يعرض 1 - 9 نتائج من 9 نتيجة بحث عن '"Л. Н. Маслов"', وقت الاستعلام: 1.10s تنقيح النتائج
  1. 1
    دورية أكاديمية

    المساهمون: The work was supported by the Russian Science Foundation, Grant No. 22-15-00048. The section “Synthetic analogues of apelins” is supported by the state assignment 122020300042-4., Обзорная статья выполнена при поддержке Российского научного фонда, грант № 22-1500048. Раздел «Синтетические аналоги апелинов» поддержан государственным заданием 122020300042-4.

    المصدر: The Siberian Journal of Clinical and Experimental Medicine; Том 38, № 4 (2023); 29-39 ; Сибирский журнал клинической и экспериментальной медицины; Том 38, № 4 (2023); 29-39 ; 2713-265X ; 2713-2927

    وصف الملف: application/pdf

    العلاقة: https://www.sibjcem.ru/jour/article/view/2048/919Test; Hage A., Stevens L.M., Ouzounian M., Chung J., El-Hamamsy I., Chauvette V. et al. Impact of brain protection strategies on mortality and stroke in patients undergoing aortic arch repair with hypothermic circulatory arrest: evidence from the Canadian Thoracic Aortic Collaborative. Eur. J. Cardiothorac. Surg. 2020;58(1):95–103. DOI:10.1093/ ejcts/ezaa023.; Ya’qoub L., Gad M., Saad A.M., Elgendy I.Y., Mahmoud A.N. National trends of utilization and readmission rates with intravascular ultrasound use for ST-elevation myocardial infarction. Catheter Cardiovasc. Interv. 2021;98(1):1–9. DOI:10.1002/ccd.29524.; Lio K.U., O’Corragain O., Bashir R., Brosnahan S., Cohen G., Lakhter V. et al. Clinical outcomes and factors associated with pulmonary infarction following acute pulmonary embolism: a retrospective observational study at a US academic centre. BMJ Open. 2022;12(12):e067579. DOI:10.1136/bmjopen-2022-067579.; Swinarska J.T., Stratta R.J., Rogers J., Chang A., Farney A.C., Orlando G. et al. Early graft loss after deceased-donor kidney transplantation: What are the consequences? J. Am. Coll. Surg. 2021;232(4):493–502. DOI:10.1016/j.jamcollsurg.2020.12.005.; O’Dowd B.F., Heiber M., Chan A., Heng H.H., Tsui L.C., Kennedy J.L. et al. A human gene that shows identity with the gene encoding the angiotensin receptor is located on chromosome 11. Gene. 1993;136(1– 2):355–360. DOI:10.1016/0378-1119(93)90495-o.; Tatemoto K., Hosoya M., Habata Y., Fujii R., Kakegawa T., Zou M.X. et al. Isolation and characterization of a novel endogenous peptide ligand for the human APJ receptor. Biochem. Biophys. Res. Commun. 1998;251(2):471–476. DOI:10.1006/bbrc.1998.9489.; Hu G., Wang Z., Zhang R., Sun W., Chen X. The role of apelin/apelin receptor in energy metabolism and water homeostasis: A comprehensive narrative review. Front. Physiol. 2021;12:632886. DOI:10.3389/ fphys.2021.632886.; Chng S.C., Ho L., Tian J., Reversade B. ELABELA: a hormone essential for heart development signals via the apelin receptor. Dev. Cell. 2013;27(6):672–680. DOI:10.1016/j.devcel.2013.11.002.; Perjés Á., Skoumal R., Tenhunen O., Kónyi A., Simon M., Horváth I.G. et al. Apelin increases cardiac contractility via protein kinase Cεand extracellular signal-regulated kinase-dependent mechanisms. PLoS One. 2014;9(4):e93473. DOI:10.1371/journal.pone.0093473.; Kawamata Y., Habata Y., Fukusumi S., Hosoya M., Fujii R., Hinuma S. et al. Molecular properties of apelin: tissue distribution and receptor binding. Biochim. Biophys. Acta. 2001;1538(2–3):162–171. DOI:10.1016/ s0167-4889(00)00143-9.; Than A., He H.L., Chua S.H., Xu D., Sun L., Leow M.K. et al. Apelin enhances brown adipogenesis and browning of white adipocytes. J. Biol. Chem. 2015;290(23):14679–14691. DOI:10.1074/jbc.M115. 643817.; Sekerci R., Acar N., Tepekoy F., Ustunel I., Keles-Celik N. Apelin/APJ expression in the heart and kidneys of hypertensive rats. Acta. Histochem. 2018;120(3):196–204. DOI:10.1016/j.acthis.2018.01.007.; Chen M.M., Ashley E.A., Deng D.X., Tsalenko A., Deng A., Tabibiazar R. et al. Novel role for the potent endogenous inotrope apelin in human cardiac dysfunction. Circulation. 2003;108(12):1432–1439. DOI:10.1161/01.CIR.0000091235.94914.75.; Bircan B., Çakır M., Kırbağ S., Gül H.F. Effect of apelin hormone on renal ischemia/reperfusion induced oxidative damage in rats. Ren. Fail. 2016;38(7):1122–1128. DOI:10.1080/0886022X.2016.1184957.; Gholampour F., Bagheri A., Barati A., Masoudi R., Owji S.M. Remote ischemic perconditioning modulates apelin expression after renal ischemia-reperfusion injury. J. Surg. Res. 2020;247:429–437. DOI:10.1016/j.jss.2019.09.063.; Zhang X., Zhu Y., Zhou Y., Fei B. Activation of Nrf2 signaling by apelin attenuates renal ischemia reperfusion injury in diabetic rats. Diabetes Metab. Syndr. Obes. 2020;13:2169–2177. DOI:10.2147/DMSO. S246743.; Xu F., Wu M., Lu X., Zhang H., Shi L., Xi Y. et al. Effect of Fc-Elabela-21 on renal ischemia/reperfusion injury in mice: Mediation of anti-apoptotic effect via Akt phosphorylation. Peptides. 2022;147:170682. DOI:10.1016/j.peptides.2021.170682.; Fan X.F., Xue F., Zhang Y.Q., Xing X.P., Liu H., Mao S.Z. et al. The Apelin-APJ axis is an endogenous counterinjury mechanism in experimental acute lung injury. Chest. 2015;147(4):969–978. DOI:10.1378/chest.14-1426.; Xia F., Chen H., Jin Z., Fu Z. Apelin-13 protects the lungs from ischemia-reperfusion injury by attenuating inflammatory and oxidative stress. Hum. Exp. Toxicol. 2021;40(4):685–694. DOI:10.1177/0960327120961436.; Wu F., Qiu J., Fan Y., Zhang Q., Cheng B., Wu Y. et al. Apelin-13 attenuates ER stress-mediated neuronal apoptosis by activating Gα /Gαtions during twitches in isolated rat cardiac myocytes. Am. J. Physiol. Heart Circ. Physiol. 2008;294(6):H2540–H2546. DOI:10.1152/ajpheart.00046.2008.; Xin Q., Cheng B., Pan Y., Liu H., Yang C., Chen J. et al. Neuroprotective effects of apelin-13 on experimental ischemic stroke through suppression of inflammation. Peptides. 2015;63:55–62. DOI:10.1016/j. peptides.2014.09.016.; Duan J., Cui J., Yang Z., Guo C., Cao J., Xi M. et al. Neuroprotective effect of Apelin 13 on ischemic stroke by activating AMPK/GSK-3β/Nrf2 signaling. J. Neuroinflammation. 2019;16(1):24. DOI:10.1186/s12974019-1406-7.; Liu D.R., Hu W., Chen G.Z. Apelin-12 exerts neuroprotective effect against ischemia-reperfusion injury by inhibiting JNK and P38MAPK signaling pathway in mouse. Eur. Rev. Med. Pharmacol. Sci. 2018;22(12):3888–3895. DOI:10.26355/eurrev_201806_15273.; Chu H., Yang X., Huang C., Gao Z., Tang Y., Dong Q. Apelin-13 protects against ischemic blood-brain barrier damage through the effects of Aquaporin-4. Cerebrovasc. Dis. 2017;44(1–2):10–25. DOI:10.1159/000460261.; Zhang R., Wu F., Cheng B., Wang C., Bai B., Chen J. Apelin-13 prevents the effects of oxygen-glucose deprivation/reperfusion on bEnd.3 cells by inhibiting AKT-mTOR signaling. Exp. Biol. Med. (Maywood). 2023;248(2):146–156. DOI:10.1177/15353702221139186; Mughal A., Sun C., O’Rourke S.T. Activation of large conductance, calcium-activated potassium channels by nitric oxide mediates apelin-induced relaxation of isolated rat coronary arteries. J. Pharmacol. Exp. Ther. 2018;366(2):265–273. DOI:10.1124/jpet.118.248682.; Dönmez Y., Acele A. Increased Elabela levels in the acute ST segment elevation myocardial infarction patients. Medicine (Baltimore). 2019;98(43):e17645. DOI:10.1097/MD.0000000000017645.; Sans-Roselló J., Casals G., Rossello X., González de la Presa B., Vila M., Duran-Cambra A. et al. Prognostic value of plasma apelin concentrations at admission in patients with ST-segment elevation acute myocardial infarction. Clin. Biochem. 2017;50(6):279–284. DOI:10.1016/j.clinbiochem.2016.11.018.; Wang C., Du J.F., Wu F., Wang H.C. Apelin decreases the SR Ca2+ content but enhances the amplitude of [Ca2+] transient and contrac contractions during twitches in isolated rat cardiac myocytes. Am. J. Physiol. Heart Circ. Physiol. 2008;294(6):H2540–H2546. DOI:10.1152/ajpheart.00046.2008.; Wang C., Liu N., Luan R., Li Y., Wang D., Zou W. et al. Apelin protects sarcoplasmic reticulum function and cardiac performance in ischaemia-reperfusion by attenuating oxidation of sarcoplasmic reticulum Ca2+-ATPase and ryanodine receptor. Cardiovasc. Res. 2013;100(1):114–124. DOI:10.1093/cvr/cvt160.; Rostamzadeh F., Najafipour H., Yeganeh-Hajahmadi M., Esmaeili-Mahani S., Joukar S., Iranpour M. Heterodimerization of apelin and opioid receptors and cardiac inotropic and lusitropic effects of apelin in 2K1C hypertension: Role of pERK1/2 and PKC. Life Sci. 2017;191:24–33. DOI:10.1016/j.lfs.2017.09.044.; Simpkin J.C., Yellon D.M., Davidson S.M., Lim S.Y., Wynne A.M., Smith C.C. Apelin-13 and apelin-36 exhibit direct cardioprotective activity against ischemia-reperfusion injury. Basic Res. Cardiol. 2007;102(6):518–528. DOI:10.1007/s00395-007-0671-2.; Писаренко О.И., Шульженко В.С., Пелогейкина Ю.А., Студнева И.М., Кхатри Д.Н., Беспалова Ж.Д. и др. Влияние экзогенного апелина-12 на функциональное и метаболическое восстановление изолированного сердца крысы после ишемии. Кардиология. 2010;50(10):44–49.; Писаренко О.И., Серебрякова Л.И., Пелогейкина Ю.А., Студнева И.М., Кхатри Д.Н., Цкитишвили О.В. и др. Уменьшение реперфузионного повреждения сердца in vivo с помощью пептида апелина-12 у крыс. Бюллетень экспериментальной биологии и медицины. 2011;152(7):79–82.; Писаренко О.И., Серебрякова Л.И., Пелогейкина Ю.А., Студнева И.М., Кхатри Д.Н., Цкитишвили О.В. и др. Участие NO-зависимых механизмов действия апелина в защите миокарда от ишемического/реперфузионного повреждения. Кардиология. 2012;52(2):52–58. Pisarenko O.I., Serebriakova L.I., Pelogeĭkina Iu.A., Studneva I.M., Kkhatri D.N., Tskitishvili O.V. et al. Involvement of NO-dependent mechanisms of apelin action in myocardial protection against ischemia/reperfusion damage. Kardiologiia. 2012;52(2):52–58. (In Russ.).; Abbasloo E., Najafipour H., Vakili A. Chronic treatment with apelin, losartan and their combination reduces myocardial infarct size and improves cardiac mechanical function. Clin. Exp. Pharmacol. Physiol. 2020;47(3):393–402. DOI:10.1111/1440-1681.13195.; Pisarenko O.I., Shulzhenko V.S., Pelogeykina Y.A., Studneva I.V. Enhancement of crystalloid cardioplegic protection by structural analogs of apelin-12. J. Surg. Res. 2015;194(1):18–24. DOI:10.1016/j. jss.2014.11.007.; Писаренко О.И., Беспалова О.И., Ланкин В.З., Тимошин А.А., Серебрякова Л.И., Шульженко В.С. и др. Антиоксидантные свойства апелина-12 и его структурного аналога при экспериментальной ишемии и реперфузии. Кардиология. 2013;53(5):61–67.; Pisarenko O., Shulzhenko V., Studneva I., Pelogeykina Y., Timoshin A., Anesia R. et al. Structural apelin analogues: mitochondrial ROS inhibition and cardiometabolic protection in myocardial ischaemia reperfusion injury. Br. J. Pharmacol. 2015;172(12):2933–2945. DOI:10.1111/ bph.13038.; Tao J., Zhu W., Li Y., Xin P., Li J., Liu M. et al. Apelin-13 protects the heart against ischemia-reperfusion injury through inhibition of ER-dependent apoptotic pathways in a time-dependent fashion. Am. J. Physiol. Heart Circ. Physiol. 2011;301(4):H1471–H1486. DOI:10.1152/ ajpheart.00097.2011.; Yu P., Ma S., Dai X., Cao F. Elabela alleviates myocardial ischemia reperfusion-induced apoptosis, fibrosis and mitochondrial dysfunction through PI3K/AKT signaling. Am. J. Transl. Res. 2020;12(8):4467–4477.; Chen Y., Qiao X., Zhang L., Li X., Liu Q. Apelin-13 regulates angiotensin ii-induced Cx43 downregulation and autophagy via the AMPK/mTOR signaling pathway in HL-1 cells. Physiol. Res. 2020;69(5):813–822. DOI:10.33549/physiolres.934488.; Hou X., Zeng H., Tuo Q.H., Liao D.F., Chen J.X. Apelin gene therapy increases autophagy via activation of sirtuin 3 in diabetic heart. Diabetes Res. (Fairfax). 2015;1(4):84–91. DOI:10.17140/DROJ-1-115.; Wang W., McKinnie S.M., Patel V.B., Haddad G., Wang Z., Zhabyeyev P. et al. Loss of apelin exacerbates myocardial infarction adverse remodeling and ischemia-reperfusion injury: therapeutic potential of synthetic apelin analogues. J. Am. Heart Assoc. 2013;2(4):e000249. DOI:10.1161/JAHA.113.000249.; Masri B., Morin N., Pedebernade L., Knibiehler B., Audigier Y. The apelin receptor is coupled to Gi1 or Gi2 protein and is differentially desensitized by apelin fragments. J. Biol. Chem. 2006;281(27):18317–18326. DOI:10.1074/jbc.M600606200.; Bai B., Cai X., Jiang Y., Karteris E., Chen J. Heterodimerization of apelin receptor and neurotensin receptor 1 induces phosphorylation of ERK(1/2) and cell proliferation via Gαq-mediated mechanism. J. Cell. Mol. Med. 2014;18(10):2071–2081. DOI:10.1111/jcmm.12404.; Chapman N.A., Dupré D.J., Rainey J.K. The apelin receptor: physiology, pathology, cell signalling, and ligand modulation of a peptide-activated class A GPCR. Biochem. Cell. Biol. 2014;92(6):431–440. DOI:10.1139/bcb-2014-0072.; Moon M.J., Oh D.Y., Moon J.S., Kim D.K., Hwang J.I., Lee J.Y. et al. Cloning and activation of the bullfrog apelin receptor: Gi/o coupling and high affinity for [Pro1]apelin-13. Mol. Cell. Endocrinol. 2007;277(1–2):51– 60. DOI:10.1016/j.mce.2007.07.008.; Folino A., Accomasso L., Giachino C., Montarolo P.G., Losano G., Pagliaro P. et al. Apelin-induced cardioprotection against ischaemia/ reperfusion injury: roles of epidermal growth factor and Src. Acta Physiol. (Oxf.). 2018;222(2):e12924. DOI:10.1111/apha.12924.; Yang S., Li H., Tang L., Ge G., Ma J., Qiao Z. et al. Apelin-13 protects the heart against ischemia-reperfusion injury through the RISK-GSK-3βmPTP pathway. Arch. Med. Sci. 2015;11(5):1065–1073. DOI:10.5114/ aoms.2015.54863.; Pisarenko O.I., Shulzhenko V.S., Studneva I.M., Serebryakova L.I., Pelogeykina Y.A., Veselova O.M. Signaling pathways of a structural analogue of apelin-12 involved in myocardial protection against ischemia/reperfusion injury. Peptides. 2015;73:67–76. DOI:10.1016/j.peptides.2015.09.001.; Писаренко О.И., Пелогейкина Ю.А., Шульженко В.С., Студнева И.М., Беспалова З.Д., Азмуко А.А. и др. Влияние ингибирования новообразования на метаболическое восстановление ишемизи рованного сердца крысы апелином-12. Биомедицинская химия.2012;58(6):702–711; Rastaldo R., Cappello S., Folino A., Berta G.N., Sprio A.E., Losano G. et al. Apelin-13 limits infarct size and improves cardiac postischemic mechanical recovery only if given after ischemia. Am. J. Physiol. Heart Circ. Physiol. 2011;300(6):H2308–H2315. DOI:10.1152/ ajpheart.01177.2010.; Pisarenko O.I., Lankin V.Z., Konovalova G.G., Serebryakova L.I., Shulzhenko V.S., Timoshin A.A. et al. Apelin-12 and its structural analog enhance antioxidant defense in experimental myocardial ischemia and reperfusion. Mol. Cell. Biochem. 2014;391(1–2):241–250. DOI:10.1007/ s11010-014-2008-4.; Reed A.B., Lanman B.A., Holder J.R., Yang B.H., Ma J., Humphreys S.C. et al. Half-life extension of peptidic APJ agonists by N-terminal lipid conjugation. Bioorg. Med. Chem. Lett. 2020;30(21):127499. DOI:10.1016/j.bmcl.2020.127499.; Trân K., Murza A., Sainsily X., Coquerel D., Côté J., Belleville K. et al. A systematic exploration of macrocyclization in apelin-13: impact on binding, signaling, stability, and cardiovascular effects. J. Med. Chem. 2018;61(6):2266–2277. DOI:10.1021/acs.jmedchem.7b01353.; Li L., Zeng H., Chen J.X. Apelin-13 increases myocardial progenitor cells and improves repair postmyocardial infarction. Am. J. Physiol. Heart Circ. Physiol. 2012;303(5):H605–H618. DOI:10.1152/ajpheart.00366.2012.; Azizi Y., Faghihi M., Imani A., Roghani M., Zekri A., Mobasheri M.B. et al. Post-infarct treatment with [Pyr1]apelin-13 improves myocardial function by increasing neovascularization and overexpression of angiogenic growth factors in rats. Eur. J. Pharmacol. 2015;761:101–108. DOI:10.1016/j.ejphar.2015.04.034.; O’Harte F.P.M., Parthsarathy V., Hogg C., Flatt P.R. Long-term treatment with acylated analogues of apelin-13 amide ameliorates diabetes and improves lipid profile of high-fat fed mice. PLoS One. 2018;13(8):e0202350. DOI:10.1371/journal.pone.0202350.; Tran K., Sainsily X., Côté J., Coquerel D., Couvineau P., Saibi S. et al. Size-Reduced Macrocyclic Analogues of [Pyr1]-apelin-13 Showing Neg Negative Gα12 Bias Still Produce Prolonged Cardiac Effects. J. Med. Chem. 2022;65(1):531–551.; https://www.sibjcem.ru/jour/article/view/2048Test

