يعرض 1 - 5 نتائج من 5 نتيجة بحث عن '"Н. Е. Грунтенко"', وقت الاستعلام: 1.61s تنقيح النتائج
  1. 1
    دورية أكاديمية

    المساهمون: The work was done with the support of the Russian Science Foundation grant No. 21-14-00090. The maintenance of experimental D. melanogaster lines was carried out in the Drosophila collection of the Institute of Cytology and Genetics SB RAS and was supported by BP #FWNR-2022-0019 of the Ministry of Science and Higher Education of the Russian Federation. Acknowledgements. The authors thank Darya Kochetova for the translation of the article.

    المصدر: Vavilov Journal of Genetics and Breeding; Том 28, № 2 (2024); 185-189 ; Вавиловский журнал генетики и селекции; Том 28, № 2 (2024); 185-189 ; 2500-3259 ; 10.18699/vjgb-24-15

    وصف الملف: application/pdf

    العلاقة: https://vavilov.elpub.ru/jour/article/view/4088/1825Test; Adonyeva N.V., Menshanov P.N., Gruntenko N. A link between atmospheric pressure and fertility of Drosophila laboratory strains. Insects. 2021;12(10):947. DOI 10.3390/insects12100947; Altaratz M., Applebaum Sh.W., Richard D.S., Gilbert L.I., Segal D. Regulation of juvenile hormone synthethis in wild-type and apterous mutant Drosophila. Mol. Cell. Endocrinol. 1991; 81(1-3):205-216. DOI 10.1016/0303-7207(91)90219-i; Berger E.M., Dubrovsky E.B. Juvenile hormone molecular actions and interactions during develop ment of Drosophila melanogaster. Vitam. Horm. 2005;73:175-215. DOI 10.1016/S0083-6729(05)73006-5; Burdina E.V., Gruntenko N.E. Physiological aspects of Wolbachia pipientis–Drosophila melanogaster relationship. J. Evol. Biochem. Phys. 2022;58(2):303-317. DOI 10.1134/S002209 3022020016; Detcharoen M., Schilling M.P., Arthofer W., Schlick-Steiner B.C., Steiner F.M. Differential gene expression in Drosophila melanogaster and D. nigrosparsa infected with the same Wolbachia strain. Sci. Rep. 2021;11(1):11336. DOI 10.1038/s41598-021-90857-5; Flatt T., Tu M.P., Tatar M. Hormonal pleiotropy and the juvenile hormone regulation of Droso phila development and life history. Bio-Essays. 2005;27(10):999-1010. DOI 10.1002/bies.20290; Gruntenko N.E., Rauschenbach I.Y. Interplay of JH, 20E and biogenic amines under normal and stress conditions and its effects on reproduction. J. Insect Physiol. 2008;54(6):902-908. DOI 10.1016/j.jinsphys.2008.04.004; Gruntenko N.E., Khlebodarova T.M., Vasenkova I.A., Sukhanova M.J., Wilson T.G., Rauschenbach I.Y. Stress-reactivity of a Drosophila melanogaster strain with impaired juvenile hormone action. J. Insect Physiol. 2000;46(4):451-456. DOI 10.1016/s0022-1910(99)00131-6; Gruntenko N.E., Bownes M., Terashima J., Sukhanova M.Zh., Raushenbach I.Y. Heat stress affects oogenesis differently in wild-type Drosophila virilis and a mutant with altered juvenile hormone and 20-hydroxyecdysone levels. Insect. Mol. Biol. 2003a;12(4):393-404. DOI 10.1046/j.1365-2583.2003.00424.x; Gruntenko N.E., Chentsova N.A., Andreenkova E.V., Bownes M., Segal D., Adonyeva N.V., Rauschenbach I.Y. Stress response in a juvenile hormone-deficient Drosophila melanogaster mutant apterous56f. Insect Mol. Biol. 2003b;12(4):353-363. DOI 10.1046/j.1365-2583.2003.00419.x; Gruntenko N.E., Karpova E.K., Adonyeva N.V., Andreenkova O.V., Burdina E.V., Ilinsky Y.Y., Bykov R.A., Menshanov P.N., Rauschenbach I.Y. Drosophila female fertility and juvenile hormone metabolism depends on the type of Wolbachia infection. J. Exp. Biol. 2019; 222(Pt. 4):jeb195347. DOI 10.1242/jeb.195347; Guio L., Barron M.G., Gonzalez J. The transposable element Bari-Jheh mediates oxidative stress response in Drosophila. Mol. Ecol. 2014; 23(8):2020-2030. DOI 10.1111/mec.12711; Ilinsky Y.Y. Coevolution of Drosophila melanogaster mtDNA and Wolbachia genotypes. PLoS One. 2013;8(1):e54373. DOI 10.1371/journal.pone.0054373; Jindra M., Bellés X., Shinoda T. Molecular basis of juvenile hormone signaling. Curr. Opin. Insect Sci. 2015;11:39-46. DOI 10.1016/j.cois.2015.08.004; Kendall M.G., Stuart A. The Advanced Theory of Statistics. Vol. 2. Inference and Relationship. London: Charles Griffin, 1961; Korenskaia A.E., Shishkina O.D., Klimenko A.I., Andreenkova O.V., Bobrovskikh M.A., Shatskaya N.V., Vasiliev G.V., Gruntenko N.E. New Wolbachia pipientis genotype increasing heat stress resistance of Drosophila melanogaster host is char-acterized by a large chromosomal inversion. Int. J. Mol. Sci. 2022;23(24):16212. DOI 10.3390/ijms232416212; Lindsey A.R.I., Bhattacharya T., Hardy R.W., Newton I.L.G. Wolbachia and virus alter the host transcriptome at the interface of nucleotide metabolism pathways. mBio. 2021;12(1):e03472-20. DOI 10.1128/mBio.03472-20; Livak K.J., Schmittgen T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods. 2001;25(4):402-408. DOI 10.1006/meth.2001.1262; Luo W., Veeran S., Wang J., Li S., Li K., Liu S.N. Dual roles of juvenile hormone signaling during early oogenesis in Drosophila. Insect Sci. 2020;27(4):665-674. DOI 10.1111/1744-7917.12698; Meiselman M., Lee S.S., Tran R.T., Dai H., Ding Y., Rivera-Perez C., Wijesekera T.P., Dauwalder B., Noriega F.G., Adams M.E. Endocrine network essential for reproductive success in Drosophila melanogaster. Proc. Natl. Acad. Sci. USA. 2017;114(19):E3849-E3858. DOI 10.1073/pnas.1620760114; Narkevich A.N., Vinogradov K.A., Grjibovski A.M. Multiple comparisons in biomedical research: the problem and its solutions. Ekologiya Cheloveka = Human Ecology. 2020;27(10):55-64. DOI 10.33396/1728-0869-2020-10-55-64 (in Russian); Niwa R., Niimi T., Honda N., Yoshiyama M., Itoyama K., Kataoka H., Shinoda T. Juvenile hormone acid O-methyltransferase in Drosophila melanogaster. Insect Biochem. Mol. Biol. 2008;38(7):714-720. DOI 10.1016/j.ibmb.2008.04.003; Qu Z., Bendena W.G., Nong W., Siggens K.W., Noriega F.G., Kai Z.P., Zang Y.Y., Koon A.C., Chan H.Y.E., Chan T.F., Chu K.H., Lam H.M., Akam M., Tobe S.S., Lam Hui J.H. MicroRNAs regulate the sesquiterpenoid hormonal pathway in Drosophila and other arthropods. Proc. Biol. Sci. 2017;284(1869):20171827. DOI 10.1098/rspb.2017.1827; Richard D.S., Jones J.M., Barbarito M.R., Cerula S., Detweiler J.P., Fisher S.J., Brannigan D.M., Scheswohl D.M. Vitellogenesis in diapausing and mutant Drosophila melanogaster: further evidence for the relative roles of ecdysteroids and juvenile hormones. J. Insect Physiol. 2001;47(8):905-913. DOI 10.1016/S0022-1910(01)00063-4; Roy S., Saha T.T., Zou Z., Raikhel A.S. Regulatory pathways controlling female insect reproduction. Annu. Rev. Entomol. 2018;63:489511. DOI 10.1146/annurev-ento-020117-043258; Terashima J., Takaki K., Sakurai S., Bownes M. Nutritional status affects 20-hydroxyecdysone concentration and progression of oogenesis in Drosophila melanogaster. J. Endocrinol. 2005;187(1):69-79. DOI 10.1677/joe.1.06220; Truman J.W., Riddiford L.M. The morphostatic actions of juvenile hormone. Insect Biochem. Mol. Biol. 2007;37(8):761-770. DOI 10.1016/j.ibmb.2007.05.011; Werren J.H., Baldo L., Clarkm M.E. Wolbachia: master manipulators of invertebrate biology. Nat. Rev. Microbiol. 2008;6(10):741-751. DOI 10.1038/nrmicro1969; Wu Z., Yang L., He Q., Zhou S. Regulatory mechanisms of vitellogenesis in insects. Front. Cell Dev. Biol. 2021;8:593613. DOI 10.3389/fcell.2020.593613; Yamamoto R., Bai H., Dolezal A.G., Amdam G., Tatar M. Juvenile hormone regulation of Drosophila aging. BMC Biol. 2013;11:85. DOI 10.1186/1741-7007-11-85; https://vavilov.elpub.ru/jour/article/view/4088Test

  2. 2
    دورية أكاديمية

    المساهمون: This study was supported by The Ministry of Science and Higher Education of the Russian Federation (the Budgeted Project # 0259-2021-0016).

