يعرض 1 - 10 نتائج من 32 نتيجة بحث عن '"И. В. Лещенко"', وقت الاستعلام: 1.17s تنقيح النتائج
  1. 1
    دورية أكاديمية

    المساهمون: The authors express their deepest gratitude to the personnel of Ural Phthisiopulmonology Research Institute – a Branch of National Medical Research Center of Phthisiopulmonology and Infectious Diseases, Russian Ministry of Health: S. Yu. Krasnoborova, Director of the Branch, L. A. Mamaeva, Head of the Clinical Diagnostic Department, E. A. Filatova, Functional Diagnostics Specialist, for their assistance and support during this study., Авторы выражают благодарность сотрудникам Уральского научно-исследовательского института фтизиопульмонологии – филиала Федерального государственного бюджетного учреждения «Национальный медицинский исследовательский центр фтизиопульмонологии и инфекционных заболеваний» Министерства здравоохранения Российской Федерации: директору филиала С. Ю. Красноборовой, заведующей клинико-диагностическим отделением Л. А. Мамаевой и врачу функциональной диагностики Е. А. Филатовой за содействие, помощь и поддержку в проведении данного научного исследования.

    المصدر: Tuberculosis and Lung Diseases; Том 101, № 3 (2023); 44–51 ; Туберкулез и болезни легких; Том 101, № 3 (2023); 44–51 ; 2542-1506 ; 2075-1230

    وصف الملف: application/pdf

    العلاقة: https://www.tibl-journal.com/jour/article/view/1730/1738Test; Временные методические рекомендации «Профилактика, диагностика и лечение новой коронавирусной инфекции (COVID-19)». Версия 15 (22.02.2022). Доступно на: https://static0.minzdrav.gov.ru/system/attachments/attaches/000/059/392/originalTest/ВМР_COVID-19_V15.pdf [Дата обращения 10 сентября 2022]; Чучалин А. Г., Айсанов З. Р., Чикина С. Ю., Черняк А. В., Калманова Е. Н. Федеральные клинические рекомендации Российского респираторного общества по использованию метода спирометрии // Пульмонология. – 2014. – № 6. – С. 11–24. http://doi.org/10.18093/0869-0189-2014-0-6-11-24Test; Antoniou K. M., Vasarmidi E., Russell A. M., Andrejak C., Crestani B., Delcroix M., Dinh-Xuan A. T., Poletti V., Sverzellati N., Vitacca M., Witzenrath M., Tonia T., Spanevello A. European Respiratory Society statement on long COVID follow-up // Eur. Respir. J. ‒ 2022. ‒ Vol. 60, № 2. ‒ Р. 2102174. http://doi.org/10.1183/13993003.02174-2021Test; Aung A. K., Thompson P. J., Teh B. M., McGrath C. Pseudobronchiectasis after pertussis and mycoplasma infection // Am. J. Respir. Crit. Care Med. ‒ 2012. ‒ Vol. 186, № 3. ‒ Р. 292–294. http://doi.org/10.1164/ajrccm.186.3.292Test; González J., Benítez I. D., Carmona P., Santisteve S., Monge A., Moncusí-Moix A., Gort-Paniello C., Pinilla L., Carratalá A., Zuil M., Ferrer R., Ceccato A., Fernández L., Motos A., Riera J., Menéndez R., Garcia-Gasulla D., Peñuelas O., Bermejo-Martin J. F., Labarca G., Caballero J., Torres G., de Gonzalo-Calvo D., Torres A., Barbé F.; CIBERESUCICOVID Project (COV20/00110, ISCIII). Pulmonary function and radiologic features in survivors of critical COVID-19: a 3-month prospective cohort // Chest. ‒ 2021. ‒ № 160. ‒ Р. 187–198. http://doi.org/10.1016/j.chest.2021.02.062Test; Graham B. L., Steenbruggen I., Miller M. R., et al. Standardization of spirometry 2019 update. An official American Thoracic Society and European Respiratory Society technical statement// Am. J. Respir. Crit. Care Med. ‒ 2019. ‒ Vol. 200, № 8. ‒ Р. 70–88. http://doi.org/10.1164/rccm.201908-1590STTest; Hansell D. M., Bankier A. A., MacMahon H., McLoud T. C., Müller N. L., Remy J. Fleischner Society: glossary of terms for thoracic imaging // Radiology. ‒ 2008. ‒ Vol. 246, № 3. ‒ Р. 697–722. http://doi.org/10.1148/radiol.2462070712Test; Hu Q., Liu Y., Chen C., Sun Z., Wang Y., Xiang M., Guan H., Xia L. Reversible Bronchiectasis in COVID-19 Survivors With Acute Respiratory Distress Syndrome: Pseudobronchiectasis // Front Med (Lausanne). ‒ 2021. ‒ № 8. ‒ Р. 739857. http://doi.org/10.3389/fmed.2021.739857Test; Huang C., Huang L., Wang Y., Li X., Ren L., Gu X., Kang L., Guo L., Liu M., Zhou X., Luo J., Huang Z., Tu S., Zhao Y., Chen L., Xu D., Li Y., Li C., Peng L., Li Y., Xie W., Cui D., Shang L., Fan G., Xu J., Wang G., Wang Y., Zhong J., Wang C., Wang J., Zhang D, Cao B. 6-month consequences of COVID-19 in patients discharged from hospital: a cohort study // Lancet. ‒ 2021. ‒ Vol. 397, № 10270. ‒ Р. 220–232. http://doi.org/10.1016/S0140-6736Test(20)32656-8; Huang L., Li X., Gu X., Zhang H., Ren L., Guo L., Liu M., Wang Y., Cui D., Wang Y., Zhang X., Shang L., Zhong J., Wang X., Wang J., Cao B. Health outcomes in people 2 years after surviving hospitalisation with COVID-19: a longitudinal cohort study // Lancet Respir. Med. 2022: ‒ 2022. ‒ S2213-2600(22)00126-6. http://doi.org/10.1016/S2213-2600Test(22)00126-6; Huntley C. C., Patel K., Bil Bushra S. E., Mobeen F., Armitage M. N., Pye A., Knight C. B., Mostafa A., Kershaw M., Mughal A. Z., McKemey E., Turner A. M., Burge P. S., Walters G. I. Pulmonary function test and computed tomography features during follow-up after SARS, MERS and COVID-19: a systematic review and meta-analysis // ERJ Open Res. ‒ 2022. ‒ Vol. 8, № 2. ‒ Р. 00056-2022 http://doi.org/10.1183/23120541.00056-2022Test; Long Q., Li J., Hu X., Bai Y., Zheng Y., Gao Z. Follow-Ups on Persistent Symptoms and Pulmonary Function Among Post-Acute COVID-19 Patients: A Systematic Review and Meta-Analysis // Front Med (Lausanne). ‒ 2021. ‒ № 8. ‒ Р. 702635. http://doi.org/10.3389/fmed.2021.702635Test; Malkova A. M., Kudryavtsev I. V., Starshinova A. A., Kudlay D. A., Zinchenko Yu. S., Glushkova A., Yablonskiy P., Shoenfeld Ye. Post COVID-19 syndrome in patients with asymptomatic/mild form. Pathogens. 2021; 10 (11), 1408: 1-11.; Wang Y., Mao K., Li Z., Xu W., Shao H., Zhang R. Clinical study of pulmonary CT lesions and associated bronchiectasis in 115 convalescent patients with novel coronavirus pneumonia (COVID-19) in China // Can. J. Physiol. Pharmacol. ‒ 2021. ‒ Vol. 99, № 3. ‒ Р. 328–331. http://doi.org/10.1139/cjpp-2020-0522Test; Wells A. U., Devaraj A. Residual Lung Disease at Six-month Follow-up CT after COVID-19: Clinical Significance Is a Key Issue // Radiology. ‒ 2021. ‒ Vol. 301, № 2. ‒ Р. E406–E408. http://doi.org/10.1148/radiol.2021211284Test; Wu C., Chen X., Cai Y., Xia J., Zhou X., Xu S., Huang H., Zhang L., Zhou X., Du C., Zhang Y., Song J., Wang S., Chao Y., Yang Z., Xu J., Zhou X., Chen D., Xiong W., Xu L., Zhou F., Jiang J., Bai C., Zheng J., Song Y. Risk Factors Associated With Acute Respiratory Distress Syndrome and Death in Patients With Coronavirus Disease 2019 Pneumonia in Wuhan, China // JAMA Intern. Med. ‒ 2020. ‒ Vol. 180, № 7. ‒ Р. 934–943. http://doi.org/10.1001/jamainternmed.2020.0994Test; Wu X., Liu X., Zhou Y., Yu H., Li R., Zhan Q., Ni F., Fang S., Lu Y., Ding X., Liu H., Ewing R. M., Jones M. G., Hu Y., Nie H., Wang Y. 3-month, 6-month, 9-month, and 12-month respiratory outcomes in patients following COVID-19-related hospitalisation: a prospective study. Lancet Respir. Med. ‒ 2021. ‒ № 9. ‒ Р. 747– 754. http://doi.org/10.1016/S2213-2600Test(21)00174-0; https://www.tibl-journal.com/jour/article/view/1730Test