  2. 2
    دورية أكاديمية

    المساهمون: Работа выполнена при поддержке Российского научного фонда, грант № 22-15-00048. Исследование механизмов формирования артериальной гипертензии при МетС выполнено в рамках государственного задания 122020300042-4. В работе было использовано оборудование Центра коллективного пользования «Медицинская геномика» ФГБНУ «Томский национальный исследовательский медицинский центр Российской академии наук».

    المصدر: Acta Biomedica Scientifica; Том 9, № 1 (2024); 222-232 ; 2587-9596 ; 2541-9420

    وصف الملف: application/pdf

    العلاقة: https://www.actabiomedica.ru/jour/article/view/4616/2749Test; Maslov LN, Naryzhnaia NV, Tsibulnikov SY, Kolar F, Zhang Y, Wang H, et al. Role of endogenous opioid peptides in the infarct size-limiting effect of adaptation to chronic continuous hypoxia. Life Sci. 2013; 93(9-11): 373-379. doi:10.1016/j.lfs.2013.07.018; Mukhomedzyanov AV, Sirotina MA, Logvinov SV, Naryzhnaya NV. Remote postconditioning of myocardium: Mechanisms, efficacy in metabolic syndrome in experimental and clinical studies (review). Siberian Journal of Clinical and Experimental Medicine 2023; 38(1): 37–45. doi:10.29001/2073-8552-2023-38-1-37-45; Zhou JJ, Wei Y, Zhang L, Zhang J, Guo LY, Gao C, et al. Chronic intermittent hypobaric hypoxia prevents cardiac dysfunction through enhancing antioxidation in fructose-fed rats. Can J Physiol Pharmacol. 2013; 91(5): 332-337. doi:10.1139/cjpp-2012-0059; Naryzhnaya NV, Derkachev IA, Kurbatov BK, Sirotina MA, Kilin M, Maslov LN. Decrease in infarct-limiting effect of the chronic normobaric hypoxia in rats with diet induced metabolic syndrome is associated with disturbance of carbohydrate and lipid metabolism. Bulletin of Experimental Biology and Medicine. 2022; 174(12): 692-697. doi:10.47056/0365-9615-2022-174-12-692-697; Nedvedova I, Kolar D, Neckar J, Kalous M, Pravenec M, Šilhavý J, et al. Cardioprotective regimen of adaptation to chronic hypoxia diversely alters myocardial gene expression in SHR and SHR-mtBN conplastic rat strains. Front Endocrinol. 2019; 9: 809. doi:10.3389/fendo.2018.00809; Birulina JG, Ivanov VV, Buyko EE, Bykov VV, Dzyuman AN, Nosarev АV, et al. Morphological changes in the heart and aorta of rats with diet-induced metabolic syndrome. Bulletin of Siberian Medicine. 2022; 21(3): 13-21. doi:10.20538/1682-0363-2022-3-13-21; Donner D, Headrick JP, Peart JN, Du Toit EF. Obesity improves myocardial ischaemic tolerance and RISK signalling in insulin-insensitive rats. Dis Model Mech. 2013; 6: 457-466. doi:10.1242/dmm.010959; Penna C, Andreadou I, Aragno M, Beauloye C, Bertrand L, Lazou A, et al. Effect of hyperglycaemia and diabetes on acute myocardial ischaemia-reperfusion injury and cardioprotection by ischaemic conditioning protocols. Br J Pharmacol. 2020; 177(23): 5312-5335. doi:10.1111/bph.14993; Okatan EN, Olgar Y, Tuncay E, Turan B. Azoramide improves mitochondrial dysfunction in palmitate-induced insulin resistant H9c2 cells. Mol Cell Biochem. 2019; 461(1-2): 65-72. doi:10.1007/s11010-019-03590-z; Mansor LS, Mehta K, Aksentijevic D, Carr CA, Lund T, Cole MA, et al. Increased oxidative metabolism following hypoxia in the type 2 diabetic heart, despite normal hypoxia signalling and metabolic adaptation. J Physiol. 2016; 594(2): 307-320. doi:10.1113/JP271242; Zuo A, Zhao X, Li T, Li J, Lei S, Chen J, et al. CTRP9 knockout exaggerates lipotoxicity in cardiac myocytes and high‐fat diet‐induced cardiac hypertrophy through inhibiting the LKB1/AMPK pathway. J Cell Mol Med. 2020; 24(4): 2635-2647. doi:10.1111/jcmm.14982; Zhang H, Liu B, Li T, Zhu Y, Luo G, Jiang Y, et al. AMPK activation serves a critical role in mitochondria quality control via modulating mitophagy in the heart under chronic hypoxia. Int J Mol Med. 2018; 41(1): 69-76. doi:10.3892/ijmm.2017.3213; Sumneang N, Oo TT, Singhanat K, Maneechote C, Arunsak B, Nawara W, et al. Inhibition of myeloid differentiation factor 2 attenuates cardiometabolic impairments via reducing cardiac mitochondrial dysfunction, inflammation, apoptosis and ferroptosis in prediabetic rats. Biochim Biophys Acta Mol Basis Dis. 2022; 1868(2): 166301. doi:10.1016/j.bbadis.2021.166301; Kravchuk E, Grineva E, Bairamov A, Galagudza M, Vlasov T. The effect of metformin on the myocardial tolerance to ischemiareperfusion injury in the rat model of diabetes mellitus type II. Exp Diabetes Res. 2011; 2011: 10-15. doi:10.1155/2011/907496; Ren C, Yi W, Jiang B, Gao E, Liang J, Zhang B, et al. Diminished adipoR1/APPL1 interaction mediates reduced cardioprotective actions of adiponectin against myocardial ischemia/reperfusion injury in type-2 diabetic mice. Stem Cells Int. 2023; 2023: 1-8. doi:10.1155/2023/7441367; Van Berendoncks AM, Stensvold D, Garnier A, Fortin D, Sente T, Vrints CJ, et al. Disturbed adiponectin – AMPK system in skeletal muscle of patients with metabolic syndrome. Eur J Prevent Cardiol. 2015; 22(2): 203-205. doi:10.1177/2047487313508034; Lochner A, Genade S, Genis A, Marais E, Salie R. Long-chain free fatty acids inhibit ischaemic preconditioning of the isolated rat heart. Mol Cell Biochem. 2020; 473(1-2): 111-132. doi:10.1007/s11010-020-03812-9; Semenza GL. Angiogenesis ischemic and neoplastic disorders. Ann Rev Med. 2003; 54(1): 17-28. doi:10.1146/annurev.med.54.101601.152418; Liu T, Wu Z, Liu J, Lv Y, Li W. Metabolic syndrome and its components reduce coronary collateralization in chronic total occlusion: An observational study. Cardiovasc Diabetol. 2021; 20(1): 104. doi:10.1186/s12933-021-01297-4; Zeng Y, Liu H, Kang K, Wang Z, Hui G, Zhang X, et al. Hypoxia inducible factor-1 mediates expression of miR-322: Potential role in proliferation and migration of pulmonary arterial smooth muscle cells. Sci Rep. 2015; 5(1): 12098. doi:10.1038/srep12098; Dong W, Dong C, Zhu J, Zheng Y, Weng J, Liu L, et al. HIF‐1α‐ induced upregulated miR‐322 forms a feedback loop by targeting Smurf2 and Smad7 to activate Smad3/β‐catenin/HIF‐1α, thereby improving myocardial ischemia‐reperfusion injury. Cell Biol Int. 2023; 47(5): 894-906. doi:10.1002/cbin.11954; Marchand A, Atassi F, Mougenot N, Clergue M, Codoni V, Berthuin J, et al. miR-322 regulates insulin signaling pathway and protects against metabolic syndrome-induced cardiac dysfunction in mice. Biochim Biophys Acta (BBA) Mol Basis Dis. 2016; 1862(4): 611-621. doi:10.1016/j.bbadis.2016.01.010; Lefebvre P, Fruchart J, Staels B, Lefebvre P, Chinetti G, Fruchart J, et al. Sorting out the roles of PPAR a in energy metabolism and vascular homeostasis. J Clin Invest 2006; 116(3): 571-580. doi:10.1172/JCI27989.symptoms; Barger PM, Kelly DP. PPAR signaling in the control of cardiac energy metabolism. Trends Cardiovasc Med. 2000; 10(6): 238- 245. doi:10.1016/S1050-1738(00)00077-3; Sánchez-Aguilar M, Ibarra-Lara L, Cano-Martínez A, Soria-Castro E, Castrejón-Téllez V, Pavón N, et al. PPAR alpha activation by clofibrate alleviates ischemia/reperfusion injury in metabolic syndrome rats by decreasing cardiac inflammation and remodeling and by regulating the atrial natriuretic peptide compensatory response. Int J Mol Sci. 2023; 24(6): 5321. doi:10.3390/ijms24065321; Rajlic S, Surmann L, Zimmermann P, Weisheit CK, Bindila L, Treede H, et al. Fatty acid amide hydrolase deficiency is associated with deleterious cardiac effects after myocardial ischemia and reperfusion in mice. Int J Mol Sci. 2022; 23(20): 12690. doi:10.3390/ijms232012690; Yan J, Song K, Bai Z, Ge R-L. WY14643 improves left ventricular myocardial mitochondrial and systolic functions in obese rats under chronic persistent hypoxia via the PPARα pathway. Life Sci. 2021; 266: 118888. doi:10.1016/j.lfs.2020.118888; https://www.actabiomedica.ru/jour/article/view/4616Test

