يعرض 1 - 6 نتائج من 6 نتيجة بحث عن '"М. A. Сиротина"', وقت الاستعلام: 1.24s تنقيح النتائج
  1. 1
    دورية أكاديمية

    المساهمون: The work was supported by the Russian Science Foundation, Grant No. 22-15-00048. The section “Synthetic analogues of apelins” is supported by the state assignment 122020300042-4., Обзорная статья выполнена при поддержке Российского научного фонда, грант № 22-1500048. Раздел «Синтетические аналоги апелинов» поддержан государственным заданием 122020300042-4.

    المصدر: The Siberian Journal of Clinical and Experimental Medicine; Том 38, № 4 (2023); 29-39 ; Сибирский журнал клинической и экспериментальной медицины; Том 38, № 4 (2023); 29-39 ; 2713-265X ; 2713-2927

    وصف الملف: application/pdf

    العلاقة: https://www.sibjcem.ru/jour/article/view/2048/919Test; Hage A., Stevens L.M., Ouzounian M., Chung J., El-Hamamsy I., Chauvette V. et al. Impact of brain protection strategies on mortality and stroke in patients undergoing aortic arch repair with hypothermic circulatory arrest: evidence from the Canadian Thoracic Aortic Collaborative. Eur. J. Cardiothorac. Surg. 2020;58(1):95–103. DOI:10.1093/ ejcts/ezaa023.; Ya’qoub L., Gad M., Saad A.M., Elgendy I.Y., Mahmoud A.N. National trends of utilization and readmission rates with intravascular ultrasound use for ST-elevation myocardial infarction. Catheter Cardiovasc. Interv. 2021;98(1):1–9. DOI:10.1002/ccd.29524.; Lio K.U., O’Corragain O., Bashir R., Brosnahan S., Cohen G., Lakhter V. et al. Clinical outcomes and factors associated with pulmonary infarction following acute pulmonary embolism: a retrospective observational study at a US academic centre. BMJ Open. 2022;12(12):e067579. DOI:10.1136/bmjopen-2022-067579.; Swinarska J.T., Stratta R.J., Rogers J., Chang A., Farney A.C., Orlando G. et al. Early graft loss after deceased-donor kidney transplantation: What are the consequences? J. Am. Coll. Surg. 2021;232(4):493–502. DOI:10.1016/j.jamcollsurg.2020.12.005.; O’Dowd B.F., Heiber M., Chan A., Heng H.H., Tsui L.C., Kennedy J.L. et al. A human gene that shows identity with the gene encoding the angiotensin receptor is located on chromosome 11. Gene. 1993;136(1– 2):355–360. DOI:10.1016/0378-1119(93)90495-o.; Tatemoto K., Hosoya M., Habata Y., Fujii R., Kakegawa T., Zou M.X. et al. Isolation and characterization of a novel endogenous peptide ligand for the human APJ receptor. Biochem. Biophys. Res. Commun. 1998;251(2):471–476. DOI:10.1006/bbrc.1998.9489.; Hu G., Wang Z., Zhang R., Sun W., Chen X. The role of apelin/apelin receptor in energy metabolism and water homeostasis: A comprehensive narrative review. Front. Physiol. 2021;12:632886. DOI:10.3389/ fphys.2021.632886.; Chng S.C., Ho L., Tian J., Reversade B. ELABELA: a hormone essential for heart development signals via the apelin receptor. Dev. Cell. 2013;27(6):672–680. DOI:10.1016/j.devcel.2013.11.002.; Perjés Á., Skoumal R., Tenhunen O., Kónyi A., Simon M., Horváth I.G. et al. Apelin increases cardiac contractility via protein kinase Cεand extracellular signal-regulated kinase-dependent mechanisms. PLoS One. 2014;9(4):e93473. DOI:10.1371/journal.pone.0093473.; Kawamata Y., Habata Y., Fukusumi S., Hosoya M., Fujii R., Hinuma S. et al. Molecular properties of apelin: tissue distribution and receptor binding. Biochim. Biophys. Acta. 2001;1538(2–3):162–171. DOI:10.1016/ s0167-4889(00)00143-9.; Than A., He H.L., Chua S.H., Xu D., Sun L., Leow M.K. et al. Apelin enhances brown adipogenesis and browning of white adipocytes. J. Biol. Chem. 2015;290(23):14679–14691. DOI:10.1074/jbc.M115. 643817.; Sekerci R., Acar N., Tepekoy F., Ustunel I., Keles-Celik N. Apelin/APJ expression in the heart and kidneys of hypertensive rats. Acta. Histochem. 2018;120(3):196–204. DOI:10.1016/j.acthis.2018.01.007.; Chen M.M., Ashley E.A., Deng D.X., Tsalenko A., Deng A., Tabibiazar R. et al. Novel role for the potent endogenous inotrope apelin in human cardiac dysfunction. Circulation. 2003;108(12):1432–1439. DOI:10.1161/01.CIR.0000091235.94914.75.; Bircan B., Çakır M., Kırbağ S., Gül H.F. Effect of apelin hormone on renal ischemia/reperfusion induced oxidative damage in rats. Ren. Fail. 2016;38(7):1122–1128. DOI:10.1080/0886022X.2016.1184957.; Gholampour F., Bagheri A., Barati A., Masoudi R., Owji S.M. Remote ischemic perconditioning modulates apelin expression after renal ischemia-reperfusion injury. J. Surg. Res. 2020;247:429–437. DOI:10.1016/j.jss.2019.09.063.; Zhang X., Zhu Y., Zhou Y., Fei B. Activation of Nrf2 signaling by apelin attenuates renal ischemia reperfusion injury in diabetic rats. Diabetes Metab. Syndr. Obes. 2020;13:2169–2177. DOI:10.2147/DMSO. S246743.; Xu F., Wu M., Lu X., Zhang H., Shi L., Xi Y. et al. Effect of Fc-Elabela-21 on renal ischemia/reperfusion injury in mice: Mediation of anti-apoptotic effect via Akt phosphorylation. Peptides. 2022;147:170682. DOI:10.1016/j.peptides.2021.170682.; Fan X.F., Xue F., Zhang Y.Q., Xing X.P., Liu H., Mao S.Z. et al. The Apelin-APJ axis is an endogenous counterinjury mechanism in experimental acute lung injury. Chest. 2015;147(4):969–978. DOI:10.1378/chest.14-1426.; Xia F., Chen H., Jin Z., Fu Z. Apelin-13 protects the lungs from ischemia-reperfusion injury by attenuating inflammatory and oxidative stress. Hum. Exp. Toxicol. 2021;40(4):685–694. DOI:10.1177/0960327120961436.; Wu F., Qiu J., Fan Y., Zhang Q., Cheng B., Wu Y. et al. Apelin-13 attenuates ER stress-mediated neuronal apoptosis by activating Gα /Gαtions during twitches in isolated rat cardiac myocytes. Am. J. Physiol. Heart Circ. Physiol. 2008;294(6):H2540–H2546. DOI:10.1152/ajpheart.00046.2008.; Xin Q., Cheng B., Pan Y., Liu H., Yang C., Chen J. et al. Neuroprotective effects of apelin-13 on experimental ischemic stroke through suppression of inflammation. Peptides. 2015;63:55–62. DOI:10.1016/j. peptides.2014.09.016.; Duan J., Cui J., Yang Z., Guo C., Cao J., Xi M. et al. Neuroprotective effect of Apelin 13 on ischemic stroke by activating AMPK/GSK-3β/Nrf2 signaling. J. Neuroinflammation. 2019;16(1):24. DOI:10.1186/s12974019-1406-7.; Liu D.R., Hu W., Chen G.Z. Apelin-12 exerts neuroprotective effect against ischemia-reperfusion injury by inhibiting JNK and P38MAPK signaling pathway in mouse. Eur. Rev. Med. Pharmacol. Sci. 2018;22(12):3888–3895. DOI:10.26355/eurrev_201806_15273.; Chu H., Yang X., Huang C., Gao Z., Tang Y., Dong Q. Apelin-13 protects against ischemic blood-brain barrier damage through the effects of Aquaporin-4. Cerebrovasc. Dis. 2017;44(1–2):10–25. DOI:10.1159/000460261.; Zhang R., Wu F., Cheng B., Wang C., Bai B., Chen J. Apelin-13 prevents the effects of oxygen-glucose deprivation/reperfusion on bEnd.3 cells by inhibiting AKT-mTOR signaling. Exp. Biol. Med. (Maywood). 2023;248(2):146–156. DOI:10.1177/15353702221139186; Mughal A., Sun C., O’Rourke S.T. Activation of large conductance, calcium-activated potassium channels by nitric oxide mediates apelin-induced relaxation of isolated rat coronary arteries. J. Pharmacol. Exp. Ther. 2018;366(2):265–273. DOI:10.1124/jpet.118.248682.; Dönmez Y., Acele A. Increased Elabela levels in the acute ST segment elevation myocardial infarction patients. Medicine (Baltimore). 2019;98(43):e17645. DOI:10.1097/MD.0000000000017645.; Sans-Roselló J., Casals G., Rossello X., González de la Presa B., Vila M., Duran-Cambra A. et al. Prognostic value of plasma apelin concentrations at admission in patients with ST-segment elevation acute myocardial infarction. Clin. Biochem. 2017;50(6):279–284. DOI:10.1016/j.clinbiochem.2016.11.018.; Wang C., Du J.F., Wu F., Wang H.C. Apelin decreases the SR Ca2+ content but enhances the amplitude of [Ca2+] transient and contrac contractions during twitches in isolated rat cardiac myocytes. Am. J. Physiol. Heart Circ. Physiol. 2008;294(6):H2540–H2546. DOI:10.1152/ajpheart.00046.2008.; Wang C., Liu N., Luan R., Li Y., Wang D., Zou W. et al. Apelin protects sarcoplasmic reticulum function and cardiac performance in ischaemia-reperfusion by attenuating oxidation of sarcoplasmic reticulum Ca2+-ATPase and ryanodine receptor. Cardiovasc. Res. 2013;100(1):114–124. DOI:10.1093/cvr/cvt160.; Rostamzadeh F., Najafipour H., Yeganeh-Hajahmadi M., Esmaeili-Mahani S., Joukar S., Iranpour M. Heterodimerization of apelin and opioid receptors and cardiac inotropic and lusitropic effects of apelin in 2K1C hypertension: Role of pERK1/2 and PKC. Life Sci. 2017;191:24–33. DOI:10.1016/j.lfs.2017.09.044.; Simpkin J.C., Yellon D.M., Davidson S.M., Lim S.Y., Wynne A.M., Smith C.C. Apelin-13 and apelin-36 exhibit direct cardioprotective activity against ischemia-reperfusion injury. Basic Res. Cardiol. 