Maxillofac Surg. 2007;65(8):1530–1537. doi:10.1016/j.joms.2006.10.059.; Garner CG, Straube A, Witt TN, et al. Time course of distant effects of local injections of botulinum toxin. Mov Disord. 1993;8(1):33–37. doi:10.1002/mds.870080106.; Gilio F, Curra A, Lorenzano C, et al. Effects of botulinum toxin type A on intracortical inhibition in patients with dystonia. Ann Neurol. 2000;48(1):20–26. doi:10.1002/1531-8249(200007) 48:13.3.co;2-l.; Boroojerdi B, Cohen LG, Hallett M. Effects of botulinum toxin on motor system excitability in patients with writer’s cramp. Neurology. 2003;61(11):1546–1550. doi:10.1212/01.wnl. 0000095965.36574; https://vsp.spr-journal.ru/jour/article/view/1729Test

  4. 4
    دورية أكاديمية

    المساهمون: 10.15690/vsp.v16i4.1780

    المصدر: Current Pediatrics; Том 16, № 4 (2017); 326-333 ; Вопросы современной педиатрии; Том 16, № 4 (2017); 326-333 ; 1682-5535 ; 1682-5527

    وصف الملف: application/pdf

    العلاقة: https://vsp.spr-journal.ru/jour/article/view/1793/719Test; Говбах И.А. Современные подходы диагностики наследственных мото-сенсорных нейропатий // ScienceRise. — 2015. — Т. 3. — № 4 — С. 43–53. [Govbakh IA. Modern approaches to diagnostics of hereditary motor-sensory neuropathy. ScienceRise. 2015;3(4)43–53. (In Russ).] doi:10.15587/2313-8416.2015.39134; Reilly MM, Murphy SM, Laura M. Charcot-Marie-Tooth disease. J Peripher Nerv Syst. 2011;16(1):1–14. doi:10.1111/j.1529-8027.2011.00324.x.; Saporta ASD, Sottile SL, Miller LJ, et al. Charcot-Marie-Tooth disease subtypes and genetic testing strategies. Ann Neurol. 2011;69(1):22–33. doi:10.1002/ana.22166.; Lassuthova P, Brozkova DS, Krutova M, et al. Mutations in HINT1 are one of the most frequent causes of hereditary neuropathy among Czech patients and neuromyotonia is rather an underdiagnosed symptom. Neurogenetics. 2015;16(1):43–54. doi:10.1007/s10048-014-0427-8.; Pareyson D, Marchesi C. Diagnosis, natural history, and management of Charcot-Marie-Tooth disease. Lancet Neurol. 2009; 8(7):654–667. doi:10.1016/S1474-4422(09)70110-3; Reilly MM, Shy ME. Diagnosis and new treatments in genetic neuropathies. J Neurol Neurosurg Psychiatry. 2009;80(12): 1304–1314. doi:10.1136/jnnp.2008.158295.; Zhao H, Race V, Matthijs G, et al. Exome sequencing reveals HINT1 mutations as a cause of distal hereditary motor neuropathy. Eur J Hum Genet. 2014;22(6):847–850. doi:10.1038/ejhg.2013.231.; Rossor AM, Kalmar B, Greensmith L, Reilly MM. The distal hereditary motor neuropathies. J Neurol Neurosurg Psychiatry. 2012;83(1):6–14. doi:10.1136/jnnp-2011-300952.; Zimon M, Baets J, Almeida-Souza L, et al. Loss-of-function mutations in HINT1 cause axonal neuropathy with neuromyotonia. Nat Genet. 2012;44(10):1080–1083. doi:10.1038/ng.2406.; Aminkeng F. HINT1 mutations define a novel disease entity — autosomal recessive axonal neuropathy with neuromyotonia. Clin Genet. 2013;83(1):31–32. doi:10.1111/cge.12030.; Mertens HG, Zschocke S. [Neuromyotonia. (In German).] Klin Wochenschr. 1965;43(17):917–925. doi:10.1007/BF01712058; Lance JW, Durke D, Pollard J. Neuromyotonia in the spinal form of Charcot-Marie-Tooth disease. Clin Exp Neurol. 1979;16:49–56.; Peeters K, Chamova T, Tournev I, Jordanova A. Axonal neuropathy with neuromyotonia: there is a HINT. Brain. 2017;140:868–877. doi:10.1093/brain/aww301.; Hahn AF, Parkes AW, Bolton CF, Stewart SA. Neuromyotonia in hereditary motor neuropathy. J Neurol Neurosurg Psychiatry. 1991;54(3):230–235. doi:10.1136/jnnp.54.3.230.; Black JT, Garcia-Mullin R, Good E, Brown S. Muscle rigidity in a newborn due to continuous peripheral nerve hyperactivity. Arch Neurol. 1972;27(5):413–425. doi:10.1001/archneur.1972.00490170045007; Auger RG, Daube JR, Gomez MR, Lambert EH. Hereditary form of sustained muscle activity of peripheral nerve origin causing generalized myokymia and muscle stiffness. Ann Neurol. 