  3. 3
    دورية أكاديمية

    المساهمون: Тhe article was prepared with the financial support of the Russian Science Foundation, grant MMP (23-65-10017). The introduction to the article was prepared with the support of the state assignment 122020300042-4, Статья подготовлена при финансовой поддержке Российского Научного Фонда (грант 23-65-10017). Введение к статье подготовлено при поддержке государственного задания 122020300042-4

    المصدر: The Siberian Journal of Clinical and Experimental Medicine; Том 39, № 1 (2024); 11-17 ; Сибирский журнал клинической и экспериментальной медицины; Том 39, № 1 (2024); 11-17 ; 2713-265X ; 2713-2927

    وصف الملف: application/pdf

    العلاقة: https://www.sibjcem.ru/jour/article/view/1853/927Test; Megaly M., Pershad A., Glogoza M., Elbadawi A., Omer M., Saad M. et al. Use of intravascular imaging in patients with ST-segment elevation acute myocardial infarction. Cardiovasc. Revasc. Med. 2021;30:59–64. DOI:10.1016/j.carrev.2020.09.032.; Ya’qoub L., Gad M., Saad A.M., Elgendy I.Y., Mahmoud A.N. National trends of utilization and readmission rates with intravascular ultrasound use for ST-elevation myocardial infarction. Catheter. Cardiovasc. Interv. 2021;98(1):1–9. DOI:10.1002/ccd.29524.; Garcia S., Schmidt C.W., Garberich R., Henry T.D., Bradley S.M., Brilakis E.S. et al. Temporal changes in patient characteristics and outcomes in ST-segment elevation myocardial infarction 2003–2018. Catheter. Cardiovasc. Interv. 2021;97(6):1109–1117. DOI:10.1002/ccd.28901.; Maslov L.N., Popov S.V., Mukhomedzyanov A.V., Naryzhnaya N.V., Voronkov N.S., Ryabov V.V. et al. Reperfusion cardiac injury: Receptors and the signaling mechanisms. Curr. Cardiol. Rev. 2022;18(5):63–79. DOI:10.2174/1573403X18666220413121730.; Acharya D. Predictors of outcomes in myocardial infarction and cardiogenic shock. Cardiol. Rev. 2018;26(5):255–266. DOI:10.1097/CRD.0000000000000190.; Sambola A., Elola F.J., Buera I., Fernández C., Bernal J.L., Ariza A. et al. Sex bias in admission to tertiary-care centres for acute myocardial infarction and cardiogenic shock. Eur. J. Clin. Invest. 2021;51(7):e13526. DOI:10.1111/eci.13526.; Gross E.R., Hsu A.K., Gross G.J. Opioid-induced cardioprotection occurs via glycogen synthase kinase beta inhibition during reperfusion in intact rat hearts. Circ. Res. 2004;94(7):960–966. DOI:10.1161/01.RES.0000122392.33172.09.; Gross E.R., Hsu A.K., Gross G.J. Acute methadone treatment reduces myocardial infarct size via the delta-opioid receptor in rats during reperfusion. Anesth. Analg. 2009;109(5):1395–1402. DOI:10.1213/ANE.0b013e3181b92201.; Метелица В.И. Справочник по клинической фармакологии сердечно-сосудистых лекарственных средств. М.: Медпрактика; 1996:784.; Маслов Л.Н., Лишманов Ю.Б. Проницаемость гематоэнцефалического барьера для опиоидных пептидов. Экспериментальная и клиническая фармакология. 2017;80(6):39–44. DOI:10.30906/0869-2092-2017-80-6-39-44.; Jiang L., Hu J., He S., Zhang L., Zhang Y. Spinal neuronal NOS signaling contributes to morphine cardioprotection in ischemia reperfusion injury in rats. J. Pharmacol. Exp. Ther. 2016;358(3):450–456. DOI:10.1124/jpet.116.234021.; Lu Y., Hu J., Zhang Y., Dong C.S., Wong G.T. Remote intrathecal morphine preconditioning confers cardioprotection via spinal cord nitric oxide/cyclic guanosine monophosphate/protein kinase G pathway. J. Surg. Res. 2015;193(1):43–51. DOI:10.1016/j.jss.2014.08.014.; Lishmanov Yu.B., Ugdyzhekova D.S., Maslov L.N. Prevention of experimental epinephrine-induced arrhythmias with agonists of δ1 - and δ2 -opiate receptors. Bull. Exp. Biol. Med. 1997;124(3):873–875. DOI:10.1007/BF02446988.; Patel H.H., Hsu A., Moore J., Gross G.J. BW373U86, a delta opioid agonist, partially mediates delayed cardioprotection via a free radical mechanism that is independent of opioid receptor stimulation. J. Mol. Cell. Cardiol. 2001;33(8):1455–1465. DOI:10.1006/jmcc.2001.1408.; Maslov L.N., Khaliulin I., Oeltgen P.R., Naryzhnaya N.V., Pei J.-M., Brown S.A. et al. Prospects of creation of cardioprotective and antiarrhythmic drugs based on opioid receptor agonists. Med. Res. Rev. 2016;36(5):871–923. DOI:10.1002/med.21395.; Maslov L.N., Lishmanov Yu.B., Oeltgen P.R., Barzakh E.I., Krylatov A.V., Govindaswami M. Activation of peripheral δ2 opioid receptors increases cardiac tolerance to ischemia/reperfusion injury: Involvement of protein kinase C, NO-synthase, KATP channels and the autonomic nervous system. Life Sci. 2009;84(19–20):657–663. DOI:10.1016/j.lfs.2009.02.016.; Peart J.N., Patel H.H., Gross G.J. Delta-opioid receptor activation mimics ischemic preconditioning in the canine heart. J. Cardiovasc. Pharmacol. 2003;42(1):78–81. DOI:10.1097/00005344-200307000-00012.; Fryer R.M., Wang Y., Hsu A.K., Nagase H., Gross G.J. Dependence of δ1 -opioid receptor-induced cardioprotection on a tyrosine kinase-dependent but not a Src-dependent pathway. J. Pharmacol. Exp. Ther. 2001;299(2):477–482.; Maslov L.N., Mukhomedzyanov A.V., Tsibulnikov S.Y., Suleiman M.S., Khaliulin I., Oeltgen P.R. Activation of peripheral δ2-opioid receptor prevents reperfusion heart injury. Eur. J. Pharmacol. 2021;907:174302. DOI:10.1016/j.ejphar.2021.174302.; Heusch G. Molecular basis of cardioprotection: signal transduction in ischemic pre-, post-, and remote conditioning. Circ. Res. 2015;116(4):674–699. DOI:10.1161/CIRCRESAHA.116.305348.; de Miranda D.C., de Oliveira Faria G., Hermidorff M.M., Dos Santos Silva F.C., de Assis LVM, Isoldi M.C. Pre- and Post-Conditioning of the Heart: An Overview of Cardioprotective Signaling Pathways. Curr. Vasc. Pharmacol. 2021;19(5):499–524. DOI:10.2174/1570161119666201120160619.; Gross E.R., Hsu A.K., Gross G.J. The JAK/STAT pathway is essential for opioid-induced cardioprotection: JAK2 as a mediator of STAT3, Akt, and GSK-3β. Am. J. Physiol. Heart Circ. Physiol. 2006;291(2):H827–H834. DOI:10.1152/ajpheart.00003.2006.; Dorsch M., Behmenburg F., Raible M., Blase D., Grievink H., Hollmann M.W. et al. Morphine-induced preconditioning: involvement of protein kinase A and mitochondrial permeability transition pore. PLoS One. 2016;11(3):e0151025. DOI:10.1371/journal.pone.0151025.; Li L., Zhang H., Li T., Zhang B. Involvement of adenosine monophosphate-activated protein kinase in morphine-induced cardioprotection. J. Surg. Res. 2011;169(2):179–187. DOI:10.1016/j.jss.2009.11.007.; Kim J.H., Jang Y.H., Chun K.J., Kim J., Park Y.H., Kim J.S. et al. Kappa-opioid receptor activation during reperfusion limits myocardial infarction via ERK1/2 activation in isolated rat hearts. Korean J. Anesthesiol. 2011;60(5):351–356. DOI:10.4097/kjae.2011.60.5.351.; Wu X., Zhang B., Fan R., Zhao L., Wang Y., Zhang S. et al. U50,488H inhibits neutrophil accumulation and TNF-α induction induced by ischemia-reperfusion in rat heart. Cytokine. 2011;56(2):503–507. DOI:10.1016/j.cyto.2011.07.015.; Gross G.J., Hsu A., Nithipatikom K., Pfeiffer A.W., Bobrova I., Bissessar E. Acute and chronic cardioprotection by the enkephalin analogue, Eribis peptide 94, is mediated via activation of nitric oxide synthase and adenosine triphosphate-regulated potassium channels. Pharmacology. 2012;90(1–2):110–116. DOI:10.1111/j.1745-7254.2005.00100.x.; Zhang Y., Chen Z.W., Girwin M., Wong T.M. Remifentanil mimics cardioprotective effect of ischemic preconditioning via protein kinase C activation in open chest of rats. Acta Pharmacol. Sin. 2005;26(5):546–550. DOI:10.1111/j.1745-7254.2005.00100.x.; Popov S.V., Mukhomedzyanov A.V., Maslov L.N., Naryzhnaya N.V., Kurbatov B.K., Prasad N.R. et al. The infarct-reducing effect of the δ2 opioid receptor agonist deltorphin II: The molecular mechanism. Membranes (Basel). 2023;13(1):63. DOI:10.3390/membranes13010063.; Maslov L.N., Lishmanov Y.B. The anti-arrhythmic effect of D-Ala2, Leu5, Arg6-enkephalin and its possible mechanism. Int. J. Cardiol. 1993;40(2):89–94. DOI:10.1016/0167-5273(93)90269-m.; Li D.Y., Gao S.J., Sun J., Zhang L.Q., Wu J.Y., Song F.H. et al. Targeting the nitric oxide/cGMP signaling pathway to treat chronic pain. Neural. Regen Res. 2023; 18(5):996–1003. DOI:10.4103/1673-5374.355748.; Krylatov A.V., Tsibulnikov S.Y., Mukhomedzyanov A.V., Boshchenko A.A., Goldberg V.E., Jaggi A.S. et al. The role of natriuretic peptides in the regulation of cardiac tolerance to ischemia/reperfusion and postinfarction heart remodeling. J. Cardiovasc. Pharmacol. Ther. 2021;26(2):131–148. DOI:10.1177/1074248420952243.; Wu G., Sharina I., Martin E. Soluble guanylyl cyclase: Molecular basis for ligand selectivity and action in vitro and in vivo. Front. Mol. Biosci. 2022;9:1007768. DOI:10.3389/fmolb.2022.1007768.; Xu J., Zhu K., Wang Y., Chen J. The dual role and mutual dependence of heme/HO-1/Bach1 axis in the carcinogenic and anti-carcinogenic intersection. J. Cancer Res. Clin. Oncol. 2023;149(1):483–501. DOI:10.1007/s00432-022-04447-7.; Castany S., Carcolé M., Leánez S., Pol O. The antinociceptive effects of a δ-opioid receptor agonist in mice with painful diabetic neuropathy: Involvement of heme oxygenase 1. Neurosci. Lett. 2016;614:49–54. DOI:10.1016/j.neulet.2015.12.059.; Stagni E., Bucolo C., Motterlini R., Drago F. Morphine-induced ocular hypotension is modulated by nitric oxide and carbon monoxide: role of mu3 receptors. J. Ocul. Pharmacol. Ther. 2010;26(1):31–35. DOI:10.1089/jop.2009.0081.; Krylatov A.V., Maslov L.N., Voronkov N.S., Boshchenko A.A., Popov S.V., Gomez L. et al. Reactive oxygen species as intracellular signaling molecules in the cardiovascular system. Curr. Cardiol. Rev. 2018;14(4):290–300. DOI:10.2174/1573403X14666180702152436.; Tsutsumi Y.M., Yokoyama T., Horikawa Y., Roth D.M., Patel H.H. Reactive oxygen species trigger ischemic and pharmacological postconditioning: in vivo and in vitro characterization. Life Sci. 2007;81(15):1223– 1227. DOI:10.1016/j.lfs.2007.08.031.; Rong F., Peng Z., Ye M.X., Zhang Q.Y., Zhao Y., Zhang S.M., et al. Myocardial apoptosis and infarction after ischemia/reperfusion are attenuated by κ-opioid receptor agonist. Arch. Med. Res. 2009;40(4):227–234. DOI:10.1016/j.arcmed.2009.04.009.; Peart J.N., Gross E.R., Reichelt M.E., Hsu A., Headrick J.P., Gross G.J. Activation of kappa-opioid receptors at reperfusion affords cardioprotection in both rat and mouse hearts. Basic Res. Cardiol. 2008;103(5):454– 463. DOI:10.1007/s00395-008-0726-z.; Jang Y., Xi J., Wang H., Mueller R.A., Norfleet E.A., Xu Z. Postconditioning prevents reperfusion injury by activating δ-opioid receptors. Anesthesiology. 2008;108(2):243–250. DOI:10.1097/01.anes.0000299437.93898.4a.; Kim J.H., Chun K.J., Park Y.H., Kim J., Kim J.S., Jang Y.H. et al. Morphine-induced postconditioning modulates mitochondrial permeability transition pore opening via delta-1 opioid receptors activation in isolated rat hearts. Korean J. Anesthesiol. 2011;61(1):69–74. DOI:10.4097/kjae.2011.61.1.69.; https://www.sibjcem.ru/jour/article/view/1853Test

  4. 4
    دورية أكاديمية

    المساهمون: Тhe study was funded by grant of the Ministry of Higher Education and Science for the creation of a new laboratory “Laboratory of Critical Care Medicine” (Decree of the Ministry of Education and Science of Russia MN8/1284 dated 10/24/2022), Исследование выполнено при поддержке гранта Министерства высшего образования и науки на создание новой лаборатории «Лаборатория медицины критических состояний» (Распоряжение Минобрнауки России МН-8/1284 от 24.10.2022 г.)

