يعرض 1 - 10 نتائج من 881 نتيجة بحث عن '"КТ"', وقت الاستعلام: 1.10s تنقيح النتائج
  1. 1
    دورية أكاديمية

    المصدر: Diagnostic radiology and radiotherapy; Том 14, № 4 (2023); 19-27 ; Лучевая диагностика и терапия; Том 14, № 4 (2023); 19-27 ; 2079-5343

    وصف الملف: application/pdf

    العلاقة: https://radiag.bmoc-spb.ru/jour/article/view/935/618Test; Трошина Е.А., Бельцевич Д.Г., Молашенко Н.В., Газизова Д.О. Диагностика, дифференциальная диагностика и лечение эндогенного гиперкортицизма // Проблемы эндокринологии. 2010. Т. 56, № 2. С. 53–63. https://doi.org/10.14341/probl201056253-63Test.; Андреева А.В., Маркина Н.В., Анциферов М.Б. Современные подходы к терапии болезни Иценко–Кушинга // Проблемы эндокринологии. 2016. Т. 62, № 4. С. 50–55. https://doi.org/10.14341/probl201662450-55Test.; Шевченко Ю.Л., Аблицов Ю.А., Василашко В.И., Аблицов А.Ю., Орлов С.С., Мальцев А.А., Марова Е.И., Рожинская Л.Я., Щепеткова Л.В., Белая Ж.Е., Плотницкий А.В. Трудности диагностики и лечения АКТГ-эктопированных опухолей // Вестник Национального медико-хирургического центра им. Н. И. Пирогова. 2013. T. 8, № 3. C. 25–29.https://doi.org/10.14341/probl201662450-55Test.; Baylin S.B., Mendelsohn G. Ectopic (inappropriate) hormone production by tumors: mechanisms involved and the biological and clinical implications // Endocr. Rev. 1980. Vol. 1. P. 45–77. https://doi.org/10.1210/edrv-1Test–1-45.; Кузнецов Н.С., Латкина Н.В., Добрева Е.А. Эктопический АКТГ-синдром: клиника, диагностика, лечение // Эндокринная хирургия. 2012. T. 6, № 1. C. 24–36. https://doi.org/10.14341/2306-3513-2012-1-24-36Test.; Doppman J.L., Frank J.A., Dwyer A.J., Oldfield E.H., Miller D.L., Nieman L.K., Chrousos G.P., Cutler G.B.Jr., Loriaux D.L. Gadolinium DTPA enhanced MR imaging of ACTH-secreting microadenomas of the pituitary gland // Journal of Computer Assisted Tomography. 1988. Vol. 12, No. 5. P. 728–735. https://doi.org/10.1097/00004728-198809010-00002Test.; Tripathi S., Ammini A.C., Bhatia R., Gupta R., Berry M., Sarkar C., Mahajan H. Cushing’s disease: Pituitary imaging // Australas Radiol. 1994. Vol. 38, No. 3. P. 183–186. https://doi.org/10.1111/j.1440-1673.1994.tb00170.xTest.; Яковлев С.А., Поздняков А.В., Панфиленко А.Ф., Карлова Н.А., Тютин Л.А., Грантынь В.А. Динамическая контрастная МРТ в лучевой диагностике объемных образований головного мозга срединной локализации // Сибирский журнал клинической и экспериментальной медицины. 2008. Т. 23. С. 92–96.; Friedman T.C., Zuckerbraun E., Lee M.L., Kabil M.S., Shahinian H. Dynamic pituitary MRI has high sensitivity and specificity for the diagnosis of mild Cushing’s syndrome and should be part of the initial workup // Horm Metab Res. 2007. Vol. 39, No. 6. P. 451–456. https://doi.org/10.1055/s-2007-980192Test.; Potts M.B., Shah J.K., Molinaro A.M., Blevins L.S., Tyrrell J.B., Kunwar S., Dowd C.F., Hetts S.W., Aghi M.K. Cavernous and inferior petrosal sinus sampling and dynamic magnetic resonance imaging in the preoperative evaluation of Cushing’s disease // J Neurooncol. 2014. Vol. 116, No. 3. P. 593–600. https://doi.org/10.1007/s11060-013-1342-9Test.; Kakite S., Fujii S., Kurosaki M., Kanasaki Y., Matsusue E., Kaminou T., Ogawa T. Three-dimensional gradient echo versus spin echo sequence in contrast-enhanced imaging of the pituitary gland at 3T // Eur. J Radiol. 2011. Vol. 79, No. 1. P. 108–112. https://doi.org/10.1016/j.ejrad.2009.12.036Test.; Kasaliwal R., Sankhe S.S., Lila A.R., Budyal S.R., Jagtap V.S., Sarathi V., Kakade H., Bandgar T., Menon P.S., Shah N.S. Volume interpolated 3D-spoiled gradient echo sequence is better than dynamic contrast spin echo sequence for MRI detection of corticotropin secreting pituitary microadenomas // Clin. Endocrinol. (Oxf.). 2013. Vol. 78, No. 6. P. 825–830. https://doi.org/10.1111/cen.12069Test.; Patronas N., Bulakbasi N., Stratakis C.A., Lafferty A., Oldfield E.H., Doppman J., Nieman L.K. Spoiled gradient recalled acquisition in the steady state technique is superior to conventional postcontrast spin echo technique for magnetic resonance imaging detection of adrenocorticotropin-secreting pituitary tumors // J. Clin. Endocrinol. Metab. 2003. Vol. 88, No. 4. P. 1565–1569. https://doi.org/10.1210/jc.2002-021438Test.; Kim L.J., Lekovic G.P., White W.L., Karis J. Preliminary Experience with 3-Tesla MRI and Cushing’s Disease // Skull Base. 2007. Vol. 17. P. 273–277. https://doi.org/10.1055/s-2007-985196Test.; Ono E., Ozawa A., Matoba K., Motoki T., Tajima A., Miyata I., Ito J., Inoshita N., Yamada S., Ida H. Diagnostic usefulness of 3 tesla MRI of the brain for cushing disease in a child // Clin. Pediatr. Endocrinol. 2011. Vol. 20, No. 4. P. 89–93. https://doi.org/10.1297/cpe.20.89Test.; Stobo D.B., Lindsay R.S., Connell J.M., Dunn L., Forbes K.P. Initial experience of 3 Tesla versus conventional field strength magnetic resonance imaging of small functioning pituitary tumours // Clin. Endocrinol. (Oxf.). 2011. Vol. 75, No. 5. P. 673–677. https://doi.org/10.1111/j.1365-2265.2011.04098.xTest.; de Rotte A.A., Groenewegen A., Rutgers D.R., Witkamp T., Zelissen P.M., Meijer F.J., van Lindert E.J., Hermus A., Luijten P.R., Hendrikse J. High resolution pituitary gland MRI at 7.0 tesla: a clinical evaluation in Cushing’s disease // Eur. Radiol. 2016. Vol. 26, No. 1. P. 271–277. https://doi.org/10.1007/s00330-015-3809-xTest.; de Rotte A.A., van der Kolk A.G., Rutgers D., Zelissen P.M., Visser F., Luijten P.R., Hendrikse J. Feasibility of high-resolution pituitary MRI at 7.0 tesla // Eur. Radiol. 2014. Vol. 24, No. 8. P. 2005–2011. https://doi.org/10.1007/s00330-014-3230-xTest.; Pinker K., Ba-Ssalamah A., Wolfsberger S., Mlynarik V., Knosp E., Trattnig S. The value of high-field MRI (3T) in the assessment of sellar lesions // Eur. J. Radiol. 2005. Vol. 54. P. 327–334. https://doi.org/10.1016/j.ejrad.2004.08.006Test.; Wolfsberger S., Ba-Ssalamah A., Pinker K., Mlynárik V., Czech T., Knosp E., Trattnig S. Application of three-tesla magnetic resonance imaging for diagnosis and surgery of sellar lesions // J. Neurosurg. 2004. Vol. 100. P. 278–286. https://doi.org/10.3171/jns.2004.100.2.0278Test.; Lindsay J.R., Nieman L.K. Differential diagnosis and imaging in Cushing’s syndrome // Endocrinol Metab. Clin. North Am. 2005. Vol. 34. P. 403–421. https://doi.org/10.1016/j.ecl.2005.01.009Test.; Tang B.N., Levivier M., Heureux M., Wikler D., Massager N., Devriendt D., David P., Dumarey N., Corvilain B., Goldman S. 11C-methionine PET for the diagnosis and management of recurrent pituitary adenomas // Eur. J. Nucl. Med. Mol. Imaging. 2006. Vol. 33, No. 2. P. 169–178. https://doi.org/10.1007/s00259-005-1882-0Test.; Buchfelder M., Nistor R., Fahlbusch R., Huk W.J. The accuracy of CT and MR evaluation of the sella turcica for detection of adrenocorticotropic hormone-secreting adenomas in Cushing disease // AJNR Am. J. Neuroradiol. 1993. Vol. 14, No. 5. P. 1183–1190.; Webb S.M., Ruscalleda J., Schwarzstein D., Calaf-Alsina J., Rovira A., Matos G., Puig-Domingo M., de Leiva A. Computerized tomography versus magnetic resonance imaging: a comparative study in hypothalamic-pituitary and parasellar pathology // Clin. Endocrinol. 1992. Vol. 36, No. 5. P. 459–465. https://doi.org/10.1111/j.1365-2265.1992.tb02246.xTest.; Bashari W.A., Senanayake R., Fernández-Pombo A., Gillett D., Koulouri O., Powlson A.S., Matys T., Scoffings D., Cheow H., Mendichovszky I., Gurnell M. Modern imaging of pituitary adenomas // Best Pract. Res. Clin. Endocrinol. Metab. 2019. Vol. 33, No. 2. P. 101278. https://doi.org/10.1016/j.beem.2019.05.002Test.; Abe T., Izumiyama H., Fujisawa I. Evaluation of pituitary adenomas by multidirectional multislice dynamic CT // Acta Radiol. 2002. Vol. 43, No. 6. P. 556–559. https://doi.org/10.1080/j.1600-0455.2002.430602.xTest.; Kinoshita M., Tanaka H., Arita H., Goto Y., Oshino S., Watanabe Y., Yoshimine T., Saitoh Y. Pituitary-Targeted Dynamic Contrast-Enhanced Multisection CT for Detecting MR Imaging-Occult Functional Pituitary Microadenoma // AJNR Am.J.Neuroradiol. 2015. Vol. 36, No. 5. P. 904–908. https://doi.org/10.3174/ajnr.A4220Test.; Голоунина О.О., Слащук К.Ю., Хайриева А.В., Тарбаева Н.В., Дегтярев М.В., Белая Ж.Е. Лучевая и радионуклидная визуализация в диагностике АКТГ-продуцирующих нейроэндокринных опухолей // Медицинская радиология и радиационная безопасность. 2022. Т. 67, № 4. С. 80–88. https://doi.org/10.33266/1024-6177-2022-67-4-80-88Test.; Isidori A.M., Kaltsas G.A., Pozza C., Frajese V., Newell-Price J., Reznek R.H., Jenkins P.J., Monson J.P., Grossman A.B., Besser G.M. The Ectopic Adrenocorticotropin Syndrome: Clinical Features, Diagnosis, Management, and Long-Term Follow-Up // The Journal of Clinical Endocrinology & Metabolism. 2006. Vol. 91, No. 2. P. 371–377. https://doi.org/10.1210/jc.2005-1542Test.; Isidori A.M., Sbardella E., Zatelli M.C., Boschetti M., Vitale G., Colao A., Pivonello R. Conventional and Nuclear Medicine Imaging in Ectopic Cushing’s Syndrome: A Systematic Review // J. Clin. Endocrinol. Metab. 