  2. 2
    دورية أكاديمية

    المساهمون: The authors declare that this work has not been funded, Авторы сообщают об отсутствии финансирования данной работы. Статья размещена при поддержке компании АстраЗенека

    المصدر: PULMONOLOGIYA; Том 33, № 1 (2023); 109-118 ; Пульмонология; Том 33, № 1 (2023); 109-118 ; 2541-9617 ; 0869-0189

    وصف الملف: application/pdf

    العلاقة: https://journal.pulmonology.ru/pulm/article/view/4183/3501Test; https://journal.pulmonology.ru/pulm/article/downloadSuppFile/4183/1796Test; https://journal.pulmonology.ru/pulm/article/downloadSuppFile/4183/1797Test; Global Initiative for Chronic Obstructive Lung Disease (GOLD). Global Strategy for the Diagnosis, Management, and Prevention of Chronic Obstructive Pulmonary Disease. 2022 Report. Available at: https://goldcopd.org/wp-content/uploads/2021/12/GOLD-REPORT-2022-v1.1-22Nov2021_WMV.pdfTest [Accessed: July 18, 2022].; Чучалин А.Г., Авдеев С.Н., Айсанов З.Р. и др. Хроническая обструктивная болезнь легких: федеральные клинические рекомендации по диагностике и лечению. Пульмонология. 2022; 32 (3): 356–392. DOI:10.18093/0869-0189-2022-32-3-356-392.; Avdeev S., Aisanov Z., Arkhipov V. et al. Withdrawal of inhaled corticosteroids in COPD patients: rationale and algorithms. Int. J. Chron. Obstruct. Pulmon. Dis. 2019; 14: 1267–1280. DOI:10.2147/copd.s207775.; Aisanov Z., Avdeev S., Arkhipov V. et al. Russian guidelines for the management of COPD: algorithm of pharmacologic treatment. Int. J. Chron. Obstruct. Pulmon. Dis. 2018; 13: 183–187. DOI:10.2147/copd.s153770.; Calzetta L., Matera M.G., Rogliani P., Cazzola M. The role of triple therapy in the management of COPD. Expert Rev. Clin. Pharmacol. 2020; 13 (8): 865–874. DOI:10.1080/17512433.2020.1787830.; Cazzola M., Rogliani P., Laitano R. et al. Beyond dual bronchodilation – triple therapy, when and why. Int. J. Chron. Obstruct. Pulmon. Dis. 2022; 17: 165–180. DOI:10.2147/COPD.S345263.; Lipson D.A., Barnhart F., Brealey N. et al. Once-daily single-inhaler triple versus dual therapy in patients with COPD. N. Engl. J. Med. 2018; 378 (18): 1671–1680. DOI:10.1056/NEJMoa1713901.; Papi A., Vestbo J., Fabbri L. et al. Extrafine inhaled triple therapy versus dual bronchodilator therapy in chronic obstructive pulmonary disease (TRIBUTE): a double-blind, parallel group, randomised controlled trial. Lancet. 2018; 391 (10125): 1076–1084. DOI:10.1016/S0140-6736(18)30206-X.; Rabe K.F., Martinez F.J., Ferguson G.T. et al. Triple inhaled therapy at two glucocorticoid doses in moderate-to-very-severe COPD. N. Engl. J. Med. 2020; 383 (1): 35–48. DOI:10.1056/NEJMoa1916046.; Oba Y., Sarva S., Dias S. Efficacy and safety of long-acting β-agonist/long-acting muscarinic antagonist combinations in COPD: a network meta-analysis. Thorax. 2016; 71 (1): 15–25. DOI:10.1136/thoraxjnl-2014-206732.; Cazzola M., Rogliani P., Calzetta L., Matera M.G. Triple therapy versus single and dual long-acting bronchodilator therapy in COPD: a systematic review and meta-analysis. Eur. Respir. J. 2018; 52 (6): 1801586. DOI:10.1183/13993003.01586-2018.; Langham S., Lewis J., Pooley N. et al. Single-inhaler triple therapy in patients with chronic obstructive pulmonary disease: a systematic review. Respir. Res. 2019; 20 (1): 242. DOI:10.1186/s12931-019-1213-9.; Calzetta L., Ritondo B.L., de Marco P. et al. Evaluating triple ICS/LABA/LAMA therapies for COPD patients: a network meta-analysis of ETHOS, KRONOS, IMPACT, and TRILOGY studies. Expert Rev. Respir. Med. 2021; 15 (1): 143–152. DOI:10.1080/17476348.2020.1816830.; Magnussen H., Disse B., Rodriguez-Roisin R. et al. Withdrawal of inhaled glucocorticoids and exacerbations of COPD. N. Engl. J. Med. 2014; 371 (14): 1285–1294. DOI:10.1056/NEJMoa1407154.; Chapman K.R., Hurst J.R., Frent S.M. et al. Long-term triple therapy de-escalation to indacaterol/glycopyrronium in patients with chronic obstructive pulmonary disease (SUNSET): a randomized, double-blind, triple-dummy clinical trial. Am. J. Respir. Crit. Care Med. 2018; 198 (3): 329–339. DOI:10.1164/rccm.201803-0405OC.; Calzetta L., Matera M.G., Braido F. et al., Withdrawal of inhaled corticosteroids in COPD: a meta-analysis. Pulm. Pharmacol. Ther. 2017; 45: 148–158. DOI:10.1016/j.pupt.2017.06.002.; Williams N.P., Coombs N.A., Johnson M.J. et al. Seasonality, risk factors and burden of community-acquired pneumonia in COPD patients: a population database study using linked health care records. Int. J. Chron. Obstruct. Pulmon. Dis. 2017; 12: 313–322. DOI:10.2147/COPD.S121389.; Izquierdo J.L., Cosio B.G. The dose of inhaled corticosteroids in patients with COPD: when less is better. Int. J. Chron. Obstruct. Pulmon. Dis. 2018; 13: 3539–3547. DOI:10.2147/COPD.S175047.; Donaldson G.C., Seemungal T.A., Bhowmik A., Wedzicha J.A. Relationship between exacerbation frequency and lung function decline in chronic obstructive pulmonary disease. Thorax. 2002; 57 (10): 847–852. DOI:10.1136/thorax.57.10.847.; Kanner R.E., Anthonisen N.R., Connett J.E. Lower respiratory illnesses promote FEV(1) decline in current smokers but not exsmokers with mild chronic obstructive pulmonary disease: results from the lung health study. Am. J. Respir. Crit. Care Med. 2001; 164 (3): 358–364. DOI:10.1164/ajrccm.164.3.2010017.; Dransfield M.T., Crim C., Criner G.J. et al. Risk of exacerbation and pneumonia with single-inhaler triple versus dual therapy in IMPACT. Ann. Am. Thorac. Soc. 2020; 18 (5): 788–798. DOI:10.1513/AnnalsATS.202002-096OC.; European Medicines Agency. Inhaled corticosteroids (ICS) containing medical products indicated in the treatment of chronic obstructive pulmonary disease (COPD). Assessment report EMA/330021/2016. London, UK: European Medicines Agency; 2016. Available at: https://www.ema.europa.eu/en/documents/referral/inhaled-corticosteroids-article-31-referral-prac-assessment-report_en.pdfTest [Assecced: Jule 11, 2022].; Nici L., Mammen M.J., Charbek E. et al. Pharmacologic management of chronic obstructive pulmonary disease. An Official American Thoracic Society clinical practice guideline. Am. J. Respir. Crit. Care Med. 2020; 201 (9): e56–69. DOI:10.1164/rccm.202003-0625ST.; Chronic obstructive pulmonary disease in over 16s: diagnosis and management. 2018. Available at: https://www.nice.org.uk/guidance/ng115Test [Accessed: July 30, 2022].; Bourbeau J., Bhutani M., Hernandez P. et al. Canadian Thoracic Society Clinical practice guideline on pharmacotherapy in patients with COPD – 2019 update of evidence. Can. J. Respir. Crit. Care. Sleep Med. 2019; 3 (4): 210–232. DOI:10.1080/24745332.2019.1668652.; Chalmers J.D., Laska I.F., Franssen .FM.E. et al. Withdrawal of inhaled corticosteroids in COPD: a European Respiratory Society guideline. Eur. Respir. J. 2020; 55 (6): 2000351. DOI:10.1183/13993003.00351-2020.; https://journal.pulmonology.ru/pulm/article/view/4183Test

  3. 3
    دورية أكاديمية

    المصدر: PULMONOLOGIYA; Том 33, № 5 (2023); 587-594 ; Пульмонология; Том 33, № 5 (2023); 587-594 ; 2541-9617 ; 0869-0189