2007;102(6):518–528. DOI:10.1007/s00395-007-0671-2.; Писаренко О.И., Шульженко В.С., Пелогейкина Ю.А., Студнева И.М., Кхатри Д.Н., Беспалова Ж.Д. и др. Влияние экзогенного апелина-12 на функциональное и метаболическое восстановление изолированного сердца крысы после ишемии. Кардиология. 2010;50(10):44–49.; Писаренко О.И., Серебрякова Л.И., Пелогейкина Ю.А., Студнева И.М., Кхатри Д.Н., Цкитишвили О.В. и др. Уменьшение реперфузионного повреждения сердца in vivo с помощью пептида апелина-12 у крыс. Бюллетень экспериментальной биологии и медицины. 2011;152(7):79–82.; Писаренко О.И., Серебрякова Л.И., Пелогейкина Ю.А., Студнева И.М., Кхатри Д.Н., Цкитишвили О.В. и др. Участие NO-зависимых механизмов действия апелина в защите миокарда от ишемического/реперфузионного повреждения. Кардиология. 2012;52(2):52–58. Pisarenko O.I., Serebriakova L.I., Pelogeĭkina Iu.A., Studneva I.M., Kkhatri D.N., Tskitishvili O.V. et al. Involvement of NO-dependent mechanisms of apelin action in myocardial protection against ischemia/reperfusion damage. Kardiologiia. 2012;52(2):52–58. (In Russ.).; Abbasloo E., Najafipour H., Vakili A. Chronic treatment with apelin, losartan and their combination reduces myocardial infarct size and improves cardiac mechanical function. Clin. Exp. Pharmacol. Physiol. 2020;47(3):393–402. DOI:10.1111/1440-1681.13195.; Pisarenko O.I., Shulzhenko V.S., Pelogeykina Y.A., Studneva I.V. Enhancement of crystalloid cardioplegic protection by structural analogs of apelin-12. J. Surg. Res. 2015;194(1):18–24. DOI:10.1016/j. jss.2014.11.007.; Писаренко О.И., Беспалова О.И., Ланкин В.З., Тимошин А.А., Серебрякова Л.И., Шульженко В.С. и др. Антиоксидантные свойства апелина-12 и его структурного аналога при экспериментальной ишемии и реперфузии. Кардиология. 2013;53(5):61–67.; Pisarenko O., Shulzhenko V., Studneva I., Pelogeykina Y., Timoshin A., Anesia R. et al. Structural apelin analogues: mitochondrial ROS inhibition and cardiometabolic protection in myocardial ischaemia reperfusion injury. Br. J. Pharmacol. 2015;172(12):2933–2945. DOI:10.1111/ bph.13038.; Tao J., Zhu W., Li Y., Xin P., Li J., Liu M. et al. Apelin-13 protects the heart against ischemia-reperfusion injury through inhibition of ER-dependent apoptotic pathways in a time-dependent fashion. Am. J. Physiol. Heart Circ. Physiol. 2011;301(4):H1471–H1486. DOI:10.1152/ ajpheart.00097.2011.; Yu P., Ma S., Dai X., Cao F. Elabela alleviates myocardial ischemia reperfusion-induced apoptosis, fibrosis and mitochondrial dysfunction through PI3K/AKT signaling. Am. J. Transl. Res. 2020;12(8):4467–4477.; Chen Y., Qiao X., Zhang L., Li X., Liu Q. Apelin-13 regulates angiotensin ii-induced Cx43 downregulation and autophagy via the AMPK/mTOR signaling pathway in HL-1 cells. Physiol. Res. 2020;69(5):813–822. DOI:10.33549/physiolres.934488.; Hou X., Zeng H., Tuo Q.H., Liao D.F., Chen J.X. Apelin gene therapy increases autophagy via activation of sirtuin 3 in diabetic heart. Diabetes Res. (Fairfax). 2015;1(4):84–91. DOI:10.17140/DROJ-1-115.; Wang W., McKinnie S.M., Patel V.B., Haddad G., Wang Z., Zhabyeyev P. et al. Loss of apelin exacerbates myocardial infarction adverse remodeling and ischemia-reperfusion injury: therapeutic potential of synthetic apelin analogues. J. Am. Heart Assoc. 2013;2(4):e000249. DOI:10.1161/JAHA.113.000249.; Masri B., Morin N., Pedebernade L., Knibiehler B., Audigier Y. The apelin receptor is coupled to Gi1 or Gi2 protein and is differentially desensitized by apelin fragments. J. Biol. Chem. 2006;281(27):18317–18326. DOI:10.1074/jbc.M600606200.; Bai B., Cai X., Jiang Y., Karteris E., Chen J. Heterodimerization of apelin receptor and neurotensin receptor 1 induces phosphorylation of ERK(1/2) and cell proliferation via Gαq-mediated mechanism. J. Cell. Mol. Med. 2014;18(10):2071–2081. DOI:10.1111/jcmm.12404.; Chapman N.A., Dupré D.J., Rainey J.K. The apelin receptor: physiology, pathology, cell signalling, and ligand modulation of a peptide-activated class A GPCR. Biochem. Cell. Biol. 2014;92(6):431–440. DOI:10.1139/bcb-2014-0072.; Moon M.J., Oh D.Y., Moon J.S., Kim D.K., Hwang J.I., Lee J.Y. et al. Cloning and activation of the bullfrog apelin receptor: Gi/o coupling and high affinity for [Pro1]apelin-13. Mol. Cell. Endocrinol. 2007;277(1–2):51– 60. DOI:10.1016/j.mce.2007.07.008.; Folino A., Accomasso L., Giachino C., Montarolo P.G., Losano G., Pagliaro P. et al. Apelin-induced cardioprotection against ischaemia/ reperfusion injury: roles of epidermal growth factor and Src. Acta Physiol. (Oxf.). 2018;222(2):e12924. DOI:10.1111/apha.12924.; Yang S., Li H., Tang L., Ge G., Ma J., Qiao Z. et al. Apelin-13 protects the heart against ischemia-reperfusion injury through the RISK-GSK-3βmPTP pathway. Arch. Med. Sci. 2015;11(5):1065–1073. DOI:10.5114/ aoms.2015.54863.; Pisarenko O.I., Shulzhenko V.S., Studneva I.M., Serebryakova L.I., Pelogeykina Y.A., Veselova O.M. Signaling pathways of a structural analogue of apelin-12 involved in myocardial protection against ischemia/reperfusion injury. Peptides. 2015;73:67–76. DOI:10.1016/j.peptides.2015.09.001.; Писаренко О.И., Пелогейкина Ю.А., Шульженко В.С., Студнева И.М., Беспалова З.Д., Азмуко А.А. и др. Влияние ингибирования новообразования на метаболическое восстановление ишемизи рованного сердца крысы апелином-12. Биомедицинская химия.2012;58(6):702–711; Rastaldo R., Cappello S., Folino A., Berta G.N., Sprio A.E., Losano G. et al. Apelin-13 limits infarct size and improves cardiac postischemic mechanical recovery only if given after ischemia. Am. J. Physiol. Heart Circ. Physiol. 2011;300(6):H2308–H2315. DOI:10.1152/ ajpheart.01177.2010.; Pisarenko O.I., Lankin V.Z., Konovalova G.G., Serebryakova L.I., Shulzhenko V.S., Timoshin A.A. et al. Apelin-12 and its structural analog enhance antioxidant defense in experimental myocardial ischemia and reperfusion. Mol. Cell. Biochem. 2014;391(1–2):241–250. DOI:10.1007/ s11010-014-2008-4.; Reed A.B., Lanman B.A., Holder J.R., Yang B.H., Ma J., Humphreys S.C. et al. Half-life extension of peptidic APJ agonists by N-terminal lipid conjugation. Bioorg. Med. Chem. Lett. 2020;30(21):127499. DOI:10.1016/j.bmcl.2020.127499.; Trân K., Murza A., Sainsily X., Coquerel D., Côté J., Belleville K. et al. A systematic exploration of macrocyclization in apelin-13: impact on binding, signaling, stability, and cardiovascular effects. J. Med. Chem. 2018;61(6):2266–2277. DOI:10.1021/acs.jmedchem.7b01353.; Li L., Zeng H., Chen J.X. Apelin-13 increases myocardial progenitor cells and improves repair postmyocardial infarction. Am. J. Physiol. Heart Circ. Physiol. 2012;303(5):H605–H618. DOI:10.1152/ajpheart.00366.2012.; Azizi Y., Faghihi M., Imani A., Roghani M., Zekri A., Mobasheri M.B. et al. Post-infarct treatment with [Pyr1]apelin-13 improves myocardial function by increasing neovascularization and overexpression of angiogenic growth factors in rats. Eur. J. Pharmacol. 2015;761:101–108. DOI:10.1016/j.ejphar.2015.04.034.; O’Harte F.P.M., Parthsarathy V., Hogg C., Flatt P.R. Long-term treatment with acylated analogues of apelin-13 amide ameliorates diabetes and improves lipid profile of high-fat fed mice. PLoS One. 2018;13(8):e0202350. DOI:10.1371/journal.pone.0202350.; Tran K., Sainsily X., Côté J., Coquerel D., Couvineau P., Saibi S. et al. Size-Reduced Macrocyclic Analogues of [Pyr1]-apelin-13 Showing Neg Negative Gα12 Bias Still Produce Prolonged Cardiac Effects. J. Med. Chem. 2022;65(1):531–551.; https://www.sibjcem.ru/jour/article/view/2048Test

  2. 2
    دورية أكاديمية

    المساهمون: Работа выполнена при поддержке Российского научного фонда, грант № 22-15-00048. Исследование механизмов формирования артериальной гипертензии при МетС выполнено в рамках государственного задания 122020300042-4. В работе было использовано оборудование Центра коллективного пользования «Медицинская геномика» ФГБНУ «Томский национальный исследовательский медицинский центр Российской академии наук».