2015. Vol. 100, No. 9. P. 3231–3244. https://doi.org/10.1210/JC.2015-1589Test.; Рыжкова Д.В., Тихонова Д.Н., Гринева Е.Н. Методы ядерной медицины в диагностике нейроэндокриных опухолей // Сибирский онкологический журнал. 2013. Т. 1. № 6. С. 56–63.; Balon H.R., Goldsmith S.J., Siegel B.A., Silberstein E.B., Krenning E.P., Lang O., Donohoe K.J. Procedure guideline for somatostatin receptor scintigraphy with (111)In-pentetreotide // J. Nucl. Med. 2001. Vol. 42, No. 7. P. 1134–1138.; De Herder W.W., Krenning E.P., Malchoff C.D., Hofland L.J., Reubi J.C., Kwekkeboom D.J., Oei H.Y., Pols H.A., Bruining H.A., Nobels F.R., et al. Somatostatin receptor scintigraphy: its value in tumor localization in patients with Cushing’s syndrome caused by ectopic corticotropin or corticotropin-releasing hormone secretion // Am. J. Med. 1994. Vol. 96, No. 4. P. 305–312. https://doi.org/10.1016/0002-9343Test(94)90059-0.; Lamberts S.W.J., Holland L.J., de Herder W.W., Kwekkeboom D.J., Reubi J.-C., Krenning E.P. Octreotide and related somatostatin analogs in the diagnosis and treatment of pituitary disease and somatostatin receptor scintigraphy // Front. Neuroendocrinol. 1993. Vol. 14, No. 1. P. 27–55. https://doi.org/10.1006/frne.1993.1002Test.; Tsagarakis S., Christoforaki M., Giannopoulou H., Rondogianni F., Housianakou I., Malagari C., Rontogianni D., Bellenis I., Thalassinos N. A Reappraisal of the Utility of Somatostatin Receptor Scintigraphy in Patients with Ectopic Adrenocorticotropin Cushing’s Syndrome // The Journal of Clinical Endocrinology & Metabolism. 2003. Vol. 88, No. 10. P. 4754–4758. https://doi.org/10.1210/jc.2003-030525Test.; Ilias I., Torpy D.J., Pacak K., Mullen N., Wesley R.A., Nieman L.K. Cushing’s Syndrome Due to Ectopic Corticotropin Secretion: Twenty Years’ Experience at the National Institutes of Health // The Journal of Clinical Endocrinology & Metabolism. 2005. Vol. 90, No. 8. P. 4955–4962. https://doi.org/10.1210/jc.2004-2527Test.; Слащук К.Ю., Румянцев П.О., Дегтярев М.В., Серженко С.С., Баранова О.Д., Трухин А.А., Сирота Я.И. Молекулярная визуализация нейроэндокринных опухолей при соматостатин-рецепторной сцинтиграфии (ОФЭКТ/КТ) c 99mTc-тектротидом // Медицинская радиология и радиационная безопасность. 2020. Т. 65, № 2. С. 44–49. https://doi.org/10.12737/1024-6177-2020-65-2-44-49Test.; Каспшик С.М., Артамонова Е.В., Маркович А.А., Билик М.Е., Емельянова Г.С., Рыжков А.Д. Мифы о нецелесообразности проведения пептид-рецепторной радионуклидной диагностики у пациентов с нейроэндокринными опухолями // Медицинский алфавит. 2021. Т. 19. C. 18–22. https://doi.org/10.33667/2078-5631-2021-19-18-22Test.; Cavicchioli M., Bitencourt A.G.V., Lima E.N.P. 68Ga-DOTATATE PET/CT versus 111In-octreotide scintigraphy in patients with neuroendocrine tumors: a prospective study // Radiol. Bras. 2022. Vol. 55, No. 1. P. 13–18. https://doi.org/10.1590/0100-3984.2021.0038Test.; Buchmann I., Henze M., Engelbrecht S., Eisenhut M., Runz A., Schäfer M., Schilling T., Haufe S., Herrmann T., Haberkorn U. Comparison of 68Ga-DOTATOC PET and 111In-DTPAOC (Octreoscan) SPECT in patients with neuroendocrine tumours // Eur. J. Nucl. Med. Mol. Imaging. 2007. Vol. 34, No. 10. P. 1617–1626. https://doi.org/10.1007/s00259-007-0450-1Test.; Kowalski J., Henze M., Schuhmacher J., Mäcke H.R., Hofmann M., Haberkorn U. Evaluation of positron emission tomography imaging using [68Ga]-DOTA-D Phe(1)-Tyr(3)-Octreotide in comparison to [111In]-DTPAOC SPECT. First results in patients with neuroendocrine tumors // Mol. Imaging. Biol. 2003. Vol. 5, No. 1. P. 42–48. https://doi.org/10.1016/s1536-1632Test(03)00038-6.; Novruzov F., Aliyev A., Wan M.Y.S., Syed R., Mehdi E., Aliyeva I., Giammarile F., Bomanji J.B., Kayani I. The value of [68Ga]Ga-DOTA-TATE PET/CT in diagnosis and management of suspected pituitary tumors // Eur. J. Hybrid Imaging. 2021. Vol. 5, No. 1. P. 10. https://doi.org/10.1186/s41824-021-00104-3Test.; Kuyumcu S., Özkan Z.G., Sanli Y., Yilmaz E., Mudun A., Adalet I., Unal S. Physiological and tumoral uptake of (68)Ga-DOTATATE: standardized uptake values and challenges in interpretation // Ann. Nucl. Med. 2013. Vol. 27, No. 6. P. 538–545. https://doi.org/10.1007/s12149-013-0718-4Test.; Zhao X., Xiao J., Xing B., Wang R., Zhu Z., Li F. Comparison of (68)Ga DOTATATE to 18F-FDG uptake is useful in the differentiation of residual or recurrent pituitary adenoma from the remaining pituitary tissue after transsphenoidal adenomectomy // Clin. Nucl. Med. 2014. Vol. 39, No. 7. P. 605–608. https://doi.org/10.1097/RLU.0000000000000457Test.; Wang H., Hou B., Lu L., Feng M., Zang J., Yao S., Feng F., Wang R., Li F., Zhu Z. PET/MRI in the Diagnosis of Hormone-Producing Pituitary Microadenoma: A Prospective Pilot Study // J. Nucl. Med. 2018. Vol. 59, No. 3. P. 523–528. https://doi.org/10.2967/jnumed.117.191916Test.; Seok H., Lee E.Y., Choe E.Y., Yang W.I., Kim J.Y., Shin D.Y., Cho H.J., Kim T.S., Yun M.J., Lee J.D., Lee E.J., Lim S.K., Rhee Y. Analysis of 18F-fluorodeoxyglucose positron emission tomography findings in patients with pituitary lesions // Korean J. Intern. Med. 2013. Vol. 28, No. 1. P. 81–88. https://doi.org/10.3904/kjim.2013.28.1.81Test.; Chittiboina P., Montgomery B.K., Millo C., Herscovitch P., Lonser R.R. High-resolution(18)F-fluorodeoxyglucose positron emission tomography and magnetic resonance imaging for pituitary adenoma detection in Cushing disease // J. Neurosurg. 2015. Vol. 122, No. 4. P. 791–797. https://doi.org/10.3171/2014.10.JNS14911Test.; Цой У.А., Рыжкова Д.В., Черебилло В.Ю. и др. Далматова А.Б., Белоусова Л.В., Курицына Н.В., Пальцев А.А., Рыжков А.В., Гринева Е.Н. Способ диагностики МРТ-негативных АКТГ-продуцирующих аденом гипофиза. Патент по заявке № 2699218 от 03.09.2019 г.; Tsoy U., Kuritsyna N., Savello A., Cherebillo V., Ryzhkov A., Grineva E., Ryzhkova D. A method for evaluating the results of brain 18F-FDG PET/CT in the diagnosis of MRI-negative ACTH-producing pituitary adenomas // EJEA. 2022. Vol. 81. P. EP640. https://doi.org/10.1530/endoabs.81.EP640Test.; Zisser L., Kulterer O.C., Itariu B., Fueger B., Weber M., Mazal P., Vraka C., Pichler V., Kautzky-Willer A., Hacker M., Karanikas G., Rasul S. Diagnostic Role of PET/CT Tracers in the Detection and Localization of Tumours Responsible for Ectopic Cushing’s Syndrome // Anticancer Res. 2021. Vol. 41, No. 5. P. 2477–2484. https://doi.org/10.21873/anticanres.15024Test.; Nomura C., Nakano Y., Tanaka T., Shima K.R., Kometani M., Kanamori T., Ikeda H., Takeshita Y., Yoneda T., Takamura T. Somatostatin Receptor-negative and Fluorodeoxyglucose-positron Emission Tomography-positive Lung Neuroendocrine Tumor G1 Exhibiting Cyclic Cushing’s Syndrome // Intern Med. 2022. Vol. 61, No. 24. P. 3693–3698. https://doi.org/10.2169/internalmedicine.9238-21Test.; Serban A.L., Rosso L., Mendogni P., Cremaschi A., Indirli R., Mantovani B., Rumi M., Castellani M., Chiti A., Croci G.A., Mantovani G., Nosotti M., Ferrante E., Arosio M. Case Report: A Challenging Localization of a Pulmonary Ectopic ACTH-Secreting Tumor in a Patient With Severe Cushing’s Syndrome // Front Endocrinol (Lausanne). 2021. Vol. 12. P. 687539. https://doi.org/10.3389/fendo.2021.687539Test.; Ryzhkova D., Mitrofanova L., Tsoy U., Grineva E., Schlyakhto E. Dual-tracer PET/CT imaging to determine tumor heterogeneity in a patient with metastatic ACTH-secreting neuroendocrine neoplasm: A case report and literature review // Front Endocrinol. (Lausanne). 2022. Vol. 13. P. 958442. https://doi.org/10.3389/fendo.2022.958442Test.; Ikeda H., Abe T., Watanabe K. Usefulness of composite methionine–positron emission tomography/3.0-tesla magnetic resonance imaging to detect the localization and extent of early-stage Cushing adenoma: Clinical article // JNS. 2010. Vol. 112. P. 750–755. https://doi.org/10.3171/2009.7.JNS09285Test.; Feng Z., He D., Mao Z., Wang Z., Zhu Y., Zhang X., Wang H. Utility of 11C-Methionine and 18F-FDG PET/CT in Patients With Functioning Pituitary Adenomas // Clin. Nucl. Med. 2016. Vol. 41, No. 3. P. 130–134. https://doi.org/10.1097/RLU.0000000000001085Test.; Koulouri O., Steuwe A., Gillett D., Hoole A.C., Powlson A.S., Donnelly N.A., Burnet N.G., Antoun N.M., Cheow H., Mannion R.J., Pickard J.D., Gurnell M. A role for 11C-methionine PET imaging in ACTH-dependent Cushing’s syndrome // Eur. J. Endocrinol. 2015. Vol. 173, No. 4. P. 107–120. https://doi.org/10.1530/EJE-15-0616Test.; Maffione A.M., Mandoliti G., Pasini F., Colletti P.M., Rubello D. Pituitary Non-Functioning Adenoma Disclosed at 18F-Choline PET/CT to Investigate a Prostate Cancer Relapse // Clin. Nucl. Med. 2016. Vol. 41. P. 460–461. https://doi.org/10.1097/RLU.0000000000001328Test.; Sindoni A., Bodanza V., Tatta R., Baresic T., Borsatti E. Ectopic Adrenocorticotropic Hormone-Secreting Pituitary Adenoma Localized by 18F-Choline PET/CT // Clin. Nucl. Med. 2018. Vol. 43. P. 25–26. https://doi.org/10.1097/RLU.0000000000001889Test.; https://radiag.bmoc-spb.ru/jour/article/view/935Test