    وصف الملف: application/pdf

    العلاقة: https://journal.pulmonology.ru/pulm/article/view/4337/3560Test; https://journal.pulmonology.ru/pulm/article/downloadSuppFile/4337/2100Test; https://journal.pulmonology.ru/pulm/article/downloadSuppFile/4337/2133Test; Global Initiative for Chronic Obstructive Lung Disease. Global Strategy for the Diagnosis, Management, and Prevention of Chronic Obstructive Pulmonary Disease. 2023 Report. Available at: https://goldcopd.org/2023-gold-report-2Test/; Министерство здравоохранения Российской Федерации. Хроническая обструктивная болезнь легких: Клинические рекомендации. Доступно на: https://spulmo.ru/upload/kr/HOBL_2023_draft.pdfTest; Айсанов З.Р., Авдеев С.Н., Архипов В.В. и др. Национальные клинические рекомендации по диагностике и лечению хронической обструктивной болезни легких: алгоритм принятия клинических решений. Пульмонология. 2017; 27 (1): 13–20. DOI:10.18093/0869-0189-2017-27-1-13-20.; Aisanov Z., Avdeev S., Arkhipov V. et al. Russian guidelines for the management of COPD: algorithm of pharmacologic treatment. Int. J. Chron. Obstruct. Pulmon. Dis. 2018; 13: 183–187. DOI:10.2147/copd.s153770.; Sestini P., Renzoni E., Robinson S. et al. Short-acting beta 2 agonists for stable chronic obstructive pulmonary disease. Cochrane Database Syst. Rev. 2002; (4): CD001495. DOI:10.1002/14651858.cd001495.; Schermer T., Smeenk F., van Weel C. Referral and consultation in asthma and COPD: an exploration of pulmonologists' views. Neth. J. Med. 2003; 61 (3): 71–81. Available at: https://pubmed.ncbi.nlm.nih.gov/12765227Test/; Karner C., Cates C.J. Long-acting beta2-agonist in addition to tiotropium versus either tiotropium or long-acting beta2-agonist alone for chronic obstructive pulmonary disease. Cochrane Database Syst .Rev. 2012; 4 (4): CD008989. DOI:10.1002/14651858.cd008989.pub2.; Van der Molen T., Cazzola M. Beyond lung function in COPD management: effectiveness of LABA/LAMA combination therapy on patient-centered outcomes. Prim. Care Respir. J. 2012; 21 (1): 101–108. DOI:10.4104/pcrj.2011.00102.; Mahler D.A., Decramer M., D`Urzo A. et al. Dual bronchodilatation with QVA149 reduces patient reported dyspnea in COPD: the BLAZE study. Eur. Respir. J. 2014; 43 (6): 1599–1609. DOI:10.1183/09031936.00124013.; Singh D., Agusti A., Martinez F.J. et al. Blood eosinophils and chronic obstructive pulmonary disease: a Global Initiative for Chronic Obstructive Lung Disease Science Committee 2022 review. Am. J. Respir. Crit. Care Med. 2022; 206 (1): 17–24. DOI:10.1164/rccm.202201-0209pp.; Calzetta L., Ritondo B.L., de Marco P. et al. Evaluating triple ICS/LABA/LAMA therapies for COPD patients: a network meta-analysis of ETHOS, KRONOS, IMPACT, and TRILOGY studies. Expert Rev. Respir. Med. 2021; 15 (1): 143–152. DOI:10.1080/17476348.2020.1816830.; Cazzola M., Rogliani P., Laitano R. et al. Beyond dual bronchodilation – triple therapy, when and why. Int. J. Chron. Obstruct. Pulmon. Dis. 2022; 17: 165–180. DOI:10.2147/copd.s345263.; Yu A.P., Guérin A., Ponce de Leon D. et al. Therapy persistence and adherence in patients with chronic obstructive pulmonary disease: multiple versus single long-acting maintenance inhalers. J. Med. Econ. 2011; 14 (4): 486–496. DOI:10.3111/13696998.2011.594123; Lipson D.A., Barnhart F., Brealey N. et al. Once-daily single-inhaler triple versus dual therapy in patients with COPD. N. Engl. J. Med. 2018; 378 (18): 1671–1680. DOI:10.1056/nejmoa1713901.; Ferguson G.T., Rabe K.F., Martinez F.J. et al. Triple therapy with budesonide/glycopyrrolate/formoterol fumarate with co-suspension delivery technology versus dual therapies in chronic obstructive pulmonary disease (KRONOS): a double-blind, parallel-group, multicentre, phase 3 randomised controlled trial. Lancet Resp. Med. 2018; 6 (10): 747–758. DOI:10.1016/s2213-2600(18)30327-8.; Papi A., Vestbo J., Fabbri L. et al. Extrafine inhaled triple therapy versus dual bronchodilator therapy in chronic obstructive pulmonary disease (TRIBUTE): a double-blind, parallel group, randomised controlled trial. Lancet. 2018; 391 (10125): 1076–1084. DOI:10.1016/s0140-6736(18)30206-x.; Singh D., Papi A., Corradi M. et al. Single inhaler triple therapy versus inhaled corticosteroid plus long-acting β2-agonist therapy for chronic obstructive pulmonary disease (TRILOGY): a double-blind, parallel group, randomised controlled trial. Lancet. 2016; 388 (10048): 963–973. DOI:10.1016/s0140-6736(16)31354-x.; Chong J., Poole P., Leung B., Black P.N. Phosphodiesterase 4 inhibitors for chronic obstructive pulmonary disease. Cochrane Database Syst. Rev. 2011; (5): CD002309. DOI:10.1002/14651858.cd002309.pub3.; Donath E., Chaudhry A., Hernandez-Aya L.F., Lit L. A meta-analysis on the prophylactic use of macrolide antibiotics for the prevention of disease exacerbations in patients with Chronic Obstructive Pulmonary Disease. Respir. Med. 2013; 107 (9): 1385–1392. DOI:10.1016/j.rmed.2013.05.004.; Albert R.K., Connett J., Bailey W.C. et al. Azithromycin for prevention of exacerbations of COPD. N. Engl. J. Med. 2011; 365 (8): 689–698. DOI:10.1056/nejmoa1104623.; Cazzola M., Calzetta L., Page C. et al. Influence of N-acetylcysteine on chronic bronchitis or COPD exacerbations: a meta-analysis. Eur. Respir. Rev. 2015; 24 (137): 451–461. DOI:10.1183/16000617.00002215.; Poole P., Black P.N., Cates C.J. Mucolytic agents for chronic bronchitis or chronic obstructive pulmonary disease. Cochrane Database Syst. Rev. 2012; (8): CD001287. DOI:10.1002/14651858.cd001287.pub4.; Zeng Z., Yang D., Huang X., Xiao Z. Effect of carbocisteine on patients with COPD: a systematic review and meta-analysis. Int. J. Chron. Obstruct. Pulmon. Dis. 2017; 12: 2277–2283. DOI:10.2147/COPD.S140603.; Dal Negro R., Wedzicha J., Iversen M. et al. Effect of erdosteine on the rate and duration of COPD exacerbations: the RESTORE study. Eur. Respir. J. 2017; 50 (4): 1700711. DOI:10.1183/13993003.00711-2017; White P., Thorntoh H., Pinnock H. et al. Overtreatment of COPD with inhaled corticosteroids – implications for safety and costs: cross-sectional observational study. PLoS One. 2013; 8 (10): e75221. DOI:10.1371/journal.pone.0075221.; Rossi A., Guerriero M., Corrado A. OPTIMO/AIPO Study Group. Withdrawal of inhaled corticosteroids can be safe in COPD patients at low risk of exacerbation: a real-life study on the appropriateness of treatment in moderate COPD patients (OPTIMO). Respir. Res. 2014; 15 (1): 77. DOI:10.1186/1465-9921-15-77.; Magnussen H., Disse B., Rodriguez-Roisin R. et al. Withdrawal of inhaled glucocorticoids and exacerbations of COPD. N. Engl. J. Med. 2014; 371 (14): 1285–1294. DOI:10.1056/nejmoa1407154.; Chapman K.R., Hurst J.R., Frent S.M. et al. Long-term triple therapy De-escalation to Indacaterol/Glycopyrronium in COPD Patients (SUNSET): a randomized, double-blind, triple-dummy clinical trial. Am. J. Respir. Crit. Care Med. 2018; 198 (3): 329–339. DOI:10.1164/rccm.201803-0405oc.; Stoller J.K., Panos R.J., Krachman S. et al. Oxygen therapy for patients with COPD: current evidence and the long-term oxygen treatment trial. Chest. 2010; 138 (1): 179–187. DOI:10.1378/chest.09-2555.; Sculley J.A., Corbridge S.J., Prieto-Centurion V. et al. Home oxygen therapy for patients with COPD: time for a reboot. Respir. Care. 2019; 64 (12): 1574–1585. DOI:10.4187/respcare.07135.; Ergan B., Nava S. Long-term oxygen therapy in COPD patients who do not meet the actual recommendations. COPD. 2017; 14 (3): 351–366. DOI:10.1080/15412555.2017.1319918.; Jacobs S.S., Krishnan J.A., Lederer D.J. et al. Home oxygen therapy for adults with chronic lung disease: an official American Thoracic Society clinical practice guideline. Am. J. Respir. Crit. Care Med. 2020; 202 (10): e121–141. DOI:10.1164/rccm.202009-3608st.; Чучалин А.Г., Авдеев С.Н., Айсанов З.Р. и др. Хроническая обструктивная болезнь легких: федеральные клинические рекомендации по диагностике и лечению. Пульмонология. 2022; 32 (3): 356–392. DOI:10.18093/0869-0189-2022-32-3-356-392.; Авдеев С.Н. Неинвазивная вентиляция легких у пациентов с хронической обструктивной болезнью легких в стационаре и домашних условиях. Пульмонология. 2017; 27 (2): 232–249. DOI:10.18093/0869-0189-2017-27-2-232-249.; Nagata K., Horie T., Chohnabayashi N. et al. Home high-flow nasal cannula oxygen therapy for stable hypercapnic COPD: a randomized clinical trial. Am. J. Respir. Crit. Care Med. 2022; 206 (11): 1326–1335. DOI:10.1164/rccm.202201-0199OC.; https://journal.pulmonology.ru/pulm/article/view/4337Test