1984;15(1): 13–21. doi:10.1002/ana.410150104.; Mcguire SA, Tomasovic JJ, Ackerman N. Hereditary Continuous Muscle-Fiber Activity. Arch Neurol. 1984;41(4):395–396. doi:10.1001/archneur.1984.04050160057016; Grund G. [Zur Frage des Vorkommens erworbener Myotonie. (In German).] Dtsch Z Nervenheilkd. 1911;42(1–2):110–127. doi:10.1007/bf01649723.; Grund G. [Uber genetische Beziehungen zwischen Myotonie, Muskelkrampfen und Myokymie. (In German).] Dtsch Z Nervenheilkd. 1938;146(1–2):3–14. doi:10.1007/bf01762426.; Gamstorp I, Wohlfart G. A syndrome characterized by myokymia, myotonia, muscular wasting and increased perspiration. Acta Psychiatr Scand. 1959;34(2):181–194. doi:10.1111/j.1600-0447.1959.tb07573.x.; Vasilescu C, Alexianu M, Dan A. Neuronal type of Charcot-Marie-Tooth Disease with a syndrome of contrinuous motor unit activity. J Neurol Sci. 1984;63(1):11–25. doi:10.1016/0022-510x(84)90105-9.; Zimon M, Battaloglu E, Parman Y, et al. Unraveling the genetic landscape of autosomal recessive Charcot-Marie-Tooth neuropathies using a homozygosity mapping approach. Neurogenetics. 2014;16(1):33–42. doi:10.1007/s10048-014-0422-0.; Мальмберг С.А., Куренков А.Л. Аксональная моторная полиневропатия с гиперактивностью двигательных единиц // Неврологический журнал. — 2002. — Т. 7. — № 6 — С. 28–33. [Mal’mberg SA, Kurenkov AL. Aksonal’naya motornaya polinevropatiya s giperaktivnost’yu dvigatel’nykh edinits. Journal of neurology. 2002;7(6):28–33. (In Russ).]; Никитин С.С., Куренков А.Л. Методические основы транскраниальной магнитной стимуляции в неврологии и психиатрии. — М.: «ИПЦ Маска»; 2006. — С. 160–166. [Nikitin SS, Kurenkov AL. Metodicheskie osnovy transkranial’noi magnitnoi stimulyatsii v nevrologii i psikhiatrii. Moscow: Maska; 2006. p. 160–166. (In Russ).]; Barbier E, Zapata A, Oh E, et al. Supersensitivity to amphetamine in protein kinase-C interacting protein/HINT1 knockout mice. Neuropsychopharmacology. 2007;32(8):1774–1782. doi:10.1038/sj.npp.1301301.; Liu Q, Puche AC, Wang JB. Distribution and expression of protein kinase c interactive protein (PKCI/HINT1) in mouse central nervous system (CNS). Neurochem Res. 2008;33(7):1263–1276. doi:10.1007/s11064-007-9578-4.; Caetano JS, Costa C, Baets J, et al. Autosomal recessive axonal neuropathy with neuromyotonia: a rare entity. Pediatr Neurol. 2014;50(1):104–107. doi:10.1016/j.pediatrneurol. 2013.08.028.; Jerath NU, Shy ME, Grider T, Gutmann L. A case of neuromyotonia and axonal motor neuropathy: a report of a HINT1 mutation in the United States. Muscle Nerve. 2015;52(6):1110-1113. doi:10.1002/mus.24774.; Rauchenzauner M, Fruhwirth M, Hecht M, et al. A novel variant in the HINT1 gene in a girl with autosomal recessive axonal neuropathy with neuromyotonia: thorough neurological examination gives the clue. Neuropediatrics. 2016;47(2):119–122. doi:10.1055/s-0035-1570493.; Boaretto F, Cacciavillani M, Mostacciuolo ML, et al. Novel loss-of-function mutation of the HINT1 gene in a patient with distal motor axonal neuropathy without neuromyotonia. Muscle Nerve. 2015;52(4):688–689. doi:10.1002/mus.24720.; Вавилов М.А., Бландинский В.Ф., Громов И.В. и др. Артродезирующие операции у детей старше 10 лет с деформациями стоп различной этиологии // Гений ортопедии. — 2016. — № 3 — С. 35–38. [Vavilov MA, Blandinskii VF, Gromov IV, et al. Arthrodesing surgeries in children above 10 years of age with feet deformities of various etiologies. Genij ortopedii. 2016;(3):35–38. (In Russ).] doi:10.18019/1028-4427-2016-3-35-38.; https://vsp.spr-journal.ru/jour/article/view/1793Test

  5. 5
    دورية أكاديمية

    المصدر: Pediatric pharmacology; Том 13, № 3 (2016); 259-269 ; Педиатрическая фармакология; Том 13, № 3 (2016); 259-269 ; 2500-3089 ; 1727-5776