    المصدر: Acta Biomedica Scientifica; Том 9, № 1 (2024); 222-232 ; 2587-9596 ; 2541-9420

    وصف الملف: application/pdf

    العلاقة: https://www.actabiomedica.ru/jour/article/view/4616/2749Test; Maslov LN, Naryzhnaia NV, Tsibulnikov SY, Kolar F, Zhang Y, Wang H, et al. Role of endogenous opioid peptides in the infarct size-limiting effect of adaptation to chronic continuous hypoxia. Life Sci. 2013; 93(9-11): 373-379. doi:10.1016/j.lfs.2013.07.018; Mukhomedzyanov AV, Sirotina MA, Logvinov SV, Naryzhnaya NV. Remote postconditioning of myocardium: Mechanisms, efficacy in metabolic syndrome in experimental and clinical studies (review). Siberian Journal of Clinical and Experimental Medicine 2023; 38(1): 37–45. doi:10.29001/2073-8552-2023-38-1-37-45; Zhou JJ, Wei Y, Zhang L, Zhang J, Guo LY, Gao C, et al. Chronic intermittent hypobaric hypoxia prevents cardiac dysfunction through enhancing antioxidation in fructose-fed rats. Can J Physiol Pharmacol. 2013; 91(5): 332-337. doi:10.1139/cjpp-2012-0059; Naryzhnaya NV, Derkachev IA, Kurbatov BK, Sirotina MA, Kilin M, Maslov LN. Decrease in infarct-limiting effect of the chronic normobaric hypoxia in rats with diet induced metabolic syndrome is associated with disturbance of carbohydrate and lipid metabolism. Bulletin of Experimental Biology and Medicine. 2022; 174(12): 692-697. doi:10.47056/0365-9615-2022-174-12-692-697; Nedvedova I, Kolar D, Neckar J, Kalous M, Pravenec M, Šilhavý J, et al. Cardioprotective regimen of adaptation to chronic hypoxia diversely alters myocardial gene expression in SHR and SHR-mtBN conplastic rat strains. Front Endocrinol. 2019; 9: 809. doi:10.3389/fendo.2018.00809; Birulina JG, Ivanov VV, Buyko EE, Bykov VV, Dzyuman AN, Nosarev АV, et al. Morphological changes in the heart and aorta of rats with diet-induced metabolic syndrome. Bulletin of Siberian Medicine. 2022; 21(3): 13-21. doi:10.20538/1682-0363-2022-3-13-21; Donner D, Headrick JP, Peart JN, Du Toit EF. Obesity improves myocardial ischaemic tolerance and RISK signalling in insulin-insensitive rats. Dis Model Mech. 2013; 6: 457-466. doi:10.1242/dmm.010959; Penna C, Andreadou I, Aragno M, Beauloye C, Bertrand L, Lazou A, et al. Effect of hyperglycaemia and diabetes on acute myocardial ischaemia-reperfusion injury and cardioprotection by ischaemic conditioning protocols. Br J Pharmacol. 2020; 177(23): 5312-5335. doi:10.1111/bph.14993; Okatan EN, Olgar Y, Tuncay E, Turan B. Azoramide improves mitochondrial dysfunction in palmitate-induced insulin resistant H9c2 cells. Mol Cell Biochem. 2019; 461(1-2): 65-72. doi:10.1007/s11010-019-03590-z; Mansor LS, Mehta K, Aksentijevic D, Carr CA, Lund T, Cole MA, et al. Increased oxidative metabolism following hypoxia in the type 2 diabetic heart, despite normal hypoxia signalling and metabolic adaptation. J Physiol. 2016; 594(2): 307-320. doi:10.1113/JP271242; Zuo A, Zhao X, Li T, Li J, Lei S, Chen J, et al. CTRP9 knockout exaggerates lipotoxicity in cardiac myocytes and high‐fat diet‐induced cardiac hypertrophy through inhibiting the LKB1/AMPK pathway. J Cell Mol Med. 2020; 24(4): 2635-2647. doi:10.1111/jcmm.14982; Zhang H, Liu B, Li T, Zhu Y, Luo G, Jiang Y, et al. AMPK activation serves a critical role in mitochondria quality control via modulating mitophagy in the heart under chronic hypoxia. Int J Mol Med. 2018; 41(1): 69-76. doi:10.3892/ijmm.2017.3213; Sumneang N, Oo TT, Singhanat K, Maneechote C, Arunsak B, Nawara W, et al. Inhibition of myeloid differentiation factor 2 attenuates cardiometabolic impairments via reducing cardiac mitochondrial dysfunction, inflammation, apoptosis and ferroptosis in prediabetic rats. Biochim Biophys Acta Mol Basis Dis. 2022; 1868(2): 166301. doi:10.1016/j.bbadis.2021.166301; Kravchuk E, Grineva E, Bairamov A, Galagudza M, Vlasov T. The effect of metformin on the myocardial tolerance to ischemiareperfusion injury in the rat model of diabetes mellitus type II. Exp Diabetes Res. 2011; 2011: 10-15. doi:10.1155/2011/907496; Ren C, Yi W, Jiang B, Gao E, Liang J, Zhang B, et al. Diminished adipoR1/APPL1 interaction mediates reduced cardioprotective actions of adiponectin against myocardial ischemia/reperfusion injury in type-2 diabetic mice. Stem Cells Int. 2023; 2023: 1-8. doi:10.1155/2023/7441367; Van Berendoncks AM, Stensvold D, Garnier A, Fortin D, Sente T, Vrints CJ, et al. Disturbed adiponectin – AMPK system in skeletal muscle of patients with metabolic syndrome. Eur J Prevent Cardiol. 2015; 22(2): 203-205. doi:10.1177/2047487313508034; Lochner A, Genade S, Genis A, Marais E, Salie R. Long-chain free fatty acids inhibit ischaemic preconditioning of the isolated rat heart. Mol Cell Biochem. 2020; 473(1-2): 111-132. doi:10.1007/s11010-020-03812-9; Semenza GL. Angiogenesis ischemic and neoplastic disorders. Ann Rev Med. 2003; 54(1): 17-28. doi:10.1146/annurev.med.54.101601.152418; Liu T, Wu Z, Liu J, Lv Y, Li W. Metabolic syndrome and its components reduce coronary collateralization in chronic total occlusion: An observational study. Cardiovasc Diabetol. 2021; 20(1): 104. doi:10.1186/s12933-021-01297-4; Zeng Y, Liu H, Kang K, Wang Z, Hui G, Zhang X, et al. Hypoxia inducible factor-1 mediates expression of miR-322: Potential role in proliferation and migration of pulmonary arterial smooth muscle cells. Sci Rep. 2015; 5(1): 12098. doi:10.1038/srep12098; Dong W, Dong C, Zhu J, Zheng Y, Weng J, Liu L, et al. HIF‐1α‐ induced upregulated miR‐322 forms a feedback loop by targeting Smurf2 and Smad7 to activate Smad3/β‐catenin/HIF‐1α, thereby improving myocardial ischemia‐reperfusion injury. Cell Biol Int. 2023; 47(5): 894-906. doi:10.1002/cbin.11954; Marchand A, Atassi F, Mougenot N, Clergue M, Codoni V, Berthuin J, et al. miR-322 regulates insulin signaling pathway and protects against metabolic syndrome-induced cardiac dysfunction in mice. Biochim Biophys Acta (BBA) Mol Basis Dis. 2016; 1862(4): 611-621. doi:10.1016/j.bbadis.2016.01.010; Lefebvre P, Fruchart J, Staels B, Lefebvre P, Chinetti G, Fruchart J, et al. Sorting out the roles of PPAR a in energy metabolism and vascular homeostasis. J Clin Invest 2006; 116(3): 571-580. doi:10.1172/JCI27989.symptoms; Barger PM, Kelly DP. PPAR signaling in the control of cardiac energy metabolism. Trends Cardiovasc Med. 2000; 10(6): 238- 245. doi:10.1016/S1050-1738(00)00077-3; Sánchez-Aguilar M, Ibarra-Lara L, Cano-Martínez A, Soria-Castro E, Castrejón-Téllez V, Pavón N, et al. PPAR alpha activation by clofibrate alleviates ischemia/reperfusion injury in metabolic syndrome rats by decreasing cardiac inflammation and remodeling and by regulating the atrial natriuretic peptide compensatory response. Int J Mol Sci. 2023; 24(6): 5321. doi:10.3390/ijms24065321; Rajlic S, Surmann L, Zimmermann P, Weisheit CK, Bindila L, Treede H, et al. Fatty acid amide hydrolase deficiency is associated with deleterious cardiac effects after myocardial ischemia and reperfusion in mice. Int J Mol Sci. 2022; 23(20): 12690. doi:10.3390/ijms232012690; Yan J, Song K, Bai Z, Ge R-L. WY14643 improves left ventricular myocardial mitochondrial and systolic functions in obese rats under chronic persistent hypoxia via the PPARα pathway. Life Sci. 2021; 266: 118888. doi:10.1016/j.lfs.2020.118888; https://www.actabiomedica.ru/jour/article/view/4616Test