    المصدر: The Siberian Journal of Clinical and Experimental Medicine; Том 39, № 1 (2024); 163-170 ; Сибирский журнал клинической и экспериментальной медицины; Том 39, № 1 (2024); 163-170 ; 2713-265X ; 2713-2927

    وصف الملف: application/pdf

    العلاقة: https://www.sibjcem.ru/jour/article/view/1868/847Test; Kiers H.D., van den Boogaard M., Schoenmakers M.C., van der Hoeven J.G., van Swieten H.A., Heemskerk S. et al. Comparison and clinical suitability of eight prediction models for cardiac surgery-related acute kidney injury. Nephrol. Dial. Transplant. 2012;28(2):345–351. DOI:10.1093/ndt/gfs518.; Bedford M., Stevens P.E., Wheeler T.W.K., Farmer C.K.T. What is the real impact of acute kidney injury? BMC Nephrol. 2014;15(1):95. DOI:10.1186/1471-2369-15-95.; Rydén L., Sartipy U., Evans M., Holzmann M.J. Acute kidney injury after coronary artery bypass grafting and long-term risk of end-stage renal disease. Circulation. 2014;130(23):2005–2011. DOI:10.1161/circulationaha.114.010622.; Bellomo R., Auriemma S., Fabbri A., D’Onofrio A., Kats N., McCullough P.A. et al. The pathophysiology of cardiac surgery-associated acute kidney injury (CSA-Aki). Int. J. Artif. Organs. 2008;31(2):166–178. DOI:10.1177/039139880803100210.; Kumar A.B., Suneja M. Cardiopulmonary bypass-associated acute kidney injury. Anesthesiology. 2011;114(4):964–970. DOI:10.1097/aln.0b013e318210f86a.; Nelson D.L. Lehninger principles of biochemistry; 8th edit. New York: W.H. Freeman. 2021:1248.; Pabla N., Bajwa A. Role of mitochondrial therapy for ischemic-reperfusion injury and acute kidney injury. Nephron. 2021;146(3):253–258. DOI:10.1159/000520698.; Ma H., Guo X., Cui S., Wu Y., Zhang Y., Shen X. et al. Dephosphorylation of AMP-activated protein kinase exacerbates ischemia/reperfusion-induced acute kidney injury via mitochondrial dysfunction. Kidney Int. 2022;101(2):315–330. DOI:10.1016/j.kint.2021.10.028.; Shvedova M., Anfinogenova Y., Popov S.V., Atochin D.N. Connexins and nitric oxide inside and outside mitochondria: Significance for cardiac protection and adaptation. Front. Physiol. 2018;9:479. DOI:10.3389/fphys.2018.00479.; Kamenshchikov N.O., Anfinogenova Y.J., Kozlov B.N., Svirko Y.S., Pekarskiy S.E., Evtushenko V.V. et al. Nitric oxide delivery during cardiopulmonary bypass reduces acute kidney injury: A randomized trial. J. Thorac. Cardiovasc. Surg. 2022;163(4):1393–1403.e9. DOI:10.1016/j.jtcvs.2020.03.182.; Lei C., Berra L., Rezoagli E., Yu B., Dong H., Yu S. et al. Nitric oxide decreases acute kidney injury and stage 3 chronic kidney disease after cardiac surgery. Am. J. Respir. Crit. Care Med. 2018;198(10):1279–1287. DOI:10.1164/rccm.201710-2150OC.; Wahba A., Milojevic M., Boer C., De Somer F.M.J.J., Gudbjartsson T., van den Goor J. et al. 2019 EACTS/EACTA/EBCP guidelines on cardiopulmonary bypass in adult cardiac surgery. Eur. J. Cardiothorac. Surg. 2020;57(2):210–251. DOI:10.1093/ejcts/ezz267.; Møller M.H., Cecconi M. Venous-to-arterial carbon dioxide difference: An experimental model or a bedside clinical tool? Intensive Care Med. 2015;42(2):287–289. DOI:10.1007/s00134-015-4181-7.; Ospina-Tascón G.A., Umaña M., Bermúdez W.F., Bautista-Rincón D.F., Valencia J.D., Madriñán H.J. et al. Can venous-to-arterial carbon dioxide differences reflect microcirculatory alterations in patients with septic shock? Intensive Care Med. 2015;42(2):211–221. DOI:10.1007/s00134-015-4133-2.; Vercaemst L. Hemolysis in cardiac surgery patients undergoing cardiopulmonary bypass: A review in search of a treatment algorithm. J. Extra Corpor. Technol. 2008;40(4):257–267.; Kato G.J., Steinberg M.H., Gladwin M.T. Intravascular hemolysis and the pathophysiology of sickle cell disease. J. Clin. Invest. 2017;127(3):750– 760. DOI:10.1172/jci89741.; Teodoro J.S., Da Silva R.T., Machado I.F., Panisello-Roselló A., Roselló-Catafau J., Rolo A.P. et al. Shaping of hepatic ischemia/reperfusion events: The crucial role of mitochondria. Cells. 2022;11(4):688. DOI:10.3390/cells11040688.; https://www.sibjcem.ru/jour/article/view/1868Test

  5. 5
    دورية أكاديمية

    المساهمون: The study was supported by the Russian Science Foundation grant No. 23-65-10017. The section on reperfusion therapy of microvascular obstruction was prepared in the framework of the state task 122020300042-4., Работа выполнена при финансовой поддержке гранта Российского научного фонда № 23-65-10017. Раздел, посвященный реперфузионной терапии микроваскулярной обструкции, подготовлен в рамках государственного задания 122020300042-4.

    المصدر: The Siberian Journal of Clinical and Experimental Medicine; Том 38, № 2 (2023); 14-22 ; Сибирский журнал клинической и экспериментальной медицины; Том 38, № 2 (2023); 14-22 ; 2713-265X ; 2713-2927