    وصف الملف: application/pdf

    العلاقة: https://www.pedpharma.ru/jour/article/view/1425/798Test; Heinen F, Desloovere K, Schroeder AS, et al. The updated European Consensus 2009 on the use of Botulinum toxin for children with cerebral palsy. Eur J Paediatr Neurol. 2010;14(1): 45–66. doi:10.1016/j.ejpn.2009.09.005.; Molenaers G, Desloovere K, Fabry G, De Cock P. The effects of quantitative gait assessment and botulinum toxin A on musculoskeletal surgery in children with cerebral palsy. J Bone Joint Surg [Am]. 2006;88(1):161–170. doi:10.2106/jbjs.c.01497.; Novak I, McIntyre S, Morgan C, et al. A systematic review of interventions for children with cerebral palsy: state of the evidence. Dev Med Child Neurol. 2013;55(10):885–910. doi:10.1111/ dmcn.12246.; Кенис В.М. Эффективность использования препаратов бутолотоксина при коррекции динамической эквинусной и эквиноварусной деформации стопы у детей с гемипаретической формой церебрального паралича // Журнал неврологии и психиатрии им. С.С. Корсакова. — 2012. — Т. 112. — №7–2. —С. 29–33. [Kenis VM. Efficacy of botulinum toxin in the treatment of dynamic equinus and equinovarus foot deformities in children with hemiplegic cerebral palsy. Zh Nevrol Psikhiatr Im SS Korsakova. 2012;112(7–2):29–33. (In Russ).]; Simpson DM, Gracies JM, Graham HK, et al. Therapeutics and Technology Assessment Subcommittee of the American Academy of Neurology. Assessment: Botulinum neurotoxin for the treatment of spasticity (an evidence-based review): report of the Therapeutics and Technology Assessment Subcommittee of the American Academy of Neurology. Neurology. 2008;70(19):1691–1698. doi:10.1212/ 01.wnl.0000311391.00944.c4.; Delgado MR, Hirtz D, Aisen M, et al. Practice parameter: pharmacologic treatment of spasticity in children and adolescents with cerebral palsy (an evidence-based review): report of the Quality Standards Subcommittee of the American Academy of Neurology and; the Practice Committee of the Child Neurology Society. Neurology. 2010;74(4):336–343. doi:10.1212/wnl.0b013e3181cbcd2f.; Schroeder AS, Berweck S, Lee SH, Heinen F. Botulinum toxin treatment of children with cerebral palsy – a short review of different injection techniques. Neurotox Res. 2006;9(2– 3):189–96. Review. doi:10.1007/bf03033938.; Molenaers G, Van Campenhout A, Fagard K, et al. The use of botulinum toxin A in children with cerebral palsy, with a focus on the lower limb. J Child Orthop. 2010;4(3):183–195. doi:10.1007/ s11832-010-0246-x.; Куренков А.Л., Клочкова О.А., Каримова Х.М., и др. Выбор дозы препарата ботулинического токсина типа А при лечении спастических форм детского церебрального паралича // Журнал неврологии и психиатрии им. С.С. Корсакова. — 2015. — Т. 115. — №5–2. — С. 35—41. [Kurenkov AL, Klochkova OA, Karimova KhM, et al. Selection of a dose of the botulinum toxin A in spastic forms of cerebral palsy. Zh Nevrol Psikhiatr Im SS Korsakova. 2015;115(5–2):35–41. (In Russ).]; Клочкова О.А., Куренков А.Л., Каримова Х.М., и др. Опыт многоуровневых повторных инъекций ботулинического токсина типа А (Abobotulinum toxin A) при спастических формах детского церебрального паралича // Вестник РАМН. — 2014. — Т. 69. — №9–10. — С. 57—63. [Klochkova OA, Kurenkov AL, Karimova KM,et al. Clinical experience of the repeated multilevel injections of the botulinum toxin type A (abobotulinum toxin A) in the spastic forms of Cerebral palsy. Vestn Ross Akad Med Nauk. 2014;69(9–10):57– 63. (In Russ).] doi:10.15690/vramn.v69i9-10.1132.; Strobl W, Theologis T, Brunner R, et al. Best clinical practice in botulinum toxin treatment for children with cerebral palsy. Toxins (Basel). 2015;7(5):1629–1648. doi:10.3390/toxins7051629.; Куренков А.Л., Клочкова О.А., Бурсагова Б.И., и др. При менение препарата ботулинического токсина типа А (Ботокс) в лечении детского церебрального паралича // Нервно-мышечные болезни. — 2014. — №3. — С. 28—41. [Kurenkov AL, Klochkova OA, Bursagova BI, et al. Use of botulinum toxin type A (Botox) in the treatment of infantile cerebral palsy. Nervnomyshechnye bolezni. 2014;(3):28–41. (In Russ).]; Sakzewski L, Ziviani J, Boyd R. Systematic review and metaanalysis of therapeutic management of upper-limb dysfunction in children with congenital hemiplegia. Pediatrics. 2009;123(6): 1111–1122. doi:10.1542/peds.2008-3335.; Palisano R, Rosenbaum P, Walter S, et al. Development and reliability of a system to classify gross motor function in children with cerebral palsy. Dev Med Child Neurol. 1997;39(4):214–223. doi:10.1111/j.1469-8749.1997.tb07414.x.; Баранов А.А., Намазова-Баранова Л.С., Куренков А.Л., и др. Комплексная оценка двигательных функций у пациентов с детским церебральным параличом. Учебно- методическое пособие. Федеральное государственное бюджетное научное учреждение «Научный центр здоровья детей». — М.: ПедиатрЪ; 2014. 84 с. [Baranov AA, Namazova-Baranova LS, Kurenkov AL, et al. Kompleksnaya otsenka dvigatel’nykh funktsii u patsientov s detskim tserebral’nym paralichom. Uchebno-metodicheskoe posobie.; Federal’noe gosudarstvennoe byudzhetnoe nauchnoe uchrezhdenie «Nauchnyi tsentr zdorov’ya detei». Moscow: Pediatr, 2014. 84 p. (In Russ).]; Fehlings D, Novak I, Berweck S, et al. Botulinum toxin assessment, intervention and follow-up for paediatric upper limb hyperto - nicity: international consensus statement. Eur J Neurol. 2010;17 (Suppl. 2):38-56. doi:10.1111/j.1468-1331.2010.03127.x.; Love SC, Novak I, Kentish M, et al. Botulinum toxin assessment, intervention and after- care for lower limb spasticity in children with cerebral palsy: international consensus statement. Eur J Neurol. 2010;17(Suppl. 2):9-37. doi:10.1111/j.1468-1331.2010.03126.x.; Hoare BJ, Wallen MA, Imms C, et al. Botulinum toxin A as an adjunct to treatment in the management of the upper limb in children with spastic cerebral palsy (UPDATE). Cochrane Database Syst Rev. 2010;(1):CD003469. doi:10.1002/14651858.cd003469.pub4.; Berweck S, Kirschner J, Heinen F. Therapy with botulinum toxin. In: Paediatric Neurology. Theory and practice. Panteliadis CP, Korinthenberg R, editors. Stuttgart, New York: Thieme; 2005. P. 925–951.; Bakheit AM. Botulinum toxin in the management of childhood muscle spasticity: comparison of clinical practice of 17 treatment centers. Eur J Neurol. 2003;10(4):415-419. doi:10.1046/j.1468- 1331.2003.00619.x.; Pascual Pascual SI. Paralisis cerebral infantil: aspestos clinicos, clasificaciones y tratamientos. Madrid: EDICIONES MAYO, S.A.; 2012. 28 p.; Mall V, Heinen F, Siebel A, et al. Treatment of adductor spasticity with BTX-A in children with CP: a randomized, double-blind, placebocontrolled study. Dev Med Child Neurol. 2006;48(1):10-13. doi:10.1017/s0012162206000041.; rosminzdrav.ru [интернет]. Инструкция по медицинскому применению лекарственного препарата Диспорт [доступ от 13.06.2016]. Доступ по ссылке http://grls.rosminzdrav.ru/Grls_View_v2.aspx?idReg=27864&tTest=; https://www.pedpharma.ru/jour/article/view/1425Test