  3. 3
    دورية أكاديمية

    المساهمون: Тhe article was prepared with the financial support of the Russian Science Foundation, grant MMP (23-65-10017). The introduction to the article was prepared with the support of the state assignment 122020300042-4, Статья подготовлена при финансовой поддержке Российского Научного Фонда (грант 23-65-10017). Введение к статье подготовлено при поддержке государственного задания 122020300042-4

    المصدر: The Siberian Journal of Clinical and Experimental Medicine; Том 39, № 1 (2024); 11-17 ; Сибирский журнал клинической и экспериментальной медицины; Том 39, № 1 (2024); 11-17 ; 2713-265X ; 2713-2927

    وصف الملف: application/pdf

    العلاقة: https://www.sibjcem.ru/jour/article/view/1853/927Test; Megaly M., Pershad A., Glogoza M., Elbadawi A., Omer M., Saad M. et al. Use of intravascular imaging in patients with ST-segment elevation acute myocardial infarction. Cardiovasc. Revasc. Med. 2021;30:59–64. DOI:10.1016/j.carrev.2020.09.032.; Ya’qoub L., Gad M., Saad A.M., Elgendy I.Y., Mahmoud A.N. National trends of utilization and readmission rates with intravascular ultrasound use for ST-elevation myocardial infarction. Catheter. Cardiovasc. Interv. 2021;98(1):1–9. DOI:10.1002/ccd.29524.; Garcia S., Schmidt C.W., Garberich R., Henry T.D., Bradley S.M., Brilakis E.S. et al. Temporal changes in patient characteristics and outcomes in ST-segment elevation myocardial infarction 2003–2018. Catheter. Cardiovasc. Interv. 2021;97(6):1109–1117. DOI:10.1002/ccd.28901.; Maslov L.N., Popov S.V., Mukhomedzyanov A.V., Naryzhnaya N.V., Voronkov N.S., Ryabov V.V. et al. Reperfusion cardiac injury: Receptors and the signaling mechanisms. Curr. Cardiol. Rev. 2022;18(5):63–79. DOI:10.2174/1573403X18666220413121730.; Acharya D. Predictors of outcomes in myocardial infarction and cardiogenic shock. Cardiol. Rev. 2018;26(5):255–266. DOI:10.1097/CRD.0000000000000190.; Sambola A., Elola F.J., Buera I., Fernández C., Bernal J.L., Ariza A. et al. Sex bias in admission to tertiary-care centres for acute myocardial infarction and cardiogenic shock. Eur. J. Clin. Invest. 2021;51(7):e13526. DOI:10.1111/eci.13526.; Gross E.R., Hsu A.K., Gross G.J. Opioid-induced cardioprotection occurs via glycogen synthase kinase beta inhibition during reperfusion in intact rat hearts. Circ. Res. 2004;94(7):960–966. DOI:10.1161/01.RES.0000122392.33172.09.; Gross E.R., Hsu A.K., Gross G.J. Acute methadone treatment reduces myocardial infarct size via the delta-opioid receptor in rats during reperfusion. Anesth. Analg. 2009;109(5):1395–1402. DOI:10.1213/ANE.0b013e3181b92201.; Метелица В.И. Справочник по клинической фармакологии сердечно-сосудистых лекарственных средств. М.: Медпрактика; 1996:784.; Маслов Л.Н., Лишманов Ю.Б. Проницаемость гематоэнцефалического барьера для опиоидных пептидов. Экспериментальная и клиническая фармакология. 2017;80(6):39–44. DOI:10.30906/0869-2092-2017-80-6-39-44.; Jiang L., Hu J., He S., Zhang L., Zhang Y. Spinal neuronal NOS signaling contributes to morphine cardioprotection in ischemia reperfusion injury in rats. J. Pharmacol. Exp. Ther. 2016;358(3):450–456. DOI:10.1124/jpet.116.234021.; Lu Y., Hu J., Zhang Y., Dong C.S., Wong G.T. Remote intrathecal morphine preconditioning confers cardioprotection via spinal cord nitric oxide/cyclic guanosine monophosphate/protein kinase G pathway. J. Surg. Res. 2015;193(1):43–51. DOI:10.1016/j.jss.2014.08.014.; Lishmanov Yu.B., Ugdyzhekova D.S., Maslov L.N. Prevention of experimental epinephrine-induced arrhythmias with agonists of δ1 - and δ2 -opiate receptors. Bull. Exp. Biol. Med. 1997;124(3):873–875. DOI:10.1007/BF02446988.; Patel H.H., Hsu A., Moore J., Gross G.J. BW373U86, a delta opioid agonist, partially mediates delayed cardioprotection via a free radical mechanism that is independent of opioid receptor stimulation. J. Mol. Cell. Cardiol. 2001;33(8):1455–1465. DOI:10.1006/jmcc.2001.1408.; Maslov L.N., Khaliulin I., Oeltgen P.R., Naryzhnaya N.V., Pei J.-M., Brown S.A. et al. Prospects of creation of cardioprotective and antiarrhythmic drugs based on opioid receptor agonists. Med. Res. Rev. 2016;36(5):871–923. DOI:10.1002/med.21395.; Maslov L.N., Lishmanov Yu.B., Oeltgen P.R., Barzakh E.I., Krylatov A.V., Govindaswami M. Activation of peripheral δ2 opioid receptors increases cardiac tolerance to ischemia/reperfusion injury: Involvement of protein kinase C, NO-synthase, KATP channels and the autonomic nervous system. Life Sci. 2009;84(19–20):657–663. DOI:10.1016/j.lfs.2009.02.016.; Peart J.N., Patel H.H., Gross G.J. Delta-opioid receptor activation mimics ischemic preconditioning in the canine heart. J. Cardiovasc. Pharmacol. 2003;42(1):78–81. DOI:10.1097/00005344-200307000-00012.; Fryer R.M., Wang Y., Hsu A.K., Nagase H., Gross G.J. Dependence of δ1 -opioid receptor-induced cardioprotection on a tyrosine kinase-dependent but not a Src-dependent pathway. J. Pharmacol. Exp. Ther. 2001;299(2):477–482.; Maslov L.N., Mukhomedzyanov A.V., Tsibulnikov S.Y., Suleiman M.S., Khaliulin I., Oeltgen P.R. Activation of peripheral δ2-opioid receptor prevents reperfusion heart injury. Eur. J. Pharmacol. 2021;907:174302. DOI:10.1016/j.ejphar.2021.174302.; Heusch G. Molecular basis of cardioprotection: signal transduction in ischemic pre-, post-, and remote conditioning. Circ. Res. 2015;116(4):674–699. DOI:10.1161/CIRCRESAHA.116.305348.; de Miranda D.C., de Oliveira Faria G., Hermidorff M.M., Dos Santos Silva F.C., de Assis LVM, Isoldi M.C. Pre- and Post-Conditioning of the Heart: An Overview of Cardioprotective Signaling Pathways. Curr. Vasc. Pharmacol. 2021;19(5):499–524. DOI:10.2174/1570161119666201120160619.; Gross E.R., Hsu A.K., Gross G.J. The JAK/STAT pathway is essential for opioid-induced cardioprotection: JAK2 as a mediator of STAT3, Akt, and GSK-3β. Am. J. Physiol. Heart Circ. Physiol. 2006;291(2):H827–H834. DOI:10.1152/ajpheart.00003.2006.; Dorsch M., Behmenburg F., Raible M., Blase D., Grievink H., Hollmann M.W. et al. Morphine-induced preconditioning: involvement of protein kinase A and mitochondrial permeability transition pore. PLoS One. 2016;11(3):e0151025. DOI:10.1371/journal.pone.0151025.; Li L., Zhang H., Li T., Zhang B. Involvement of adenosine monophosphate-activated protein kinase in morphine-induced cardioprotection. J. Surg. Res. 2011;169(2):179–187. DOI:10.1016/j.jss.2009.11.007.; Kim J.H., Jang Y.H., Chun K.J., Kim J., Park Y.H., Kim J.S. et al. Kappa-opioid receptor activation during reperfusion limits myocardial infarction via ERK1/2 activation in isolated rat hearts. Korean J. Anesthesiol. 2011;60(5):351–356. DOI:10.4097/kjae.2011.60.5.351.; Wu X., Zhang B., Fan R., Zhao L., Wang Y., Zhang S. et al. U50,488H inhibits neutrophil accumulation and TNF-α induction induced by ischemia-reperfusion in rat heart. Cytokine. 2011;56(2):503–507. DOI:10.1016/j.cyto.2011.07.015.; Gross G.J., Hsu A., Nithipatikom K., Pfeiffer A.W., Bobrova I., Bissessar E. Acute and chronic cardioprotection by the enkephalin analogue, Eribis peptide 94, is mediated via activation of nitric oxide synthase and adenosine triphosphate-regulated potassium channels. Pharmacology. 2012;90(1–2):110–116. DOI:10.1111/j.1745-7254.2005.00100.x.; Zhang Y., Chen Z.W., Girwin M., Wong T.M. Remifentanil mimics cardioprotective effect of ischemic preconditioning via protein kinase C activation in open chest of rats. Acta Pharmacol. Sin. 2005;26(5):546–550. DOI:10.1111/j.1745-7254.2005.00100.x.; Popov S.V., Mukhomedzyanov A.V., Maslov L.N., Naryzhnaya N.V., Kurbatov B.K., Prasad N.R. et al. The infarct-reducing effect of the δ2 opioid receptor agonist deltorphin II: The molecular mechanism. Membranes (Basel). 2023;13(1):63. DOI:10.3390/membranes13010063.; Maslov L.N., Lishmanov Y.B. The anti-arrhythmic effect of D-Ala2, Leu5, Arg6-enkephalin and its possible mechanism. Int. J. Cardiol. 1993;40(2):89–94. DOI:10.1016/0167-5273(93)90269-m.; Li D.Y., Gao S.J., Sun J., Zhang L.Q., Wu J.Y., Song F.H. et al. Targeting the nitric oxide/cGMP signaling pathway to treat chronic pain. Neural. Regen Res. 2023; 18(5):996–1003. DOI:10.4103/1673-5374.355748.; Krylatov A.V., Tsibulnikov S.Y., Mukhomedzyanov A.V., Boshchenko A.A., Goldberg V.E., Jaggi A.S. et al. The role of natriuretic peptides in the regulation of cardiac tolerance to ischemia/reperfusion and postinfarction heart remodeling. J. Cardiovasc. Pharmacol. Ther. 2021;26(2):131–148. DOI:10.1177/1074248420952243.; Wu G., Sharina I., Martin E. Soluble guanylyl cyclase: Molecular basis for ligand selectivity and action in vitro and in vivo. Front. Mol. Biosci. 2022;9:1007768. DOI:10.3389/fmolb.2022.1007768.; Xu J., Zhu K., Wang Y., Chen J. The dual role and mutual dependence of heme/HO-1/Bach1 axis in the carcinogenic and anti-carcinogenic intersection. J. Cancer Res. Clin. Oncol. 2023;149(1):483–501. DOI:10.1007/s00432-022-04447-7.; Castany S., Carcolé M., Leánez S., Pol O. The antinociceptive effects of a δ-opioid receptor agonist in mice with painful diabetic neuropathy: Involvement of heme oxygenase 1. Neurosci. Lett. 2016;614:49–54. DOI:10.1016/j.neulet.2015.12.059.; Stagni E., Bucolo C., Motterlini R., Drago F. Morphine-induced ocular hypotension is modulated by nitric oxide and carbon monoxide: role of mu3 receptors. J. Ocul. Pharmacol. Ther. 2010;26(1):31–35. DOI:10.1089/jop.2009.0081.; Krylatov A.V., Maslov L.N., Voronkov N.S., Boshchenko A.A., Popov S.V., Gomez L. et al. Reactive oxygen species as intracellular signaling molecules in the cardiovascular system. Curr. Cardiol. Rev. 2018;14(4):290–300. DOI:10.2174/1573403X14666180702152436.; Tsutsumi Y.M., Yokoyama T., Horikawa Y., Roth D.M., Patel H.H. Reactive oxygen species trigger ischemic and pharmacological postconditioning: in vivo and in vitro characterization. Life Sci. 2007;81(15):1223– 1227. DOI:10.1016/j.lfs.2007.08.031.; Rong F., Peng Z., Ye M.X., Zhang Q.Y., Zhao Y., Zhang S.M., et al. Myocardial apoptosis and infarction after ischemia/reperfusion are attenuated by κ-opioid receptor agonist. Arch. Med. Res. 2009;40(4):227–234. DOI:10.1016/j.arcmed.2009.04.009.; Peart J.N., Gross E.R., Reichelt M.E., Hsu A., Headrick J.P., Gross G.J. Activation of kappa-opioid receptors at reperfusion affords cardioprotection in both rat and mouse hearts. Basic Res. Cardiol. 2008;103(5):454– 463. DOI:10.1007/s00395-008-0726-z.; Jang Y., Xi J., Wang H., Mueller R.A., Norfleet E.A., Xu Z. Postconditioning prevents reperfusion injury by activating δ-opioid receptors. Anesthesiology. 2008;108(2):243–250. DOI:10.1097/01.anes.0000299437.93898.4a.; Kim J.H., Chun K.J., Park Y.H., Kim J., Kim J.S., Jang Y.H. et al. Morphine-induced postconditioning modulates mitochondrial permeability transition pore opening via delta-1 opioid receptors activation in isolated rat hearts. Korean J. Anesthesiol. 2011;61(1):69–74. DOI:10.4097/kjae.2011.61.1.69.; https://www.sibjcem.ru/jour/article/view/1853Test