    وصف الملف: application/pdf

    العلاقة: https://www.sibjcem.ru/jour/article/view/1782/808Test; Majno G., Ames A., Chaing J., Wright R.L. No reflow after cerebral ischemia. Lancet. 1967;290(7515):569–570. DOI:10.1016/S0140-6736(67)90552-1.; Kloner R.A., Ganote C.E., Jennings R.B. The “no-reflow” phenomenon after temporary coronary occlusion in the dog. J. Clin. Invest. 1974;54(6):1496–1508. DOI:10.1172/JCI107898.; Schofer J., Montz R., Mathey D.G. Scintigraphic evidence of the “no reflow” phenomenon in human beings after coronary thrombolysis. J. Am. Coll. Cardiol. 1985;5(3):593–598. DOI:10.1016/s0735-1097(85)80381-8.; Алексеева Я.В., Вышлов Е.В., Павлюкова Е.Н., Усов В.Ю., Марков В.А., Рябов В.В. Влияние разных фенотипов микрососудистого повреждения миокарда на сократительную функцию левого желудочка у пациентов с инфарктом миокарда с подъемом сегмента ST. Кардиология. 2021;61(5):23–31. DOI:10.18087/cardio.2021.5.n1500.; McCartney P.J., Eteiba H., Maznyczka A.M., McEntegart M., Greenwood J.P. Muir D.F. et al.; T-TIME Group. Effect of low-dose intracoronary alteplase during primary percutaneous coronary intervention on microvascular obstruction in patients with acute myocardial infarction: A randomized clinical trial. JAMA. 2019;321(1):56–68. DOI:10.1001/jama.2018.19802.; McCartney P.J., Berry C. Redefining successful primary PCI. Eur. Heart J. Cardiovasc. Imaging. 2019;20(2):133–135. DOI:10.1093/ehjci/jey159.; Ndrepepa G., Tiroch K., Fusaro M., Keta D., Seyfarth M., Byrne R.A. et al. 5-year prognostic value of no-reflow phenomenon after percutaneous coronary intervention in patients with acute myocardial infarction. J. Am. Coll. Cardiol. 2010;55(21):2383–2389. DOI:10.1016/j.jacc.2009.12.054.; Rossington J.A., Sol E., Masoura K., Aznaouridis K., Chelliah R., Cunnington M. et al. No-reflow phenomenon and comparison to the normal-flow population postprimary percutaneous coronary intervention for ST elevation myocardial infarction: case-control study (NORM PPCI). Open Heart. 2020;7(2):e001215. DOI:10.1136/openhrt-2019-001215.; Wu K.C., Zerhouni E.A., Judd R.M., Lugo-Olivieri C.H., Barouch L.A., Schulman S.P. et al. Prognostic significance of microvascular obstruction by magnetic resonance imaging in patients with acute myocardial infarction. Circulation. 1998;97(8):765–772. DOI:10.1161/01.cir.97.8.765.; Mayr A., Klug G., Schocke M., Trieb T., Mair J., Pedarnig K. et al. Late microvascular obstruction after acute myocardial infarction: relation with cardiac and inflammatory markers. Int. J. Cardiol. 2012;157(3):391–396. DOI:10.1016/j.ijcard.2010.12.090.; Ober C.D., Ober M.C., Iancu A.C. Serial transthoracic coronary Doppler shows complete reversibility of microvascular obstruction pattern at one month after reperfused acute myocardial infarction. Med. Ultrason. 2017;19(1):45–50. DOI:10.11152/mu-941.; Вышлов Е.В., Алексеева Я.В., Усов В.Ю., Мочула О.В., Рябов В.В. Синдром микрососудистого повреждения миокарда у пациентов с первичным инфарктом миокарда с подъемом сегмента ST: распространенность и связь с клиническими характеристиками. Сибирский журнал клинической и экспериментальной медицины. 2022;37(1):36–46. DOI:10.29001/2073-8552-2022-37-1-36-46.; Romano M., Buffoli F., Lettieri C., Aroldi M., Tomasi L., Baccaglioni N. et al. No reflow in patients undergoing primary angioplasty for acute myocardial infarction at high risk: incidence and predictive factors. Minerva Cardioangiol. 2005;53(1):7–14.; Klug G., Mayr A., Schenk S., Esterhammer R., Schocke M., Nocker M. et al. Prognostic value at 5 years of microvascular obstruction after acute myocardial infarction assessed by cardiovascular magnetic resonance. J. Cardiovasc. Magn. Reson. 2012;14(1):46. DOI:10.1186/1532-429X-14-46.; Kitabata H., Kubo T., Ishibashi K., Komukai K., Tanimoto T., Ino Y. et al. Prognostic value of microvascular resistance index immediately after primary percutaneous coronary intervention on left ventricular remodeling in patients with reperfused anterior acute ST-segment elevation myocardial infarction. JACC Cardiovasc. Interv. 2013;6(10):1046–1054. DOI:10.1016/j.jcin.2013.05.014.; Porto I., Biasucci L.M., De Maria G.L., Leone A.M., Niccoli G., Burzotta F. et al. Intracoronary microparticles and microvascular obstruction in patients with ST elevation myocardial infarction undergoing primary percutaneous intervention. Eur. Heart J. 2012;33(23):2928–2938. DOI:10.1093/eurheartj/ehs065.; Jesel L., Morel O., Ohlmann P., Germain P., Faure A., Jahn C. et al. Role of pre-infarction angina and inflammatory status in the extent of microvascular obstruction detected by MRI in myocardial infarction patients treated by PCI. Int. J. Cardiol. 2007;121(2):139–147. DOI:10.1016/j.ijcard.2006.10.022.; Zalewski J., Durak M., Lech P., Gajos G., Undas A., Nessler J. et al. Platelet activation and microvascular injury in patients with ST-segment elevation myocardial infarction. Kardiol. Pol. 2012;70(7):677–684.; Basili S., Tanzilli G., Raparelli V., Calvieri C., Pignatelli P., Carnevale R. et al. Aspirin reload before elective percutaneous coronary intervention: impact on serum thromboxane b2 and myocardial reperfusion indexes. Circ. Cardiovasc. Interv. 2014;7(4):577–584. DOI:10.1161/CIRCINTERVENTIONS.113.001197.; Takahashi T., Fukai T., Hata H., Kasuya H., Kuga T., Egashira K. et al. Effects of a new calcium antagonist, CD-832, on experimental coronary artery spasm in miniature pigs. Cardiovasc. Drugs Ther. 1993;7(2):265–271. DOI:10.1007/BF00878517.; Ghaleh B., Dubois-Randé J.L., Hittinger L., Giudicelli J.F., Berdeaux A. Comparisons of the effects of nicorandil, pinacidil, nicardipine and nitroglycerin on coronary vessels in the conscious dog: role of the endothelium. Br. J. Pharmacol. 1995;114(2):496–502. DOI:10.1111/j.1476-5381.1995.tb13254.x.; Abebe W., Makujina S.R., Mustafa S.J. Adenosine receptor-mediated relaxation of porcine coronary artery in presence and absence of endothelium. Am. J. Physiol. 1994;266(5):H2018–H2025. DOI:10.1152/ajpheart.1994.266.5.H2018.; Ghaleh B., Béa M.L., Dubois-Randé J.L., Giudicelli J.F., Hittinger L., Berdeaux A. Endothelial modulation of beta-adrenergic dilation of large coronary arteries in conscious dogs. Circulation. 1995;92(9):2627–2635. DOI:10.1161/01.cir.92.9.2627.; Lee S.R., Jung J.M., Jung L.Y., Lee J.H., Lee S.H., Rhee K.S. et al. Elevated coronary whole blood viscosity in acute coronary syndrome patients. Clin. Hemorheol. Microcirc. 2013;55(1):85–94. DOI:10.3233/CH-131692.; Fracassi F., Vetrugno V., Mandurino-Mirizzi A., Cosentino N., Panicale S., Caprari P. et al. Effect of hemorheological parameters on myocardial injury after primary or elective percutaneous coronary intervention. Coron. Artery Dis. 2018;29(8):638–646. DOI:10.1097/MCA.0000000000000661.; Tarantini G., Razzolini R., Cacciavillani L., Bilato C., Sarais C., Corbetti F. et al. Influence of transmurality, infarct size, and severe microvascular obstruction on left ventricular remodeling and function after primary coronary angioplasty. Am. J. Cardiol. 2006;98(8):1033–1040. DOI:10.1016/j.amjcard.2006.05.022.; Galiuto L., Garramone B., Scarà A., Rebuzzi A.G., Crea F., La Torre G. et al. The extent of microvascular damage during myocardial contrast echocardiography is superior to other known indexes of post-infarct reperfusion in predicting left ventricular remodeling: results of the multicenter AMICI study. J. Am. Coll. Cardiol. 2008;51(5):552–559. DOI:10.1016/j.jacc.2007.09.051.; Zhang L., Mandry D., Chen B., Huttin O., Hossu G., Wang H. et al. Impact of microvascular obstruction on left ventricular local remodeling after reperfused myocardial infarction. J. Magn. Reson. Imaging. 2018;47(2):499–510. DOI:10.1002/jmri.25780.; Dregoesc M.I., Iancu A.C., Ober C.D., Homorodean C., Bãlãnescu Ş., Bolboacã S. In ST-segment elevation myocardial infarction, the echocardiographic parameters of microvascular obstruction are not associated with left ventricular remodeling at five years of follow-up. Echocardiography. 2019;36(6):1103–1109. DOI:10.1111/echo.14371.; Tsujioka H., Imanishi T., Ikejima H., Tanimoto T., Kuroi A., Kashiwagi M. et al. Post-reperfusion enhancement of CD14(+)CD16(–) monocytes and microvascular obstruction in ST-segment elevation acute myocardial infarction. Circ. J. 2010;74(6):1175–1182. DOI:10.1253/circj.cj-09-1045.; Reindl M., Reinstadler S.J., Feistritzer H.J., Klug G., Tiller C., Mair J. et al. Relation of inflammatory markers with myocardial and microvascular injury in patients with reperfused ST-elevation myocardial infarction. Eur. Heart J. Acute Cardiovasc. Care. 2017;6(7):640–649. DOI:10.1177/2048872616661691.; Holzknecht M., Tiller C., Reindl M., Lechner I., Troger F., Hosp M. et al. C-reactive protein velocity predicts microvascular pathology after acute ST-elevation myocardial infarction. Int. J. Cardiol. 2021;338:30–36. DOI:10.1016/j.ijcard.2021.06.023.; Guo F., Dong M., Ren F., Zhang C., Li J., Tao Z. et al. Association between local interleukin-6 levels and slow flow/microvascular dysfunction. J. Thromb. Thrombolysis. 2014;37(4):475–482. DOI:10.1007/s11239-013-0974-0.; Shetelig C., Limalanathan S., Hoffmann P., Seljeflot I., Gran J.M., Eritsland J. et al. Association of IL-8 with infarct size and clinical outcomes in patients with STEMI. J. Am. Coll. Cardiol. 2018;72(2):187–198. DOI:10.1016/j.jacc.2018.04.053.; Abdelaziz H.K., Elkilany W., Khalid S., Sabet S., Saad M. Efficacy and safety of intracoronary verapamil versus sodium nitroprusside for the prevention of microvascular obstruction during primary percutaneous coronary intervention for ST-segment elevation myocardial infarction. Coron Artery Dis. 2017;28(1):11–16. DOI:10.1097/MCA.0000000000000423.; Hillegass W.B., Dean N.A., Liao L., Rhinehart R.G., Myers P.R. Treatment of no-reflow and impaired flow with the nitric oxide donor nitroprusside following percutaneous coronary interventions: initial human clinical experience. J. Am. Coll. Cardiol. 2001;37(5):1335–1343. DOI:10.1016/s0735-1097(01)01138-x.; Wang H.J., Lo P.H., Lin J.J., Lee H., Hung J.S. Treatment of slow/noreflow phenomenon with intracoronary nitroprusside injection in primary coronary intervention for acute myocardial infarction. Catheter. Cardiovasc. Interv. 2004;63(2):171–176. DOI:10.1002/ccd.20149.; Niccoli G., Rigattieri S., De Vita M.R., Valgimigli M., Corvo P., Fabbiocchi F. et al. Open-label, randomized, placebo-controlled evaluation of intracoronary adenosine or nitroprusside after thrombus aspiration during primary percutaneous coronary intervention for the prevention of microvascular obstruction in acute myocardial infarction: the REOPEN-AMI study (Intracoronary Nitroprusside Versus Adenosine in Acute Myocardial Infarction). JACC Cardiovasc. Interv. 2013;6(6):580–589. DOI:10.1016/j.jcin.2013.02.009.; Nazir S.A., McCann G.P., Greenwood J.P., Kunadian V., Khan J.N., Mahmoud I.Z. et al. Strategies to attenuate micro-vascular obstruction during P-PCI: the randomized reperfusion facilitated by local adjunctive therapy in ST-elevation myocardial infarction trial. Eur. Heart J. 2016;37(24):1910–1919. DOI:10.1093/eurheartj/ehw136.; Taylor A.J., Bobik A., Richards M., Kaye D., Raines G., Gould P. et al. Myocardial endothelin-1 release and indices of inflammation during angioplasty for acute myocardial infarction and stable coronary artery disease. Am. Heart J. 2004;148(2):e10. DOI:10.1016/j.ahj.2004.03.018.; Eitel I., Nowak M., Stehl C., Adams V., Fuernau G., Hildebrand L. et al. Endothelin-1 release in acute myocardial infarction as a predictor of long-term prognosis and no-reflow assessed by contrast-enhanced magnetic resonance imaging. Am. Heart J. 2010;159(5):882–890. DOI:10.1016/j.ahj.2010.02.019.; Tan C.M.J., Green P., Tapoulal N., Lewandowski A.J., Leeson P., Herring N. The role of neuropeptide Y in cardiovascular health and disease. Front. Physiol. 2018;9:1281. DOI:10.3389/fphys.2018.01281.; Clarke J.G., Davies G.J., Kerwin R., Hackett D., Larkin S., Dawbarn D. et al. Coronary artery infusion of neuropeptide Y in patients with angina pectoris. Lancet. 1987;1(8541):1057–1059. DOI:10.1016/s0140-6736(87)90483-1.; Herring N., Tapoulal N., Kalla M., Ye X., Borysova L., Lee R. et al. Neuropeptide-Y causes coronary microvascular constriction and is associated with reduced ejection fraction following ST-elevation myocardial infarction. Eur. Heart J. 2019;40(24):1920–1929. DOI:10.1093/eurheartj/ehz115.; Aksu T., Guler T.E., Colak A., Baysal E., Durukan M., Sen T. et al. Intracoronary epinephrine in the treatment of refractory no-reflow after primary percutaneous coronary intervention: a retrospective study. BMC Cardiovasc. Disord. 2015;15:10. DOI:10.1186/s12872-015-0004-6.; Navarese E.P., Frediani L., Kandzari D.E., Caiazzo G., Cenname A.M., Cortese B. et al. Efficacy and safety of intracoronary epinephrine versus conventional treatments alone in STEMI patients with refractory coronary no-reflow during primary PCI: The RESTORE observational study. Catheter Cardiovasc. Interv. 2021;97(4):602–611. DOI:10.1002/ccd.29113.; Darwish A, Frere AF, Abdelsamie M, Awady WE, Gouda M. Intracoronary epinephrine versus adenosine in the management of refractory no-reflow phenomenon: a single-center retrospective cohort study. Ann. Saudi. Med. 2022;42(2):75–82. DOI:10.5144/0256-4947.2022.75.; Zhao J., Yang Y., You S., Cui C., Gao R. Carvedilol preserves endothelial junctions and reduces myocardial no-reflow after acute myocardial infarction and reperfusion. Int. J. Cardiol. 2007;115(3):334–341. DOI:10.1016/j.ijcard.2006.03.017.; Marzilli M., Orsini E., Marraccini P., Testa R. Beneficial effects of intracoronary adenosine as an adjunct to primary angioplasty in acute myocardial infarction. Circulation. 2000;101(18):2154–2159. DOI:10.1161/01.cir.101.18.2154.; Ito H., Taniyama Y., Iwakura K., Nishikawa N., Masuyama T., Kuzuya T. et al. Intravenous nicorandil can preserve microvascular integrity and myocardial viability in patients with reperfused anterior wall myocardial infarction. J. Am. Coll. Cardiol. 1999;33(3):654–660. DOI:10.1016/s0735-1097(98)00604-4.; Khan J.N., Greenwood J.P., Nazir S.A., Lai F.Y., Dalby M., Curzen N. et al. Infarct size following treatment with second-versus third-generation P2Y12 antagonists in patients with multivessel coronary disease at ST-segment elevation myocardial infarction in the CvLPRIT study. J. Am. Heart Assoc. 2016;5(6):e003403. DOI:10.1161/JAHA.116.003403.; Ma Q., Ma Y., Wang X., Li S., Yu T., Duan W. et al. Intracoronary compared with intravenous bolus tirofiban on the microvascular obstruction in patients with STEMI undergoing PCI: a cardiac MR study. Int. J. Cardiovasc. Imaging. 2020;36(6):1121–1132. DOI:10.1007/s10554-020-01800-0.; Aetesam-Ur-Rahman M., Brown A.J., Jaworski C., Giblett J.P., Zhao T.X., Braganza D.M. et al. Adenosine-induced coronary steal is observed in patients presenting with ST-segment-elevation myocardial infarction. J. Am. Heart Assoc. 2021;10(13):e019899. DOI:10.1161/JAHA.120.019899.; Lim S.Y., Bae E.H., Jeong M.H., Kang D.G., Lee Y.S., Kim K.H. et al. Effect of combined intracoronary adenosine and nicorandil on no-reflow phenomenon during percutaneous coronary intervention. Circ J. 2004;68(10):928–932. DOI:10.1253/circj.68.928.; Knabb R.M., Ely S.W., Bacchus A.N., Rubio R., Berne R.M. Consistent parallel relationships among myocardial oxygen consumption, coronary blood flow, and pericardial infusate adenosine concentration with various interventions and beta-blockade in the dog. Circ. Res. 1983;53(1):33–41. DOI:10.1161/01.res.53.1.33.; Buffington C.W., Feigl E.O. Adrenergic coronary vasoconstriction in the presence of coronary stenosis in the dog. Circ. Res. 1981;48(3):416–423. DOI:10.1161/01.res.48.3.416.; Golino P., Maroko P.R., Carew T.E. The effect of acute hypercholesterolemia on myocardial infarct size and the no-reflow phenomenon during coronary occlusion-reperfusion. Circulation. 1987;75(1):292–298. DOI:10.1161/01.cir.75.1.292.; Taniyama Y., Ito H., Iwakura K., Masuyama T., Hori M., Takiuchi S. et al. Beneficial effect of intracoronary verapamil on microvascular and myocardial salvage in patients with acute myocardial infarction. J. Am. Coll. Cardiol. 1997;30(5):1193–1199. DOI:10.1016/s0735-1097(97)00277-5.; Huang R.I., Patel P., Walinsky P., Fischman D.L., Ogilby J.D., Awar M. et al. Efficacy of intracoronary nicardipine in the treatment of no-reflow during percutaneous coronary intervention. Catheter Cardiovasc. Interv. 2006;68(5):671–676. DOI:10.1002/ccd.20885.; Fischell T.A., Haller S., Pulukurthy S., Virk I.S. Nicardipine and adenosine “flush cocktail” to prevent no-reflow during rotational atherectomy. Cardiovasc. Revasc. Med. 2008;9(4):224–228. DOI:10.1016/j.carrev.2008.03.002.; https://www.sibjcem.ru/jour/article/view/1782Test

  6. 6
    دورية أكاديمية

    المساهمون: this article was prepared with the support of a grant from the Russian Foundation of Basic Research 18-415-700004. The section on a role of kinases in the cardioprotective effects of erythropoietin is prepared within the framework of the state tasks AAAA-A15-115120910024-0., Статья подготовлена при поддержке гранта РФФИ 18-415-700004. Раздел, посвященный роли киназ в кардиопротекторных эффектах эритропоэтина, оформлен в рамках гос. задания АААА-А15-115120910024-0.