  6. 6
    دورية أكاديمية

    المصدر: Pediatric pharmacology; Том 12, № 4 (2015); 398-406 ; Педиатрическая фармакология; Том 12, № 4 (2015); 398-406 ; 2500-3089 ; 1727-5776

    العلاقة: Bax M., Goldstein M., Rosenbaum P., Leviton A., Paneth N., Dan B., Jacobsson B., Damiano D. Proposed definition and classifi ca tion of cerebral palsy. Dev Med Child Neurol. 2005; 47 (8): 571–576.; Johnson H., Scott A. Saliva Management. In Dysphagia: Foundation, Theory and Practice. Eds. Cichero J. A. Y., Murdoch B. F. Chichester: J Wiley & Sons, Ltd. 2006. 126 р.; Левицкий Г. Н., Алёхин А. В., Сердюк А. В., Моргунова М. С., Коне ва О. Н., Скворцова В. И. Возможности медикаментозной терапии слюнотечения при болезни двигательного нейрона. Журнал неврологии и психиатрии им. C. C. Корсакова. 2005; 105 (3): 19–22.; Blasco P. A., Allaire J. H. Drooling in the developmentally disabled: management practices and recommendations. Consortium on Drooling. Dev Med Child Neurol. 1992; 34 (10): 849–862.; Бер М., Фротшер М. Топический диагноз в неврологии по Петеру Дуусу: анатомия, физиология, клиника. Пер. с англ. Под ред. З. А. Суслиной. 4-е изд. М.: Практическая медицина. 2009. С. 163–164.; Scully C., Limeres J., Gleeson M., Tomas I., Diz P. Drooling. J Oral Pathol Med. 2009; 38 (4): 321–327.; Erasmus C. E., Van Hulst K., Rotteveel L. J., Jongerius P. H., Van Den Hoogen F. J., Roeleveld N., Rotteveel J. J. Drooling in cerebral palsy: hypersalivation or dysfunctional oral motor control? Dev Med Child Neurol. 2009; 51 (6): 454–459.; Tahmassebi J. F., Curzon M. E. The cause of drooling in children with cerebral palsy hypersalivation or swallowing defect? Int J Paediatr Dent. 2003; 13 (2): 106–111.; Dodds W. J. Physiology of swallowing. Dysphagia. 1989; 3: 171–178.; Senner J. E., Logemann J., Zecker S., Gaebler-Spira D. Drooling, saliva production, and swallowing in cerebral palsy. Dev Med Child Neurol. 2004; 46 (12): 801–806.; Tahmassebi J. F., Curzon M. E. Prevalence of drooling in children with cerebral palsy attending special schools. Dev Med Child Neurol. 2003; 45 (9): 613–617.; Parkes J., Hill N., Platt M. J., Donnelly C. Oromotor dysfunction and communication impairments in children with cerebral palsy: a register study. Dev Med Child Neurol. 2010; 52 (12): 1113–1119.; Lin Y. C., Shieh J. Y., Cheng M. L., Yang P. Y. Botulinum toxin type A for control of drooling in Asian patients with cerebral palsy. Neurology. 2008; 70 (4): 316–318.; Lakraj A. A., Moghimi N., Jabbari B. Sialorrhea: anatomy, pathophysiology and treatment with emphasis on the role of botulinum toxins. Toxins (Basel). 2013; 5 (5): 1010–1031.; Fairhurst C. B., Cockerill H. Management of drooling in children. Arch Dis Child Educ. Pract Ed. 2011; 96 (1): 25–30.; Клочкова О. А., Куренков А. Л., Намазова-Баранова Л. С., Мамедъяров А. М. Паттерны спастичности мышц верхних конечностей и применение ботулинотерапии у пациентов с детским церебральным параличом с поражением рук. Педиатрическая фармакология. 2013; 10 (5): 31–39.; Reddihough D., Erasmus C. E., Johnson H., McKellar G. M., Jon gerius P. H. Cereral Palsy Institute. Botulinum toxin assessment, intervention and aftercare for paediatric and adult drooling: international consensus statement. Eur J Neurol. 2010; 17 (Suppl. 