  2. 2
    دورية أكاديمية
  3. 3
    دورية أكاديمية
  4. 4
    دورية أكاديمية

    المصدر: SCIENTIFIC JOURNAL OF APPLIED AND MEDICAL SCIENCES; Vol. 3 No. 6 (2024): AMALIY VA TIBBIYOT FANLARI ILMIY JURNALI; 411-417 ; НАУЧНЫЙ ЖУРНАЛ ПРИКЛАДНЫХ И МЕДИЦИНСКИХ НАУК; Том 3 № 6 (2024): AMALIY VA TIBBIYOT FANLARI ILMIY JURNALI; 411-417 ; 2181-3469

    مصطلحات موضوعية: простата, аденома, КТ

    وصف الملف: application/pdf

  5. 5
    دورية أكاديمية

    المساهمون: 1

    المصدر: Traumatology and Orthopedics of Russia; Vol 30, No 1 (2024); 99-109 ; Травматология и ортопедия России; Vol 30, No 1 (2024); 99-109 ; 2542-0933 ; 2311-2905 ; 10.17816/2311-2905-2024-30-1

    وصف الملف: application/pdf

    العلاقة: https://journal.rniito.org/jour/article/view/17460/pdfTest; https://journal.rniito.org/jour/article/downloadSuppFile/17460/150252Test; https://journal.rniito.org/jour/article/downloadSuppFile/17460/150253Test; https://journal.rniito.org/jour/article/downloadSuppFile/17460/150254Test; https://journal.rniito.org/jour/article/downloadSuppFile/17460/150255Test; https://journal.rniito.org/jour/article/downloadSuppFile/17460/150256Test; https://journal.rniito.org/jour/article/downloadSuppFile/17460/150257Test; https://journal.rniito.org/jour/article/downloadSuppFile/17460/150258Test; https://journal.rniito.org/jour/article/downloadSuppFile/17460/150259Test; https://journal.rniito.org/jour/article/downloadSuppFile/17460/150260Test; https://journal.rniito.org/jour/article/downloadSuppFile/17460/150261Test; https://journal.rniito.org/jour/article/downloadSuppFile/17460/150262Test; https://journal.rniito.org/jour/article/downloadSuppFile/17460/150263Test; https://journal.rniito.org/jour/article/downloadSuppFile/17460/150264Test; https://journal.rniito.org/jour/article/downloadSuppFile/17460/150265Test; https://journal.rniito.org/jour/article/downloadSuppFile/17460/150266Test; https://journal.rniito.org/jour/article/downloadSuppFile/17460/150267Test; https://journal.rniito.org/jour/article/downloadSuppFile/17460/150268Test; https://journal.rniito.org/jour/article/downloadSuppFile/17460/150269Test; https://journal.rniito.org/jour/article/downloadSuppFile/17460/150270Test; https://journal.rniito.org/jour/article/downloadSuppFile/17460/150271Test; https://journal.rniito.org/jour/article/downloadSuppFile/17460/150272Test; https://journal.rniito.org/jour/article/downloadSuppFile/17460/150273Test; https://journal.rniito.org/jour/article/downloadSuppFile/17460/150274Test; https://journal.rniito.org/jour/article/downloadSuppFile/17460/150275Test; https://journal.rniito.org/jour/article/downloadSuppFile/17460/150276Test; https://journal.rniito.org/jour/article/downloadSuppFile/17460/150277Test; https://journal.rniito.org/jour/article/downloadSuppFile/17460/150547Test; https://journal.rniito.org/jour/article/downloadSuppFile/17460/150548Test; https://journal.rniito.org/jour/article/downloadSuppFile/17460/150549Test; https://journal.rniito.org/jour/article/downloadSuppFile/17460/150550Test; https://journal.rniito.org/jour/article/downloadSuppFile/17460/150551Test; https://journal.rniito.org/jour/article/view/17460Test

  6. 6
    دورية أكاديمية

    المصدر: Diagnostic radiology and radiotherapy; Том 15, № 1 (2024); 116-120 ; Лучевая диагностика и терапия; Том 15, № 1 (2024); 116-120 ; 2079-5343