    المصدر: Vavilov Journal of Genetics and Breeding; Том 25, № 5 (2021); 465-471 ; Вавиловский журнал генетики и селекции; Том 25, № 5 (2021); 465-471 ; 2500-3259 ; 2500-0462 ; 10.18699/VJ21.052

    وصف الملف: application/pdf

    العلاقة: https://vavilov.elpub.ru/jour/article/view/3104/1528Test; Álvarez-Rendón J.P., Salceda R., Riesgo-Escovar J.R. Drosophila melanogaster as a model for diabetes type 2 progression. Biomed. Res. Int. 2018;2018:1417528. DOI 10.1155/2018/1417528.; Andreenkova O.V., Eremina M.A., Gruntenko N.E., Rauschenbach I.Y. Effect of heat stress on expression of DILP2 and DILP3 insulin-like peptide genes in Drosophila melanogaster adults. Russ. J. Genet. 2018;54(3):363-365. DOI 10.1134/S102279541803002X.; Andreenkova O.V., Rauschenbach I.Y., Gruntenko N.E. Hypomorphic mutation of the dilp6 gene increases DILP3 expression in insulinproducing cells of Drosophila melanogaster. Russ. J. Genet. 2017; 53(10):1159-1161. DOI 10.1134/S1022795417080026.; Arrese E.L., Soulages J.L. Insect fat body: energy, metabolism, and regulation. Annu. Rev. Entomol. 2010;55:207-225. DOI 10.1146/annurev-ento-112408-085356.; Bai H., Kang P., Tatar M. Drosophila insulin-like peptide-6 (dilp6 ) expression from fat body extends lifespan and represses secretion of Drosophila insulin-like peptide-2 from the brain. Aging Cell. 2012;11(6):978-985. DOI 10.1111/acel.12000.; Dionne M.S., Pham L.N., Shirasu-Hiza M., Schneider D.S. Akt and foxo dysregulation contribute to infection-induced wasting in Drosophila. Curr. Biol. 2006;16(20):1977-1985. DOI 10.1016/j.cub.2006.08.052.; Eremina M.A., Gruntenko N.E. Adaptation of the sulfophosphovanillin method of analysis of total lipids for various biological objects as exemplified by Drosophila melanogaster. Vavilovskii Zhurnal Genetiki i Selektsii = Vavilov Journal of Genetics and Breeding. 2020; 24(4):441-445. DOI 10.18699/VJ20.636. (in Russian); Eremina M.A., Karpova E.K., Rauschenbach I.Yu., Pirozhkova D.S., Andreenkova O.V., Gruntenko N.E. Mutations in the insulin signaling pathway genes affect carbohydrate level under heat stress in Drosophila melanogaster females. Russ. J. Genet. 2019; 55(4):519-521. DOI 10.1134/S1022795419030050.; Even N., Devaud J.M., Barron A.B. General stress responses in the honey bee insects. Insects. 2012;3(4):1271-1298. DOI 10.3390/insects3041271.; Garbuz D.G., Evgen’ev M.B. The evolution of heat shock genes and expression patterns of heat shock proteins in the species from temperature contrasting habitats. Russ. J. Genet. 2017;53(1):21-38. DOI 10.1134/S1022795417010069.; Gontijo A.M., Garelli A. The biology and evolution of the Dilp8-Lgr3 pathway: a relaxin-like pathway coupling tissue growth and developmental timing control. Mech. Dev. 2018;154:44-50. DOI 10.1016/j.mod.2018.04.005.; Gruntenko N.E. Stress and Reproduction of Insects: Hormonal Control. Novosibirsk; Moscow: KMK Publ., 2008. (in Russian); Gruntenko N.E., Adonyeva N.V., Burdina E.V., Karpova E.K., Andreenkova O.V., Gladkikh D.V., Ilinsky Y.Y., Rauschenbach I.Yu. The impact of FOXO on dopamine and octopamine metabolism in Drosophila under normal and heat stress conditions. Biol. Open. 2016; 5(11):1706-1711. DOI 10.1242/bio.022038.; Gruntenko N.E., Rauschenbach I.Yu. The role of insulin signalling in the endocrine stress response in Drosophila melanogaster: a minireview. Gen. Comp. Endocrinol. 2018;258:134-139. DOI 10.1016/j.ygcen.2017.05.019.; Guio L., Barron M.G., Gonzalez J. The transposable element BariJheh mediates oxidative stress response in Drosophila. Mol. Ecol. 2014;23:2020-2030.; Hwangbo D.S., Gershman B., Tu M.P., Palmer M., Tatar M. Drosophila dFOXO controls lifespan and regulates insulin signalling in brain and fat body. Nature. 2004;429(6991):562-566. DOI 10.1038/nature02549.; Ja W.W., Carvalho G.B., Mak E.M., de la Rosa N.N., Fang A.Y., Liong J.C., Brummel T., Benzer S. Prandiology of Drosophila and the CAFE assay. Proc. Natl. Acad. Sci. USA. 2007;104(20):8253-8256.10.1073/pnas.0702726104.; Jünger M.A., Rintelen F., Stocker H., Wasserman J.D., Végh M., Radimerski T., Greenberg M.E., Hafen E. The Drosophila forkhead transcription factor FOXO mediates the reduction in cell number associated with reduced insulin signaling. J. Biol. Chem. 2003;2(3):20. DOI 10.1186/1475-4924-2-20.; Kaluev A.V. Problems of Studying Stressful Behavior, Kiev: KSF Publ., 1999. (in Russian); Koyama T., Texada M.J., Halberg K.A., Rewitz K. Metabolism and growth adaptation to environmental conditions in Drosophila. Cell. Mol. Life Sci. 2020;77:4523-4551.; Livak K.J., Schmittgen T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods. 2001;25(4):402-408. DOI 10.1006/meth.2001.1262.; Lubawy J., Urbanski A., Colinet H., Pfluger H.-J., Marciniak P. Role of the insect neuroendocrine system in the response to cold stress. Front. Physiol. 2020;11:376. DOI 10.3389/fphys.2020.00376.; Mattila J., Hietakangas V. Regulation of carbohydrate energy metabolism in Drosophila melanogaster. Genetics. 2017;207(4):1231-1253. DOI 10.1534/genetics.117.199885.; Miyashita A., Adamo S.A. Stayin’ alive: Endocrinological stress responses in insects. In: Saleuddin S., Lange A., Orchard I. (Eds.). Advances in Invertebrate Endocrinology. Toronto: Apple Acad. Press, 2020;283-325.; Murillo-Maldonado J.M., Sánchez-Chávez G., Salgado L.M., Salceda R., Riesgo-Escovar J.R. Drosophila insulin pathway mutants affect visual physiology and brain function besides growth, lipid, and carbohydrate metabolism. Diabetes. 2011;60(5):1632-1636. DOI 10.2337/db10-1288.; Okamoto N., Nakamori R., Murai T., Yamauchi Y., Masuda A., Nishimura T. A secreted decoy of InR antagonizes insulin/IGF signaling to restrict body growth in Drosophila. Genes Dev. 2013;27(1):87-97. DOI 10.1101/gad.204479.112.; Ponton F., Chapuis M.-P., Pernice M., Sword G.A., Simpson S.J. Evaluation of potential reference genes for reverse transcriptionqPCR studies of physiological responses in Drosophila melanogaster. J. Insect Physiol. 2011;57:840-850. DOI 10.1016/j.jinsphys.2011.03.014.; Puig O., Marr M.T., Ruhf M.L., Tjian R. Control of cell number by Drosophila FOXO: downstream and feedback regulation of the insulin receptor pathway. Genes Dev. 2003;17(16):2006-2020. DOI 10.1101/gad.1098703.; Rabasa C., Dickson S.L. Impact of stress on metabolism and energy balance. Curr. Opin. Behav. Sci. 2016;9:71-77. DOI 10.1016/j.cobeha.2016.01.011.; Rauschenbach I.Y., Karpova E.K., Burdina E.V., Adonyeva N.V., Bykov R.A., Ilinsky Y.Y., Menshanov P.N., Gruntenko N.E. Insulin-like peptide DILP6 regulates juvenile hormone and dopamine metabolism in Drosophila females. Gen. Comp. Endocrinol. 2017; 243:1-9. DOI 10.1016/j.ygcen.2016.11.004.; Slack C., Giannakou M.E., Foley A., Goss M., Partridge L. dFOXO-independent effects of reduced insulin-like signaling in Drosophila Aging Cell. 2011;10(5):735-748. DOI 10.1111/j.1474-9726.2011.00707.x.; Slaidina M., Delanoue R., Grönke S., Partridge L., Leopold P. A Drosophila insulin-like peptide promotes growth during nonfeeding states. Dev. Cell. 2009;17(6):874-884. DOI 10.1016/j.devcel.2009.10.009.; Van Handel E. Rapid determination of total lipids in mosquitoes. J. Am. Mosq. Control Assoc. 1985;1:302-304.; Williams M.J., Wang Yi., Klockars A., Lind P.M., Fredriksson R., Schiöth H.B. Exposure to bisphenol A affects lipid metabolism in Drosophila melanogaster. Basic Clin. Pharmacol. Toxicol. 2014; 114(5):414-420. DOI 10.1111/bcpt.12170.; https://vavilov.elpub.ru/jour/article/view/3104Test

  3. 3
    دورية أكاديمية

    المساهمون: This work was supported by State Budgeted Project 0324-2019-0041 and the Russian Foundation for Basic Research, project 20-04-00579.