2): 109–121.; Naumann M., So Y., Argoff C. E., Childers M. K., Dykstra D. D., Gronseth G. S., Jabbari B., Kaufmann H. C., Schurch B., Silber stein S. D., Simpson D. M. Botulinum neurotoxin in the treatment of autonomic disorders and pain (an evidence based review): report of the Therapeutics and Technology Assessment Subcommittee of the American Academy of Neurology. Neurology. 2008; 70 (19): 1707–1714.; Rodwell K., Edwards P., Ware R. S., Boyd R. Salivary gland botulinum toxin injections for drooling in children with cerebral palsy and neurodevelopmental disability: a systematic review. Dev Med Child Neurol. 2012; 54 (11): 977–987.; Naumann M., Dressler D., Hallett M., Jankovic J., Schiavo G., Segal K. R., Truong D. Evidence based review and assessment of botulinum neurotoxin for the treatment of secretory disorders. Toxicon. 2013; 67: 141–152.; Walshe M., Smith M., Pennington L. Interventions for drooling in children with cerebral palsy. Cochrane Database Syst Rev. 2012; 2: CD008624. Doi:10.1002/14651858.CD008624.pub2.; Носко А. С., Зыков В. П., Комарова И. Б. Коррекция сиалореи в нейропедиатрии. Фокус на препаратах ботулинического токсина типа А как метод первого ряда выбора. Детская и подростковая реабилитация. 2013; 2 (21): 33–38.; Palisano R., Rosenbaum P. L., Walter S., Russell D., Wood E., Galuppi B. Development and reliability of a system to classify gross motor function in children with cerebral palsy. Dev Med Child Neurol. 1997; 39 (4): 214–223.; Reid S. M., Johnson H. M., Reddihough D. S. The Drooling Impact Scale: a measure of the impact of drooling in children with developmental disabilities. Dev Med Child Neurol. 2010; 52 (2): 23–28.; Reid S. M., Johnstone B. R., Westbury C., Rawicki B., Reddihough D. S. Randomized trial of botulinum toxin injections into the salivary glands to reduce drooling in children with neurological disorders. Dev Med Child Neurol. 2008; 50 (2):123–128.; Banerjee K. J., Glasson C., O’Flaherty S. J. Parotid and submandibular botulinum toxin A injections for sialorrhoea in children with cerebral palsy. Dev Med Child Neurol. 2006; 48 (11): 883–887.; Savarese R., Diamond M., Elovic E., Millis S. R. Intraparotid injection of botulinum toxin A as a treatment to control sialorrhea in children with cerebral palsy. Am J Phys Med Rehabil. 2004; 83 (4): 304–311.; Alrefai A. H., Aburahma S. K., Khader Y. S. Treatment of sialorrhea in children with cerebral palsy: a double blind placebo controlled trial. Clin Neurol Neurosurg. 2009; 111 (1): 79–82.; Lagalla G., Millevolte M., Capecci M., Provinciali L., Cera volo M. G. Botulinum toxin type A for drooling in Parkinson’s disease: a double blind, randomized, placebo controlled study. Mov Disord. 2006; 21 (5): 704–707.; Kalf J. G., Smit A. M., Bloem B. R., Zwarts M. J., Mulleners W. M., Munneke M. Botulinum toxin A for drooling in Parkinson’s disease: a pilot study to compare submandibular to parotid gland injections. Parkinsonism Relat Disord. 2007; 13 (8): 532–534.; Jongerius P. H., van den Hoogen F. J., van Limbeek J., Gabreels F. J., van Hulst K., Rotteveel J. J. Effect of botulinum toxin in the treatment of drooling: a controlled clinical trial. Pediatrics. 2004; 114 (3): 620–627.; Harris S. R., Purdy A. H. Drooling and its management in cerebral palsy. Dev Med Child Neurol. 1987; 29 (6): 807–811.; Erasmus C. E., Scheffer A. R., van Hulst K., van Limbeek J., van den Hoogen F. J., Rotteveel J. J., Jongerius P. H. Does motor perfor mance matter in botulinum toxin efficacy for drooling? Pediatr Neurol. 2011; 45 (2): 95–99.; https://www.pedpharma.ru/jour/article/view/508Test