    المصدر: The Siberian Journal of Clinical and Experimental Medicine; Том 38, № 2 (2023); 51-56 ; Сибирский журнал клинической и экспериментальной медицины; Том 38, № 2 (2023); 51-56 ; 2713-265X ; 2713-2927

    وصف الملف: application/pdf

    العلاقة: https://www.sibjcem.ru/jour/article/view/1786/812Test; Menees D.S., Peterson E.D., Wang Y., Curtis J.P., Messenger J.C., Rumsfeld J.S. et al. Door-to-balloon time and mortality among patients undergoing primary PCI. N. Engl. J. Med. 2013;369(10):901–909. DOI:10.1056/NEJMoa1208200.; Zhou Y., Chen S., Zhu X., Gui J., Abusaada K. Prior beta blockers use is independently associated with increased inpatient mortality in patients presenting with acute myocardial infarction. Int. J. Cardiol. 2017;243:81–85. DOI:10.1016/j.ijcard.2017.03.004.; Vaidya S.R., Devarapally S.R., Arora S. Infarct related artery only versus complete revascularization in ST-segment elevation myocardial infarction and multi vessel disease: a meta-analysis. Cardiovasc. Diagn. Ther. 2017;7(1):16–26. DOI:10.21037/cdt.2016.08.06.; Bunn H.F. Erythropoietin. Cold. Spring. Harb. Perspect. Med. 2013;3(3):a011619. DOI:10.1101/cshperspect.a011619.; Carnot P., Deflandre C. Sur l’activite hemopoietique des differents organeau au cours de la regeneration du sang. CR Searces. Acad. Sci. 1906;143:432–435.; Krumdieck N. Erythropoietic substance in the serum of anemic animals. Exp. Biol. Med. 1943;54(1):14–17. DOI:10.3181/00379727-54-14283.; Jacobson L.O., Marks E., Gaston E., Goldwasser E. Role of the kidney in erythropoiesis. Nature. 1957;179(4560):633–634. DOI:10.1038/179633a0.; Baker J.E. Erythropoietin mimics ischemic preconditioning. Vascul. Pharmacol. 2005;42(5–6):233–241. DOI:10.1016/j.vph.2005.02.004.; Calvillo L., Latini R., Kajstura J., Leri A., Anversa P., Ghezzi P. et al. Recombinant human erythropoietin protects the myocardium from ischemia-reperfusion injury and promotes beneficial remodeling. Proc. Natl. Acad. Sci. 2003;100(8):4802–4806. DOI:10.1073/pnas.0630444100.; Beleslin-Cokic B.B., Cokic V.P., Yu X., Weksler B.B., Schechter A.N., Noguchi C.T. Erythropoietin and hypoxia stimulate erythropoietin receptor and nitric oxide production by endothelial cells. Blood. 2004;104(7):2073–2080. DOI:10.1182/blood-2004-02-0744.; Miyake T., Kung C.K.H., Goldwasser E. Purification of human erythropoietin. J. Biol. Chem. 1977;252(15):5558–5564.; Jacobs K., Shoemaker C., Rudersdorf R., Neill S.D., Kaufman R.J., Mufson A. et al. Isolation and characterization of genomic and cDNA clones of human erythropoietin. Nature. 1985;313(6005):806–810. DOI:10.1038/313806a0.; Collino M., Thiemermann C., Cerami A., Brines M. Flipping the molecular switch for innate protection and repair of tissues: Long-lasting effects of a non-erythropoietic small peptide engineered from erythropoietin. Pharmacol. Ther. 2015;151:32–40. DOI:10.1016/j.pharmthera.2015.02.005.; Ridley D.M., Dawkins F., Perlin E. Erythropoietin: a review. J. Natl. Med. Assoc. 1994;86(2):129–135.; Held M.A., Greenfest-Allen E., Su S., Stoeckert C.J., Stokes M.P., Wojchowski D.M. Phospho-PTM proteomic discovery of novel EPO-modulated kinases and phosphatases, including PTPN18 as a positive regulator of EPOR/JAK2 signaling. Cell. Signal. 2020;69:109554. DOI:10.1016/j.cellsig.2020.109554.; Heusch G. Molecular basis of cardioprotection: signal transduction in ischemic pre-, post-, and remote conditioning. Circ. Res. 2015;116(4):674–699. DOI:10.1161/CIRCRESAHA.116.305348.; Yamaji R., Okada T., Moriya M., Naito M., Tsuruo T., Miyatake K. et al. Brain capillary endothelial cells express two forms of erythropoietin receptor mRNA. Eur. J. Biochem. 1996;239(2):494–500. DOI:10.1111/j.1432-1033.1996.0494u.x.; van der Meer P., Lipsic E., Henning R.H., de Boer R.A., Suurmeijer A.J., van Veldhuisen D.J. et al. Erythropoietin improves left ventricular function and coronary flow in an experimental model of ischemia-reperfusion injury. Eur. J. Heart. Fail. 2004;6(7):853–859. DOI:10.1016/j.ejheart.2004.03.012.; Zafeiriou M.P. The Erythropoietin system protects the heart upon injury by cardiac progenitor cell activation. Vitam. Horm. 2017;105:233–248. DOI:10.1016/bs.vh.2017.04.001.; Brines M., Cerami A. Discovering erythropoietin’s extra-hematopoietic functions: biology and clinical promise. Kidney Int. 2006;70(2):246–250. DOI:10.1038/sj.ki.5001546.; van der Kooij M.A., Groenendaal F., Kavelaars A., Heijnen C.J., van Bel F. Neuroprotective properties and mechanisms of erythropoietin in in vitro and in vivo experimental models for hypoxia/ischemia. Brain Res. Rev. 2008;59(1):22–33. DOI:10.1016/j.brainresrev.2008.04.007.; Schödel J., Ratcliffe P.J. Mechanisms of hypoxia signalling: new implications for nephrology. Nat. Rev. Nephrol. 2019;15(10):641–659. DOI:10.1038/s41581-019-0182-z.; Villa P., Bigini P., Mennini T., Agnello D., Laragione T., Cagnotto A. et al. Erythropoietin selectively attenuates cytokine production and inflammation in cerebral ischemia by targeting neuronal apoptosis. J. Exp. Med. 2003;198(6):971–975. DOI:10.1084/jem.20021067.; Kittur F.S., Lin Y., Arthur E., Hung C.Y., Li P.A., Sane D.C. et al. Recombinant asialoerythropoetin protects HL-1 cardiomyocytes from injury via suppression of Mst1 activation. Biochem. Biophys. Rep. 2019;17:157–168. DOI:10.1016/j.bbrep.2019.01.004.; Li R., Zhang L.M., Sun W.B. Erythropoietin rescues primary rat cortical neurons from pyroptosis and apoptosis via Erk1/2-Nrf2/Bach1 signal pathway. Brain Res. Bull. 2017;130:236–244. DOI:10.1016/j.brainresbull.2017.01.016.; Cohen M.V., Downey J.M. Signalling pathways and mechanisms of protection in pre- and postconditioning: historical perspective and lessons for the future. Br. J. Pharmacol. 2015;172(8):1913–1932. DOI:10.1111/bph.12903.; Bullard A.J., Govewalla P., Yellon D.M. Erythropoietin protects the myocardium against reperfusion injury in vitro and in vivo. Basic. Res. Cardiol. 2005;100(5):397–403. DOI:10.1007/s00395-005-0537-4.; Garg K., Sharma P., Yadav H., Singh M. Mechanism of cardioprotective effect of erythropoietin-induced preconditioning in rat heart. Indian J. Pharmacol. 2010;42(4):219. DOI:10.4103/0253-7613.68421.; Tsibulnikov S.Y., Maslov L.N., Gorbunov A.S., Voronkov N.S., Boshchenko A.A., Popov S.V. et al. A Review of humoral factors in remote preconditioning of the heart. J. Cardiovasc. Pharmacol. Ther. 2019;24(5):403–421. DOI:10.1177/1074248419841632.; Suarez-Mendez S., Tovilla-Zárate C.A., Juárez-Rojop I.E., Bermú-dez-Ocaña D.Y. Erythropoietin: A potential drug in the management of diabetic neuropathy. Biomed. Pharmacother. 2018;105:956–961. DOI:10.1016/j.biopha.2018.06.068.; Ghaboura N., Tamareille S., Ducluzeau P.-H., Grimaud L., Loufrani L., Croué A. et al. Diabetes mellitus abrogates erythropoietin-induced cardioprotection against ischemic-reperfusion injury by alteration of the RISK/GSK-3β signaling. Basic. Res. Cardiol. 2011;106(1):147–162. DOI:10.1007/s00395-010-0130-3.; Tan R., Tian H., Yang B., Zhang B., Dai C., Han Z. et al. Autophagy and Akt in the protective effect of erythropoietin helix B surface peptide against hepatic ischaemia/reperfusion injury in mice. Sci. Rep. 2018;8(1):14703. DOI:10.1038/s41598-018-33028-3.; Yu J., Shi Z., Su X., Zhou Y., Li B., Wang S. et al. Expression of Bcl-2 and Bad in hippocampus of status epileptic rats and molecular mechanism of intervened recombinant human erythropoietin. Exp. Ther. Med. 2018;16(2):847–855. DOI:10.3892/etm.2018.6250.; Xie Y., Shi X., Sheng K., Han G., Li W., Zhao Q. et al. PI3K/Akt signaling transduction pathway, erythropoiesis and glycolysis in hypoxia (Review). Mol. Med. Rep. 2019;19(2):783–791. DOI:10.3892/mmr.2018.9713.; Si W., Wang J., Li M., Qu H., Gu R., Liu R. et al. Erythropoietin protects neurons from apoptosis via activating PI3K/AKT and inhibiting Erk1/2 signaling pathway. 3 Biotech. 2019;9(4):131. DOI:10.1007/s13205-019-1667-y.; Kreisman N.R., Wooliscroft L.B., Campbell C.F., Dotiwala A.K., Cox M.L., Denson A.C. et al. Preconditioning hippocampal slices with hypothermia promotes rapid tolerance to hypoxic depolarization and swelling: Mediation by erythropoietin. Brain Res. 2020;1726:146517. DOI:10.1016/j.brainres.2019.146517.; Liu F., Wen Y., Kang J., Wei C., Wang M., Zheng Z. et al. Regulation of TLR4 expression mediates the attenuating effect of erythropoietin on inflammation and myocardial fibrosis in rat heart. Int. J. Mol. Med. 2018;42(3):1436–1444. DOI:10.3892/ijmm.2018.3707.; Parsa C.J., Matsumoto A., Kim J., Riel R.U., Pascal L.S., Walton G.B. et al. A novel protective effect of erythropoietin in the infarcted heart. J. Clin. Invest. 2003;112(7):999–1007. DOI:10.1172/JCI18200.; Lipsic E., van der Meer P., Henning R.H., Suurmeijer A.J., Boddeus K.M., van Veldhuisen D.J. et al. Timing of erythropoietin treatment for cardioprotection in ischemia/reperfusion. J. Cardiovasc. Pharmacol. 2004;44(4):473–479. DOI:10.1097/01.fjc.0000140209.04675.c3.; Moon C., Krawczyk M., Ahn D., Ahmet I., Paik D., Lakatta E.G. et al. Erythropoietin reduces myocardial infarction and left ventricular functional decline after coronary artery ligation in rats. Proc. Natl. Acad. Sci. USA. 2003;100(20):11612–11617. DOI:10.1073/pnas.1930406100.; Hale S.L., Sesti C., Kloner R.A. Administration of erythropoietin fails to improve long-term healing or cardiac function after myocardial infarction in the rat. J. Cardiovasc. Pharmacol. 2005;46(2):211–215. DOI:10.1097/01.fjc.0000171751.05446.c5.; Prunier F., Pfister O., Hadri L., Liang L., Del Monte F., Liao R. et al. Delayed erythropoietin therapy reduces post-MI cardiac remodeling only at a dose that mobilizes endothelial progenitor cells. Am. J. Physiol. Circ. Physiol. 2007;292(1):H522–H529. DOI:10.1152/ajpheart.00357.2006.; van der Meer P., Lipsic E., Henning R.H., Boddeus K., van der Velden J., Voors A.A. et al. Erythropoietin induces neovascularization and improves cardiac function in rats with heart failure after myocardial infarction. J. Am. Coll. Cardiol. 2005;46(1):125–133. DOI:10.1016/j.jacc.2005.03.044.; Hirata A., Minamino T., Asanuma H., Fujita M., Wakeno M., Myoishi M. et al. Erythropoietin enhances neovascularization of ischemic myocardium and improves left ventricular dysfunction after myocardial infarction in dogs. J. Am. Coll. Cardiol. 2006;48(1):176–184. DOI:10.1016/j.jacc.2006.04.008.; Ott I., Schulz S., Mehilli J., Fichtner S., Hadamitzky M., Hoppe K. et al. Erythropoietin in patients with acute ST-Segment elevation myocardial infarction undergoing primary percutaneous coronary intervention. Circ. Cardiovasc. Interv. 2010;3(5):408–413. DOI:10.1161/CIRCINTERVENTIONS.109.904425.; Voors A.A., Belonje A.M.S., Zijlstra F., Hillege H.L., Anker S.D., Slart R.H. et al. A single dose of erythropoietin in ST-elevation myocardial infarction. Eur. Heart J. 2010;31(21):2593–2600. DOI:10.1093/eurheartj/ehq304.; Najjar S.S., Rao S.V., Melloni C., Raman S.V., Povsic T.J., Melton L. et al. Intravenous erythropoietin in patients with ST-segment elevation myocardial infarction: REVEAL: a randomized controlled trial. JAMA. 2011;305(18):1863–1872. DOI:10.1001/jama.2011.592.; Prunier F., Bière L., Gilard M., Boschat J., Mouquet F., Bauchart J.J. et al. Single high-dose erythropoietin administration immediately after reperfusion in patients with ST-segment elevation myocardial infarction: results of the erythropoietin in myocardial infarction trial. Am. Heart J. 2012;163(2):200–207. DOI:10.1016/j.ahj.2011.11.005.; Gholamzadeh A., Amini S., Mohammadpour A.H., Vahabzadeh M., Fazelifar A.F., Fazlinezhad A. et al. Erythropoietin reduces PostPCI arrhythmias in patients with ST-elevation myocardial infarction. J. Cardiovasc. Pharmacol. 2015;65(6):555–561. DOI:10.1097/FJC.0000000000000223.; Orii M., Hirata K., Takemoto K., Akasaka T. Effect of erythropoietin administration on myocardial viability and coronary microvascular dysfunction in anterior acute myocardial infarction: Randomized controlled trial in the Japanese Population. Cardiol. Ther. 2018;7(2):151–162. DOI:10.1007/s40119-018-0122-1.; Seo W.-W., Suh J.-W., Oh I.-Y., Yoon C.H., Cho Y.S., Youn T.J. et al. Efficacy of intracoronary erythropoietin delivery before reperfusion-gauging infarct size in patients with acute ST-segment elevation myocardial infarction (ICEBERG). Int. Heart J. 2019;60(2):255–263. DOI:10.1536/ihj.18-035.; Minamino T., Higo S., Araki R., Hikoso S., Nakatani D., Suzuki H. et al. EPO-AMI-II investigators. Low-dose erythropoietin in patients with ST-segment elevation myocardial infarction (EPO-AMI-II) – A randomized controlled clinical trial. Circ. J. 2018;82(4):1083–1091. DOI:10.1253/circj.CJ-17-0889.; Маслов Л.Н., Нарыжная Н.В., Цибульников С.Ю., Воронков Н.С., Бушов Ю.В. Роль натрийуретических пептидов и эритропоэтина в регуляции толерантности сердца к действию ишемии и реперфузии. Анализ экспериментальных и клинических данных. Рос. физиол. журн. им. И.М. Сеченова. 2019;105(1):24–35. DOI:10.1134/S0869813919010060.; https://www.sibjcem.ru/jour/article/view/1786Test