  4. 4
    دورية أكاديمية

    المساهمون: The work was funded by the Russian Science Foundation (grant No. 22-25-20001) and the Tomsk Region Administration. The authors thank Dr. med. Sciences, Professor L.N. Maslov for advisory assistance in compiling the review., Работа выполнена при поддержке Российского Научного Фонда (грант № 22-25-20001) и средств Администрации Томской области. Авторы выражают признательность д-ру мед. наук, профессору Л.Н. Маслову за консультативную помощь при составлении обзора.

    المصدر: The Siberian Journal of Clinical and Experimental Medicine; Том 38, № 1 (2023); 37-45 ; Сибирский журнал клинической и экспериментальной медицины; Том 38, № 1 (2023); 37-45 ; 2713-265X ; 2713-2927

    وصف الملف: application/pdf

    العلاقة: https://www.sibjcem.ru/jour/article/view/1711/785Test; Menees D.S., Peterson E.D., Wang Y., Curtis J.P., Messenger J.C., Rumsfeld J.S. et al. Door-to-Balloon Time and Mortality among Patients Undergoing Primary PCI. N. Engl. J. Med. 2013;369(10):901–909. DOI:10.1056/NEJMoa1208200.; Fuernau G., Fengler K., Desch S., Eitel I., Neumann F.J., Olbrich H.G. et al. Culprit lesion location and outcome in patients with cardiogenic shock complicating myocardial infarction: a substudy of the IABP-SHOCK II-trial. Clin. Res. Cardiol. 2016;105(12):1030–1041. DOI:10.1007/s00392-016-1017-6.; Vinten-Johansen J., Shi W. The science and clinical translation of remote postconditioning. J. Cardiovasc. Med. 2013;14(3):206–213. DOI:10.2459/JCM.0b013e32835cecc6.; Kerendi F., Kin H., Halkos M.E., Jiang R., Zatta A.J., Zhao Z.Q. et al. Remote postconditioning. Basic Res. Cardiol. 2005;100(5):404–412. DOI:10.1007/s00395-005-0539-2.; Li C.M., Zhang X.H., Ma X.J., Luo M. Limb ischemic postconditioning protects myocardium from ischemia-reperfusion injury. Scand. Cardiovasc. J. 2006;40(5):312–317. DOI:10.1080/14017430600925292.; Andreka G., Vertesaljai M., Szantho G., Font G., Piroth Z., Fontos G. et al. Remote ischaemic postconditioning protects the heart during acute myocardial infarction in pigs. Heart. 2007;93(6):749–752. DOI:10.1136/hrt.2006.114504.; Ren X., Roessler A.E., Lynch T.L. 4th, Haar L., Mallick F., Lui Y. et al. Cardioprotection via the skin: nociceptor-induced conditioning against cardiac MI in the NIC of time. Am. J. Physiol. Circ. Physiol. 2019;316(3):H543–H553. DOI:10.1152/ajpheart.00094.2018.; Fang J., Chen L., Wu L., Li W. Intra-cardiac remote ischemic post-conditioning attenuates ischemia-reperfusion injury in rats. Scand. Cardiovasc. J. 2009;43(6):386–394. DOI:10.1080/14017430902866681.; Ren H.M., Xie R.Q., Cui W., Liu F., Hu H.J., Lu J.C. Effects of rabbit limbs ischemia/ reperfusion on myocardial necrosis and apoptosis. Zhongguo Ying Yong Sheng Li Xue Za Zhi. 2012;28(4):323–327.; Wei M., Xin P., Li S., Tao J., Li Y., Li J. et al. Repeated Remote Ischemic Postconditioning Protects Against Adverse Left Ventricular Remodeling and Improves Survival in a Rat Model of Myocardial Infarction. Circ. Res. 2011;108(10):1220–1225. DOI:10.1161/CIRCRESAHA.110.236190.; Chen G., Ye X., Zhang J., Tang T., Li L., Lu P. et al. Limb Remote Ischemic Postconditioning Reduces Ischemia-Reperfusion Injury by Inhibiting NADPH Oxidase Activation and MyD88-TRAF6-P38MAP-Kinase Pathway of Neutrophils. Int. J. Mol. Sci. 2016;17(12):1971. DOI:10.3390/ijms17121971.; Jones W.K., Fan G.C., Liao S., Zhang J.M., Wang Y., Weintraub N.L. et al. Peripheral nociception associated with surgical incision elicits remote nonischemic cardioprotection via neurogenic activation of protein kinase C signaling. Circulation. 2009;120(11 Suppl):S1–S9. DOI:10.1161/CIRCULATIONAHA.108.843938.; Breivik L., Helgeland E., Aarnes E.K., Mrdalj J., Jonassen A.K. Remote postconditioning by humoral factors in effluen from ischemic preconditioned rat hearts is mediated via PI3K/Akt-dependent cell-survival signaling at reperfusion. Basic Res. Cardiol. 2011;106(1):135–145. DOI:10.1007/s00395-010-0133-0.; Penna C., Granata R., Tocchetti C., Gallo M., Alloatti G., Pagliaro P. Endogenous Cardioprotective Agents: Role in Pre and Postconditioning. Curr. Drug Targets. 2015;16(8):843–867. DOI:10.2174/1389450116666150309115536.; Wang Z., Wen J., Zhou C., Wang Z., Wei M. Gene expression profi - ing analysis to investigate the role of remote ischemic postconditioning in ischemia-reperfusion injury in rats. BMC Genomics. 2019;20(1):361. DOI:10.1186/s12864-019-5743-9.; Bartekova M., Jelemensky M., Dhalla N.S. Emerging role of non-coding RNAs and extracellular vesicles in cardioprotection by remote ischemic conditioning of the heart. Rev. Cardiovasc. Med. 2019;20(2):59. DOI:10.31083/j.rcm.2019.02.54.; Tang Y., Yang J., Xiang H., Xu J. PI3K-Akt/eNOS in remote postconditioning induced by brief pulmonary ischemia. Clin. Investig. Med. 2014;37(1):26. DOI:10.25011/cim.v37i1.20866.; Мухомедзянов А.В., Маслов Л.Н. Роль опиоидных рецепторов в механизме кардиопротекторного эффекта дистантного посткондиционирования. Кардиологический вестник. 2022;17(2–2):28–29.; Нарыжная Н.В., Мухомедзянов А.В., Курбатов Б.К., Сиротина М.А., Килин М., Азев В.Н. и др. Инфаркт-лимитирующая эффективность дельторфина-II при индуцированном диетой метаболическом синдроме у старых крыс. Acta biomedica scientific . 2022;7(6):281–289. DOI:10.29413/ABS.2022-7.6.29.; Ling J., Wong G.T.C., Yao L., Xia Z., Irwin M.G. Remote pharmacological post-conditioning by intrathecal morphine: cardiac protection from spinal opioid receptor activation. Acta Anaesthesiol. Scand. 2010;54(9):1097–1104. DOI:10.1111/j.1399-6576.2010.02295.x.; Xu Y.C., Li R.P., Xue F.S., Cui X.L., Wang S.Y., Liu G.P. et al. κ-Opioid receptors are involved in enhanced cardioprotection by combined fentanyl and limb remote ischemic postconditioning. J. Anesth. 2015;29(4):535–543. DOI:10.1007/s00540-015-1998-8.; Gao Y., Song J., Chen H., Cao C., Lee C. TRPV1 activation is involved in the cardioprotection of remote limb ischemic postconditioning in ischemia-reperfusion injury rats. Biochem. Biophys.Res. Commun. 2015;463(4):1034–1039. DOI:10.1016/j.bbrc.2015.06.054.; Лишманов Ю.Б., Маслов Л.Н., Цибульников С.Ю., Крылатов А.В. Способность каннабиноида HU-210 имитировать феномен ишемического посткондиционирования. Сибирский медицинский журнал. 2013;28(3):70–73.; Gao Q., Hu J., Hu J., Yu Y., Ye H., Li Z. et al. Calcium activated potassium channel and protein kinase C participate in the cardiac protection of remote post conditioning. Pak. J. Pharm. Sci. 2013;26(2):285–290.; Mukhomedzyanov A.V., Naryzhnaya N.V., Maslov L.N. The role of protein kinase C and PI3-kinase in the mechanism of the cardioprotective effect of remote ischemic postconditioning. Bull. Sib. Med. 2022;20(4):6–10. DOI:10.20538/1682-0363-2021-4-6-10.; Gao S., Zhan L., Yang Z., Shi R., Li H., Xia Z. et al. Remote Limb Ischaemic Postconditioning Protects Against Myocardial Ischaemia/Reperfusion Injury in Mice: Activation of JAK/STAT3-Mediated Nrf2-Antioxidant Signalling. Cell Physiol. Biochem. 2017;43(3):1140–1151. DOI:10.1159/000481755.; Wang C., Li H., Wang S., Mao X., Yan D., Wong S.S. et al. Repeated non-invasive limb ischemic preconditioning confers cardioprotection through PKC-ϵ/STAT3 signaling in diabetic rats. Cell Physiol. Biochem. 2018;45(5):2107–2121. DOI:10.1159/000488047.; Malemud C.J. The role of the JAK/STAT signal pathway in rheumatoid arthritis. Ther. Adv. Musculoskelet Dis. 2018;10(5–6):117–127. DOI:10.1177/1759720X18776224.; Yamaoka K., Saharinen P., Pesu M., Holt V.E., Silvennoinen O., O’Shea J.J. The Janus kinases (Jaks). Genome Biol. 2004;5(12):253. DOI:10.1186/gb-2004-5-12-253.; Penna C., Andreadou I., Aragno M., Beauloye C., Bertrand L., Lazou A. et al. Effect of hyperglycaemia and diabetes on acute myocardial ischaemia–reperfusion injury and cardioprotection by ischaemic conditioning protocols. Br. J. Pharmacol. 