  7. 7
    دورية أكاديمية

    المصدر: Neuromuscular Diseases; № 1 (2014); 54-61 ; Нервно-мышечные болезни; № 1 (2014); 54-61 ; 2413-0443 ; 2222-8721 ; 10.17650/2222-8721-2014-0-1

    وصف الملف: application/pdf

    العلاقة: https://nmb.abvpress.ru/jour/article/view/12/8Test; Толстова В.Д., Капранов Н.И. Муковисцидоз: современные аспекты диагностики и лечения. Педиатр фармакол 2006;3(4):50–5.; Толстова В.Д., Каширская Н.Ю., Капранов Н.И. Массовый скрининг новорожденных на муковисцидоз в России. Фарматека 2008;1:38–44.; Красовский С.А., Самойленко В.А., Амелина Е.Л. Муковисцидоз: диагностика, клиника, основные принципы терапии. Атмосфера. Пульмонол и аллергол 2013;1: 42–6.; Петров А., Лаудж Д., Васецкий Е. Генетика и эпигенетика лице-лопаточно-бедренной прогрессирующей мышечной дистрофии Ландузи–Дежерина. Генетика 2003;39(2):202–206 .; Кириллова Л.Г., Шевченко А.А., Яковлева С.М. и др. Лице-лопаточно-плечевая миодистрофия Ландузи–Дежерина в клинике нейропедиатрии. Здоровье ребенка 2011;1:124–8.; Morton N.E., Chung C.S. Formal genetics of muscular dystrophy. Am J Hum Genet 1959;11:360–79.; Landouzy L., Dejerine J. De la myopathie atrophique progressiove (myopathie hereditaire debutant dans l'enfance par la face, sans alteration des systèmes nerveux. CR Acad Sei 1884;98:53–5.; Duchenne G.-B. Album de photographies pathologiques complementaire de liver initule de l'electrisation localisee. Paris: J.-B. Bailliere (pub.), 1862.; Руденко Д.И. Взаимосвязь лице-плечевой и лице-лопаточно-перонеальной мышечных дистрофий, сцепленных с хромосомой 4q35 (история, клиника, генетика и дифференциальная диагностика): автореф. дис. . д-ра мед. наук. СПб., 2009. 42 с.; Zeng W., de Greef J.C., Chen Y.-Y. et al. Specific loss of histone H3 lysine 9 trimethylation and HP1-gamma/cohesin binding at D4Z4 repeats is associated with facioscapulohumeral dystrophy (FSHD). PLoS Genet. 5: e1000559, 2009.; Mostacciuolo M.L., Pastorello E., Vazza G. et al. Facioscapulohumeral muscular dystrophy: epidemiological and molecular study in a north-east Italian population sample. Clin Genet 2009;75:550–5.; Zatz M., Marie S.K., Passos-Bueno M.R. et al. High proportion of new mutations and possible anticipation in Brazilian facioscapulohumeral muscular dystrophy families. Am J Hum Genet 1995;56:99–105.; Pou A., Munoz J.A., Cano A. et al. Phenotype-genotype correlations studies in facioscapulohumeral muscular dystrophy. Acta Myol 1999;III:95.; Lunt P.W., Jardine P.E., Koch M. et al. Phenotype-genotype correlation will assist genetic counseling in 4q35-facioscapulohumeral muscular dystrophy. Muscle Nerve 1995a; Suppl 2:103–9.; Tawil R., Forrester J., Griggs R.C. et al. Evidence for anticipation and association of deletion size with severity in facioscapulohumeral muscular dystrophy. Ann Neurol 1996;39:744–8.; Ricci E., Galuzzi G., Deidda G. et al. Progress in the molecular diagnosis of facioscapulohumeral muscular dystrophy and correlation between the number of Kpnl repeats at the 4q35 locus and clinical phenotype. Ann Neurol 1999;45:751–7.; Tonini M.M.O., Pavanello R.C.M., Gurgel-Giannetti J. et al. Homozygosity for autosomal dominant facioscapulohumeral muscular dystrophy (FSHD) does not result in a more severe phe-notype. J Med Genet 2004; 41:17.; Sposito Rt., Pasquali L., Galluzzi F. et al. Facioscapulohumeral muscular dystrophy type 1A in northwestern Tuscany: a molecular genetics based epidemiological and genotypephenotype study. Genet Test 2005;9:30–6.; van der Maarel S.M., Deidda G., Lemmers R.J.L.F. De novo facioscapulohumeral muscular dystrophy: frequent somatic mosaicism, sex-dependent phenotype, and the role of mitotic transchromosomal repeat interaction between chromosomes 4 and 10. Am J