    وصف الملف: application/pdf

    العلاقة: https://radiag.bmoc-spb.ru/jour/article/view/980/638Test; Авдиенко К.А., Краснов В.А., Краснов Д.В., Грищенко Н.Г., Рейхруд М.В., Кононенко В.Г. Морфологическая картина стенки бронхов в месте резекции у больных туберкулезом легких после перибронхиальной лимфотропной или ингаляционной терапии // Туберкулез и болезни легких. 2018. Т. 96, № 12. С. 49–54. doi: https://doi.org/10.21292/2075-1230-2018-96-12-49-54Test.; Тюлькова Т.Е., Мезенцева А.В. Латентная туберкулезная инфекция и остаточные посттуберкулезные изменения у детей // Вопросы современной педиатрии. 2017. Т. 16, № 6. С. 452–456. doi:10.15690/vsp.v16i6.1817; Мезенцева А.В., Тюлькова Т.Е., Чугаев Ю.П., Камаева Н.Г., Долматова И.А. Активность туберкулезного процесса при выявлении кальцинатов во внутригрудных лимфатических узлах и легких у детей // Туберкулез и болезни легких. 2017. Т. 95, № 1. С. 11–17. doi: https://doi.org/10.21292/2075-1230-2017-95-1-11-17Test.; Клевно Н.И. Клинические рекомендации «туберкулез у детей» // Тихоокеанский медицинский журнал. 2021. № 1 (83). С. 5–9. doi:10.34215/1609-1175-2021-1-5-9.; Синицына А.В., Синицын А.В., Синельникова Е.В. Некоторые вопросы диагностики туберкулеза внутригрудных лимфатических узлов у детей: решение проблемы путем применения ультрасонографии // Визуализация в медицине. 2022. Т. 4, № 2. С. 12–18.; Тюрин И.Е. Компьютерная томография органов дыхания // Атмосфера. Пульмонология и аллергология. 2003. № 3. С. 11–15. [Tyurin I.E. Computed tomography of respiratory organs. Atmosphere. Pulmonology and allergology, 2003, No. 3, pp. 11–15 (In Russ.)].; Жумабаев А.Ж., Монокбаев Э.К., Кочкорбай У.С., Камилов А.Ж. Инородные тела трахеи и бронхов у детей: клинико-рентгенологические особенности, бронхолегочные осложнения // Здоровье матери и ребенка. 2011. № 4. С. 1–3.; Гаврилов П.В., Скворцова Л.А., Савелло В.Е., Алексеев Д.Ю. Возможности лучевых методов исследования в визуализации внутригрудных лимфатических узлов при туберкулезе органов дыхания // Вестник Санкт-Петербургского университета. Медицина. 2009. № 3. С. 216–222.; https://radiag.bmoc-spb.ru/jour/article/view/980Test

  7. 7
    دورية أكاديمية

    المصدر: Diagnostic radiology and radiotherapy; Том 15, № 1 (2024); 78-86 ; Лучевая диагностика и терапия; Том 15, № 1 (2024); 78-86 ; 2079-5343

    وصف الملف: application/pdf

    العلاقة: https://radiag.bmoc-spb.ru/jour/article/view/975/634Test; Подзолков В.П., Шведунова В.Н. Врожденные пороки сердца // Российский медицинский журнал. 2001. № 10. 430 с.; Frommelt P., Lopez L., Dimas V.V., Eidem B., Han B.K., Ko H.H., Lorber R., Nii M., Printz B., Srivastava S., Valente A.M., Cohen M.S. Recommendations for Multimodality Assessment of Congenital Coronary Anomalies: A Guide from the American Society of Echocardiography: Developed in Collaboration with the Society for Cardiovascular Angiography and Interventions, Japanese Society of Echocardiography, and Society for Cardiovascular Magnetic Resonance // J. Am. Soc. Echocardiogr. 2020. Vol. 33, № 3. Р. 259-294. doi:10.1016/j.echo.2019.10.011. PMID: 32143778.; Базылев В.В, Черногривов А.Е. Хирургическое лечение транспозиции магистральных артерии // Детские болезни сердца и сосудов. 2016. Т. 13, № 1. С. 33–41; Cohen M.S., Mertens L.L. Educational series in congenital heart: Echocardiographic assessment of transposition of the great arteries and congenitally corrected transposition of the great arteries // Echo Res. Pract. 2019. Dec 1; Vol. 6, No. 4. R107-R119. doi:10.1530/ERP-19-0047. PMID: 31729212; PMCID: PMC6865365.; Files M.D., Arya B. Preoperative Physiology, Imaging, and Management of Transposition of the Great Arteries // Semin. Cardiothorac. Vasc. Anesth. 2015 Sep; Vol. 19, No. 3. Р. 210–222. doi:10.1177/1089253215581851. Epub 2015 Apr 21. PMID: 25900899.; Angelini P., de la Cruz M.V., Valencia A.M., Sánchez-Gómez C., Kearney D.L., Sadowinski S., Real G.R. Coronary arteries in transposition of the great arteries // Am.J.Cardiol. 1994. Nov 15; Vol. 74, No. 10. Р. 1037–1041. doi:10.1016/0002-9149(94)90855-9. PMID: 7977043.; Ефимочкин Г.А., Борисков М.В., Барбухатти К.О., Кандинский М.Л., Порханов В.А. Влияние анатомии коронарных артерий при транспозиции магистральных артерий на выбор метода реимплантации — возможно ли упростить стандартные классификации? // Сибирский журнал клинической и экспериментальной медицины. 2016. Т. 31, № 4. С. 48–55. https://doi.org/10.29001/2073-8552-2016-31-4-48-55Test.; Martins P., Castela E. Transposition of the great arteries // Orphanet J. Rare Dis. 2008. Oct 13; Vol. 3. Р. 27. doi:10.1186/1750–1172–3-27. PMID: 18851735; PMCID: PMC2577629.; Canan A., Ashwath R., Agarwal P.P., François C., Rajiah P. Multimodality Imaging of Transposition of the Great Arteries // Radiographics. 2021. Mar-Apr; Vol. 41, No. 2. Р. 338–360. doi:10.1148/rg.2021200069. Epub 2021 Jan 22. PMID: 33481689.; Xie L.J., Jiang L., Yang Z.G., Shi K., Xu H.Y., Li R., Diao K.Y., Guo Y.K. Assessment of transposition of the great arteries associated with multiple malformations using dual-source computed tomography // PLoS One. 2017. Nov 20; Vol. 12, No. 11. e0187578. doi:10.1371/journal.pone.0187578. PMID: 29155835; PMCID: PMC5695805.; Хасанова К.А., Терновой С.К., Абрамян М.А. Роль трансторакальной ЭхоКГ, КТ и МРТ сердца в оценке легочных артерий у детей с тетрадой Фалло // REJR. 2023. Т. 13, № 3. С. 39–50. doi:10.21569/2222-7415-2023-13-3-39-50.; Schidlow D.N., Jenkins K.J., Gauvreau K., Croti U.A., Giang D.T.C., Konda R.K., Novick W.M., Sandoval N.F., Castañeda A. Transposition of the Great Arteries in the Developing World: Surgery and Outcomes // J.Am.Coll Cardiol. 2017. Jan 3; Vol. 69, No. 1. Р. 43–51. doi:10.1016/j.jacc.2016.10.051. PMID: 28057249; PMCID: PMC7144419.; Odawara Y., Kawamura N., Yamasaki Y., Hashimoto J., Ishikawa S., Honda H. Evaluation of coronary artery variations using dual-source coronary computed tomography angiography in neonates with transposition of the great arteries // Jpn J. Radiol. 2019. Apr; Vol. 37, No. 4. Р. 308–314. doi:10.1007/s11604-018-00807-x. Epub 2019 Jan 2. PMID: 30603834.; Шабанова М.С. Сопоставление результатов измерения степени стенозирования просвета коронарных артерий при компьютерной томографии, внутрисосудистом ультразвуковом исследовании и коронарной ангиографии // REJR. 2016. Т. 6, № 3. С. 38–47. doi:10.21569/2222-7415-2016-6-3-38-47.; Swanson S.K., Sayyouh M.M., Bardo D.M.E., Ghadimi Mahani M., Lu J.C., Dorfman A.L., Agarwal P.P. Interpretation and Reporting of Coronary Arteries in Transposition of the Great Arteries: Cross-sectional Imaging Perspective // J. Thorac. Imaging. 2018. Jul; Vol. 33, No. 4. W14-W21. doi:10.1097/RTI.0000000000000333. PMID: 29927871.; https://radiag.bmoc-spb.ru/jour/article/view/975Test

  8. 8
    دورية أكاديمية

    المساهمون: The work was carried out proactively at the expense of own funds of the Almazov National Medical Research Centre, Работа выполнена инициативно за счет собственных средств ФГБУ «НМИЦ им. В.А.Алмазова» Минздрава России.