  4. 4
    دورية أكاديمية

    المساهمون: The article was published with the support of AstraZeneca Pharmaceuticals LLC. AstraZeneca provided funding for the scientific research, but not the drug products. The representatives of the sponsor did not participate in the writing of this article and are not responsible for the content of the article and any possible financial or other agreements with any third parties related to this article. The opinion of the sponsor’s representatives may differ from the opinion of the authors of the article and the editorial board, Статья опубликована при поддержке компании ОOO «АстраЗенека Фармасьютикалз». Финансирование исследования осуществлялось компанией ОOO «АстраЗенека Фармасьютикалз» без предоставления препарата. Представители компании не принимали участия в подготовке статьи, не несут ответственности за содержание статьи и любые возможные договоренности, относящиеся к данной статье, либо финансовые соглашения с любыми третьими лицами. Мнение представителей компании может отличаться от мнения авторов статьи и редакции

    المصدر: PULMONOLOGIYA; Том 33, № 3 (2023); 374-385 ; Пульмонология; Том 33, № 3 (2023); 374-385 ; 2541-9617 ; 0869-0189

    وصف الملف: application/pdf

    العلاقة: https://journal.pulmonology.ru/pulm/article/view/4302/3531Test; Global Initiative for Asthma. 2022 GINA main report. 2022 GINA Report, Global Strategy for Asthma Management and Prevention. Available at: https://ginasthma.org/gina-reportsTest/ [Accessed: April 10, 2023].; Chuchalin A.G., Khaltaev N., Antonov N.S. et al. Chronic respiratory diseases and risk factors in 12 regions of the Russian Federation. Int. J. Chron. Obstruct. Pulmon. Dis. 2014; 9: 963–974. DOI:10.2147/COPD.S67283.; Price D., Wilson A.M., Chisholm A. et al. Predicting frequent asthma exacerbations using blood eosinophil count and other patient data routinely available in clinical practice. J. Asthma Allergy. 2016; 9: 1–12. DOI:10.2147/JAA.S97973.; Hillas G., Fouka E., Papaioannou A.I. Antibodies targeting the interleukin-5 signaling pathway used as add-on therapy for patients with severe eosinophilic asthma: a review of the mechanism of action, efficacy, and safety of the subcutaneously administered agents, mepolizumab and benralizumab. Expert Rev. Respir. Med. 2020; 14 (4): 353–365. DOI:10.1080/17476348.2020.1718495.; Hekking P.P.W., Wener R.R., Amelink M. et al. The prevalence of severe refractory asthma. J. Allergy Clin. Immunol. 2015; 135 (4): 896–902. DOI:10.1016/j.jaci.2014.08.042.; Menzies-Gow A., Hoyte F.L., Price D.B. et al. Clinical remission in severe asthma: a pooled post hoc analysis of the patient journey with benralizumab. Adv. Ther. 2022; 39 (5): 2065–2084. DOI:10.1007/s12325-022-02098-1.; Menzies-Gow A., Bafadhel M., Busse W.W. et al. An expert consensus framework for asthma remission as a treatment goal. J. Allergy Clin. Immunol. 2020; 145 (3): 757–765. DOI:10.1016/j.jaci.2019.12.006.; Сергеенко Д.Ф. Таргетная терапия бронхиальной астмы: удар точно в цель. Практическая пульмонология. 2022; (2): 11–15. DOI:10.24412/2409-6636-2022-12938.; Зырянов С.К., Бутранова О.И. Генно-инженерно-биологические препараты в терапии бронхиальной астмы: современные достижения. Пульмонология. 2018; 28 (5): 584–601. DOI:10.18093/0869-0189-2018-28-5-584-601.; Ненашева Н.М., Курбачева О.М., Авдеев С.Н. и др. Практические рекомендации по выбору иммунобиологического препарата для лечения тяжелой бронхиальной астмы Т2-эндотипа. Пульмонология. 2020; 30 (2): 227–244. DOI:10.18093/0869-0189-2020-30-2-227-244.; Титова О.Н., Кузубова Н.А., Склярова Д.Б., Петрова М.А. Эффективность бенрализумаба при лечении эозинофильного фенотипа тяжелой бронхиальной астмы в условиях реальной клинической практики. Пульмонология. 2021; 31 (5): 628–634. DOI:10.18093/0869-0189-2021-31-5-628-634.; Bakakos A., Rovina N., Bakakos P. Treatment challenges in severe eosinophilic asthma: differential response to Anti-IL-5 and AntiIL-5R therapy. Int. J. Mol. Sci. 2021; 22 (8): 3969. DOI:10.3390/ijms22083969.; Tan L.D., Bratt J.M., Godor D. et al. Benralizumab: a unique IL-5 inhibitor for severe asthma. J. Asthma Allergy. 2016; 9: 71–81. DOI:10.2147/JAA.S78049.; Bleecker E.R., FitzGerald J.M., Chanez P. et al. Efficacy and safety of benralizumab for patients with severe asthma uncontrolled with high-dosage inhaled corticosteroids and long-acting β2-agonists (SIROCCO): a randomised, multicentre, placebo-controlled phase 3 trial. Lancet. 2016; 388 (10056): 2115–2127. DOI:10.1016/S0140-6736(16)31324-1.; FitzGerald J.M., Bleecker E.R., Nair P. et al. Benralizumab, an anti-interleukin-5 receptor α monoclonal antibody, as add-on treatment for patients with severe, uncontrolled, eosinophilic asthma (CALIMA): a randomised, double-blind, placebo-controlled phase 3 trial. Lancet. 2016; 388 (10056): 2128–2141. DOI:10.1016/S0140-6736(16)31322-8.; Jones P.W., Quirk F.H., Baveystock C.M., Littlejohns P. A self-complete measure of health status for chronic airflow limitation. The St. George’s Respiratory Questionnaire. Am. Rev. Respir. Dis. 1992; 145 (6): 1321–1327. DOI:10.1164/ajrccm/145.6.1321.; Byrom B., Breedon P., Tulkki-Wilke R., Platko J. Meaningful change: Defining the interpretability of changes in endpoints derived from interactive and mHealth technologies in healthcare and clinical research. J. Rehabil. Assist. Technol. Eng. 2020; 7: 2055668319892778. DOI:10.1177/2055668319892778.; Kavanagh J.E., Hearn A.P., Dhariwal J. et al. Real-world effectiveness of Benralizumab in severe eosinophilic asthma. Chest. 2021; 159 (2): 496–506. DOI:10.1016/j.chest.2020.08.2083.; Padilla-Galo A., Levy-Abitbol R., Olveira C. et al. Real-life experience with benralizumab during 6 months. BMC Pulm. Med. 2020; 20 (1): 184. DOI:10.1186/s12890-020-01220-9.; Jackson D.J., Burhan H., Menzies-Gow A. et al. Benralizumab effectiveness in severe asthma is independent of previous biologic use. J. Allergy Clin. Immunol. Pract. 2022; 10 (6): 1534–1544.e4. DOI:10.1016/j.jaip.2022.02.014.; Середа В.П., Свиридо Д.А., Комаров М.В. и др. Опыт применения бенрализумаба в лечении пациентов с тяжелой бронхиальной астмой в клинической практике пульмонологов г. Санкт-Петербурга. Пульмонология. 2022; 32 (5): 670–677. DOI:10.18093/0869-0189-2022-32-5-670-677.; Авдеев С.Н., Емельянов А.В., Курбачева О.М. и др. Новая форма доставки препарата бенрализумаб (автоинжектор в виде шприц-ручки) в клинической практике врача при терапии эозинофильной тяжелой бронхиальной астмы: заключение Совета экспертов. Пульмонология. 2021; 31 (6): 776–781. DOI:10.18093/0869-0189-2021-31-6-776-781.; https://journal.pulmonology.ru/pulm/article/view/4302Test

  5. 5
    دورية أكاديمية

    المساهمون: The authors are grateful to the Administration and the staff of the functional and radiology departments of the Ural Federal Research Institute of Phthisiology and Pulmonology - A Branch of National Medical Research Center for Phthisiology, Pulmonology and Infectious Diseases under the Ministry of Healthcare of Russia for assistance and support in conducting this scientific study. Finally, we are very grateful to patients who had suffered from the pandemic and yet were willing to help in our study., Авторы выражают благодарность администрации и сотрудникам отделения функциональной и лучевой диагностики Уральского научно-исследовательского института фтизиопульмонологии - филиала Федерального государственного бюджетного учреждения «Национальный медицинский исследовательский центр фтизиопульмонологии и инфекционных заболеваний» Министерства здравоохранения Российской Федерации за содействие, помощь и поддержу в проведении данного научного исследования.