2020;177(23):5312–5335. DOI:10.1111/bph.14993.; Oosterlinck W., Dresselaers T., Geldhof V., Nevelsteen I., Janssens S., Himmelreich U. et al. Diabetes mellitus and the metabolic syndrome do not abolish, but might reduce, the cardioprotective effect of ischemic postconditioning. J. Thorac. Cardiovasc. Surg. 2013;145(6):1595–1602. DOI:10.1016/j.jtcvs.2013.02.016.; Logvinov S.V., Mukhomedzyanov A.V., Kurbatov B.K., Sirotina M.A., Naryzhnaya N.V., Maslov L.N. Participation of leptin and corticosterone in the lack of infarct-limiting efficiency of remote postconditioning and of arterial hypertension at metabolic syndrome in rats. Bull. Exp. Biol. Med. 2022;174(9):294–300. DOI:10.47056/0365-9615-2022-174-9-294-300.; Lochner A., Genade S., Genis A., Marais E., Salie R. Long-chain free fatty acids inhibit ischaemic preconditioning of the isolated rat heart. Mol. Cell Biochem. 2020;473(1–2):111–132. DOI:10.1007/s11010-020-03812-9.; Wen Z., Li J., Fu Y., Zheng Y., Ma M., Wang C. Hypertrophic adipocyte-derived exosomal miR-802-5p contributes to insulin resistance in cardiac myocytes through targeting HSP60. Obesity. (Silver Spring). 2020;28(10):1932–1940. DOI:10.1002/oby.22932.; Nascimento A.F., Luvizotto R.A., Leopoldo A.S., Lima-Leopoldo A.P., Seiva F.R., Justulin L.A.Jr. et al. Long-term high-fat diet-induced obesity decreases the cardiac leptin receptor without apparent lipotoxicity. Life Sci. 2011;88(23–24):1031–1038. DOI:10.1016/j.lfs.2011.03.015.; Recinella L., Orlando G., Ferrante C., Chiavaroli A., Brunetti L., Leone S. Adipokines: new potential therapeutic target for obesity and metabolic, rheumatic, and cardiovascular diseases. Front. Physiol. 2020;11:578966. DOI:10.3389/fphys.2020.578966.; Russell J.S., Griffith T.A., Helman T., Du Toit E.F., Peart J.N., Headrick J.P. Chronic type 2 but not type 1 diabetes impairs myocardial ischaemic tolerance and preconditioning in C57Bl/6 mice. Exp. Physiol. 2019;104(12):1868–1880. DOI:10.1113/EP088024.; Schram K., Girolamo S., Madani S., Munoz D., Thong F., Sweeney G. Leptin regulates MMP-2, TIMP-1 and collagen synthesis via p38 MAPK in HL-1 murine cardiomyocytes. Cell. Mol. Biol. Lett. 2010;15(4):551–563. DOI:10.2478/s11658-010-0027-z.; Ren J., Zhu B.H., Relling D.P., Esberg L.B., Ceylan-Isik A.F. High-fat diet-induced obesity leads to resistance to leptin-induced cardiomyocyte contractile response. Obesity. 2008;16(11):2417–2423. DOI:10.1038/oby.2008.381.; Xu T., Liu S., Wang X. Amelioration of myocardial ischemia/reperfusion injury by leptin pretreatment and ischemic preconditioning in mouse. Zhongguo Wei Zhong Bing Ji Jiu Yi Xue. 2010;22(2):105–108.; Hill-Pryor C., Dunbar J.C. The effect of high fat-induced obesity on cardiovascular and physical activity and opioid responsiveness in conscious rats. Clin. Exp. Hypertens. 2006;28(2):133–145. DOI:10.1080/10641960500468326.; Barnes M.J., Jen K.L.C., Dunbar J.C. The effect of CNS opioid on autonomic nervous and cardiovascular responses in diet-induced obese rats. Peptides. 2004;25(1):71–79. DOI:10.1016/j.peptides.2003.11.009.; Lu H., Buison A., Jen K.L.C., Dunbar J.C. Leptin resistance in obesity is characterized by decreased sensitivity to proopiomelanocortin products. Peptides. 2000;21(10):1479–1485. DOI:10.1016/S0196-9781(00)00301-6.; Alexandre-Santos B., Machado M.V., Menezes A.C., Velasco L.L., Sepúlveda-Fragoso V., Vieira A.B. et al. Exercise-induced cardiac opioid system activation attenuates apoptosis pathway in obese rats. Life Sci. 2019;231:116542. DOI:10.1016/j.lfs.2019.06.017.; Zemljic-Harpf A.E., See Hoe L.E., Schilling J.M., Zuniga-Hertz J.P., Nguyen A., Vaishnav Y.J. et al. Morphine induces physiological, structural, and molecular benefits in the diabetic myocardium. FASEB J. 2021;35(3):e21407. DOI:10.1096/fj.201903233R.; Donner D., Headrick J.P., Peart J.N., Du Toit E.F. Obesity improves myocardial ischaemic tolerance and RISK signalling in insulin-insensitive rats. Dis. Model. Mech. 2013;6:457–466. DOI:10.1242/dmm.010959.; Yan J., Song K., Bai Z., Ge R.L. WY14643 improves left ventricular myocardial mitochondrial and systolic functions in obese rats under chronic persistent hypoxia via the PPARα pathway. Life Sci. 2021;266:118888. DOI:10.1016/j.lfs.2020.118888.; Lindholm C.R., Ertel R.L., Bauwens J.D., Schmuck E.G., Mulligan J.D., Saupe K.W. A high-fat diet decreases AMPK activity in multiple tissues in the absence of hyperglycemia or systemic inflammation in rats. J. Physiol. Biochem. 2013;69(2):165–175. DOI:10.1007/s13105-012-0199-2.; Bouhidel O., Pons S., Souktani R., Zini R., Berdeaux A., Ghaleh B. Myocardial ischemic postconditioning against ischemia-reperfusion is impaired in ob/ob mice. Am. J. Physiol. Circ. Physiol. 2008;295(4):H1580– H1586. DOI:10.1152/ajpheart.00379.2008.; Bender S.B., Tune J.D., Borbouse L., Long X., Sturek M., Laughlin M.H. Altered Mechanism of Adenosine-Induced Coronary Arteriolar Dilation in Early-Stage Metabolic Syndrome. Exp. Biol. Med. 2009;234(6):683–692. DOI:10.3181/0812-RM-350.; Jhuo S.J., Liu I.H., Tsai W.C., Chou T.W., Lin Y.H., Wu B.N. et al. Effects of secretome from fat tissues on ion currents of cardiomyocyte modulated by sodium-glucose transporter 2 inhibitor. Molecules. 2020;25(16):3606. DOI:10.3390/molecules25163606.; Cardoso A.R., Cabral-Costa J.V., Kowaltowski A.J. Effects of a high fat diet on liver mitochondria: Increased ATP-sensitive K+ channel activity and reactive oxygen species generation. J. Bioenerg. Biomembr. 2010;42(3):245–253. DOI:10.1007/s10863-010-9284-9.; Alberici L.C., Vercesi A.E., Oliveira H.C.F. Mitochondrial energy metabolism and redox responses to hypertriglyceridemia. J. Bioenerg. Biomembr. 2011;43(1):19–23. DOI:10.1007/s10863-011-9326-y.; Zhong H., Gao Z., Chen M., Zhao J., Wang F., Li L. et al. Cardioprotective effect of remote ischemic postconditioning on children undergoing cardiac surgery: a randomized controlled trial. Pediatr. Anesth. 2013;23(8):726–733. DOI:10.1111/pan.12181.; Cho Y.J., Lee E.H., Lee K., Kim T.K., Hong D.M., Chin J.H. et al. Long-term clinical outcomes of Remote Ischemic Preconditioning and Postconditioning Outcome (RISPO) trial in patients undergoing cardiac surgery. Int. J. Cardiol. 2017;231:84–89. DOI:10.1016/j.ijcard.2016.12.146.; Prunier F., Angoulvant D., Saint Etienne C., Vermes E., Gilard M., Piot C. et al. The RIPOST-MI study, assessing remote ischemic perconditioning alone or in combination with local ischemic postconditioning in ST-segment elevation myocardial infarction. Basic Res. Cardiol. 2014;109(2):400. DOI:10.1007/s00395-013-0400-y.; White S.K., Frohlich G.M., Sado D.M., Maestrini V., Fontana M., Treibel T.A. et al. Remote ischemic conditioning reduces myocardial infarct size and edema in patients with ST-segment elevation myocardial infarction. JACC Cardiovasc. Interv. 2015;8(1 Pt B):178–188. DOI:10.1016/j.jcin.2014.05.015.; Carrasco-Chinchilla F., Muñoz-García A.J., Domínguez-Franco A., Millán-Vázquez G., Guerrero-Molina A., Ortiz-García C. et al. Remote ischaemic postconditioning: Does it protect against ischaemic damage in percutaneous coronary revascularisation? Randomised placebo-controlled clinical trial. Heart. 2013;99(19):1431–1437. DOI:10.1136/heartjnl-2013-304172.; Verouhis D., Sörensson P., Gourine A., Henareh L., Persson J., Saleh N. et al. Effect of remote ischemic conditioning on infarct size in patients with anterior ST-elevation myocardial infarction. Am. Heart J. 2016;181:66–73. DOI:10.1016/j.ahj.2016.08.004.; Verouhis D., Sörensson P., Gourine A., Henareh L., Persson J., Saleh N. et al. Long-term effect of remote ischemic conditioning on infarct size and clinical outcomes in patients with anterior ST-elevation myocardial infarction. Catheter. Cardiovasc. Interv. 2021;97(3):386–392. DOI:10.1002/ccd.28760.; https://www.sibjcem.ru/jour/article/view/1711Test