    المصدر: Diagnostic radiology and radiotherapy; Том 15, № 1 (2024); 87-95 ; Лучевая диагностика и терапия; Том 15, № 1 (2024); 87-95 ; 2079-5343

    وصف الملف: application/pdf

    العلاقة: https://radiag.bmoc-spb.ru/jour/article/view/976/635Test; Кондратович В.А., Жуковец А.Г., Леонова Т.А. Клинико-эпидемиологическая характеристика и прогноз клинического течения медуллярного рака щитовидной железы // Онкологический журнал. 2021. 15, № 2. С. 13–18.; Пинский С.Б., Белобородов В.А., Дворниченко В.В., Батороев Ю.К. Наследственный медуллярный рак щитовидной железы // Поволжский онкологический вестник. 2019. Т. 10, № 3. С. 33–39.; Filetti S., Durante C., Hartl D., Leboulleux S., Locati L.D., Newbold K., Papotti M.G., Berruti A. Thyroid cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up // Annals of Oncology. 2019. Vol. 30, No. 12. P. 1856–1883. https://doi.org/10.1093/annonc/mdz400Test.; Haddad R.I., Bischoff L., Ball D., Bernet V., Blomain E., Busaidy N.L., Campbell M., Dickson P., Duh Q.-Y., Ehya H., Goldner W.S., Guo T., Haymart M., Holt S., Hunt J.P., Iagaru A., Kandeel F., Lamonica D.M., Mandel S., Markovina S., McIver B., Raeburn C.D., Rezaee R., Ridge J.A., Roth M.Y., Scheri R.P., Shah J.P., Sipos J.A., Sippel R., Sturgeon C., Wang T.N., Wirth L.J., Wong R.J., Yeh M., Cassara C.J., Darlow S. Thyroid Carcinoma, Version 2.2022, NCCN Clinical Practice Guidelines in Oncology // Journal of the National Comprehensive Cancer Network. 2022. Vol. 20, No. 8. P. 925–951. https://doi.org/10.6004/jnccn.2022.0040Test.; Газизова Д.О., Бельцевич Д.Г. Современный взгляд на проблему диагностики и лечения медуллярного рака щитовидной железы // Эндокринная хирургия. 2013. № 3. С. 4–21 https://doi.org/10.14341/serg201334-21Test.; Kim M., Kim B.H. Current Guidelines for Management of Medullary Thyroid Carcinoma // Endocrinology and Metabolism. 2021. Vol. 36, No. 3. P. 514–524. https://doi.org/10.3803/EnM.2021.1082Test.; Wang L., Kou H., Chen W., Lu M., Zhou L., Zou C. The Diagnostic Value of Ultrasound in Medullary Thyroid Carcinoma: A Comparison With Computed Tomography // Technology in Cancer Research & Treatment. 2020. Vol. 19. P. 1–6. https://doi.org/10.1177/1533033820905832Test.; Ganeshan D., Paulson E., Duran C., Cabanillas M.E., Busaidy N.L., Charnsangavej C. Current Update on Medullary Thyroid Carcinoma // American Journal of Roentgenology. 2013. Vol. 201, No. 6. P. W867–W876. https://doi.org/10.2214/AJR.12.10370Test.; Kaliszewski K., Ludwig M., Ludwig B., Mikuła A., Greniuk M., Rudnicki J. Update on the Diagnosis and Management of Medullary thyroid carcinoma: What Has Changed in Recent Years? // Cancers. 2022. Vol. 14, No. 15. P. 1–24. https://doi.org/10.3390/cancers14153643Test.; Imperiale A., Berti V., Burgy M., Cazzato R.L., Piccardo A., Treglia G. Molecular imaging and related therapeutic options for medullary thyroid carcinoma: state of the art and future opportunities // Reviews in Endocrine and Metabolic Disorders. 2023. https://doi.org/10.1007/s11154-023-09836-yTest.; Bozkurt M.F., Virgolini I., Balogova S., Beheshti M., Rubello D., Decristoforo C., Ambrosini V., Kjaer A., Delgado-Bolton R., Kunikowska J., Oyen W.J.G., Chiti A., Giammarile F., Fanti S. Guideline for PET/CT imaging of neuroendocrine neoplasms with 68Ga-DOTA-conjugated somatostatin receptor targeting peptides and 18F– DOPA // European Journal of Nuclear Medicine and Molecular Imaging. 2017. Vol. 44, No. 9. P. 1588–1601. https://doi.org/10.1007/s00259-017-3728-yTest.; Radiopharmaceuticals: A Guide to PET/CT and PET/MRI / ed. Calabria F., Schillaci O. Cham: Springer International Publishing, 2020. ISBN: 978-3-030-27778-9.; Fargette C., Imperiale A., Taïeb D. Molecular imaging of endocrine neoplasms with emphasis on 18F-DOPA PET: a practical approach for well-tailored imaging protocols // The Quarterly Journal of Nuclear Medicine and Molecular Imaging. 2022. Vol. 66, No. 2. P. 141–147. https://doi.org/10.23736/S1824-4785.22.03450-1Test.; Archier A., Heimburger C., Guerin C., Morange I., Palazzo F.F., Henry J.-F., Schneegans O., Mundler O., Abdullah A.E., Sebag F., Imperiale A., Taïeb D. 18FDOPA PET/CT in the diagnosis and localization of persistent medullary thyroid carcinoma // European Journal of Nuclear Medicine and Molecular Imaging. 2016. Vol. 43, No. 6. P. 1027–1033. https://doi.org/10.1007/s00259-015-3227-yTest.; Рыжкова Д.В., Тихонова Д.Н., Гринева Е.Н. Методы ядерной медицины в диагностике нейроэндокринных опухолей // Сибирский онкологический журнал. 2013. № 1 (6). С. 56–63.; Santhanam P., Taïeb D. Role of 18F-FDOPA PET/CT imaging in endocrinology // Clinical Endocrinology. 2014. Vol. 81, No. 6. P. 789–798. https://doi.org/10.1111/cen.12566Test.; Taralli S., Lorusso M., Capotosti A., Lanni V., Indovina L., Rufini V. Which Is the Optimal Scan Time of 18F-DOPA PET/CT in Patients With Recurrent Medullary Thyroid Carcinoma?: Results From a Dynamic Acquisition Study // Clinical Nuclear Medicine. 2020. Vol. 45, No. 3. P. e134–e140. https://doi.org/10.1097/RLU.0000000000002925Test.; Romero-Lluch A.R., Cuenca-Cuenca J.I., Guerrero-Vázquez R., Martínez-Ortega A.J., Tirado-Hospital J.L., Borrego-Dorado I., Navarro-González E. Diagnostic utility of PET/CT with 18F-DOPA and 18F-FDG in persistent or recurrent medullary thyroid carcinoma: the importance of calcitonin and carcinoembryonic antigen cutoff // European Journal of Nuclear Medicine and Molecular Imaging. 2017. Vol. 44, No. 12. P. 2004–2013. https://doi.org/10.1007/s00259-017-3759-4Test.; Treglia G., Cocciolillo F., Di Nardo F., Poscia A., De Waure C., Giordano A., Rufini V. Detection Rate of Recurrent Medullary Thyroid Carcinoma Using Fluorine-18 Dihydroxyphenylalanine Positron Emission Tomography // Academic Radiology. 2012. Vol. 19, No. 10. P. 1290–1299. https://doi.org/10.1016/j.acra.2012.05.008Test.; Treglia G., Rufini V., Piccardo A., Imperiale A. Update on Management of Medullary Thyroid Carcinoma: Focus on Nuclear Medicine // Seminars in Nuclear Medicine. 2023. Vol. 53, No. 4. P. 481–489. https://doi.org/10.1053/j.semnuclmed.2023.01.003Test.; Wells S.A., Asa S.L., Dralle H., Elisei R., Evans D.B., Gagel R.F., Lee N., Machens A., Moley J.F., Pacini F., Raue F., Frank-Raue K., Robinson B., Rosenthal M.S., Santoro M., Schlumberger M., Shah M., Waguespack S.G. Revised American Thyroid Association Guidelines for the Management of Medullary Thyroid Carcinoma: The American Thyroid Association Guidelines Task Force on Medullary Thyroid Carcinoma // Thyroid. 2015. Vol. 25, No. 6. P. 567–610. https://doi.org/10.1089/thy.2014.0335Test.; Hoegerle S., Altehoefer C., Ghanem N., Brink I., Moser E., Nitzsche E. 18F-DOPA positron emission tomography for tumour detection in patients with medullary thyroid carcinoma and elevated calcitonin levels // European Journal of Nuclear Medicine. 2001. Vol. 28, No. 1. P. 64–71. https://doi.org/10.1007/s002590000404Test.; https://radiag.bmoc-spb.ru/jour/article/view/976Test

  9. 9
    دورية أكاديمية

    المصدر: Medical Visualization; Принято в печать ; Медицинская визуализация; Принято в печать ; 2408-9516 ; 1607-0763