    المصدر: PULMONOLOGIYA; Том 32, № 6 (2022); 795-805 ; Пульмонология; Том 32, № 6 (2022); 795-805 ; 2541-9617 ; 0869-0189

    وصف الملف: application/pdf

    العلاقة: https://journal.pulmonology.ru/pulm/article/view/4081/3471Test; https://journal.pulmonology.ru/pulm/article/downloadSuppFile/4081/1408Test; World Health Organization. Coronavirus disease (COVID-19) pandemic/Situation dashboard. 2021. Доступно на: https://covid19.who.intTest/; Huang C., Huang L., Wang Y. et al. 6-month consequences of COVID-19 in patients discharged from hospital: a cohort study. Lancet. 2021; 397 (10270): 220-232. DOI:10.1016/S0140-6736(20)32656-8.; National institute for health and care excellence. COVID-19 rapid guideline: managing the long-term effects of COVID-19. London: NICE; 2020. Available at: www.nice.org.uk/guidance/ng188; Савушкина О.И., Черняк А.В., Крюков Е.В. и др. Динамика функционального состояния системы дыхания через 4 месяца после перенесенного COVID-19. Пульмонология. 2021; 31 (5): 580-586. DOI:10.18093/0869-0189-2021-31-5-580-587.; Montani D., Savale L., Noel N. et al. Post-acute COVID-19 syndrome. Eur. Respir. Rev. 2022; 31 (163): 210185. DOI:10.1183/16000617.0185-2021.; Zhao Y.M., Shang Y.M., Song W.B. et al. Follow-up study of the pulmonary function and related physiological characteristics of COVID-19 survivors three months after recovery. EClinicalMedicine. 2020; 25: 100463. DOI:10.1016/j.eclinm.2020.100463.; De Lorenzo R., Conte C., Lanzani C. et al. Residual clinical damage after COVID-19: a retrospective and prospective observational cohort study. PLoS. One. 2020; 15 (10): e0239570. DOI:10.1371/journal.pone.0239570.; Bellan M., Soddu D., Balbo P.E. et al. Respiratory and psychophysical sequelae among patients with COVID-19 four months after hospital discharge. JAMA Netw. Open. 2021; 4 (1): e2036142. DOI:10.1001/jamanetworkopen.2020.36142.; The writing committee for the COMEBAC study group, Morin L., Savale L. Four-month clinical status of a cohort of patients after hospitalization for COVID-19. JAMA. 2021; 325 (15): 1525-1534. DOI:10.1001/jama.2021.3331.; Ghosn J., Piroth L., Epaulard O. et al. Persistent COVID-19 symptoms are highly prevalent 6 months after hospitalization: results from a large prospective cohort. Clin. Microbiol. Infect. 2021; 27 (7): 1041. e1-1041.e4. DOI:10.1016/j.cmi.2021.03.012.; Wu X., Liu X., Zhou Y. et al. 3-month, 6-month, 9-month, and 12-month respiratory outcomes in patients following COVID-19-re-lated hospitalisation: a prospective study. Lancet Respir. Med. 2021; 9 (7): 747-754. DOI:10.1016/S2213-2600(21)00174-0.; Mo X., Jian W., Su Z. et al. Abnormal pulmonary function in COVID-19 patients at time of hospital discharge. Eur. Respir. J. 2020; 55 (6): 2001217. DOI:10.1183/13993003.01217-2020.; Hama Amin B.J., Kakamad F.H., Ahmed G.S. et al. Post COVID-19 pulmonary fibrosis; a meta-analysis study. Ann. Med. Surg. (Lond.). 2022; 77: 103590. DOI:10.1016/j.amsu.2022.103590.; Mahler D.A., Wells C.K. Evaluation of clinical methods for rating dyspnea. Chest. 1988; 93 (3): 580-586. DOI:10.1378/chest.93.3.580.; Johnson M.J., Close L., Gillon S.C. et al. Use of the modified Borg scale and numerical rating scale to measure chronic breathlessness: a pooled data analysis. Eur. Respir. J. 2016; 47 (6): 1861-1864. DOI:10.1183/13993003.02089-2015.; Omelyanovskiy V., Musina N., Ratushnyak S. et al. Valuation of the EQ-5D-3L in Russia. Qual. Life Res. 2021; 30 (7): 1997-2007. DOI:10.1007/s11136-021-02804-6.; ATS committee on proficiency standards for clinical pulmonary function laboratories. ATS statement: guidelines for the six-minute walk test. Am. J. Respir. Crit. Care Med. 2002; 166 (1): 111-117. DOI:10.1164/ajrccm.166.1.at1102.; Holland A.E., Spruit M.A., Troosters T. et al. An official European Respiratory Society/American Thoracic Society technical standard: field walking tests in chronic respiratory disease. Eur. Respir. J. 2014; 44 (6): 1428-1446. DOI:10.1183/09031936.00150314.; Чучалин А.Г., Айсанов З.Р., Чикина С.Ю. и др. Федеральные клинические рекомендации Российского респираторного общества по использованию метода спирометрии. Пульмонология. 2014; (6): 11-24. DOI:10.18093/0869-0189-2014-0-6-11-24.; Graham B.L., Steenbruggen I., Miller M.R. et al. Standardization of spirometry 2019 update. An official American Thoracic Society and European Respiratory Society technical statement. Am. J. Respir. Crit. Care Med. 2019; 200 (8): e70-88. DOI:10.1164/rccm.201908-1590ST.; Российское респираторное общество. Рекомендации Российского респираторного общества по проведению функциональных исследований системы дыхания в период пандемии COVID-19. Версия 1.1. (19.05.2020). Доступно на: https://spulmo.ru/upload/rekomendacii_rro_fvd_COVID_19_rev1_1_01062020.pdfTest; Inui S., Fujikawa A., Jitsu M. et al. Chest CT findings in cases from the cruise ship Diamond Princess with coronavirus disease (COVID-19). Radiol. Cardiothorac. Imaging. 2020; 2 (2): e200110. DOI:10.1148/ryct.2020200110.; Морозов С. П., Проценко Д. Н., Сметанина С. И. и др., ред. Лучевая диагностика коронавирусной болезни (COVID-19): организация, методология, интерпретация результатов: препринт № ЦДТ-2020-I. М.: Департамент здравоохранения города Москвы; 2020. Доступно на: https://niioz.ru/upload/iblock/19e/19e3ed390740eaa8ffe5f853f3d7e032.pdfTest; Министерство здравоохранения Российской Федерации. Временные методические рекомендации: Профилактика, диагностика и лечение новой коронавирусной инфекции (COVID-19). Версия 15 (22.02.2022). Доступно на: https://static-0.minzdrav.gov.ru/system/attachments/attaches/000/059/392/originalTest/ВМР_COVID-19_V15.pdf; Pierce J.D., Shen Q., Cintron S.A. et al. Post-COVID-19 Syndrome. Nurs. Res. 2022; 71 (2): 164-174. DOI:10.1097/NNR.0000000000000565.; Ceban F., Ling S., Lui L.M.W. et al. Fatigue and cognitive impairment in Post-COVID-19 syndrome: a systematic review and me-ta-analysis. Brain Behav. Immun. 2022; 101: 93-135. DOI:10.1016/j.bbi.2021.12.020.; Soares M.N. Eggelbusch M., Naddaf E. et al. Skeletal muscle alterations in patients with acute COVID-19 and post-acute sequelae of COVID-19. J. Cachexia Sarcopenia Muscle. 2022; 13 (1): 11-22. DOI:10.1002/jcsm.12896.; Alkodaymi M.S., Omrani O.A., Fawzy N.A. et al. Prevalence of postacute COVID-19 syndrome symptoms at different follow-up periods: a systematic review and meta-analysis. Clin. Microbiol. Infect. 2022; 28 (5): 657-666. DOI:10.1016/j.cmi.2022.01.014.; Poudel A.N., Zhu S., Cooper N. et al. Impact of COVID-19 on health-related quality of life of patients: a structured review. PLoS. One. 2021; 16 (10): e0259164. DOI:10.1371/journal.pone.0259164.; Huang L., Yao Q., Gu X. et al. 1-year outcomes in hospital survivors with COVID-19: a longitudinal cohort study. Lancet. 2021; 398 (10302): 747-758. DOI:10.1016/S0140-6736(21)01755-4.; Gonzalez J., Benitez I.D., Carmona P. et al. Pulmonary function and radiologic features in survivors of critical COVID-19: a 3-month prospective cohort. Chest. 2021; 160 (1): 187-198. DOI:10.1016/j.chest.2021.02.062.; Safont B., Tarraso J., Rodriguez-Borja E. et al. Lung function, radiological findings and biomarkers of fibrogenesis in a Cohort of COVID-19 patients six months after hospital discharge. Arch. Bronconeumol. 2022; 58 (2): 142-149. DOI:10.1016/j.arbres.2021.08.014.; Лещенко И.В., Глушкова Т.В. О функциональных нарушениях и развитии фиброза легких у больных, перенесших новую коронавирусную инфекцию. Пульмонология. 2021; 31 (5): 653-662. DOI:10.18093/0869-0189-2021-31-5-653-662.; Aul D.R., Gates D.J., Draper D.A. et al. Complications after discharge with COVID-19 infection and risk factors associated with development of post-COVID pulmonary fibrosis. Respir. Med. 2021; 188: 106602. DOI:10.1016/j.rmed.2021.106602.; Fortini A., Rosso A., Cecchini P. et al. One-year evolution of DLCO changes and respiratory symptoms in patients with post COVID-19 respiratory syndrome. Infection. 2022; 50 (2): 513-517. DOI:10.1007/s15010-022-01755-5.; Laveneziana P., Ses£ L., Gille T. Pathophysiology of pulmonary function anomalies in COVID-19 survivors. Breathe (Sheff.). 2021; 17 (3): 210065. DOI:10.1183/20734735.0065-2021.; Wu C., Chen X., Cai Y. et al. Risk factors associated with acute respiratory distress syndrome and death in patients with coronavirus disease 2019 pneumonia in Wuhan, China. JAMA Intern. Med. 2020; 180 (7): 934-943. DOI:10.1001/jamainternmed.2020.0994.; Michalski J.E., Kurche J.S., Schwartz D.A. From ARDS to pulmonary fibrosis: the next phase of the COVID-19 pandemic? Transl. Res. 2022; 241: 13-24. DOI:10.1016/j.trsl.2021.09.001.; Hanidziar D., Robson S.C. Hyperoxia and modulation of pulmonary vascular and immune responses in COVID-19. Am. J. Physiol. Lung Cell. Mol. Physiol. 2021; 320 (1): L12-16. DOI:10.1152/ajplung.00304.2020.; Ngai J.C., Ko F.W., Ng S.S. et al. The long-term impact of severe acute respiratory syndrome on pulmonary function, exercise capacity and health status. Respirology. 2010; 15 (3): 543-550. DOI:10.1111/j.1440-1843.2010.01720.x.; https://journal.pulmonology.ru/pulm/article/view/4081Test