Hum Genet 2000;66:26–35.; Lemmers R.J.L.F., van der Wielen M.J.R., Bakker E. et al. Somatic mosaicism in FSHD often goes undetected. Ann Neurol 2004;55:845–50.; Slipetz D.M., Aprille J.R., Goodyer P.R., Rozen R. Deficiency of complex III of the mitochondrial respiratory chain in a patient with facioscapulohumeral disease. Am J Hum Genet 1991;48:502–10.; Reed P., Porter N. C., Strong J. et al. Sarcolemmal reorganization in facioscapulohumeral muscular dystrophy. Ann Neurol 2006;59:289–97.; Awerbuch G.I., Nigro M.A., Wishnow R. Beevor's sign and facioscapulohumeral dystrophy. Arch Neurol 1990;47:1208–9.; Wohlgemuth M., de Swart B.J.M., Kalf J.G. et al. Dysphagia in facioscapulohumeral muscular dystrophy. Neurology 2006;66:1926–8.; Justin-Besancon L., Pequignot H., Contamin F. et al. Myopathie du type Landouzy- Dejerine. Rapport d'une observation historique. Sem Hop. Paris, 1964;40:2990–9.; Yamanaka G., Goto K., Matsumura T. et al. Tongue atrophy in facioscapulohumeral muscular dystrophy. Neurology 2001;57:733–5.; Reardon W., Temple I.K., Harwood G., Baraitser M. Atypical facio-scapulo-humeral muscular dystrophy – a counselling dilemma. Clin Genet 1991;39:172–7.; Small R.G. Coats' disease and muscular dystrophy. Trans Am Acad Ophthal Otolaryng 1968;72:225–31.; Meyerson M.D., Lewis E., Ill K. Facioscapulohumeral muscular dystrophy and accompanying hearing loss. Arch Otolaryng 1984;110:261–6.; Fitzsimons R.B., Gurwin E.B., Bird A.C. Retinal vascular abnormalities in facioscapulohumeral muscular dystrophy: a general association with genetic and therapeutic implications. Brain 1987;110:631–48.; Voit T., Lamprecht A., Lenard H.G., Goebel H. H. Hearing loss in facioscapulohumeral dystrophy. Europ J Pediat 1986;145:280–5.; Brouwer O.F., Padberg G.W., Ruys C.J.M. et al. Hearing loss in facioscapulohumeral muscular dystrophy. Neurology 1991;41:1878–81.; Padberg G.W., Brouwer O.F., de Keizer R.J.W. et al. Retinal vascular disease and sensorineural deafness are part of facioscapulohumeral muscular dystrophy (abstr). Am J Hum Genet 1992;51 (suppl):104.; Shields C.L., Zahler J., Falk N. et al. Neovascular glaucoma from advanced Coats disease as the initial manifestation of facioscapulohumeral dystrophy in a 2-year-old child. Arch Ophthal 2007;125:840–2.; Matsuzaka T., Sakuragawa N., Terasawa K., Kuwabara H. Facioscapulohumeral dystrophy associated with mental retardation, hearing loss, and tortuosity of retinal arterioles. J Child Neurol 1986;1:218–23.; Shen E.N., Madsen T. Facioscapulohumeral muscular dystrophy and recurrent pacemaker lead dislodgment. Am Heart J 1991;122:1167–9.; Miura K., Kumagai T., Matsumoto A. et al. Two cases of chromosome 4q35-linked early onset facioscapulohumeral muscular dystrophy with mental retardation and epilepsy. Neuropediatrics 1998;29:239–41.; Zatz M., Marie S.K., Cerqueira A. et al. The facioscapulohumeral muscular dystrophy (FSHD1) gene affects males more severely and more frequently than females. Am J Med Genet 1998;77:155–61.; Krasnianski M., Eger K., Neudecker S. et al. Atypical phenotypes in patients with facioscapulohumeral muscular dystrophy 4q35 deletion. Arch Neurol 2003;60:1421–5.; Tupler R., Barbierato L., Memmi M. et al. Identical de novo mutation at the D4F104S1 locus in monozygotic male twins affected by facioscapulohumeral muscular dystrophy (FSHD) with different clinical expression. J Med Genet 1998;35:778–83.; Bodensteiner J.B., Schochet S.S. Facioscapulohumeral muscular dystrophy: the choice of a biopsy site. Muscle Nerve 1986;9:544–7.; Richards M., Coppee F., Thomas N. et al. Facioscapulohumeral muscular dystrophy (FSHD): an enigma unravelled? Hum Genet 2012;131:325–40.; https://nmb.abvpress.ru/jour/article/view/12Test