    وصف الملف: application/pdf

    العلاقة: https://medvis.vidar.ru/jour/article/view/1408/876Test; https://medvis.vidar.ru/jour/article/downloadSuppFile/1408/2223Test; https://medvis.vidar.ru/jour/article/downloadSuppFile/1408/2224Test; https://medvis.vidar.ru/jour/article/downloadSuppFile/1408/2229Test; Трофимова Т.Н., Халиков А.Д., Семенова М.Д. Возможности магнитно-резонансной томографии в изучении формирования головного мозга плода. Лучевая диагностика и терапия. 2017; 4 (8): 6–16. https://doi.org/10.22328/2079-5343-2017-4-6-15Test; Amant F., Berveiller P., Boere I.A. et al. Gynecologic cancers in pregnancy: guidelines based on a third international consensus meeting. Ann. Oncol. 2019; 30 (10): 1601–1612. https://doi.org/10.1093/annonc/mdz228Test; Parpinel G., Laudani M.E., Giunta F.P. et al. Use of positron emission tomography for pregnancy-associated cancer assessment: a review. J. Clin. Med. 2022; 11 (13): 1–11. https://doi.org/10.3390/jcm11133820Test; de Haan J., Verheecke M., Van Calsteren K. et al. Oncological management and obstetric and neonatal outcomes for women diagnosed with cancer during pregnancy: a 20-year international cohort study of 1170 patients. Lancet Oncol. 2018; 19 (3): 337–346. https://doi.org/10.1016/S1470-2045Test(18)30059-7; Abramowicz J.S., Kremkau F.W., Merz E. Obstetrical ultrasound: can the fetus hear the wave and feel the heat? Ultraschall Med. 2012; 33 (3): 215–217. https://doi.org/10.1055/s-0032-1312759Test; Aiken C.E., Lees C.C. Long-term effects of in utero Doppler ultrasound scanning-a developmental programming perspective. Med. Hypotheses. 2012; 78 (4): 539–541. https://doi.org/10.1016/j.mehy.2012.01.030Test; Tirada N., Dreizin D., Khati N.J. et al. Imaging pregnant and lactating patients. RadioGraphics. 2015; 35 (6): 1751–1765. https://doi.org/10.1148/rg.2015150031Test; Wei K., Mulvagh S.L., Carson L. et al. The safety of definity and optison for ultrasound image enhancement: a retrospective analysis of 78,383 administered contrast doses. J. Am. Soc. Echocardiogr. 2008; 21 (11): 1202–1206. https://doi.org/10.1016/j.echo.2008.07.019Test; Piscaglia F., Bolondi L., Italian Society for Ultrasound in Medicine and Biology (SIUMB) study group on ultrasound contrast agents. The safety of Sonovue in abdominal applications: retrospective analysis of 23188 investigations. Ultrasound Med. Biol. 2006; 32 (9): 1369–1375. https://doi.org/10.1016/j.ultrasmedbio.2006.05.031Test; Sidhu P.S., Cantisani V., Dietrich C.F. et al. The EFSUMB guidelines and recommendations for the clinical practice of contrast-enhanced ultrasound (CEUS) in non-hepatic applications: update 2017 (Long Version). Ultraschall Med. 2018; 39 (2): e2–e44. https://doi.org/10.1055/a-0586-1107Test; Perelli F., Turrini I., Giorgi M.G. et al. Contrast agents during pregnancy: pros and cons when really needed. Int. J. Environ. Res. Public Health. 2022; 19 (24): 16699. https://doi.org/10.3390/ijerph192416699Test; Kanal E., Barkovich A.J., Bell C. et al.; ACR Blue Ribbon Panel on MR Safety. ACR guidance document for safe MR practices: 2007; Am. J. Roentgenol. 2007. 188 (6): 1447–1474. https://doi.org/10.2214/AJR.06.1616Test; Hartwig V., Giovannetti G., Vanello N. et al. Biological effects and safety in magnetic resonance imaging: a review. Int. J. Environ. Res. Public Health. 2009; 6 (6): 1778–1798. https://doi.org/10.3390/ijerph6061778Test; Chartier A.L., Bouvier M.J., McPherson D.R. et al. The safety of maternal and fetal MRI at 3T. Am. J. Roentgenol. 2019; 213 (5): 1170–1173. https://doi.org/10.2214/AJR.19.21400Test; Ray J.G., Vermeulen M.J., Bharatha A. et al. Association between MRI exposure during pregnancy and fetal and childhood outcomes. JAMA. 2016; 316 (9): 952–961. https://doi.org/10.1001/jama.2016.12126Test; Gomes M., Matias A., Macedo F. Risks to the fetus from diagnostic imaging during pregnancy: review and proposal of a clinical protocol. Pediatr. Radiol. 2015; 45 (13): 1916–1929. https://doi.org/10.1007/s00247-015-3403-zTest; Mervak B.M., Altun E., McGinty K.A. et al. MRI in pregnancy: Indications and practical considerations. J. Magn. Reson. Imaging. 2019; 49 (3): 621–631. https://doi.org/10.1002/jmri.26317Test; Синицын В.Е. Безопасность магнитно-резонансной томографии – современное состояние вопроса. Диагностическая и интервенционная радиология. 2010. 4 (3): 61–66. https://doi.org/10.25512/DIR.2010.04.3.10Test; Behzadi A.H., Zhao Y., Farooq Z., Prince M.R. Immediate allergic reactions to gadolinium-based contrast agents: a systematic review and meta-analysis. Radiology. 2018; 286 (2): 471–482. https://doi.org/10.1148/radiol.2017162740Test; Fraum T.J., Ludwig D.R., Bashir M.R., Fowler K.J. Gadolinium-based contrast agents: a comprehensive risk assessment. J. Magn. Reson. Imaging. 2017; 46 (2): 338–353. https://doi.org/10.1002/jmri.25625Test; Cheong B.Y.C., Wilson J.M., Preventza O.A., Muthupillai R. Gadolinium-based contrast agents: updates and answers to typical questions regarding gadolinium use. Tex. Heart Inst. J. 2022; 49 (3): e217680. https://doi.org/10.14503/THIJ-21-7680Test; Potts J., Lisonkova S., Murphy D.T., Lim K. Gadolinium magnetic resonance imaging during pregnancy associated with adverse neonatal and post-neonatal outcomes. J. Pediatr. 2017; 180: 291–294. https://doi.org/10.1016/j.jpeds.2016.10.061Test; Costello J.R., Kalb B., Martin D.R. Incidence and risk factors for gadolinium-based contrast agent immediate reactions. Top. Magn. Reson. Imaging. 2016; 25 (6): 257–263. https://doi.org/10.1097/RMR.0000000000000109Test; Cowper S.E., Boyer P.J. Nephrogenic systemic fibrosis: An update. Curr. Rheumatol. Rep. 2006; 8 (2): 151–157. https://doi.org/10.1007/s11926-006-0056-9Test; Kanal E., Tweedle M.F. Residual or retained gadolinium: practical implications for radiologists and our patients. Radiology. 2015; 275 (3): 630–634. https://doi.org/10.1148/radiol.2015150805Test; Kodzwa R. ACR manual on contrast media: 2018 updates. Radiol. Technol. 