  6. 6
    دورية أكاديمية

    المساهمون: The authors express their gratitude to the administration and staff of the pulmonological service of the “Novaya bol’nitsa” Clinical Association Limited Liability Companies for their assistance, aid and support in conducting this scientific study., Авторы выражают благодарность администрации и сотрудникам пульмонологической службы Общества с ограниченной ответственностью «Медицинское объединение “Новая больница”» за содействие, помощь и поддержу в проведении данного научного исследования.

    المصدر: PULMONOLOGIYA; Том 32, № 4 (2022); 539-547 ; Пульмонология; Том 32, № 4 (2022); 539-547 ; 2541-9617 ; 0869-0189

    وصف الملف: application/pdf

    العلاقة: https://journal.pulmonology.ru/pulm/article/view/4132/3426Test; Woodruff P., Bhakta N., Fahy J. Asthma: Pathogenesis and phentoypes. In: Broaddus V.C., Robert J., Ernst J.D. Murray and Nadel's Textbook of Respiratory Medicine. 6th Edn. Elsevier; 2016: 713–730. e7. DOI:10.1016/B978-1-4557-3383-5.00041-5.; Atmar R.L., Guy E., Guntupalli K.K. et al. Respiratory tract viral infections in inner-city asthmatic adults. Arch. Intern. Med. 1998; 158 (22): 2453–2459. DOI:10.1001/archinte.158.22.2453.; Cheung D.S., Ehlenbach S.J., Kitchens R.T. et al. Cutting edge: CD49d+ neutrophils induce FcepsilonRI expression on lung dendritic cells in a mouse model of postviral asthma. J. Immunol. 2010; 185 (9): 4983–4987. DOI:10.4049/jimmunol.1002456.; Stephens R., Randolph D.A., Huang G. et al. Antigen-nonspecific recruitment of Th2 cells to the lung as a mechanism for viral infection-induced allergic asthma. J. Immunol. 2002; 169 (10): 5458–5467. DOI:10.4049/jimmunol.169.10.5458.; Cheung D.S., Ehlenbach S.J., Kitchens T. et al. Development of atopy by severe paramyxoviral infection in a mouse model. Ann. Allergy Asthma. Immunol. 2010; 105 (6): 437–443.e1. DOI:10.1016/j.anai.2010.09.010.; Johnston N.W., Johnston S.L., Duncan J.M. et al. The September epidemic of asthma exacerbations in children: a search for etiology. J. Allergy Clin. Immunol. 2005; 115 (1): 132–138. DOI:10.1016/j.jaci.2004.09.025.; Global Initiative for Asthma. Global Strategy for Asthma Management and Prevention. Updated 2021. Available at: https://ginasthma.org/wp-content/uploads/2021/05/GINA-Main-Report-2021-V2-WMS.pdfTest; Bui R.H., Molinaro G.A., Kettering J.D. et al. Virus-specific IgE and IgG4 antibodies in serum of children infected with respiratory syncytial virus. J. Pediatr. 1987; 110 (1): 87–90. DOI:10.1016/s0022-3476(87)80295-0.; Oliver B.G., Robinson P., Peters M., Black J. Viral infections and asthma: an inflammatory interface? Eur. Respir. J. 2014; 44 (6): 1666–1681. DOI:10.1183/09031936.00047714.; Richardson S, Hirsch J.S., Narasimhan M. et al. Presenting characteristics, comorbidities, and outcomes among 5700 patients hospitalized with COVID-19 in the New York City Area. JAMA. 2020; 323 (20): 2052–2059. DOI:10.1001/jama.2020.6775.; Venkatesan P. NICE guideline on long COVID. Lancet Respir. Med. 2021; 9 (2): 129. DOI:10.1016/S2213-2600(21)00031-X.; Министерство здравоохранения РФ. Бронхиальная астма: Клинические рекомендации. 2021. Доступно на: https://cr.minzdrav.gov.ru/schema/359_2Test/; Teichtahl H., Buckmaster N., Pertnikovs E. The incidence of respiratory tract infection in adults requiring hospitalization for asthma. Chest 1997; 112 (3): 591–596. DOI:10.1378/chest.112.3.591.; Kusel M.M., de Klerk N.H., Kebadze T. et al. Early-life respiratory viral infections, atopic sensitization, and risk of subsequent development of persistent asthma. J. Allergy Clin. Immunol. 2007; 119 (5): 1105–1110. DOI:10.1016/j.jaci.2006.12.669.; Martorano L.M., Grayson M.H. Respiratory viral infections and atopic development: From possible mechanisms to advances in treatment. Eur. J. Immunol. 2018; 48 (3): 407–414. DOI:10.1002/eji.201747052.; Chuchalin A.G., Khaltaev N., Antonov N.S. et al. Chronic respiratory diseases and risk factors in 12 regions of the Russian Federation. Int. J. Chron. Obstruct. Pulmon. Dis. 2014; 9: 963–974. DOI:10.2147/COPD.S67283.; Nicholson K.G., Kent J., Ireland D.C. Respiratory viruses and exacerbations of asthma in adults. BMJ. 1993; 307 (6910): 982–986. DOI:10.1136/bmj.307.6910.982.; Karakioulaki M., Papakonstantinou E., Goulas A., Stolz D. The role of atopy in COPD and asthma. Front. Med. 2021; 8: 674742. DOI:10.3389/fmed.2021.674742.; Архипов В.В., Григорьева Е.В., Гавришина Е.В. Контроль над бронхиальной астмой в России: результаты многоцентрового наблюдательного исследования НИКА. Пульмонология. 2011; (6): 87–93. DOI:10.18093/0869-0189-2011-0-6-87-93; Hakim A., Usmani O.S. Structure of the lower respiratory tract. In: Reference Module in Biomedical Sciences. Elsevier; 2014. DOI:10.1016/B978-0-12-801238-3.00215-4.; Cramer J.A., Roy A., Burrell A. et al. Medication compliance and persistence: terminology and definitions. Value Health, 2008; 11 (1): 44–47. DOI:10.1111/j.1524-4733.2007.00213.; Bisgaard, H., O’Callaghan, C., Smaldone, G.C. Drug Delivery to the Lung. 1st Edn. CRC Press; 1999. DOI:10.1201/b14022.; https://journal.pulmonology.ru/pulm/article/view/4132Test

  7. 7
    دورية أكاديمية

    المصدر: PULMONOLOGIYA; Том 32, № 3 (2022): Спецвыпуск; 356-392 ; Пульмонология; Том 32, № 3 (2022): Спецвыпуск; 356-392 ; 2541-9617 ; 0869-0189