  5. 5
    دورية أكاديمية

    المساهمون: The study of myocardial changes in young rats with induced metabolic syndrome was supported by the Russian Science Foundation Grant https://rscf.ru/projectTest /22-25-20001/ and funds from the Administration of the Tomsk Region. Studies of myocardial changes in old rats with induced metabolic syndrome were carried out within the framework of the state task 122020300042-4. The work was performed using the Center for Collective Use “Medical Genomics”., Исследование изменений миокарда у молодых крыс при индуцированном метаболическом синдроме проводилось при поддержке Российского научного фонда Грант https://rscf.ru/projectTest /22-25-20001/ и средств Администрации Томской области. Исследование изменений миокарда у старых крыс при индуцированном метаболическом синдроме осуществлялось в рамках государственного задания 122020300042-4. Работа выполнена с использованием Центра коллективного пользования «Медицинская геномика».

    المصدر: The Siberian Journal of Clinical and Experimental Medicine; Том 38, № 1 (2023); 90-98 ; Сибирский журнал клинической и экспериментальной медицины; Том 38, № 1 (2023); 90-98 ; 2713-265X ; 2713-2927

    وصف الملف: application/pdf

    العلاقة: https://www.sibjcem.ru/jour/article/view/1716/790Test; Sun M., Tan Y., Rexiati M., Dong M., Guo W. Obesity is a common soil for premature cardiac aging and heart diseases – Role of autophagy. Biochim. Biophys. Acta-Mol. Basis Dis. 2019;1865(7):1898–1904. DOI:10.1016/j.bbadis.2018.09.004.; De Castro U.G.M., dos Santos R.A.S.A.S., Silva M.E., de Lima W.G., Campagnole-Santos M.J., Alzamora A.C. Age-dependent effect of high-fructose and high-fat diets on lipid metabolism and lipid accumulation in liver and kidney of rats. Lipids Health Dis. 2013;(12–136). DOI:10.1186/1476-511X-12-136.; Martinelli I., Tomassoni D., Moruzzi M., Roy P., Cifani C., Amenta F. et al. Cardiovascular Changes Related to Metabolic Syndrome: Evidence in Obese Zucker Rats. Int. J. Mol. Sci. 2020;21(6):2035. DOI:10.3390/ijms21062035.; Boyle A.J., Shih H., Hwang J., Ye J., Lee B., Zhang Y. et al. Cardiomyopathy of aging in the mammalian heart is characterized by myocardial hypertrophy, fibrosis and a predisposition towards cardiomyocyte apoptosis and autophagy. Exp. Gerontol. 2011;46(7):549–559. DOI:10.1016/j.exger.2011.02.010.; Piek A., de Boer R.A., Silljé H.H.W. The fibrosis-cell death axis in heart failure. Heart Fail. Rev. 2016;21(2):199-211. DOI:10.1007/s10741-016-9536-9.; Klausner S.C., Schwartz A.B. The aging heart. Clin. Geriatr. Med. 1985;1(1):119-141. URL: https://pubmed.ncbi.nlm.nih.gov/3913496Test/; Tracy E., Rowe G., LeBlanc A.J. Cardiac tissue remodeling in healthy aging: the road to pathology. Am. J. Physiol. Cell Physiol. 2020;319(1):C166–C182. DOI:10.1152/ajpcell.00021.2020.; Nakou E.S., Parthenakis F.I., Kallergis E.M., Marketou M.E., Nakos K.S., Vardas P.E. Healthy aging and myocardium: A complicated process with various effects in cardiac structure and physiology. Int. J. Cardiol. 2016;209:167–175. DOI:10.1016/j.ijcard.2016.02.039.; Logvinov S.V., Naryzhnaya N.V., Kurbatov B.K., Gorbunov A.S., Birulina Y.G., Maslov L.L. et al. High carbohydrate high fat diet causes arterial hypertension and histological changes in the aortic wall in aged rats: The involvement of connective tissue growth factors and fibronectin. Exp. Gerontol. 2021;154:111543. DOI:10.1016/j.exger.2021.111543.; Непомнящих Л.М., Лушникова Е.Л., Семенов Д.Е. Регенераторно-1пластическая недостаточность сердца: Морфологические основы и молекулярные механизмы. М.: Изд-во РАМН; 2003:255.; Kurbatov B.K., Prokudina E.S., Maslov L.N., Naryzhnaya N.V., Logvinov S.V., Gorbunov A.S. et al. The role of adrenergic and muscarinic receptors in stress-induced cardiac injury. Pflugers Arch. 2021; 473(10):1641–1655. DOI:10.1007/s00424-021-02602-6.; Sahraoui A., Dewachter C., de Medina G., Naeije R., Bouguerra S.A., Dewachter L. Myocardial Structural and Biological Anomalies Induced by High Fat Diet in Psammomys obesus Gerbils. PLoS One. 2016;11(2):e0148117. DOI:10.1371/journal.pone.0148117.; Poudyal H., Panchal S.K., Ward L.C., Waanders J., Brown L. Chronic high-carbohydrate, high-fat feeding in rats induces reversible metabolic, cardiovascular, and liver changes. Am. J. Physiol. Endocrinol. Metab. 2012;302(12): E1472–1482. DOI:10.1152/ajpendo.00102.2012.; Bhandarkar N.S., Brown L., Panchal S.K. Chlorogenic acid attenuates high-carbohydrate, high-fat diet-induced cardiovascular, liver, and metabolic changes in rats. Nutr. Res. 2019;62:78–88. DOI:10.1016/j.nutres.2018.11.002.; Elrashidy R. Dysregulation of nuclear factor erythroid 2-related factor 2 signaling and activation of fibrogenic pathways in hearts of high fat diet-fed rats. Mol. Biol. Rep. 2020;47(4):2821–2834. DOI:10.1007/s11033-020-05360-3.; Comunoglu C., Comunoglu N., Eren B., Tanrlöver O., Türkmen N., Gündogmuş U.N. et al. Age-related histopathological changes in the cardiac conducting system in the Turkish population: an evaluation of 202 autopsy cases. Folia Morphol. 2012;71(3):178–182. URL: https://journals.viamedica.pl/folia_morphologica/article/view/18756Test.; Pudil R. Age-related myocardial remodeling: myth or reality? Vnitr. Lek. 2020;66(8):507–511. URL: https://pubmed.ncbi.nlm.nih.gov/33740851Test/; https://www.sibjcem.ru/jour/article/view/1716Test