  7. 7
    دورية أكاديمية

    المساهمون: В работе было использовано оборудование Центра коллективного пользования «Медицинская геномика» ФГБНУ «Томский национальный исследовательский медицинский центр Российской академии наук». Работа выполнена при поддержке РНФ (грант № 22-15-00048). Исследования с темполом выполнялись в рамках государственного задания 122020300042-4

    المصدر: Acta Biomedica Scientifica; Том 8, № 2 (2023); 254-262 ; 2587-9596 ; 2541-9420

    وصف الملف: application/pdf

    العلاقة: https://www.actabiomedica.ru/jour/article/view/4092/2541Test; Menees DS, Peterson ED, Wang Y, Curtis JP, Messenger JC, Rumsfeld JS, et al. Door-to-balloon time and mortality among patients undergoing primary PCI. N Engl J Med. 2013; 369(10): 901-909. doi:10.1056/NEJMoa1208200; Fabris E, Kilic S, Schellings DAAM, Ten Berg JM, Kennedy MW, van Houwelingen KG, et al. Long-term mortality and prehospital tirofiban treatment in patients with ST elevation myocardial infarction. Heart. 2017; 103(19): 1515-1520. doi:10.1136/heartjnl-2017-311181; Olier I, Sirker A, Hildick-Smith DJR, Kinnaird T, Ludman P, de Belder MA, et al. British Cardiovascular Intervention Society and the National Institute for Cardiovascular Outcomes Research. Association of different antiplatelet therapies with mortality after primary percutaneous coronary intervention. Association of different antiplatelet therapies with mortality after primary percutaneous coronary intervention. Heart. 2018; 104(20): 1683-1690. doi:10.1136/heartjnl-2017-312366; Basi MB, Lemor A, Gorgis S, Taylor AM, Tehrani B, Truesdell AG, et al. National Cardiogenic Shock Initiative Investigators. Vasopressors independently associated with mortality in acute myocardial infarction and cardiogenic shock. Catheter Cardiovasc Interv. 2022; 99(3): 650-657. doi:10.1002/ccd.29895; Liakopoulos OJ, Schlachtenberger G, Wendt D, Choi YH, Slottosch I, Welp H, et al. Early clinical outcomes of surgical myocardial revascularization for acute coronary syndromes complicated by cardiogenic shock: A report from the North-Rhine-Westphalia Surgical Myocardial Infarction Registry. J Am Heart Assoc. 2019; 8(10): e012049. doi:10.1161/JAHA.119.012049; Braile-Sternieri MCVB, Mustafa EM, Ferreira VRR, Braile Sabino S, Braile Sternieri G, Buffulin de Faria LA, et al. Main considerations of cardiogenic shock and its predictors: Systematic review. Cardiol Res. 2018; 9(2): 75-82. doi:10.14740/cr715w; McCartney PJ, Berry C. Redefining successful primary PCI. Eur Heart J Cardiovasc Imaging. 2019; 20(2): 133-135. doi:10.1093/ehjci/jey159; Mukhomedzyanov AV, Zhuk VV, Maslov LN, Shipunov AI, Andrienko OS, Gadirov RM. Cardioprotective effect of opioids, derivatives of amide N-methyl-2-(pirrolidin-1-yl)cyclohexyl-1-amine, under conditions of ischemia/reperfusion of the heart. Bull Exp Biol Med. 2021; 170(6): 710-713. doi:10.1007/s10517-021-05138-y; Maslov LN, Mukhomedzyanov AV, Tsibulnikov SY, Suleiman MS, Khaliulin I, Oeltgen PR. Activation of peripheral δ2-opioid receptor prevents reperfusion heart injury. Eur J Pharmacol. 2021; 907: 174302. doi:10.1016/j.ejphar.2021.174302; Heusch G. Molecular basis of cardioprotection: signal transduction in ischemic pre-, post-, and remote conditioning. Circ Res. 2015; 116(4): 674-699. doi:10.1161/CIRCRESAHA.116.305348; Yellon DM, Downey JM. Preconditioning the myocardium: from cellular physiology to clinical cardiology. Physiol Rev. 2003; 83(4): 1113-1151. doi:10.1152/physrev.00009.20 03; Mukhomedzyanov AV, Popov SV, Maslov LN. δ2-opioid receptors as a target in designing new cardioprotective drugs: the role of protein kinase C, AMPK, and sarcolemmal KATP channels. Bull Exp Biol Med. 2022; 173(1): 33-36. doi:10.1007/s10517-022-05487-2; Меерсон Ф.З. Патогенез и предупреждение стрессорных и ишемических повреждений сердца. М.: Медицина; 1984.; Биленко М.В. Ишемические и реперфузионные повреждения органов. М.: Медицина; 1989.; Matsushima S, Tsutsui H, Sadoshima J. Physiological and pathological functions of NADPH oxidases during myocardial ischemia-reperfusion. Trends Cardiovasc Med. 2014; 24(5): 202-205. doi:10.1016/j.tcm.2014.03.003; Frangogiannis NG. Pathophysiology of myocardial infarction. Compr Physiol. 2015; 5(4): 1841-1875. doi:10.1002/cphy.c150006; Granger DN, Kvietys PR. Reperfusion injury and reactive oxygen species: The evolution of a concept. Redox Biol. 2015; 6: 524-551. doi:10.1016/j.redox.2015.08.020; Garlick PB, Davies MJ, Hearse DJ, Slater TF. Direct detection of free radicals in the reperfused rat heart using electron spin resonance spectroscopy. Circ Res. 1987; 61(5): 757-760. doi:10.1161/01.res.61.5.757; Zweier JL, Rayburn BK, Flaherty JT, Weisfeldt ML. Recombinant superoxide dismutase reduces oxygen free radical concentrations in reperfused myocardium. J Clin Invest. 1987; 80(6): 1728-1734. doi:10.1172/JCI113264; Bolli R, Patel BS, Jeroudi MO, Lai EK, McCay PB. Demonstration of free radical generation in “stunned” myocardium of intact dogs with the use of the spin tap alpha phenyl N-tert-butyl nitrone. J Clin Invest. 1988; 82(2): 476-485. doi:10.1172/JCI113621; Näslund U, Häggmark S, Johansson G, Marklund SL, Reiz S, Oberg A. Superoxide dismutase and catalase reduce infarct size in a porcine myocardial occlusion-reperfusion model. J Mol Cell Cardiol. 1986; 18(10): 1077-1084. doi:10.1016/s0022-2828(86)80294-2; Myers ML, Bolli R, Lekich RF, Hartley CJ, Roberts R. N2-mercaptopropionylglycine improves recovery of myocardial function after reversible regional ischemia. J Am Coll Cardiol. 1986; 8(5): 1161-1168. doi:10.1016/s0735-1097(86)80396-5; Bolli R, Zhu WX, Hartley CJ, Michael LH, Repine JE, Hess ML, et al. Attenuation of dysfunction in the postischemic ‘stunned’ myocardium by dimethylthiourea. Circulation. 1987; 76(2): 458-468. doi:10.1161/01.cir.76.2.458; Tsutsumi YM, Yokoyama T, Horikawa Y, Roth DM, Patel HH. Reactive oxygen species trigger ischemic and pharmacological postconditioning: In vivo and in vitro characterization. Life Sci. 2007; 81(15): 1223-1227. doi:10.1016/j.lfs.2007.08.031; Bolli R, Jeroudi MO, Patel BS, Aruoma OI, Halliwell B, Lai EK, et al. Marked reduction of free radical generation and contractile dysfunction by antioxidant therapy begun at the time of reperfusion. Evidence that myocardial “stunning” is a manifestation of reperfusion injury. Circ Res. 1989; 65(3): 607-622. doi:10.1161/01.res.65.3.607; Tang XL, Takano H, Rizvi A, Turrens JF, Qiu Y, Wu WJ, et al. Oxidant species trigger late preconditioning against myocardial stunning in conscious rabbits. Am J Physiol Heart Circ Physiol. 2002; 282(1): H281-H291. doi:10.1152/ajpheart.2002.282.1.H281; Sekili S, McCay PB, Li XY, Zughaib M, Sun JZ, Tang L, et al. Direct evidence that the hydroxyl radical plays a pathogenetic role in myocardial “stunning” in the conscious dog and demonstration that stunning can be markedly attenuated without subsequent adverse effects. Circ Res. 1993; 73(4): 705-723. doi:10.1161/01.res.73.4.705; Семенцов А.С., Нарыжная Н.В., Сиротина М.А., Маслов Л.Н. Роль активных форм кислорода в инфаркт-лимитирующем эффекте гипоксического прекондиционирования. Регионарное кровообращение и микроциркуляция. 2021; 20(2): 87-91. doi:10.24884/1682-6655-2021-20-2-87-91; Krylatov AV, Maslov LN, Voronkov NS, Boshchenko AA, Popov SV, Gomez L, et al. Reactive oxygen species as intracellular signaling molecules in the cardiovascular system. Curr Cardiol Rev. 2018; 14(4): 290-300. doi:10.2174/1573403X14666180702152436; Schultz JEJ, Hsu AK, Gross GJJ. Ischemic preconditioning and morphine-induced cardioprotection involve the delta (δ)opioid receptor in the intact rat heart. Mol Cell Cardiol. 1997; 29(8): 2187-2195. doi:10.1006/jmcc.1997.0454; Pınar N, Kaplan M, Özgür T, Özcan O. Ameliorating effects of tempol on methotrexate-induced liver injury in rats. Biomed Pharmacother. 2018; 102: 758-764. doi:10.1016/j.biopha.2018.03.147; Zatta AJ, Kin H, Lee G, Wang N, Jiang R, Lust R, et al. Infarct-sparing effect of myocardial postconditioning is dependent on protein kinase C signaling. Cardiovasc Res. 2006; 70: 315-334. doi:10.1016/j.cardiores.2005.11.030; Fettiplace MR, Kowal K, Ripper R, Young A, Lis K, Rubinstein I, et al. Insulin signaling in bupivacaine-induced cardiac toxicity: Sensitization during recovery and potentiation by lipid emulsion. Anesthesiology. 2016; 124: 428-442. doi:10.1097/aln.0000000000000974; Lasley RD, Keith BJ, Kristo G, Yoshimura Y, Mentzer RM Jr. Delayed adenosine A1 receptor preconditioning in rat myocardium is MAPK dependent but iNOS independent. Am J Physiol Heart Circ Physiol. 2005; 289: H785-H791. doi:10.1152/ajpheart.01008.2004; https://www.actabiomedica.ru/jour/article/view/4092Test

  8. 8
    دورية أكاديمية

    المساهمون: Авторы выражают благодарность А.В. Мухомедзянову, А.С. Горбунову, Н.С. Воронкову за помощь в проведении эксперимента, В.В. Иванову, Ю.Г. Бирулиной – за методическую помощь при разработке диеты

    المصدر: Bulletin of Siberian Medicine; Том 21, № 3 (2022); 73-80 ; Бюллетень сибирской медицины; Том 21, № 3 (2022); 73-80 ; 1819-3684 ; 1682-0363 ; 10.20538/1682-0363-2022-21-3