  8. 8
    دورية أكاديمية

    المصدر: Current Pediatrics; Том 11, № 2 (2012); 155-161 ; Вопросы современной педиатрии; Том 11, № 2 (2012); 155-161 ; 1682-5535 ; 1682-5527

    وصف الملف: application/pdf

    العلاقة: https://vsp.spr-journal.ru/jour/article/view/137/63Test; Cassidy J., Petty R. eds. Texbook of paediatric rheumatology, 5th Ed. Elsevier Saunders. 2005.; Alekseeva E. I., Litvitskii P. F. Yuvenil'nyi revmatoidnyi artrit. Etiologiya. Patogenez. Klinika. Algoritmy diagnostiki i lecheniya. Rukovodstvo dlya vrachei, prepodavatelei, nauchnykh sotrudnikov. Pod obshchei red. akad. RAMN, prof. A. A. Baranova [Juvenile Rheumatoid Arthritis. Etiology. Pathogenesis. Clinical Picture. Diagnostic Procedure and Treatment. Guidekine for doctors, teachers and research scientists. Edited by academiciab of RAMS, professor A. A. Baranov]. Мoscow, 2007. pp. 325–339.; Woo P., Southwood T. R., Prieur A. M. Randomized, placebocontrolled, crossover trial of low-dose oral methotrexate in children with extended oligoarticular or systemic arthritis. Arthritis Rheum. 2000; 43 (8): 1849–1857.; Ravelli A., Martini A. Juvenile idiopathic arthritis. Lancet. 2007; 369: 767–778.; Nasonov E. L. Russkii meditsinskii zhurnal — Russian medical journal. 2009; 17 (3): 2–7.; Davies P., Zhou L., Abraham R. Abatacept binds to the Fc receptor CD64 but does not mediate complement-dependent cytotoxicity or antibody-dependent cellular cytotoxicity. J. Rheumatol. 2007; 34: 280–289.; Linsley P. S., Brady W., Urnes M. et al. CTLA-4 is a second receptor for the B cell activation antigen B7. J. Exp. Med. 1991; 174 (3): 561–569.; Webb L. M., Walmsley M. J., Feldmann M. Prevention and amelioration of collagen–induced arthritis by blockade of the CD28 co–stimulatory pathway: requirement for both B7–1 and B7–2. Eur. J. Immunol. 1996; 26: 2320–2328.; Moreland L. W., Alten R., Bosch F. et al. Costimulatory blockade in patients with rheumatoid arthritis: a pilot, dose–finding, doubleblind, placebo-controlled clinical trial evaluating CTLA–4Ig and LEA29Y eighty–five days after the first infusion. Arthritis Rheum. 2002; 46: 1470–1479.; Kremer J. M., Westhovens R., Leon M. et al. Treatment of rheumatoid arthritis by selective inhibition of T-cell activation with fusion protein CTLA4Ig. N. Engl. J. Med. 2003; 349: 1907–1915.; Kremer J. M., Dougados M., Emery P. et al. Treatment of rheumatoid arthritis with the selective costimulation modulator abatacept: twelve-month results of a phase iib, double–blind, randomized, placebo-controlled trial. Arthritis Rheum. 2005; 52: 2263–2271.; Kremer J. M., Genant H. K., Moreland L. W. et al. Effects of abatacept in patients with methotrexate–resistant active rheumatoid arthritis: a randomized trial. Ann. Intern. Med. 2006; 144: 865–876.; Genovese M. C., Becker J. C., Schiff M. et al. Abatacept for rheumatoid arthritis refractory to tumor necrosis factor alpha inhibition. N. Engl. J. Med. 2005; 353: 1114–1123.; Schiff M. H., Pritchard C., Huffstutter J. E. et al. The 6-month safety and efficacy of abatacept in patients with rheumatoid arthritis who underwent a washout after anti-TNF therapy or were directly switched to abatacept: the ARRIVE trial. Ann. Rheum. Dis. 2009; 68 (11): 1708–1714.; Schiff M., Keiserman M., Codding C. et al. Efficacy and safety of abatacept or infliximab vs placebo in ATTEST: a phase III, multi centre, randomised, double-blind, placebo–controlled study in patients with rheumatoid arthritis and an inadequate response to methotrexate. Ann. Rheum. Dis. 2008; 67: 1096–1103.; Kremer J. M., Genant H. K., Moreland L. W. et al. Results of a two–year followup study of patients with rheumatoid arthritis who received a combination of abatacept and methotrexate. Arthritis Rheum. 2008; 58: 953–963.; Genant H. K., Peterfy C. G., Westhovens R. et al. Abatacept inhibits structural damage progression in rheumatoid arthritis: results from the long–term extension of the AIM trial. Ann. Rheum. Dis. 2008; 67: 1084–1089.; Weinblatt M., Combe B., Covucci A. et al. Safety of the selective costimulation modulator abatacept in rheumatoid arthritis patients receiving background biologic and nonbiologic disease–modifying antirheumatic drugs: a one–year randomized, placebo–controlled study. Arthritis Rheum. 2006; 54: 2807–2816.; Weinblatt M., Schiff M., Goldman A. et al. Selective costimulation modulation using abatacept in patients with active rheumatoid arthritis while receiving etanercept: a randomised clinical trial. Ann. Rheum. Dis. 2007; 66: 228–234.; Westhovens R., Robles M., Ximenes A. D. et al. Clinical efficacy and safety of abatacept in methotrexate-naive patients with early rheumatoid arthritis and poor prognostic factors. Ann. Rheum. Dis. 2009; 68 (12): 1870–1877.; Emery P., Durez P., Dougados M. et al. Efficacy of abatacept in delaying the development of rheumatoid arthritis (RA) in adult patients with undifferentiated inflammatory arthritis at high risk of developing RA [OP-0130]. Ann. Rheum. Dis. 2008; 67 (Suppl. II): 89.; Westhovens R., Kremer J., Moreland L. et al. Durable impact on disease activity and consistent safety through 5 years in abatacepttreated RA patients background methotrexate [FRI0171]. Ann. Rheum. Dis. 2008; 67 (Suppl. II): 341.; Weisman M. H., Durez P., Hallegua D. et al. Reduction of inflammatory biomarker response by abatacept in the treatment of rheumatoid arthritis. J. Rheumatol. 2006; 33: 2162–2166.; Sibilia J., Westhovens R. Safety of T-cell co-stimulation modulation with abatacept in patients with rheumatoid arthritis. Clin. Exp. Eheumatol. 2007; 25 (Suppl. 46): 46–56.; Ruperto N., Lovell D. J., Quartier P. et al. Abatacept in children with juvenile idiopathic arthritis: a randomised, double-blind, placebocontrolled withdrawal trial. Lancet. 2008; 372 (9636): 383–391.; https://vsp.spr-journal.ru/jour/article/view/137Test