    المصدر: Vavilov Journal of Genetics and Breeding; Том 24, № 4 (2020); 441-445 ; Вавиловский журнал генетики и селекции; Том 24, № 4 (2020); 441-445 ; 2500-3259 ; 2500-0462

    وصف الملف: application/pdf

    العلاقة: https://vavilov.elpub.ru/jour/article/view/2653/1399Test; Еремина М.А., Карпова Е.К., Раушенбах И.Ю., Пирожкова Д.С., Андреенкова О.В., Грунтенко Н.Е. Влияние мутаций генов инсулинового сигнального каскада на изменение уровня углеводов у самок Drosophila melanogaster при тепловом стрессе. Генетика. 2019;55(4):485-488. DOI 10.1134/S0016675819030068.; Ростовцев В.Р., Резник Г.Е. Количественное определение липидных фракций в крови. Лаб. дело. 1982;4:26-29.; Abdullah S., Davies S., Wall R. Spectrophotometric analysis of lipid used to examine the phenology of the tick Ixodes ricinus. Parasit Vectors. 2018;11:523. DOI 10.1186/s130-71-018-3102-3.; Al-Anzi B., Zinn K. Colorimetric measurement of triglycerides cannot provide an accurate measure of stored fat content in Drosophila. PLoS One. 2010;5(8):e12353. DOI 10.1371/journal.pone.0012353.; Álvarez-Rendón J.P., Salceda R., Riesgo-Escovar J.R. Drosophila melanogaster as a model for diabetes type 2 progression. BioMed. Res. Int. 2018;2018:1417528. DOI 10.1155/2018/1417528.; Anschau А., Caruso C.S., Kuhn R.C., Franco T.T. Validation of the sulfo-phospho-vanillin (spv) method for the determination of lipid content in oleaginous microorganisms. Braz. J. Chem. Eng. 2017; 34(1):19-27. DOI 10.1590/0104-6632.20170341s20140222.; Bozdoğan H., Erbey M., Aksoy H.A. Total amount of protein, lipid and carbohydrate of some adult species belong to curculionidae family (Coleoptera: Curculionidae). J. Entomol. Zool. Stud. 2016;4(5):242-248.; Byreddy A.R., Gupta A., Barrow C.J., Puri M. A quick colorimetric method for total lipid quantification in microalgae. J. Microbiol. Meth. 2016;125:28-32.; Cheng Y.S., Zheng Y., VanderGheynst J.S. Rapid quantitative analysis of lipids using a colorimetric method in a microplate format. Lipids. 2011;46(1):95-103. DOI 10.1007/s11745-010-3494-0.; Dionne M.S., Pham L.N., Shirasu-Hiza M., Schneider D.S. Akt and FOXO dysregulation contribute to infection-induced wasting in Drosophila. Curr. Biol. 2006;16:1977-1985.; Foray V., Pelisson P.-F., Venner M.C.B., Desouhant E., Venner S., Menu F., Giron D., Rey B. A handbook for uncovering the complete energetic budget in insects: the van Handel’s method (1985) revisited. Physiol. Entomol. 2012;37:295-302. DOI 10.1111/j.13653032.2012.00831.x.; Fukumura K., Konuma T., Tsukamoto Y., Nagata S. Adipokinetic hormone signaling determines dietary fatty acid preference through maintenance of hemolymph fatty acid composition in the cricket Gryllus bimaculatus. Sci. Rep. 2018;8:4737. DOI 10.1038/s41598018-22987-2.; Gontijo A.M., Garelli A. The biology and evolution of the Dilp8Lgr3 pathway: a relaxin-like pathway coupling tissue growth and developmental timing control. Mech. Dev. 2018;154:44-50. DOI 10.1016/j.mod.2018.04.005.; Gruntenko N.E., Adonyeva N.V., Burdina E.V., Karpova E.K., Andreenkova O.V., Gladkikh D.V., Ilinsky Y.Y., Rauschenbach I.Yu. The impact of FOXO on dopamine and octopamine metabolism in Drosophila under normal and heat stress conditions. Biol. Open. 2016;5:1706-1711. DOI 10.1242/bio.022038.; Gruntenko N.E., Rauschenbach I.Y. The role of insulin signalling in the endocrine stress response in Drosophila melanogaster: a minireview. Gen. Comp. Endocrinol. 2018;258:134-139. DOI 10.1016/j.ygcen.2017.05.019.; Hildebrandt A., Bickmeyer I., Kühnlein R.P. Reliable Drosophila body fat quantification by a coupled colorimetric assay. PLoS One. 2011; 6(9):e23796. DOI 10.1371/journal.pone.0023796.; Kleinert M., Clemmensen C., Hofmann S.M., Moore M.C., Renner S., Woods S.C., Huypens P., Beckers J., de Angelis M.H., Schürmann A., Bakhti M., Klingenspor M., Heiman M., Cherrington A.D., Ristow M., Lickert H., Wolf E., Havel P.J., Müller T.D., Tschöp M.H. Animal models of obesity and diabetes mellitus. Nat. Rev. Endocrinol. 2018;14(3):140-162. DOI 10.1038/nrendo.2017.161.; Knight J.A., Anderson S., Rawle J.M. Chemical basis of the sulfo-phospho-vanillin reaction for estimating total serum lipids. Clin. Chem. 1972;18(3):199-202.; Lee C.L. What we can learn from the energetic levels of insects: a guide and review. Ann. Entomol. Soc. Am. 2019;112(3):220-226. DOI 10.1093/aesa/say051.; Liu Z., Huang X. Lipid metabolism in Drosophila: development and disease. Acta Biochim. Biophys. Sin. (Shanghai). 2013;45(1):44-50. DOI 10.1093/abbs/gms105.; Lu Y., Ludsin S.A., Fanslow D.L., Pothoven S.A. Comparison of three microquantity techniques for measuring total lipids in fish. Can. J. Fish. Aquat. Sci. 2008;65:2233-2241. DOI 10.1139/F08-135.; Murillo-Maldonado J.M., Sánchez-Chávez G., Salgado L.M., Salceda R., Riesgo-Escovar J.R. Drosophila insulin pathway mutants affect visual physiology and brain function besides growth, lipid, and carbohydrate metabolism. Diabetes. 2011;60(5):1632-1636. DOI 10.2337/db10-1288.; Musselman L.P., Kühnlein R.P. Drosophila as a model to study obesity and metabolic disease. J. Exp. Biol. 2018;221(Suppl.1):jeb163881. DOI 10.1242/jeb.163881.; Park J., Jeong H.J., Yoon E.Y., Moon S.J. Easy and rapid quantification of lipid contents of marine dinoflagellates using the sulpho-phosphovanillin method. Algae. 2016;31(4):391-401. DOI 10.4490/algae.2016.31.12.7.; Patel A., Antonopoulou I., Enman J., Rova U., Christakopoulos P., Matsakas L. Lipids detection and quantification in oleaginous microorganisms: an overview of the current state of the art. BMC Chem. Eng. 2019;1:13. DOI 10.1186/s42480-019-0013-9.; Rauschenbach I.Yu., Karpova E.K., Burdina E.V., Adonyeva N.V., Bykov R.A., Ilinsky Y.Y., Menshanov P.N., Gruntenko N.E. Insulinlike peptide DILP6 regulates juvenile hormone and dopamine metabolism in Drosophila females. Gen. Comp. Endocrinol. 2016;243: 1-9. DOI 10.1016/j.ygcen.2016.11.0040016-6480.; Tennessen J.M., Barry W.E., Cox J., Thummel C.S. Methods for studying metabolism in Drosophila. Methods. 2014;68(1):105-115. DOI 10.1016/j.ymeth.2014.02.034.; Trinh I., Boulianne G.L. Modeling obesity and its associated disorders in Drosophila. Physiology. 2013;28:117-124. DOI 10.1152/physiol.00025.2012.; Van Handel E. Rapid determination of total lipids in mosquitoes. J. Am. Mosq. Control Assoc. 1985;1:302-304.; https://vavilov.elpub.ru/jour/article/view/2653Test