2019; 91 (1): 97–100.; De Santis M., Straface G., Cavaliere A.F. et al. Gadolinium periconceptional exposure: pregnancy and neonatal outcome. Acta Obstet. Gynecol. Scand. 2007; 86 (1): 99–101. https://doi.org/10.1080/00016340600804639Test; Thomsen H.S. ESUR guidelines on contrast agents version 10.0. Contrast Media Safety Committee, 2018; 44 p.; Gatta G., Di Grezia G., Cuccurullo V. et al. MRI in pregnancy and precision medicine: a review from literature. J. Pers. Med. 2021; 12 (1): 1–16. https://doi.org/10.3390/jpm12010009Test; Ghaghada K.B., Starosolski Z.A., Bhayana S. et al. Pre-clinical evaluation of a nanoparticle-based blood-pool contrast agent for MR imaging of the placenta. Placenta. 2017; 57: 60–70. https://doi.org/10.1016/j.placenta.2017.06.008Test; Семенова Е.С., Мащенко И.А., Труфанов Г.Е. Магнитно-резонансная томография при беременности: актуальные вопросы безопасности. Российский Электронный журнал лучевой диагностики. 2020; 10 (1): 216–230. https://doi.org/10.21569/2222-7415-2020-10-1-216-230Test; Ratnapalan S., Bentur Y., Koren G. Doctor, will that x-ray harm my unborn child? CMAJ. 2008; 179 (12): 1293–1296. https://doi.org/10.1503/cmaj.080247Test; Brent R.L. Protection of the gametes embryo/fetus from prenatal radiation exposure. Health Physics. 2015; 108 (2): 242–274. https://doi.org/10.1097/HP.0000000000000235Test; Санитарные правила и нормативы. Нормы радиационной безопасности (НРБ–99/2009): cанитарно-эпидемиологичeские правила и нормативы. Москва – Федеральный центр гигиены и эпидемиологии Роспотребнадзора. 2009. 100 c.; ACR-SPR practice parameter for imaging pregnant or potentially pregnant adolescents and women with ionizing radiation [Electronic resource]. URL: https://www.acr.org/Clinical-Resources/Radiology-Safety/Radiation-SafetyTest (accessed: 05.03.2023).; Публикация 103 Международной комиссии по радиационной защите (МКРЗ): Пер. с англ. / Под. общей ред. М.Ф. Киселёва, Н.К. Шандалы. М.: Изд-во ООО ПКФ “Алана”, 2009. 344 с.; Крылов А.С., Наркевич Б.Я., Рыжков А.Д. Определение дозы-облучения плода у беременных женщин с раком молочной железы при сцинтиграфии сторожевых лимфатических узлов. Онкологический журнал: лучевая диагностика, лучевая терапия. 2021; 4 (4); 78–87. https://doi.org/10.37174/2587-7593-2021-4-4-78-87Test; Raman S.P., Johnson P.T., Deshmukh S. et al. CT dose reduction applications: available tools on the latest generation of CT scanners. J. Am. Coll. Radiol. 2013. 10 (1): 37–41. https://doi.org/10.1016/j.jacr.2012.06.025Test; Colletti P.M., Micheli O.A., Lee K.H. To shield or not to shield: application of bismuth breast shields. Am. J. Roentgenol. 2013; 200 (3): 503–507. https://doi.org/10.2214/AJR.12.9997Test; Кондрашов И.А., Мандал В. Неионные низкоосмолярные мономерные йодированные рентгеноконтрастные средства: некоторые аспекты использования при проведении компьютерной томографии у детей. Медицинская визуализация. 2017; 6: 118–129. https://doi.org/10.24835/1607-0763-2017-6-118-129Test; Webb J.A., Thomsen H.S., Morcos S.K; Members of Contrast Media Safety Committee of European Society of Urogenital Radiology (ESUR). The use of iodinated and gadolinium contrast media during pregnancy and lactation. Eur. Radiol. 2005; 15 (6): 1234–1240. https://doi.org/10.1007/s00330-004-2583-yTest; Rajaram S., Exley C.E., Fairlie F., Matthews S. Effect of antenatal iodinated contrast agent on neonatal thyroid function. Br. J. Radiol. 2012; 85 (1015): e238–e242. https://doi.org/10.1259/bjr/29806327Test; Kochi M.H., Kaloudis E.V., Ahmed W., Moore W.H. Effect of in utero exposure of iodinated intravenous contrast on neonatal thyroid function. J. Comput. Assist. Tomogr. 2012; 36 (2): 165–169. https://doi.org/10.1097/rct.0b013e31824cc048Test; Зиновьев А.Н., Мотовилова Т.М., Качалина Т.С. Место количественной оценки проходимости маточных труб в определении прогноза лечения трубно-перитонеального бесплодия. РМЖ. Мать и дитя. 2013; 21 (14): 760.; American College of Radiology. Manual on contrast media, version 10.2; American College of Radiology: Reston, VA, USA, 2023. 148 p.; Wang P.I., Chong S.T., Kielar A.Z. et al. Imaging of pregnant and lactating patients: part 2, evidence-based review and recommendations. Am. J. Roentgenol. 2012; 198 (4): 785–792. https://doi.org/10.2214/AJR.11.8223Test; Despierres M., Boudy A.S., Selleret L. et al. Feasibility, safety and impact of (18F)-FDG PET/CT in patients with pregnancy-associated cancer: experience of the French CALG (Cancer Associé à La Grossesse) network. Acta Oncol. 2022; 61 (3): 302–308. https://doi.org/10.1080/0284186X.2021.2004323Test; Zanotti-Fregonara P., Champion C., Trébossen R. et al. Estimation of the beta+ dose to the embryo resulting from 18F-FDG administration during early pregnancy. J. Nucl. Med. 2008; 49 (4): 679–682. https://doi.org/10.2967/jnumed.107.048900Test; Benveniste H., Fowler J.S., Rooney W.D. et al. Maternal-fetal in vivo imaging: a combined PET and MRI study. J. Nucl. Med. 2003; 44 (9): 1522–1530.; Zanotti-Fregonara P., Ishiguro T., Yoshihara K. et al. 18F-FDG fetal dosimetry calculated with PET/MRI. J. Nucl. Med. 2022; 63 (10): 1592–1597. https://doi.org/10.2967/jnumed.121.263561Test; Gropper A.B., Calvillo K.Z., Dominici L. et al. Sentinel lymph node biopsy in pregnant women with breast cancer. Ann. Surg. Oncol. 2014; 21 (8): 2506–2511. https://doi.org/10.1245/s10434-014-3718-2Test; Han S.N., Amant F., Cardonick E.H. et al. Axillary staging for breast cancer during pregnancy: feasibility and safety of sentinel lymph node biopsy. Breast Cancer Res. Treat. 2018; 168 (2): 551–557. https://doi.org/10.1007/s10549-017-4611-zTest; Han S.N., Amant F., Michielsen K. et al. Feasibility of whole-body diffusion-weighted MRI for detection of primary tumour, nodal and distant metastases in women with cancer during pregnancy: a pilot study. Eur. Radiol. 2018; 28 (5): 1862–1874. https://doi.org/10.1007/s00330-017-5126-zTest; https://medvis.vidar.ru/jour/article/view/1408Test