    وصف الملف: application/pdf

    العلاقة: https://journal.pulmonology.ru/pulm/article/view/4108/3414Test; Global Initiative for Chronic Obstructive Lung Disease. Global Strategy for the Diagnosis, Management, and Prevention of Chronic Obstructive Pulmonary Disease. 2020 Report. Available at: https://goldcopd.org/wp-content/uploads/2019/12/GOLD-2020-FINAL-ver1.2-03Dec19_WMV.pdfTest; Eisner M.D., Anthonisen N., Coultas D. et al. An official American Thoracic Society public policy statement: novel risk factors and the global burden of chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care Med. 2010; 182 (5): 693–718. DOI:10.1164/rccm.200811-1757ST.; Lamprecht B., McBurnie M.A., Vollmer W.M. et al. BOLD Collaborative Research Group: COPD in never smokers: results form the population-based burden of obstructive lung disease study. Chest. 2011; 139 (4): 752–763. DOI:10.1378/chest.10-1253.; Mehta A.J., Miedinger D., Keidel D. et al. The SAPALDIA Team. Occupational exposure to dusts, gases, and fumes and incidence of chronic obstructive pulmonary disease in the Swiss Cohort Study on Air Pollution and Lung and Heart Diseases in Adults. Am. J. Respir. Crit. Care Med. 2012; 185 (12): 1292–1300. DOI:10.1164/rccm.201110-1917OC.; Silva G.E., Sherrill D.L., Guerra S. et al. Asthma as a risk factor for COPD in a longitudinal study. Chest. 2004; 126 (1): 59–65. DOI:10.1378/chest.126.1.59.; Brutsche M.H., Downs S.H., Schindler C. et al. Bronchial hyperresponsiveness and the development of asthma and COPD in asymptomatic individuals: SAPALDIA cohort study. Thorax. 2006; 61 (8): 671–677. DOI:10.1136/thx.2005.052241.; de Marco R., Accordini S., Marcon A. et al. Risk factors for chronic obstructive pulmonary disease in a European cohort of young adults. Am. J. Respir. Crit. Care Med. 2011; 183 (7): 891–897. DOI:10.1164/rccm.201007-1125OC.; de Marco R., Accordini S., Cerveri I. et al. Incidence of chronic obstructive pulmonary disease in a cohort of young adults according to the presence of chronic cough and phlegm. Am. J. Respir. Crit. Care Med. 2007; 175 (1): 32–39. DOI:10.1164/rccm.200603-381OC.; Bridevaux P.O., Gerbase M.W., Probst-Hensch N.M. et al. Longterm decline in lung function, utilisation of care and quality of life in modified GOLD stage 1 COPD. Thorax. 2008; 63 (9): 768–774. DOI:10.1136/thx.2007.093724.; Stoller J.K. Clinical features and natural history of severe alpha-1-antitrypsin deficiency. Chest. 1997; 111 (6, Suppl.): 123–128S. DOI:10.1378/chest.111.6_supplement.123s.; Stoller J.K., Aboussouan L.S. A review of alpha-1-antitrypsin deficiency. Am. J. Respir. Crit. Care Med. 2012; 185 (3): 246–259. DOI:10.1164/rccm.201108-1428CI.; Smolonska J., Wijmenga C., Postma D.S., Boezen H.M. Meta-analyses on suspected chronic obstructive pulmonary disease genes: a summary of 20 years’ research. Am. J. Respir. Crit. Care Med. 2009; 180 (7): 618–631. DOI:10.1164/rccm.200905-0722OC.; Chuchalin A.G., Khaltaev N., Antonov N.S. et al. Chronic respiratory diseases and risk factors in 12 regions of the Russian Federation. Int. J. COPD. 2014; 9: 963–974. DOI:10.2147/COPD.S67283.; World Health Organization. Evidence-informed policy-making. 2016. Available at: http://www.who.int/evidenceTest; Global Initiative for Chronic Obstructive Lung Disease. Global Strategy for the Diagnosis, Management, and Prevention of Chronic Obstructive Pulmonary Disease. Revised 2011. Available at: www. goldcopd.com; Celli B., MacNee W., ATS/ERS Task Force. Standards for the diagnosis and treatment of patients with COPD: a summary of the ATS/ ERS position paper. Eur. Respir. J. 2004; 23 (6): 932–946. DOI:10.1183/09031936.04.00014304.; Bestall J.C., Paul E.A., Garrod R. et al. Usefulness of the Medical Research Council (MRC) dyspnoea scale as a measure of disability in patients with chronic obstructive pulmonary disease. Thorax. 1999; 54 (7): 581–586. DOI:10.1136/thx.54.7.581.; Jones P.W., Harding G., Berry P. et al. Development and first validation of the COPD Assessment Test. Eur. Respir. J. 2009; 34 (3): 648–654. DOI:10.1183/09031936.00102509.; Hurst J.R., Vestbo J., Anzueto A. et al. Susceptibility to exacerbation in chronic obstructive pulmonary disease. N. Engl. J. Med. 2010; 363 (12): 1128–1138. DOI:10.1056/NEJMoa0909883.; Barnes P.J., Celli B.R. Systemic manifestations and comorbidities of COPD. Eur. Respir. J. 2009; 33 (5): 1165–1185. DOI:10.1183/09031936.00128008.; Hill K., Goldstein R.S., Guyatt G.H. et al. Prevalence and underdiagnosis of chronic obstructive pulmonary diseaseamong patients at risk im primary care. CMAJ. 2010; 182 (7): 673–678. DOI:10.1503/cmaj.091784.; Güder G., Brenner S., Angermann C.E. et al. “GOLD or lower limit of normal definition? A comparison with expert-based diagnosis of chronic obstructive pulmonary disease in a prospective cohort-study”. Respir. Res. 2012; 13 (1): 13. DOI:10.1186/1465-9921-13-13.; Bhatt S.P., Balte P.P., Schwartz J.E. et al. Discriminative accuracy of FEV1: FVC thresholds for COPD-related hospitalization and mortality. JAMA. 25; 321 (24): 2438–2447. DOI:10.1001/jama.2019.7233.; Tashkin D.P., Celli B., Decramer M. et al. Bronchodilator responsiveness in patients with COPD. Eur Respir J. 2008; 31 (4): 742–750. DOI:10.1183/09031936.00129607.; Quanjer P.H., Tammeling G.J., Cotes J.E. et al. Lung volumes and forced ventilatory flows. Eur. Respir. J. 1993; 6 (Suppl. 16): 5–40. DOI:10.1183/09041950.005s1693.; Wanger J., Clausen J.L., Coates A. et al. Standardisation of the measurement of lung volumes. Eur. Respir J. 2005; 26 (3): 511–522. DOI:10.1183/09031936.05.00035005.; Amalakanti S., Pentakota M.R. Pulse oximetry overestimates oxygen saturtion in COPD. Respir Care. 2016; 61 (4): 423–427. DOI:10.4187/respcare.04435.; Casanova C., Cote C.G., Marin J.M. et al. Test 6-min walking distance: long-term follow up in patients with COPD. Eur. Respir. J. 2007; 29 (3): 535–540. DOI:10.1183/09031936.00071506.; Oga T., Nishimura K., Tsukino M. et al. Analysis of the factors related to mortality in chronic obstructive pulmonary disease: role of exercise capacity and health status. Am. J. Respir. Crit. Care Med. 2003; 167 (4): 544–549. DOI:10.1164/rccm.200206-583OC.; Kelly A.M., McAlpine R., Kyle E. How accurate are pulse oximeters in patients with acute exacerbationsof chronic obstructive airways disease? Respir. Med. 2001; 95 (5): 336–340. DOI:10.1053/rmed.2001.1046.; Stoller J.K., Brantly M. The challenge of detecting alpha-1 antitrypsin deficiency. COPD. 2013; 10 (Suppl. 1): 24–34. DOI:10.3109/15412555.2013.763782.; Flenley D.C. Sleep in chronic obstructive lung disease. Clin. Chest Med. 1985; 4 (6): 651–661.; Буниатян М.С., Зелвеян П.А., Ощепкова Е.В. Возможности мониторной пульсоксиметрии для скрининговой диагностики синдрома апноэ/гипопноэ во сне. Терапевтический архив. 2002; 74 (11): 90–94.; Celli B., Cote C., Marin J. et al. The body mass index, airflow obstruction, dyspnea, and exercise capacity index in chronic obstructive pulmonary disease. N. Engl. J. Med. 2004; 350 (10): 1005–1012. DOI:10.1056/NEJMoa021322.; Global Initiative for Asthma. Global Strategy for Asthma Management and Prevention. Updated 2017. Available at: https://ginasthma.org/wp-content/uploads/2019/04/wmsGINA-2017-main-report-final_V2.pdfTest; Albert P., Agusti A., Edwards L. et al. Bronchodilator responsiveness as a phenotypic characteristic of established chronic obstructive pulmonary disease. Thorax. 