  4. 4
    دورية أكاديمية

    المصدر: Vavilov Journal of Genetics and Breeding; Том 21, № 7 (2017); 825-832 ; Вавиловский журнал генетики и селекции; Том 21, № 7 (2017); 825-832 ; 2500-3259 ; 2500-0462

    وصف الملف: application/pdf

    العلاقة: https://vavilov.elpub.ru/jour/article/view/1232/998Test; Adamo S.A. The effects of the stress response on immune function in invertebrates: An evolutionary perspective on an ancient connection. Horm. Behav. 2012;62:324-330.; Adamo S.A. The stress response and immune system share, borrow, and reconfigure their physiological network elements: evidence from the insects. Horm. Behav. 2017a:88:25-30. DOI 10.1016/j.yhbeh.2016.10.003.; Adamo S.A. Stress responses sculpt the insect immune system, allowing for better defense in an ever - changing world. Dev. Comp. Immunol. 2017b;66:24-32. DOI 10.1016/j.dci.2016.06.005.; Adamo S.A. The effects of stress hormones on immune function may be vital for the adaptive reconfiguration of the immune system during fight-or-flight behavior. Integr. Comp. Biol. 2014;54(3):419-426. DOI 10.1093/icb/icu005.; Adamo S.A., Easy R., Kovalko I., MacDonald J., McKeen A., Swan-burg T., Turnbull K.F., Reeve C. Predator stress-induced immunosuppression: trade-off, immune redistribution or immune reconfiguration? J. Exp. Biol. 2017;220:868-875. DOI 10.1242/jeb.153320.; Adamo S.A., Kovalko I., Mosher B. The behavioural effects of predator-induced stress responses in the cricket (Gryllus texensis): the upside of the stress response. J. Exp. Biol. 2013;216:4608-4614.; Ahmad S. Oxidative stress from environmental pollutants. Arch. Insect Biochem. Physiol. 1995;29:135-157. DOI 10.1002/arch.940290205.; Apchel V.Ya., Tsygan V.N. Stress i stressoustoychivost cheloveka [Stress and stress resistance in a human]. Saint-Petersburg: VMA Publ., 1999. (in Russian); Bednarova A., Krishnan N., Cheng I.-C., Vecera J., Lee H.-J., Ko-drik D. Adipokinetic hormone counteracts oxidative stress elicited in insects by hydrogen peroxide: in vivo and in vitro study. Physiol. Entomol. 2013;38:54-62. DOI 10.1111/phen.12008.; Bendena W.G., Donly B.C., Tobe S.S. Allatostatins: A growing family of neuropeptides with structural and functional diversity. Ann. N. Y. Acad. Sci. 1999;897:311-329.; Ben'kovskaya G.V., Leontyeva T.L., Udalov M.B. Resistance of the Colorado beetle to insecticides in the Southern Ural. Agrokhimiya = Agrochemistry. 2008;8:55-59. (in Russian); Ben'kovskaya G.V., Nikolenko A.G., Saltykova E.S., Ishmurato-va N.M., Kharisov R.Ya., Ishmuratov G.Yu. The adaptogenic effect of Biosil on the honey bee and house fly. Agrokhimiya = Agrochemistry. 2005;3:74-78. (in Russian); Ben'kovskaya G.V., Poskryakov A.V., Nikolenko A.G. Effect of me-thoprene on the tolerance of heat shock in the ontogenesis of the Colorado beetle. Agrokhimiya = Agrochemistry. 2000;12:58-61. (in Russian); Ben'kovskaya G.V., Sokolyanskaya M.P. Sensitivity to thermal stress in adult house flies of laboratory strains selected by insecticides and abiotic factors. Agrokhimiya = Agrochemistry. 2008;3:52-56. (in Russian); Ben'kovskaya G.V., Udalov M.B., Poskryakov A.V., Nikolenko A.G. Phenogenetic polymorphism of the Colorado beetle Leptinotarsa decemlineata Say and its sensitivity to insecticides in Bashkiria. Agrokhimiya = Agrochemistry. 2004;12:23-28. (in Russian); Bi J.L., Felton G.W. Foliar oxidative stress and insect herbivory: Primary compounds, secondary metabolites, and reactive oxygen species as components of induced resistance. J. Chem. Ecol. 1995;21:1511-1530. DOI 10.1007/BF02035149.; Bogus M.I., Cymborowski B. Chilled Galleria mellonella larvae: Mechanism of supernumerary moulting. Physiol. Entomol. 1981;6: 343-348.; Bogus M.I., Wisniewski J.R., Cymborowski B. Effect of injury to the neuroendocrine system of last instar larvae of Galleria mellonella. J. Insect Physiol. 1986;32:1011-1018.; Cannon W.B. The Wisdom of the Body. N. Y.: W.W. Norton, 1932. Chentsova N.A., Alekseev A.A., Gruntenko N.E., Rauschenbach I.Yu. Effect of octopamine on the activity of ecdysone monooxygenase in Drosophila. Doklady AN = Proceedings of the Academy of Sciences. 2007;415:559-561. (in Russian); Chernysh S.I. Response of the neuroendocrine system on the damaging effects. Trudy Vsesoyuznogo entomologicheskogo obshchestva = Proceedings of the Russian Entomological Society. 1983;64:118-127. (in Russian); Chernysh S.I. Neuroendocrine system in insect stress. Eds. J. Ivanovic, M. Jankovic-Hladni. Hormones and Metabolism in Insect Stress. Boca Raton: CRC Press, 1991;69-98.; Chertkova E.A. A change in the dopamine level in the hemolymph of larvae of the cabbage scoop Mamestra brassicae (Lepidoptera: Noctuidae) and the Colorado beetle Leptinotarsa decemlineata Say (Coleoptera: Chrysomelidae) in various diseases. New knowledge about parasites. Materialy V Mezhregionalnoy konferentsii “Parazi-tologicheskie issledovaniya v Sibiri i na Dalnem Vostoke” [Proceedings of the V Transregional Conference “Parasitological Studies in Siberia and the Far East”]. Novosibirsk, 2015;131-132. (in Russian); Cymborowski B. Effect of cooling stress on endocrine events in Galleria mellonella. Endocrinological frontiers in physiological insect ecology. Wroclaw. 1988;1:203-212.; Cymborowski B., Bogus M.I. Juvenilizing effect of cooling on Galleria mellonella. J. Insect Physiol. 1976;22:669-672.; Cymborowski B., Bogus M., Beckage N.E., Williams C.M., Riddi-ford L.M. Juvenile hormone titrres and metabolism during starvation-induced supernumerary larval moulting of the tabacco horn-worm, Manduca sexta L. J. Insect Physiol. 1982;28:129-135.; Davenpont A.K., Evans P.D. Stress-indeced changed in octopamine levels of insect hemolymph. Insect Biochem. 1984;14:135-150.; Evans P.D. Octopamine. Eds. G.A. Kerkut, L.I. Gilbert. Comprehensive Insect Physiology, Biochemistry and Pharmacology. Oxford: Pergamon Press, 1985;11:499-538.; Even N., Devaud J.M., Barron A.B. General stress responses in the honey bee. Insects. 2012;3:1271-1298. DOI 10.3390/insects3041271.; Gayfullina L.R., Saltykova E.S., Ben'kovskaya G.V., Nikolenko A.G. Immune responses of larvae and imagoes of the Colorado beetle (Leptinotarsa decemlineata Say) to a biological potato protectant. Agrokhimiya = Agrochemistry. 2004;9:1-7. (in Russian); Gorizontov P.D. Rezistentnost i porazhenie. Voprosy obshchey patolo-gii [The resistance and damage. Issues of general pathology]. Pa-tologicheskaya fiziologiya ekstremalnykh sostoyaniy [Pathological physiology of extreme conditions]. Moscow: Meditsina Publ., 1973. (in Russian); Gruntenko N.E. Stress i razmnozhenie nasekomykh: gormonalnyy kon-trol [Stress and Reproduction of Insects: Hormonal Control]. Novosibirsk; Moscow: KMK Publ., 2008. (in Russian); Gruntenko N.E., Bogomolova E.V., Adonyeva N.V., Karpova E.K., Menshanov P.N., Alekseev A.A., Romanova I.V., Li S., Rauschen-bach I.Y. Decrease in juvenile hormone level as a result of genetic ablation of the corpus allatum cells affects the synthesis and metabolism of stress related hormones in Drosophila. J. Insect Physiol. 