  10. 10
    دورية أكاديمية

    المصدر: Medical Visualization; Принято в печать ; Медицинская визуализация; Принято в печать ; 2408-9516 ; 1607-0763

    وصف الملف: application/pdf

    العلاقة: https://medvis.vidar.ru/jour/article/view/1452/873Test; ACS Journals, Cancer statistics 2020, http://doi.org/10.3322/caac.21590Test; Злокачественные новообразования в России в 2020 году (заболеваемость и смертность) / Под ред. А.Д. Каприна, В.В. Старинского, А.О. Шахзадовой. 2021.; Park W., Chawla A., O’Reilly E.M. Pancreatic Cancer: A Review. JAMA. 2021; 326 (9): 851–862. https://doi.org/10.1001/jama.2021.13027Test; Buchs N.C., Chilcott M., Poletti P.-A. et al. Vascular invasion in pancreatic cancer: Imaging modalities, preoperative diagnosis and surgical management. Wld J. Gastroenterol. 2010; 16 (7): 818–831. https://doi.org/10.3748/wjg.v16.i7.818Test; Al-Hawary M.M., Francis I.R., Chari S.T. et al. Pancreatic ductal adenocarcinoma radiology reporting template: consensus statement of the Society of Abdominal Radiology and the American Pancreatic Association. Radiology. 2014; 270 (1): 248–260. https://doi.org/10.1148/radiol.13131184Test; Клинические рекомендации Министерства здравоохранения РФ “Рак поджелудочной железы, 2021 год” https://cr.minzdrav.gov.ru/schema/355_4Test; Gugenheim J., Crovetto A., Petrucciani N. Neoadjuvant therapy for pancreatic cancer. Updates Surg. 2022; 74 (1): 35–42. https://doi.org/10.1007/s13304-021-01186-1Test; Seufferlein T., Uhl W., Kornmann M. et al. Perioperative or only adjuvant gemcitabine plus nab-paclitaxel for resectable pancreatic cancer (NEONAX) – a randomized phase II trial of the AIO pancreatic cancer group. Ann. Oncol. 2023; 34 (1): 91–100. https://doi.org/10.1016/j.annonc.2022.09.161Test; Ghaneh P., Palmer D., Cicconi S. et al. Immediate surgery compared with short-course neoadjuvant gemcitabine plus capecitabine, FOLFIRINOX, or chemoradiotherapy in patients with borderline resectable pancreatic cancer (ESPAC5): a four-arm, multicentre, randomised, phase 2 trial. Lancet Gastroenterol. Hepatol. 2023; 8 (2): 157–168. https://doi.org/10.1016/S2468-1253Test(22)00348-X; NCCN Guidelines for Pancreatic Adenocarcinoma. V.1., 2023.; Lee E.S., Lee J.M. Imaging diagnosis of pancreatic cancer: a state-of-the-art review. Wld J. Gastroenterol. 2014; 20 (24): 7864–7877. https://doi.org/10.3748/wjg.v20.i24.7864Test; Kim Y.K., Lee M.W., Lee W.J. et al. Diagnostic Accuracy and Sensitivity of Diffusion-Weighted and of Gadoxetic Acid-Enhanced 3-T MR Imaging Alone or in Combination in the Detection of Small Liver Metastasis (≤1.5 cm in Diameter). Invest. Radiol. 2012; 47 (3): 159–66. https://doi.org/10.1097/rli.0b013e31823a1495Test; Кармазановский Г.Г. Опухоли поджелудочной железы солидной структуры: стадирование и резектабельность, критерии оценки прогрессирования опухолевого процесса после хирургического лечения (лекция, часть 2). Медицинская визуализация. 2016; 5: 43–49.; Шима В., Кауэлблингер К. Аденокарцинома поджелудочной железы: выявление, определение стадии и дифференциальная диагностика. Медицинская визуализация. 2015; 5: 52–72.; Ветшева Н.Н. Дооперационная диагностика солидных опухолей поджелудочной железы: обзор литературы. Медицинская визуализация. 2016; 5: 50–58.; Kamisawa T., Takuma K., Anjiki H. et al. Differentiation of autoimmune pancreatitis from pancreatic cancer by diffusion-weighted MRI. Am. J. Gastroenterol. 2010; 105 (8): 1870–1875. https://doi.org/10.1038/ajg.2010.87Test; Uzunoglu F.G., Welte M.-N., Gavazzi F. et al. Evaluation of the MDACC clinical classification system for pancreatic cancer patients in an European multicenter cohort. Eur. J. Surg. Oncol. 2019; 45 (5): 793–799. https://doi.org/10.1016/j.ejso.2018.12.012Test; Sohal D.P.S., Kennedy E.B., Cinar P. et al. Metastatic Pancreatic Cancer: ASCO Guideline Update. J. Clin. Oncol. 2020; 38 (27): 3217–3230. https://doi.org/10.1200/JCO.20.01364Test; Isaji S., Mizuno S., Windsor J.A. et al. International consensus on definition and criteria of borderline resectable pancreatic ductal adenocarcinoma 2017. Pancreatology. 2018; 18 (1): 2–11. https://doi.org/10.1016/j.pan.2017.11.011Test; Покатаев И.А., Гладков О.А., Загайнов В.Е., Кудашкин Н.Е., Кучин Д.М., Лядов В.К. и др. Практические рекомендации по лекарственному лечению рака поджелудочной железы. Злокачественные опухоли: Практические рекомендации RUSSCO #3s2, 2022; 12: 530–544. https://doi.org/10.18027/2224-5057-2022-12-3s2-530-544Test; Fujita T., Nakagohri T., Gotohda N. et al. Evaluation of the prognostic factors and significance of lymph node status in invasive ductal carcinoma of the body or tail of the pancreas. Pancreas. 2010; 39 (1): e48–54. https://doi.org/10.1097/MPA.0b013e3181bd5cfaTest; Kanda M., Fujii T., Nagai S. et al. Pattern of lymph node metastasis spread in pancreatic cancer. Pancreas. 2011; 40: 951–955. https://doi.org/10.1097/MPA.0b013e3182148342Test; Sergeant G., Melloul E., Lesurtel M. et al. Extended lymphadenectomy in patients with pancreatic cancer is debatable. Wld J. Surg. 2013; 37 (8): 1782–1788. https://doi.org/10.1007/s00268-013-2064-zTest; Zacharias T., Jaeck D., Oussoultzoglou E. et al. Impact of lymph node involvement on long-term survival after R0 pancreaticoduodenectomy for ductal adenocarcinoma of the pancreas. J. Gastrointest. Surg. 2007; 11: 350–356. https://doi.org/10.1007/s11605-007-0113-3Test; Henne-Bruns D., Vogel I., Lüttges J. et al. Surgery for ductal adenocarcinoma of the pancreatic head: staging, complications, and survival after regional versus extended lymphadenectomy. Wld J. Surg. 2000; 24 (5): 595–601; discussion 601–602. https://doi.org/10.1007/s002689910089Test; Murakami Y., Uemura K., Sudo T. et al. Prognostic factors after surgical resection for intrahepatic, hilar, and distal cholangiocarcinoma. Ann. Surg. Oncol. 2011; 18 (3): 651–658. https://doi.org/10.1245/s10434-010-1325-4Test; Henne-Bruns D., Vogel I., Lüttges J. et al. Ductal adenocarcinoma of the pancreas head: survival after regional versus extended lymphadenectomy. Hepatogastroenterology. 1998; 45 (21): 855–866. PMID: 9684147; Masui T., Kubota T., Aoki K. et al. Long-term survival after resection of pancreatic ductal adenocarcinoma with para-aortic lymph node metastasis: case report. Wld J. Surg. Oncol. 2013; 11 (1): 195. https://doi.org/10.1186/1477-7819-11-195Test; Kaťuchová J., Bober J., Kaťuch V., Radoňak J. Significance of lymph node micrometastasis in pancreatic cancer patients. Eur. Surg. Res. 2012; 48 (1): 10–15. https://doi.org/10.1159/000334171Test; Ishikawa O., Ohhigashi H., Sasaki Y. et al. Practical usefulness of lymphatic and connective tissue clearance for the carcinoma of the pancreas head. Ann. Surg. 1988; 208 (2): 215–220. https://doi.org/10.1097/00000658-198808000-00014Test; Nimura Y., Nagino M., Takao S. et al. Standard versus extended lymphadenectomy in radical pancreatoduodenectomy for ductal adenocarcinoma of the head of the pancreas: Long-term results of a japanese multicenter randomized controlled trial. J. Hepatobiliary. Pancreat. Sci. 2012; 19: 230–241. https://doi.org/10.1007/s00534-011-0466-6Test; Japanese Gastric Cancer Association. Japanese classification of gastric carcinoma: 3rd English edition. Gastric Cancer. 2011; 14: 101–112. https://doi.org/10.1007/s10120-011-0041-5Test; Базин И.С., Покатаев И.А., Попова А.С., Базина И.В., Чихарева Я.Е. Место химиотерапии в лечении локализованного рака поджелудочной железы. Злокачественные опухоли. 2016; 4 (спецвыпуск 1): 20–25. https://doi.org/10.18027/2224-5057-2016-4s1-20-25Test; Lambert A., Schwarz L., Ducreux M., Conroy T. Neoadjuvant Treatment Strategies in Resectable Pancreatic Cancer. Cancers (Basel). 2021; 13 (18): 4724. https://doi.org/10.3390/cancers13184724Test; Springfeld C., Ferrone C.R., Katz M.H.G. et al. Neoadjuvant therapy for pancreatic cancer. Nat. Rev. Clin. Oncol. 2023; 20 (5): 318–337. https://doi.org/10.1038/s41571-023-00746-1Test; Katz M.H., Fleming J.B., Bhosale P. et al. Response of borderline resectable pancreatic cancer to neoadjuvant therapy is not reflected by radiographic indicators. Cancer. 2012; 118 (23): 5749–5756. https://doi.org/10.1002/cncr.27636Test; Ferrone C.R., Marchegiani G., Hong T.S. et al. Radiological and surgical implications of neoadjuvant treatment with FOLFIRINOX for locally advanced and borderline resectable pancreatic cancer. Ann. Surg. 2015; 261: 12–17. https://doi.org/10.1097/SLA.0000000000000867Test; Zins M., Matos C., Cassinotto C. Pancreatic Adenocarcinoma Staging in the Era of Preoperative Chemotherapy and Radiation Therapy. Radiology. 2018; 287 (2): 374–390. https://doi.org/10.1148/radiol.2018171670Test; Chen X., Oshima K., Schott D. et al. Assessment of treatment response during chemoradiation therapy for pancreatic cancer based on quantitative radiomic analysis of daily CTs: An exploratory study. PLoS One. 2017; 12 (6): e0178961. https://doi.org/10.1371/journal.pone.0178961Test; Navez J., Bouchart C., Lorenzo D. et al. What Should Guide the Performance of Venous Resection During Pancreaticoduodenectomy for Pancreatic Ductal Adenocarcinoma with Venous Contact? Ann. Surg. Oncol. 2021; 28 (11): 6211–6222. https://doi.org/10.1245/s10434-020-09568-2Test.; Barreto S.G., Loveday B., Windsor J.A., Pandanaboyana S. Detecting tumour response and predicting resectability after neoadjuvant therapy for borderline resectable and locally advanced pancreatic cancer. ANZ J. Surg. 2019; 89 (5): 481–487. https://doi.org/10.1111/ans.14764Test; Yang R., Lu M., Qian X. et al. Diagnostic accuracy of EUS and CT of vascular invasion in pancreatic cancer: a systematic review. J. Cancer. Res. Clin. Oncol. 2014; 140 (12): 2077–2086. https://doi.org/10.1007/s00432-014-1728-xTest; Zimmermann C., Distler M., Jentsch C. et al. Evaluation of response using FDG-PET/CT and diffusion weighted MRI after radiochemotherapy of pancreatic cancer: a non-randomized, monocentric phase II clinical trial-PaCa-DD-041 (Eudra-CT 2009-011968-11). Strahlenther. Onkol. 2021; 197 (1): 19–26. https://doi.org/10.1007/s00066-020-01654-4Test; Nishiofuku H., Tanaka T., Marugami N. et al. Increased tumour ADC value during chemotherapy predicts improved survival in unresectable pancreatic cancer. Eur. Radiol. 2016; 26 (6): 1835–1842. https://doi.org/10.1007/s00330-015-3999-2Test; Cozzi L., Comito T., Fogliata A. et al. Computed tomography based radiomic signature as predictive of survival and local control after stereotactic body radiation therapy in pancreatic carcinoma. PLoS One. 2019; 14 (1): e0210758. https://doi.org/10.1371/journal.pone.0210758Test; Nasief H., Hall W., Zheng C. et al. Improving Treatment Response Prediction for Chemoradiation Therapy of Pancreatic Cancer Using a Combination of Delta-Radiomics and the Clinical Biomarker CA19-9. Front. Oncol. 2020; 9: 1464. https://doi.org/10.3389/fonc.2019.01464Test; Ciaravino V., Cardobi N., De Robertis R. et al. CT Texture Analysis of Ductal Adenocarcinoma Downstaged After Chemotherapy. Anticancer Res. 2018; 38 (8): 4889–4895. https://doi.org/10.21873/anticanres.12803Test; Chen F., Zhou Y., Qi X. et al. CT texture analysis for the presurgical prediction of superior mesenteric-portal vein invasion in pancreatic ductal adenocarcinoma: comparison with CT imaging features. Clin. Radiol. 2021; 76 (5): 358–366. https://doi.org/10.1016/j.crad.2021.01.003Test; Rigiroli F., Hoye J., Lerebours R. et al. CT Radiomic Features of Superior Mesenteric Artery Involvement in Pancreatic Ductal Adenocarcinoma: A Pilot Study. Radiology. 2021; 301 (3): 610–622. https://doi.org/10.1148/radiol.2021210699Test; Bian Y., Jiang H., Ma C. et al. Performance of CT-based radiomics in diagnosis of superior mesenteric vein resection margin in patients with pancreatic head cancer. Abdom. Radiol. (NY). 2020; 45 (3): 759–773. https://doi.org/10.1007/s00261-019-02401-9Test; https://medvis.vidar.ru/jour/article/view/1452Test