  6. 6
    دورية أكاديمية

    المساهمون: Работа выполнена при поддержке Российского научного фонда (грант № 22-15-00048). Исследование влияния возраста на инфаркт-лимитирующий эффект дельторфина-II проводили в рамках Гос. задания 122020300042-4. В работе было использовано оборудование Центра коллективного пользования «Медицинская геномика» Томского НИМЦ.

    المصدر: Acta Biomedica Scientifica; Том 7, № 6 (2022); 281-289 ; 2587-9596 ; 2541-9420

    وصف الملف: application/pdf

    العلاقة: https://www.actabiomedica.ru/jour/article/view/3911/2490Test; Megaly M, Pershad A, Glogoza M, Elbadawi A, Omer M, Saad M, et al. Use of intravascular imaging in patients with ST-segment elevation acute myocardial infarction. Cardiovasc Revasc Med. 2021; 30: 59-64. doi:10.1016/j.carrev.2020.09.032; Мухомедзянов А.В., Маслов Л.Н., Овчинников М.В., Сидорова М.В., Пей Ж.М., Цибульников С.Ю., и др. Влияние дельторфина и его ретро-энантиоаналога на устойчивость сердца к действию ишемии и реперфузии. Бюллетень экспериментальной биологии и медицины. 2016; 162(9): 284-288. doi:10.1007/s10517-017-3601-9; Dommermuth R, Ewing K. Metabolic syndrome: Systems thinking in heart disease. Prim Care. 2018; 45(1): 109-129. doi:10.1016/j.pop.2017.10.003; Sperling LS, Mechanick JI, Neeland IJ, Herrick CJ, Després J-P, Ndumele CE, et al. The CardioMetabolic Health Alliance: Working toward a new care model for the metabolic syndrome. J Am Coll Cardiol. 2015; 66(9): 1050-1067. doi:10.1016/j.jacc.2015.06.1328; Lind L, Sundström J, Ärnlöv J, Risérus U, Lampa E. A longitudinal study over 40 years to study the metabolic syndrome as a risk factor for cardiovascular diseases. Sci Rep. 2021; 11(1): 2978. doi:10.1038/s41598-021-82398-8; Samson SL, Garber AJ. Metabolic syndrome. Endocrinol Metab Clin North Am. 2014; 43(1): 1-23. doi:10.1016/j.ecl.2013.09.009; Вильсон Н.И., Беленькая Л.В., Шолохов Л.Ф., Игумнов И.А., Наделяева Я.Г., Сутурина Л.В. Метаболический синдром: эпидемиология, критерии диагностики, расовые особенности. Acta biomedica scientifica. 2021; 6(4): 180-191. doi:10.29413/ABS.2021-6.4.16; Gutiérrez-Cuevas J, Sandoval-Rodriguez A, Meza-Rios A, Monroy-Ramírez HC, Galicia-Moreno M, García-Bañuelos J, et al. Molecular mechanisms of obesity-linked cardiac dysfunction: An up-date on current knowledge. Cells. 2021; 10(3): 629. doi:10.3390/cells10030629; Tofler GH, Muller JE, Stone PH, Willich SN, Davis VG, Poole WK, et al. Factors leading to shorter survival after acute myocardial infarction in patients ages 65 to 75 years compared with younger patients. Am J Cardiol. 1988; 62(13): 860-867. doi:10.1016/0002-9149(88)90882-x; Strait JB, Lakatta EG. Aging-associated cardiovascular changes and their relationship to heart failure. Heart Failure Clinics. 2012; 8(1): 143-164. doi:10.1016/j.hfc.2011.08.011; Logvinov SV, Naryzhnaya NV, Kurbatov BK, Gorbunov AS, Birulina YuG, Maslov LN, et al. High carbohydrate high fat diet causes arterial hypertension and histological changes in the aortic wall in aged rats: The involvement of connective tissue growth factors and fibronectin. Exp Gerontol. 2021; 154: 111543. doi:10.1016/j.exger.2021.111543; Лишманов Ю.Б., Маслов Л.Н. Опиоидные нейропептиды, стресс и адаптационная защита сердца. Томск: Изд-во Томского университета; 1994.; Maslov LN, Lishmanov YuB, Oeltgen PR, Barzakh EI, Krylatov AV, Govindaswami M, et al. Activation of peripheral δ2 opioid receptors increases cardiac tolerance to ischemia/reperfusion injury: Involvement of protein kinase C, NO-synthase, KATP channels and the autonomic nervous system. Life Sci. 2009; 84(19-20): 657-663. doi:10.1016/j.lfs.2009.02.016; Alexandre-Santos B, Machado MV, Menezes AC, Velasco LL, Sepúlveda-Fragoso V, Vieira AB, et al. Exercise-induced cardiac opioid system activation attenuates apoptosis pathway in obese rats. Life Sci. 2019; 231: 116542. doi:10.1016/j.lfs.2019.06.017; Zemljic-Harpf AE, See Hoe LE, Schilling JM, Zuniga-Hertz JP, Nguyen A, Vaishnav YJ, et al. Morphine induces physiological, structural, and molecular benefits in the diabetic myocardium. FASEB J. 2021; 35(3): e21407. doi:10.1096/fj.201903233R; Zhang L, Guo H, Yuan F, Hong ZC, Tian YM, Zhang XJ, et al. Limb remote ischemia per-conditioning protects the heart against ischemia-reperfusion injury through the opioid system in rats. Can J Physiol Pharmacol. 2018; 96(1): 68-75. doi:10.1139/cjpp-2016-0585; Kunecki M, Oleksy T, Biernat J, Kukla P, Szwajkos K, Podolec P, et al. Ischemic conditioning of human heart muscle depends on opioid-receptor system. Folia Med Cracov. 2017; 57(2): 31-39.; Xin W, Yang X, Rich TC, Krieg T, Barrington R, Cohen MV, et al. All preconditioning-related G protein-coupled receptors can be demonstrated in the rabbit cardiomyocyte. J Cardiovasc Pharmacol Ther. 2012; 17(2): 190-198. doi:10.1177/1074248411416815; Verouhis D, Sörensson P, Gourine A, Henareh L, Persson J, Saleh N, et al. Long-term effect of remote ischemic conditioning on infarct size and clinical outcomes in patients with anterior ST-elevation myocardial infarction. Catheter Cardiovasc Interv. 2021; 97(3): 386-392. doi:10.1002/ccd.28760; Andreadou I, Schulz R, Badimon L, Adameová A, Kleinbongard P, Lecour S, et al. Hyperlipidaemia and cardioprotection: Animal models for translational studies. Br J Pharmacol. 2020; 177(23): 5287-5311. doi:10.1111/bph.14931; Penna C, Andreadou I, Aragno M, Beauloye C, Bertrand L, Lazou A, et al. Effect of hyperglycaemia and diabetes on acute myocardial ischaemia-reperfusion injury and cardioprotection by ischaemic conditioning protocols. Br J Pharmacol. 2020; 177(23): 5312-5335. doi:10.1111/bph.14993; Oosterlinck W, Dresselaers T, Geldhof V, Nevelsteen I, Janssens S, Himmelreich U, et al. Diabetes mellitus and the metabolic syndrome do not abolish, but might reduce, the cardioprotective effect of ischemic postconditioning. J Thorac Cardiovasc Surg. 2013; 145(6): 1595-1602. doi:10.1016/j.jtcvs.2013.02.016; Нарыжная Н.В., Логвинов С.В., Курбатов Б.К., Мухомедзянов А.В., Сиротина М.А., Чепелев С.Н., и др. Эффективность дистантного ишемического посткондиционирования миокарда у крыс с индуцированным метаболическим синдромом зависит от уровня лептина. Известия Национальной академии наук Беларуси. Серия медицинских наук. 2022; 19(1): 38-47. doi:10.29235/1814-6023-2022-19-1-38-47; Baranyai T, Nagy CT, Koncsos G, Onódi Z, Károlyi-Szabó M, Makkos A, et al. Acute hyperglycemia abolishes cardioprotection by remote ischemic perconditioning. Cardiovasc Diabetol. 2015; 14: 151. doi:10.1186/s12933-015-0313-1; https://www.actabiomedica.ru/jour/article/view/3911Test