2012;58:49-55.; Gruntenko N.E., Bownes M., Terashima J., Suchanova M.Zh., Rau-schenbach I.Yu. Heat stress affects oogenesis differently in wild type Drosophila virilis and a mutant with altered juvenile hormone and 20-hydroxyecdysone levels. Insect Mol. Biol. 2003a;12:393-404.; Gruntenko N.E., Chentsova N.A., Andreenkova E.V., Bownes M., Segal D., Adonyeva N.V., Rauschenbach I.Yu. Stress response in a juvenile hormone deficient Drosophila melanogaster mutant apter-ous56f. Insect Mol. Biol. 2003b;12:353-363.; Gruntenko N.E., Chentsova N.A., Andreenkova E.V., Karpova E.K., Glazko G.V., Monastirioti M., Rauschenbach I.Yu. The effect of mutations altering biogenic amine metabolism in Drosophila on viability and the response to heat stress. Arch. Insect Biochem. Physiol. 2004;55:55-67.; Gruntenko N.E., Karpova E.K., Adonyeva N.V., Chentsova N.A., Fad-deeva N.V., Alekseev A.A., Rauschenbach I.Yu. Juvenile hormone, 20-hydroxyecdisone and dopamine interaction in Drosophila virilis reproduction under normal and nutritional stress conditions. J. Insect Physiol. 2005a;51:417-425.; Gruntenko N.E., Karpova E.K., Alekseev A.A., Chentsova N.A., Sa-prykina Z.V., Bownes M., Rauschenbach I.Yu. Effects of dopamine on juvenile hormone metabolism and fitness in Drosophila virilis. J. Insect Physiol. 2005b;51:959-968.; Gruntenko N.E., Rauschenbach I.Yu. Interplay of juvenile hormone, 20-hydroxyecdisone and biogenic amines under normal and stress conditions and its effect on reproduction. J. Insect. Physiol. 2008; 54:902-908.; Gruntenko N.E., Rauschenbach I.Yu. The role of insulin signalling in the endocrine stress response in Drosophila melanogaster: A minireview. Gen. Comp. Endocrinol. 2017. DOI 10.1016/j.ygcen.2017. 05.019.; Gruntenko N.E., Wen D., Karpova E.K., Adonyeva N.V., Liu Y., He Q., Faddeeva N.V., Fomin A.S., Li S., Rauschenbach I.Yu. Altered ju--venile hormone metabolism, reproduction and stress response in Drosophila adults with genetic ablation of the corpus allatum cells. Insect Biochem. Mol. Biol. 2010;40: 891-897.; Gruntenko N.E., Wilson T.G., Monastirioti M., Rauschenbach I.Yu. Stress-reactivity and juvenile hormone degradation in Drosophila melanogaster strains having stress-related mutations. Insect Bio-chem. Mol. Biol. 2000;30:775-783.; Harris J.W., Woodring J. Effects of stress age, season and source colony on the level of octopamine, dopamine and serotonin in the honey bee (Apis melifera L.) brain. J. Insect Physiol. 1992;38:29-35.; Hirashima A., Eto M. Chemical-induced changed in the biogenic amine levels of Periplaneta americana L. Pestic. Biochem. Physiol. 1993;46:131-140.; Hirashima A., Nagano T., Eto M. Effect of various insecticides on the larval growth and biogenic amine levels of Tribolium castaneum Herbst. Comp. Biochem. Physiol. 1994;107C:393-398.; Hirashima A., Rauschenbach I.Yu., Sukhanova M.Jh. Ecdisteroids in stress responsive and nonresponsive Drosophila virilis lines under stress conditions. Biosci. Biotech. Biochem. 2000;64:2657-2662.; Holzenberger M., Dupont J., Ducos B., Leneuve P., Geloen A., Even P.C., Cervera P., Le Bouc Y. IGF-1 receptor regulates lifespan and resistance to oxidative stress in mice. Nature. 2003;42: 182-187.; Ivanovic J., Jankovic-Hladni M., Milanovic M.P. Possible role of neurosecretory cells, Type A in response of Morimus funereus larvae to the effect of temperature. J. Therm. Biol. 1975;1:53-57.; Ivanovic J., Jankovic-Hladni M., Stanic V., Milanovic M.P., Nenado-vic V. Possible role of neurohormones in the process of acclimatization and acclimation in Morimus funereus larvae (Insecta). I. Changes in the neuroendocrine system and target organs (midgut, hemolymph) during the annual cycle. Comp. Biochem. Physiol. 1979;80A:107-112.; Ivanovic J., Jankovic-Hladni M., Stanic V., Kalafatc D. Differences in the sensitivity of protocerebral neurosecretory cells arising from the effect of different factors in Morimus funereus larvae. Comp. Bio-chem. Physiol. 1985;80A:107-113.; Ivanovic J., Jankovic-Hladni M., Stanic V., Nenadovic V., Frusic M. The role of neurosecretion and metabolism in development of an oli-gophagous feeding habit in Morimus funereus larvae (Col., Ceram-bycidae). Comp. Biochem. Physiol. 1989;74:189-197.; James V. Psikhologiya [Psychology]. Saint-Petersburg, 1905. (in Russian); Jankovic-Hladni M. Hormones and metabolism in insect stress (Historical survey). Eds. J. Ivanovic, M.I. Jankovic-Hladni. Hormones and Metabolism in Insect Stress. Boca Raton: CRS Press, 1991;5-27.; Jankovic-Hladni M., Chen C.A., Ivanovic J., Djordjevic S., Stanic V., Peric Mataruga V., Frusic M. Effects of diet and temperature on Morimus funereus larvae hemolymph cation concentrations. Arch. Insect Biochem. Physiol. 1992;20:205-214.; Jankovic-Hladni M., Ivanovic J., Nenadovic V., Stanic V. The selective response of the protocerebral neurosecretory cells of the Ceram-byx cerdo larvae to the effect of different factors. Comp. Biochem. Physiol. 1983;74A:131-136.; Johnson E.C., White M.P. Stressed-Out Insects: Hormonal Actions and Behavioral Modifications. Eds. D.W. Pfaff, A.P. Arnold, S.E. Fahr-bach, A.M. Etgen, R.T. Rubin. Hormones, Brain and Behavior. San Diego: Academic Press, 2009;1069-1096.; Kitaev-Smyk L.A. Psikhologiya stressa [Psychology of Stress]. Moscow: Nauka Publ., 1983. (in Russian); Kodrik D., Bednarova A., Zemanova M., Krishnan N. Hormonal regulation of response to oxidative stress in insects - an update. Int. Mol. Sci. 2015;16:25788-25816.; Kositskiy G.I., Smirnov V.M. Nervnaya sistema i “stress” (o printsipe dominanty v patologii) [The Nervous System and ‘Stress' (The Principle of Dominance in Pathology)]. Moscow: Nauka Publ., 1970. (in Russian); Kramer S.J., Toschi A., Miller C.A., Kataoka H., Quistad G.B., Li J.P., Carney R.L., Schooley D.A. Identification of an allastatin from thetabacco hornworm Manduca sexta. Proc. Natl. Acad. Sci. USA. 1991;88:9458-9462.; Krishnan N., Kodrik D. Endocrine control of oxidative stress in insects. Eds T. Farooqui, A.A. Farooqui. Oxidative Stress in Vertebrates and Invertebrates: Molecular Aspects of Cell Signaling. New Jersey: Wiley-Blackwell, 2012;261-270.; Lalouette L., Williams C.M., Hervant F., Sinclair B.J., Renault D. Metabolic rate and oxidative stress in insects exposed to low temperature thermal fluctuations. Comp. Biochem. Physiol. 2011;158:229-234. DOI 10.1016/j.cbpa.2010.11.007.; Lawrence P.O. Hormonal interactions between parasitoids and hosts: adaptation to stress? Endocrinological Frontiers in Physiological Insect Ecology. Wroclaw: Tech. Univ. Press, 1988;423-435.; Lekovic S., Lazarevic J., Nenadovic V., Ivanovic J. The effect of heat stress on the activity of A1 and A2 neurosecretory neurons of Mori-mus funereus (Coleoptera: Cerambycidae) larvae. Eur. J. Entomol. 2001;98:13-18.; McCaleb D.C., Kumaran A.K. Control of juvenile hormone esterase activity in Galleria mellonella larvae. J. Insect Physiol. 