    وصف الملف: application/pdf

    العلاقة: https://bulletin.tomsk.ru/jour/article/view/4909/3256Test; Beslay M., Srour B., Méjean C., Allès B., Fiolet T., Debras C. et al. Ultra-processed food intake in association with BMI change and risk of overweight and obesity: A prospective analysis of the French NutriNet-Santé cohort. PLoS Med. 2020;17(8):e1003256. DOI:10.1371/journal.pmed.1003256.; Katsimardou A., Imprialos K., Stavropoulos K., Sachinidis A., Doumas M., Athyros V. Hypertension in metabolic syndrome: novel insights. Curr. Hypertens. Rev. 2020;16(1):12–18. DOI:10.2174/1573402115666190415161813.; Wang H.H., Lee D.K., Liu M., Portincasa P., Wang D.Q. Novel insights into the pathogenesis and management of the metabolic syndrome. Pediatr. Gastroenterol. Hepatol. Nutr. 2020;23(3):189–230. DOI:10.5223/pghn.2020.23.3.189.; Gouveia É.R., Gouveia B.R., Marques A., Peralta M., França C., Lima A. et al. Predictors of metabolic syndrome in adults and older adults from Amazonas, Brazil. Int. J. Environ. Res. Public. Health. 2021;18(3):1303. DOI:10.3390/ijerph18031303.; La Russa D., Giordano F., Marrone A., Parafati M., Janda E., Pellegrino D. Oxidative imbalance and kidney damage in cafeteria diet-induced rat model of metabolic syndrome: effect of bergamot polyphenolic fraction. Antioxidants (Basel). 2019;8(3):66. DOI:10.3390/antiox8030066.; Kiuchi M.G., Mion D.Jr. Chronic kidney disease and risk factors responsible for sudden cardiac death: a whiff of hope? Kidney Res. Clin. Pract. 2016;35(1):3–9. DOI:10.1016/j.krcp.2015.11.003.; Бирулина Ю.Г., Иванов В.В., Буйко Е.Е., Быков В.В., Смаглий Л.В., Носарев А.В. и др. Экспериментальная модель метаболического синдрома у крыс на основе высокожировой и высокоуглеводной диеты. Бюллетень сибирской медицины. 2020;19(4):14–20. DOI:10.20538/1682-0363-20204-14-20.; Bonfim T.H.F.D., Tavares R.L., de Vasconcelos M.H.A., Gouveia M., Nunes P.C., Soares N.L. et al. Potentially obesogenic diets alter metabolic and neurobehavioural parameters in Wistar rats: a comparison between two dietary models. J. Affect. Disord. 2021;279:451–461. DOI:10.1016/j.jad.2020.10.034.; Kizhner T., Werman M.J. Long-term fructose intake: biochemical consequences and altered renal histology in the male rat. Metabolism. 2002;51(12):1538–1547. DOI:10.1053/ meta.2002.36306.; Komnenov D., Levanovich P.E., Rossi N.F. Hypertension associated with fructose and high salt: renal and sympathetic mechanisms. Nutrients. 2019;11(3):569. DOI:10.3390/nu11030569.; Madero M., Perez-Pozo S.E., Jalal D., Johnson R.J., Sánchez-Lozada L.G. Dietary fructose and hypertension. Curr. Hypertens. Rep. 2011;13(1):29–35. DOI:10.1007/s11906010-0163-x.; Hurcombe J.A., Hartley P., Lay A.C., Ni L., Bedford J.J., Leader J.P. et al. Podocyte GSK3 is an evolutionarily conserved critical regulator of kidney function. Nat. Commun. 2019;10(1):403. DOI:10.1038/s41467-018-08235-1.; Kolset S.O., Reinholt F.P., Jenssen T. Diabetic nephropathy and extracellular matrix. J. Histochem. Cytochem. 2012;60:976–986. DOI:10.1369/0022155412465073.; Kim D., Li H.Y., Lee J.H., Oh Y.S., Jun H.S. Lysophosphatidic acid increases mesangial cell proliferation in models of diabetic nephropathy via Rac1/MAPK/KLF5 signaling. Exp. Mol. Med. 2019;51(2):1–10. DOI:10.1038/s12276-019-0217-3.; Hou S., Zhang T., Li Y., Guo F., Jin X. Glycyrrhizic acid prevents diabetic nephropathy by activating AMPK/ SIRT1/PGC-1α signaling in db/db mice. J. Diabetes. Res. 2017;2017:2865912. DOI:10.1155/2017/2865912.; Rao R.P., Jain A., Srinivasan B. Dual therapy versus monotherapy of trandolapril and telmisartan on diabetic nephropathy in experimentally induced type 2 diabetes mellitus rats. J. Renin Angiotensin Aldosterone Syst. 2011;12(3):169–175. DOI:10.1177/1470320310392097.; Huang F., Guo Y., Wang L., Jing L., Chen Z., Lu S. et al. High glucose and TGF-β1 reduce expression of endoplasmic reticulum-resident selenoprotein S and selenoprotein N in human mesangial cells. Ren. Fail. 2019;41(1):762–769. DOI:10.1080/0886022X.2019.1641413.; Hara M., Kusaba T., Ono K., Masuzawa N., Nakamura I., Urata N. et al. Extraglomerular vascular involvement of glomerulopathy with fibronectin deposits. Intern. Med. 2021; 60(13):2103–2107. DOI:10.2169/internalmedicine.6558-20.; Klemis V., Ghura H., Federico G., Würfel C., Bentmann A., Gretz N. et al. Circulating fibronectin contributes to mesangial expansion in a murine model of type 1 diabetes. Kidney Int. 2017;91(6):1374–1385. DOI:10.1016/j.kint.2016.12.006.; Molvarec A., Szarka A., Walentin S., Szucs E., Nagy B., Rigó J.Jr. Circulating angiogenic factors determined by electrochemiluminescence immunoassay in relation to the clinical features and laboratory parameters in women with pre-eclampsia. Hypertens. Res. 2010;33(9):892–898. DOI:10.1038/hr.2010.92.; Song K.S., Kim H.K., Shim W., Jee S.H. Plasma fibronec tin levels in ischemic heart disease. Atherosclerosis. 2001;154(2):449–453. DOI:10.1016/s0021-9150(00)00490-1.; https://bulletin.tomsk.ru/jour/article/view/4909Test

  9. 9
    دورية أكاديمية

    المساهمون: Работа выполнена при поддержке Российского научного фонда (грант № 22-15-00048). Исследование влияния возраста на инфаркт-лимитирующий эффект дельторфина-II проводили в рамках Гос. задания 122020300042-4. В работе было использовано оборудование Центра коллективного пользования «Медицинская геномика» Томского НИМЦ.

    المصدر: Acta Biomedica Scientifica; Том 7, № 6 (2022); 281-289 ; 2587-9596 ; 2541-9420

    وصف الملف: application/pdf

    العلاقة: https://www.actabiomedica.ru/jour/article/view/3911/2490Test; Megaly M, Pershad A, Glogoza M, Elbadawi A, Omer M, Saad M, et al. Use of intravascular imaging in patients with ST-segment elevation acute myocardial infarction. Cardiovasc Revasc Med. 2021; 30: 59-64. doi:10.1016/j.carrev.2020.09.032; Мухомедзянов А.В., Маслов Л.Н., Овчинников М.В., Сидорова М.В., Пей Ж.М., Цибульников С.Ю., и др. Влияние дельторфина и его ретро-энантиоаналога на устойчивость сердца к действию ишемии и реперфузии. Бюллетень экспериментальной биологии и медицины. 2016; 162(9): 284-288. doi:10.1007/s10517-017-3601-9; Dommermuth R, Ewing K. Metabolic syndrome: Systems thinking in heart disease. Prim Care. 2018; 45(1): 109-129. doi:10.1016/j.pop.2017.10.003; Sperling LS, Mechanick JI, Neeland IJ, Herrick CJ, Després J-P, Ndumele CE, et al. The CardioMetabolic Health Alliance: Working toward a new care model for the metabolic syndrome. J Am Coll Cardiol. 2015; 66(9): 1050-1067. doi:10.1016/j.jacc.2015.06.1328; Lind L, Sundström J, Ärnlöv J, Risérus U, Lampa E. A longitudinal study over 40 years to study the metabolic syndrome as a risk factor for cardiovascular diseases. Sci Rep. 2021; 11(1): 2978. doi:10.1038/s41598-021-82398-8; Samson SL, Garber AJ. Metabolic syndrome. Endocrinol Metab Clin North Am. 2014; 43(1): 1-23. doi:10.1016/j.ecl.2013.09.009; Вильсон Н.И., Беленькая Л.В., Шолохов Л.Ф., Игумнов И.А., Наделяева Я.Г., Сутурина Л.В. Метаболический синдром: эпидемиология, критерии диагностики, расовые особенности. Acta biomedica scientifica. 2021; 6(4): 180-191. doi:10.29413/ABS.2021-6.4.16; Gutiérrez-Cuevas J, Sandoval-Rodriguez A, Meza-Rios A, Monroy-Ramírez HC, Galicia-Moreno M, García-Bañuelos J, et al. Molecular mechanisms of obesity-linked cardiac dysfunction: An up-date on current knowledge. Cells. 2021; 10(3): 629. doi:10.3390/cells10030629; Tofler GH, Muller JE, Stone PH, Willich SN, Davis VG, Poole WK, et al. Factors leading to shorter survival after acute myocardial infarction in patients ages 65 to 75 years compared with younger patients. Am J Cardiol. 1988; 62(13): 860-867. doi:10.1016/0002-9149(88)90882-x; Strait JB, Lakatta EG. Aging-associated cardiovascular changes and their relationship to heart failure. Heart Failure Clinics. 2012; 8(1): 143-164. doi:10.1016/j.hfc.2011.08.011; Logvinov SV, Naryzhnaya NV, Kurbatov BK, Gorbunov AS, Birulina YuG, Maslov LN, et al. High carbohydrate high fat diet causes arterial hypertension and histological changes in the aortic wall in aged rats: The involvement of connective tissue growth factors and fibronectin. Exp Gerontol. 2021; 154: 111543. doi:10.1016/j.exger.2021.111543; Лишманов Ю.Б., Маслов Л.Н. Опиоидные нейропептиды, стресс и адаптационная защита сердца. Томск: Изд-во Томского университета; 1994.; Maslov LN, Lishmanov YuB, Oeltgen PR, Barzakh EI, Krylatov AV, Govindaswami M, et al. Activation of peripheral δ2 opioid receptors increases cardiac tolerance to ischemia/reperfusion injury: Involvement of protein kinase C, NO-synthase, KATP channels and the autonomic nervous system. Life Sci. 2009; 84(19-20): 657-663. doi:10.1016/j.lfs.2009.02.016; Alexandre-Santos B, Machado MV, Menezes AC, Velasco LL, Sepúlveda-Fragoso V, Vieira AB, et al. Exercise-induced cardiac opioid system activation attenuates apoptosis pathway in obese rats. Life Sci. 2019; 231: 116542. doi:10.1016/j.lfs.2019.06.017; Zemljic-Harpf AE, See Hoe LE, Schilling JM, Zuniga-Hertz JP, Nguyen A, Vaishnav YJ, et al. Morphine induces physiological, structural, and molecular benefits in the diabetic myocardium. FASEB J. 2021; 35(3): e21407. doi:10.1096/fj.201903233R; Zhang L, Guo H, Yuan F, Hong ZC, Tian YM, Zhang XJ, et al. Limb remote ischemia per-conditioning protects the heart against ischemia-reperfusion injury through the opioid system in rats. Can J Physiol Pharmacol. 2018; 96(1): 68-75. doi:10.1139/cjpp-2016-0585; Kunecki M, Oleksy T, Biernat J, Kukla P, Szwajkos K, Podolec P, et al. Ischemic conditioning of human heart muscle depends on opioid-receptor system. Folia Med Cracov. 2017; 57(2): 31-39.; Xin W, Yang X, Rich TC, Krieg T, Barrington R, Cohen MV, et al. All preconditioning-related G protein-coupled receptors can be demonstrated in the rabbit cardiomyocyte. J Cardiovasc Pharmacol Ther. 2012; 17(2): 190-198. doi:10.1177/1074248411416815; Verouhis D, Sörensson P, Gourine A, Henareh L, Persson J, Saleh N, et al. Long-term effect of remote ischemic conditioning on infarct size and clinical outcomes in patients with anterior ST-elevation myocardial infarction. Catheter Cardiovasc Interv. 2021; 97(3): 386-392. doi:10.1002/ccd.28760; Andreadou I, Schulz R, Badimon L, Adameová A, Kleinbongard P, Lecour S, et al. Hyperlipidaemia and cardioprotection: Animal models for translational studies. Br J Pharmacol. 2020; 177(23): 5287-5311. doi:10.1111/bph.14931; Penna C, Andreadou I, Aragno M, Beauloye C, Bertrand L, Lazou A, et al. Effect of hyperglycaemia and diabetes on acute myocardial ischaemia-reperfusion injury and cardioprotection by ischaemic conditioning protocols. Br J Pharmacol. 2020; 177(23): 5312-5335. doi:10.1111/bph.14993; Oosterlinck W, Dresselaers T, Geldhof V, Nevelsteen I, Janssens S, Himmelreich U, et al. Diabetes mellitus and the metabolic syndrome do not abolish, but might reduce, the cardioprotective effect of ischemic postconditioning. J Thorac Cardiovasc Surg. 2013; 145(6): 1595-1602. doi:10.1016/j.jtcvs.2013.02.016; Нарыжная Н.В., Логвинов С.В., Курбатов Б.К., Мухомедзянов А.В., Сиротина М.А., Чепелев С.Н., и др. Эффективность дистантного ишемического посткондиционирования миокарда у крыс с индуцированным метаболическим синдромом зависит от уровня лептина. Известия Национальной академии наук Беларуси. Серия медицинских наук. 2022; 19(1): 38-47. doi:10.29235/1814-6023-2022-19-1-38-47; Baranyai T, Nagy CT, Koncsos G, Onódi Z, Károlyi-Szabó M, Makkos A, et al. Acute hyperglycemia abolishes cardioprotection by remote ischemic perconditioning. Cardiovasc Diabetol. 2015; 14: 151. doi:10.1186/s12933-015-0313-1; https://www.actabiomedica.ru/jour/article/view/3911Test