1980;26: 171-177.; Meerson F.Z. Adaptatsiya, stress i profilaktika [Adaptation, Stress and Prevention]. Moscow: Nauka Publ., 1981. (in Russian); Meng J.-Y., Zhang C.-Y., Zhu F., Wang X.-P., Lei C.-L. Ultraviolet light-induced oxidative stress: Effects on antioxidant response of Helicoverpa armigera adults. J. Insect Physiol. 2009;55:588-592. DOI 10.1016/j.jinsphys.2009.03.003.; Mobius P., Penzlin H. Stress-induced release of octopamine in the American cockroach Periplaneta americana L. Acta Biol. Hung. 1993;44:45-50.; Mrdakovic M., Ilijin L., Vlahovic M., Jankovic-Tomanic M., Peric Mataruga V., Lazarevic J., Nenadovic V. The effects of different constant temperatures on the activity of corpora allata in Morimus funereus (Coleoptera: Cerambycidae) larvae. Arch. Biol. Sci. 2003; 55:21-22.; Neckameyer W.S., Weinstein J.S. Stress affects dopaminergic signaling pathways in Drosophila melanogaster. Stress. 2005;8:117-131.; O'Kasha A.Y.K. Effect of sub-lethal high temperature on insect, Rhod-nius prolixus (Stal). I. Induction of delayed moutling and defects. J. Exp. Biol. 1968;48:455-463.; Peric-Mataruga V., Lazarevic J., Nenadovic V. A possible role for the dorsolateral protocerebral neurosecretory neurons in the trophic adaptations of Lymantria dispar (Lepidoptera : Lymantriidae). Eur. J. Entomol. 2001;98:257-264.; Pogodaev K.I. K biologicheskim osnovam “stressa” i “adaptatsionnogo sindroma”. [Biological foundations of “stress” and “the adaptation syndrome”]. Aktualnye problemy stressa [Topical Issues in Stress]. Chisinau: Shtiintsa Publ., 1976. (in Russian); Pszczolkowski M.A., Chiang A.S. Effects of chilling stress on allatal growth and juvenile hormone synthesis in the cockroach, Diploptera punctate. J. Insect Physiol. 2000;46:923-931.; Rauschenbach I.Yu. Neyroendokrinnaya regulyatsiya razvitiya nase-komykh v usloviyakh stressa: Genetiko-fiziologicheskie aspekty [Neuroendocrine Regulation of Insect Development under Stress: Genetic and Physiological Aspects]. Novosibirsk: Nauka Publ., 1990. (in Russian); Rauschenbach I.Yu. Stress-response in insects: mechanism, genetic control, role in adaptation. Genetika = Genetics (Moscow). 1997; 33:1110-1118. (in Russian); Rauschenbach I.Y., Budker V.G., Korochkin L.I. Pupal esterase of D. virilis splits juvenile hormone. Dros. Inf. Serv. 1983a;59:104. Rauschenbach I.Yu., Karpova E.K., Adonyeva N.V., Andreenkova O.V., Faddeeva N.V., Burdina E.V., Alekseev A.A., Mensha-nov P.N., Gruntenko N.E. Disruption of insulin signalling affects the neuroendocrine stress reaction in Drosophila females. J. Exp. Biol. 2014;217:1-9.; Rauschenbach I.Y., Lukashina N.S., Korochkin L.I. Role of pupal esterase in the regulation of the D. virilis stosks differing in response to high temperature. Dev. Genet. 1980;1:295-310.- Rauschenbach I.Y., Lukashina N.S., Korochkin L.I. Genetic of esterase in Drosophila. VII. The genetic control of the activity level of the JH-esterase and heat-resistance in Drosophila virilis under high temperature. Biochem. Genet. 1983b;21:253-266.; Raushenbakh I.Yu., Lukashina N.S., Korochkin L.I. Genetic-endocrine regulation of the development of Drosophila in extreme environmental conditions: III. Effect of high culture density on survival, hormonal status and activity of Drosophila virilis JH-esterase. Gene-tika = Genetics (Moscow). 1983;19:1439-1445. (in Russian); Rauschenbach I.Y., Lukashina N.S., Maksimovsky L.F., Korochkin L.I. Stress-like reaction of Drosophila to advers environmental factors. J. Comp. Physiol. B. 1987;157:519-531.; Rauschenbach I.Yu., Sukhanova M.J., Hirashima A., Sutsugu E., Kua-no E. Role of the ecdysteroid system in the regulation of Drosophila reproduction under environmental stress. Doklady RAN = Proceedings of the Russian Academy of Sciences. 2000;375:568-570. (in Russian); Richard D.S., Applebaum S.W., Gilbert L.I. Allatostatic reulation of juvenile hormone production in vitro by the ring gland of Drosophila melanogaster. Mol. Cell. Endocrinol. 1990;68:153-161.; Saltykova E.S., Ben'kovskaya G.V., Gayfullina L.R., Novitskaya O.P., Poskryakov A.V., Nikolenko A.G. Reaction of individual physiological barriers to bacterial infection in various races of the honey bee Apis mellifera. Zhurnal evolyutsionnoy biokhimii i fiziologii = Journal of Evolutionary Biochemistry and Physiology. 2005;41(3):254-258. (in Russian); Selye H. Stress bez distressa [Stress without Distress]. Moscow: Progress Publ., 1979. (in Russian); Selye H. Ot mechty k otkrytiyu [From Dream to Discovery]. Moscow: Progress Publ., 1987. (in Russian); Singh H., Pandey P.N. Experimental assessment of effects of larval crowding on development and reproduction in Diacrisia obliqua Walker (Lep., Arctiidae). Biochem. Exp. Biol. 1980;16:157-164.; Sokolyanskaya M.P., Ben'kovskaya G.V., Nikolenko A.G. Dynamics of the formation of resistance to various stress factors in housefly larvae. Agrokhimiya = Agrochemistry. 2005;9:70-75.; Stay B., Fairbairn S., Yu C.G. Role of allaststins in the regulation of juvenile hormone synthesis. Arch. Insect Biochem. Physiol. 1996;32: 287-297.; Sudakov K.V. Specific mechanisms of emotional stress. Third Symp. on Catecholamines and other Neurotransmitters in Stress, Smolenica Castle, Czchoslovakia. 1983;87.; Tauchman S.J., Lorch J.M., Orth A.P., GoodmanW.G. Effects of stress on the hemolymph juvenile hormone binding protein titres of Man-duca sexta. Insect Biochem. Mol. Biol. 2007;37:847-854.; Tobe S.S., Stay B. Structure and regulation of the corpus allatum. Adv. Insect Physiol. 1985;18:305-432.; Tyshchenko V.P., Fiziologiya nasekomykh [Physiology of Insects]. Moscow: Vysshaya shkola Publ., 1986. (in Russian); Velki M., Kodrik D., Vecera J., Hackenberger B.K., Socha R. Oxidative stress elicited by insecticides: A role for the adipokinetic hormone. Gen. Comp. Endocrinol. 2011;172:77-84. DOI 10.1016/j. ygcen.2010.12.009.; Vigas M. Problem of definition of stress stimulus and specificity of stress response. Third Symp. on Catecholamines and other Neurotransmitters in Stress, Smolenica Castle, Czchoslovakia, 1983;94.; Viru A.A. Gormonalnye mekhanizmy adaptatsii i trenirovki [Hormonal Mechanisms of Adaptation and Training]. Leningrad: Nauka Publ., 1981. (in Russian); Wigglesworth V.B. Hormone balance and the control of metamorphosis in Rhodnius prolixus (Hemiptera). J. Exp. Biol. 1952;29:620-631. Wigglesworth V.B. High temperature and arrested growth in Rhodnius: Quantitative requirements for ecdysone. J. Exp. Biol. 1955;32:649-655.; Wundt B. Osnovy fiziologicheskoy psikhologii. Chuvstva i affekty. [Principles of Physiological Psychology. Feelings and Passions]. Leningrad, 1980;55(3). (in Russian); Zhao H.W., Haddad G.G. Review: Hypoxic and oxidative stress resistance in Drosophila melanogaster. Placenta. 2011;32:S104-S108. DOI 10.1016/j.placenta.2010.11.017.; https://vavilov.elpub.ru/jour/article/view/1232Test

  5. 5
    دورية أكاديمية

    المصدر: Vavilov Journal of Genetics and Breeding; Том 20, № 6 (2016); 959-967 ; Вавиловский журнал генетики и селекции; Том 20, № 6 (2016); 959-967 ; 2500-3259 ; 2500-0462

    وصف الملف: application/pdf

    العلاقة: https://vavilov.elpub.ru/jour/article/view/878/874Test; Allingham-Hawkins D.J., Babul-Hirji R., Chitayat D., Holden J.J., Yang K.T., Lee C., … Costa S.S., Otto P.A., Mingroni-Netto R.C., Murray A., Webb J., Vieri F. Fragile X premutation is a significant risk factor for premature ovarian failure: The International Collaborative POF in Fragile X study-preliminary data. Am. J. Med. Genet. 1999;83(4):322-325. DOI 10.1002/(SICI)1096-8628(19990402)83:43.0.CO;2-B [pii].; Angelidou A., Alysandratos K.-D., Asadi S., Zhang B., Francis K., Vasiadi M., … Theoharides T.C. Brief Report: “Allergic Symptoms” in Children with Autism Spectrum Disorders. More than Meets the Eye? J. Autism Dev. Disord. 2011;41(11):1579-1585. DOI 10.1007/s10803- 010-1171-z.; Bagni C., Oostra B.A. Fragile X syndrome: from protein function to therapy. Am. J. Med. Genet. Part A. 2013;161(11):2809-2821. DOI 10.1002/ajmg.a.36241.; Belichenko P.V., Wright E.E., Belichenko N.P., Masliah E., Li H.H., Mobley W.C., Francke U. Widespread changes in dendritic and axonal morphology in Mecp2-mutant mouse models of Rett syndrome: Evidence for disruption of neuronal networks. J. Comp. Neurol. 2009;514(3):240-258. DOI 10.1002/cne.22009.; Böckers T.M., Mameza M.G., Kreutz M.R., Bockmann J., Weise C., Buck F., … Kreienkamp H.J. Synaptic scaffolding proteins in rat brain: Ankyrin repeats of the multidomain Shank protein family interact with the cytoskeletal protein α-fodrin. J. Biol. Chem. 2001; 276(43):40104-40112. DOI 10.1074/jbc.M102454200.; Bozdagi O., Sakurai T., Papapetrou D., Wang X., Dickstein D.L., Takahashi N., … Buxbaum J.D. Haploinsufficiency of the autismassociated Shank3 gene leads to deficits in synaptic function, social interaction, and social communication. Mol. Autism. 2010;1(1):15. DOI 2040- 2392-1-15 [pii]n10.1186/2040-2392-1-15.; Chang S., Bray S.M., Li Z., Zarnescu D.C., He C., Jin P., Warren S.T. Identification of small molecules rescuing fragile X syndrome phenotypes in Drosophila. Nat. Chem. Biol. 2008;4(4):256-263. DOI 10.1038/nchembio.78.; Chen R.Z., Akbarian S., Tudor M., Jaenisch R. Deficiency of methyl- CpG binding protein-2 in CNS neurons results in a Rett-like phenotype in mice. Nat. Genet. 2001;27(3):327-331. DOI 10.1038/85906.; Curatolo P., Bombardieri R., Jozwiak S. Tuberous sclerosis. Lancet. 2008;372(9639):657-668. DOI 10.1016/S0140-6736(08)61279-9.; Deogracias R., Yazdani M., Dekkers M.P.J., Guy J., Ionescu M.C.S., Vogt K.E., Barde Y.-A. Fingolimod, a sphingosine-1 phosphate receptor modulator, increases BDNF levels and improves symptoms of a mouse model of Rett syndrome. Proc. Natl. Acad. Sci. USA. 2012;109(35):14230-14235. DOI 10.1073/pnas.1206093109.; Dolan B.M., Duron S.G., Campbell D.A., Vollrath B., Shankaranarayana Rao B.S., Ko H.-Y., … Tonegawa S. Rescue of fragile X syndrome phenotypes in Fmr1 KO mice by the small- molecule PAK inhibitor FRAX486. Proc. Natl. Acad. Sci. USA. 2013;110(14):5671-5676. DOI 10.1073/pnas.1219383110.; Durand C.M., Betancur C., Boeckers T.M., Bockmann J., Chaste P., Fauchereau F., … Bourgeron T. Mutations in the gene encoding the synaptic scaffolding protein SHANK3 are associated with autism spectrum disorders. Nat. Genet. 2007;39(1):25-27. DOI 10.1038/ng1933.; Ebrahimi-Fakhari D., Sahin M. Autism and the synapse: emerging mechanisms and mechanism-based therapies. Curr. Opin. Neurol. 2015;1(617):1-12. DOI 10.1097/WCO.0000000000000186.; Ehninger D., Han S., Shilyansky C., Zhou Y., Li W., David J. Reversal of learning deficits in a Tsc2+/- mouse model of tuberous sclerosis. Nat. Med. 2009;14(8):843-848. DOI 10.1038/nm1788.Reversal.; Ehninger D., Silva A.J. Rapamycin for treating Tuberous sclerosis and Autism Spectrum disorders. Trends Mol. Med. 2011;17(2):78-87. DOI 10.1016/j.molmed.2010.10.002.; El-Fishawy P., State M.W. The genetics of autism: key issues, recent findings, and clinical implications. Psychiatr. Clin. North Am. 2010; 33(1):83-105. DOI 10.1016/j.psc.2009.12.002.; Gadad B.S., Li W., Yazdani U., Grady S., Johnson T., Hammond J., … German D.C. Administration of thimerosal-containing vaccines to infant rhesus macaques does not result in autism-like behavior or neuropathology. Proc. Natl. Acad. Sci. USA. 2015;112(40):12498-12503. DOI 10.1073/pnas.1500968112.; Ghosh R.P., Horowitz-Scherer R.A., Nikitina T., Shlyakhtenko L.S., Woodcock C.L. MeCP2 binds cooperatively to its substrate and competes with histone H1 for chromatin binding sites. Mol. Cell. Biol. 2010;30(19):4656-4670. DOI 10.1128/MCB.00379-10.; Greer P.L., Hanayama R., Bloodgood B.L., Mardinly A.R., Lipton D.M., Flavell S.W., … Greenberg M.E. The Angelman syndrome protein Ube3A regulates synapse development by ubiquitinating arc. Cell. 2010;140(5):704-716. DOI 10.1016/j.cell.2010.01.026.; Guy J., Hendrich B., Holmes M., Martin J.E., Bird A. A mouse Mecp2- null mutation causes neurological symptoms that mimic Rett syndrome. Nat. Genet. 2001;27(3):322-326. DOI 10.1038/85899.; Hata Y., Butz S., Südhof T.C. CASK: a novel dlg/PSD95 homolog with an N-terminal calmodulin-dependent protein kinase domain identified by interaction with neurexins. J. Neurosci. 1996;16(8):2488-2494. DOI papers2://publication/uuid/43B65FDC-BC39-4EC1- 8178-47495149E5C1.; Irie M., Hata Y., Takeuchi M., Ichtchenko K., Toyoda A., Hirao K., … Südhof T.C. Binding of neuroligins to PSD-95. Science. 1997;277: 1511-1515. DOI 10.1126/science.277.5331.1511.; Jamain S., Quach H., Betancur C., Råstam M., Colineaux C., Gillberg I.C., … Bourgeron T. Mutations of the X-linked genes encoding neuroligins NLGN3 and NLGN4 are associated with autism. Nat. Genet. 2003;34(1):27-29. DOI 10.1038/ng1136.; Jamain S., Radyushkin K., Hammerschmidt K., Granon S., Boretius S., Varoqueaux F., … Brose N. Reduced social interaction and ultrasonic communication in a mouse model of monogenic heritable autism. Proc. Natl. Acad. Sci. USA. 2008;105(5):1710-1715. DOI 10.1073/pnas.0711555105.; Jia F., Wang B., Shan L., Xu Z., Staal W.G., Du L. Core symptoms autism improved after vitamin D supplementation. Pediatrics. 2015; 135(1):e196-e198. DOI 10.1542/peds.2014- 2121.; Jiang Y.H., Armstrong D., Albrecht U., Atkins C.M., Noebels J.L., Eichele G., … Beaudet A.L. Mutation of the Angelman ubiquitin ligase in mice causes increased cytoplasmic p53 and deficits of contextual learning and long-term potentiation. Neuron. 1998;21(4):799-811. DOI 10.1016/S0896-6273(00)80596-6.; Katz D.M. Brain-derived neurotrophic factor and rett syndrome. Handbook of Experimental Pharmacology. Eds. G.R. Lewin, B.D. Carter. Berlin: Springer-Verlag, 2014;220:481-495. DOI 10.1007/978-3-642-45106-5_18.; Kelleher R.J., Bear M.F. The autistic neuron: troubled translation? Cell. 2008;135(3):401-406. DOI 10.1016/j.cell.2008.10.017.; Kishino T., Lalande M., Wagstaff J. UBE3A/E6-AP mutations cause Angelman syndrome. Nat. Genet. 1997;15(1):70-73. DOI 10.1038/ng0197-70.; Kouser M., Speed H.E., Dewey C.M., Reimers J.M., Widman A.J., Gupta N., … Powell C.M. Loss of predominant Shank3 isoforms results in hippocampus-dependent impairments in behavior and synaptic transmission. J. Neurosci. 2013;33(47):18448-18468. DOI 10.1523/JNEUROSCI.3017-13.2013.; Kwon C.H., Luikart B.W., Powell C.M., Zhou J., Matheny S.A., Zhang W., … Parada L.F. Pten regulates neuronal arborization social interaction in mice. Neuron. 2006;50(3):377-388. DOI 10.1016/j.neuron.2006.03.023.; Lipton J.O., Sahin M. The neurology of mTOR. Neuron. 2014;84(2);275-291. DOI 10.1016/j.neuron.2014.09.034.; Lisse T.S., Hewison M. Vitamin D: A new player in the world of mTOR signaling. Cell Cycle. 2011;10(12):1888-1889. DOI 10.4161/cc.10.12.15620.; Lisse T.S., Liu T., Irmler M., Beckers J., Chen H., Adams J.S., Hewison M. Gene targeting by the vitamin D response element binding protein reveals a role for vitamin D in osteoblast mTOR signaling. FASEB J. 2011;25(3):937-947. DOI 10.1096/fj.10-172577.; Liu Y., Zhang D., Liu X. mTOR signaling in T cell immunity and autoimmunity. Int. Rev. Immunol. 2015;34(1):50-66. DOI 10.3109/08830185.2014.933957.; Matsuura T., Sutcliffe J.S., Fang P., Galjaard R.J., Jiang Y.H., Benton C.S., … Beaudet A.L. De novo truncating mutations in E6-AP ubiquitin-protein ligase gene (UBE3A) in Angelman syndrome. Nat. Genet. 1997;15:74-77. DOI 10.1038/ng0197-74.; Meikle L., Pollizzi K., Egnor A., Kramvis I., Lane H., Sahin M., Kwiatkowski D.J. Response of a neuronal model of tuberous sclerosis to mammalian target of rapamycin (mTOR) inhibitors: effects on mTORC1 and Akt signaling lead to improved survival and function. J. Neurosci. 2008;28(21):5422-5432. DOI 10.1523/JNEUROSCI.0955-08.2008.; Missler M., Südhof T.C. Neurexins: Three genes and 1001 products. Trends Genet. 1998;14(1):20-26. DOI 10.1016/S0168-9525(97)01324-3.; Missler M., Zhang W., Rohlmann A., Kattenstroth G., Hammer R.E., Gottmann K., Südhof T.C. Alpha-neurexins couple Ca2+ channels to synaptic vesicle exocytosis. Nature. 2003;423:939- 948. DOI 10.1038/nature01755.; Okamoto N., Kubota T., Nakamura Y., Murakami R., Nishikubo T., Tanaka I., … Uchino S. 22q13 microduplication in two patients with common clinical manifestations: A recognizable syndrome? Am. J. Med. Genet. Part A. 2007;143(23):2804-2809. DOI 10.1002/ajmg.a.31771.; Pacey L.K.K., Heximer S.P., Hampson D.R. Increased GABA(B) receptor-mediated signaling reduces the susceptibility of fragile X knockout mice to audiogenic seizures. Mol. Pharmacol. 2009;76(1):18-24.DOI 10.1124/mol.109.056127.posits.; Peça J., Feliciano C., Ting J.T., Wang W., Wells M.F., Venkatraman T.N., … Feng G. Shank3 mutant mice display autistic-like behaviours and striatal dysfunction. Nature. 2011;472(7344):437-442. DOI 10.1038/nature09965.; Pei J.J., Hugon J. mTOR-dependent signalling in Alzheimer’s disease. J. Cell. Mol. Med. 2008;12(6B):2525-2532. DOI 10.1111/j.1582-4934.2008.00509.x.; Phelan M.C., Rogers R.C., Saul R.A., Stapleton G.A., Sweet K., Mc-Dermid H., … Kelly D.P. 22Q13 deletion syndrome. Am. J. Med. Genet. 2001;101(2):91-99. DOI 10.1002/1096- 8628(20010615)101:23.0.CO;2-C.; Ricciardi S., Boggio E.M., Grosso S., Lonetti G., Forlani G., Stefanelli G., … Broccoli V. Reduced AKT/mTOR signaling and protein synthesis dysregulation in a Rett syndrome animal model. Hum. Mol. Genet. 2011;20(6):1182-1196. DOI 10.1093/hmg/ddq563.; Riday T.T., Dankoski E.C., Krouse M.C., Fish E.W., Walsh P.L., Han J.E., … Malanga C.J. Pathway-specific dopaminergic deficits in a mouse model of Angelman syndrome. J. Clin. Invest. 2012; 122(12):4544-4554. DOI 10.1172/JCI61888.; Roussignol G., Ango F., Romorini S., Tu J.C., Sala C., Worley P.F., …Fagni L. Shank expression is sufficient to induce functional dendritic spine synapses in aspiny neurons. J. Neurosci. 2005;25(14):3560-3570. DOI 10.1523/JNEUROSCI.4354-04.2005.; Sato A. mTOR, a potential target to treat autism spectrum disorder. CNS Neurol. Disord. Drug Targets. 2016;15(5):533-543. DOI 10.2174/1871527315666160413120638.; Segal R.A., Greenberg M.E. Intracellular signaling pathways activated by neurotrophic factors. Annu. Rev. Neurosci. 1996;19:463-489. DOI 10.1146/annurev.ne.19.030196.002335.; Shcheglovitov A., Shcheglovitova O., Yazawa M., Portmann T., Shu R., Sebastiano V., … Dolmetsch R.E. SHANK3 and IGF1 restore synaptic deficits in neurons from 22q13 deletion syndrome patients. Nature. 2013;503(7475):267-271. DOI 10.1038/nature12618.; Sheng M., Kim E. The Shank family of scaffold proteins. J. Cell Sci. 2000;113(1):1851-1856.; Singh S.K., Eroglu C. Neuroligins provide molecular links between syndromic and nonsyndromic autism. Sci. Signal. 2013;6(283):re4.DOI 10.1126/scisignal.2004102.; Südhof T.C. Neuroligins and neurexins link synaptic function to cognitive disease. Nature. 2008;455(7215):903-911. DOI 10.1038/nature 07456.; Tabuchi K., Blundell J., Etherton M.R., Hammer R.E., Liu X., Powell C.M., Südhof T.C. A neuroligin-3 mutation implicated in autism increases inhibitory synaptic transmission in mice. Science. 2007; 318(5847):71-76. DOI 10.1126/science.1146221.; Troca-Marin J.A., Alves-Sampaio A., Montesinos M.L. Deregulated mTOR-mediated translation in intellectual disability. Prog. Neurobiol. 2012;96(2):268-282. DOI 10.1016/j.pneurobio.2012.01.005.; Tsai P., Sahin M. Mechanisms of neurocognitive dysfunction and therapeutic considerations in tuberous sclerosis complex. Curr. Opin. Neurol. 2011;24(2):106-113. DOI 10.1097/WCO.0b013e32834451c4.; Varoqueaux F., Aramuni G., Rawson R.L., Mohrmann R., Missler M., Gottmann K., … Brose N. Neuroligins determine synapse maturation and function. Neuron. 2006;51(6):741-754. DOI 10.1016/j.neuron.2006.09.003.; Veenstra-VanderWeele J., Blakely R.D. Networking in autism: leveraging genetic, biomarker and model system findings in the search for new treatments. Neuropsychopharmacology. 2012;37(1):196-212. DOI 10.1038/npp.2011.185.; Wong M. Mammalian target of rapamycin (mTOR) inhibition as a potential antiepileptogenic therapy: From tuberous sclerosis to common acquired epilepsies. Epilepsia. 2010;51(1):27- 36. DOI 10.1111/j.1528-1167.2009.02341.x.; Wu J., De Theije C.M.G., Da Silva S.L., Van Der Horst H., Reinders M.T.M., Broersen L.M., … Kraneveld A.D. mTOR plays an important role in cow’s milk allergy-associated behavioral and immunological deficits. Neuropharmacology. 2015;97:220-232. DOI 10.1016/j.neuropharm.2015.04.035.; Xiong Q., Oviedo H.V., Trotman L.C., Zador A.M. PTEN regulation of local and long-range connections in mouse auditory cortex. J. Neurosci. 2012;32(5):1643-1652. DOI 10.1523/JNEUROSCI.4480-11.2012.; Yoo H. Genetics of autism spectrum disorder: current status and possible clinical applications. Exp. Neurobiol. 2015:24(4):257-272. DOI 10.5607/en.2015.24.4.257.; Zhou J., Parada L.F. PTEN signaling in autism spectrum disorders. Curr. Opin. Neurobiol. 2012;22(5):873-879. DOI 10.1016/j.conb.2012.05.004.; Ziemssen T., Kümpfel T., Klinkert W.E.F., Neuhaus O., Hohlfeld R. Glatiramer acetate-specific T-helper 1- and 2-type cell lines produce BDNF: implications for multiple sclerosis therapy. Brain-derived neurotrophic factor. Brain. 2002;125(11):2381-2391. DOI 10.1093/brain/awf252.; Zoghbi H.Y., Bear M.F. Synaptic dysfunction in neurodevelopmental disorders associated with autism and intellectual disabilities. Cold Spring Harb. Perspect. Biol. 2012;4(3):a009886. DOI 10.1101/cshperspect.a009886.; Zweier C., de Jong E.K., Zweier M., Orrico A., Ousager L.B., Collins A.L., … Rauch A. CNTNAP2 and NRXN1 are mutated in autosomal-recessive Pitt-Hopkins-like mental retardation and determine the level of a common synaptic protein in Drosophila. Am. J. Hum. Genet. 2009;85(5):655-666. DOI 10.1016/j.ajhg.2009.10.004.; https://vavilov.elpub.ru/jour/article/view/878Test