2012; 67 (8): 701–708. DOI:10.1136/thoraxjnl-2011-201458.; Woolcock A.J. Corticosteroid-resistant asthma: definitions. Am. J. Respir. Crit. Care Med. 1996; 154 (2, Pt 2): 45–48. DOI:10.1164/ajrccm/154.2_Pt_2.S45.; Pelkonen M., Notkola I.L., Tukiainen H. et al. Smoking cessation, decline in pulmonary function and total mortality: a 30-year follow-up study among the Finnish cohorts of the Seven Countries Study. Thorax. 2001; 56 (9): 703–707. DOI:10.1136/thorax.56.9.703.; Chandler M.A., Rennard S.I. Smoking cessation. Chest. 2010; 137 (2): 428–435. DOI:10.1378/chest.09-0124.; Henningfield J.E. Nicotine medications for smoking cessation. N. Engl. J. Med. 1995; 333 (18): 1196–1203. DOI:10.1056/NEJM199511023331807.; Jorenby D.E., Leischow S.J., Nides M.A. et al. A controlled trial of sustained- release bupropion, a nicotine patch, or both for smoking cessation. N. Engl. J. Med. 1999; 340 (9): 685–691. DOI:10.1056/NEJM199903043400903.; Silagy C., Mant D., Fowler G., Lodge M. Metaanalysis on efficacy of nicotine replacement therapies in smoking cessation. Lancet. 1994; 343 (8890): 139–142. DOI:10.1016/s0140-6736(94)90933-4.; Tashkin D., Kanner R., Bailey W. et al. Smoking cessation in patients with chronic obstructive pulmonary disease: a double-blind, placebo-controlled, randomised trial. Lancet. 2001; 357 (9268): 1571–1575. DOI:10.1016/s0140-6736(00)04724-3.; Strassmann R., Bausch B., Spaar A. et al. Smoking cessation interventions in COPD: a network metaanalysis of randomised trials. Eur. Respir. J. 2009; 34 (3): 634–640. DOI:10.1183/09031936.00167708.; Faessel H., Ravva P., Williams K. Pharmacokinetics, safety, and tolerability of varenicline in healthy adolescent smokers: a multicenter, randomized, double-blind, placebocontrolled, parallel-group study. Clin. Ther. 2009; 31 (1): 177–189. DOI:10.1016/j.clinthera.2009.01.003.; Anthonisen N.R., Connett J.E., Kiley J.P. et al. Effects of smoking intervention and the use of an inhaled anticholinergic bronchodilator on the rate of decline of FEV 1: The lung health study. JAMA. 1994; 272 (19): 1497–1505. DOI:10.1001/jama.1994.03520190043033.; Decramer M., Celli B., Kesten S. et al. Effect of tiotropium on outcomes in patients with moderate chronic obstructive pulmonary disease (UPLIFT): a prespecified subgroup analysis of a randomised controlled trial. Lancet. 2009; 374 (9696): 1171–1178. DOI:10.1016/S0140-6736(09)61298-8.; Jenkins C.R., Jones P.W., Calverley P.M. et al. Efficacy of salmeterol/ fluticasone propionate by GOLD stage of chronic obstructive pulmonary disease: analysis from the randomised, placebo-controlled TORCH study. Respir. Res. 2009; 10 (1): 59. DOI:10.1186/1465-9921-10-59.; Lipson D.A., Crim C., Criner G.J. et al. Reduction in all-cause mortality with fluticasone furoate/umeclidinium/vilanterol in patients with chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care Med. 2020; 201 (12): 1508–1516. DOI:10.1164/rccm.201911-2207OC.; Sestini P., Renzoni E., Robinson S. et al. Short-acting beta2-agonists for stable chronic obstructive pulmonary disease. Cochrane Database Syst. Rev. 2002; (4): CD001495. DOI:10.1002/14651858.CD001495.; Chung V.C.H., Ma P.H.X., Hui D.S.C. et al. Indacaterol for chronic obstructive pulmonary disease: systematic review and meta-analysis. PLoS One. 2013; 8 (8): e70784. DOI:10.1371/journal.pone.0070784.; Cope S., Donohue J.F., Jansen J.P. et al. Comparative efficacy of long-acting bronchodilators for COPD – a network meta-analysis. Respir. Res. 2013; 14 (1): 100. DOI:10.1186/1465-9921-14-100.; Koch A., Pizzichini E., Hamilton A. et al. Lung function efficacy and symptomatic benefit of olodaterol once daily delivered via Respimat versus placebo and formoterol twice daily in patients with GOLD 2-4 COPD: results from two replicate 48-week studies. Int. J. Chron. Obstruct. Pulmon. Dis. 2014; 9 (1): 697–714. DOI:10.2147/COPD.S62502.; Decramer M., Anzueto A., Kerwin E. et al. Efficacy and safety of umeclidinium plus vilanterol versus tiotropium, vilanterol, or umeclidinium monotherapies over 24 weeks in patients with chronic obstructive pulmonary disease: results from two multicenter, blinded, randomized controlled trials. Lancet Respir. Med. 2014; 2 (6): 472–486. DOI:10.1016/S2213-2600(14)70065-7.; Vogelmeier C., Hederer B., Glaab T. et al. Tiotropium versus salmeterol for the prevention of exacerbations in COPD. N. Engl. J. Med. 2011; 364 (12): 1093–1103. DOI:10.1056/NEJMoa1008378.; Decramer M.L., Chapman K.R., Dahl R. et al. INVIGORATE investigators. Once-daily indacaterol versus tiotropium for patients with severe chronic obstructive pulmonary disease (INVIGORATE): a randomised, blinded, parallel-group study. Lancet Respir. Med. 2013; 1 (7): 524–533. DOI:10.1016/S2213-2600(13)70158-9.; Wilchesky M., Ernst P., Brophy J.M. et al. Bronchodilator use and the risk of arrhythmia in COPD: part 2: reassessment in the larger Quebec cohort. Chest. 2012; 142 (2): 305–311. DOI:10.1378/chest.11-1597.; Decramer M.L., Hanania N.A., Lotvall J.O., Yawn B.P. The safety of long-acting b2-agonists in the treatment of stable chronic obstructive disease. Int. J. Chron. Obstruct. Pulmon. Dis. 2013; 8: 53–64. DOI:10.2147/COPD.S39018.; Kew K.M., Mavergames C., Walters J.A.E. Long-acting beta2-agonists for chronic obstructive pulmonary disease. Cochrane Database Syst. Rev. 2013; (10): CD010177. DOI:10.1002/14651858.CD010177.pub2.; Karner C., Chong J., Poole P. Tiotropium versus placebo for chronic obstructive pulmonary disease. Cochrane Database Syst. Rev. 2012; (7): CD009285. DOI:10.1002/14651858.CD009285.pub2.; Sims M.W., Panettieri R.A. Jr. Profile of aclidinium bromide in the treatment of chronic obstructive pulmonary disease. Int. J. Chron. Obstruct. Pulmon. Dis. 2011; 6: 457–466. DOI:10.2147/COPD.S15524.; Ulrik C.S. Once-daily glycopyrronium bromide, a long-acting muscarinic antagonist, for chronic obstructive pulmonary disease: a systematic review of clinical benefit. Int. J. Chron. Obstruct. Pulmon. Dis. 2012; 7: 673–678. DOI:10.2147/COPD.S35990.; Jones P.W., Rennard S.I., Agusti A. et al. Efficacy and safety of once-daily aclidinium in chronic obstructive pulmonary disease. Respir. Res. 2011; 12 (1): 55. DOI:10.1186/1465-9921-12-55.; Kerwin E., Hebert J., Gallagher N. et al. Efficacy and safety of NVA237 versus placebo and tiotropium in patients with COPD: the GLOW2 study. Eur. Respir. J. 2012; 40 (5): 1106–1114. DOI:10.1183/09031936.00040712.; Donohue J.F., Niewoehner D., Brooks J. et al. Safety and tolerability of once-daily umeclidinium/vilanterol 125/25 mcg and umeclidinium 125 mcg in patients with chronic obstructive pulmonary disease: results from a 52-week, randomized, doubleblind, placebo-controlled study. Respir. Res. 2014; 15 (1): 78. DOI:10.1186/1465-9921-15-78.; Sharafkhaneh A., Majid H., Gross N.J. Safety and tolerability of inhalational anticholinergics in COPD. Drug Healthc Patient Saf. 2013; 5: 49–55. DOI:10.2147/DHPS.S7771.; Tashkin D.P., Celli B., Senn S. et al. A 4-year trial of tiotropium in chronic obstructive pulmonary disease. N. Engl. J. Med. 2008; 359 (15): 1543–1554. DOI:10.1056/NEJMoa0805800.; Wise R.A., Anzueto A., Cotton D. et al. Tiotropium Respimat inhaler and the risk of death in COPD. N. Engl. J. Med. 2013; 369 (16): 1491–1501. DOI:10.1056/NEJMoa1303342.; Appleton S., Jones T., Poole P. et al. Ipratropium bromide versus short acting beta-2 agonists for stable chronic obstructive pulmonary disease. Cochrane Database Syst. Rev. 2006; (2): CD001387. DOI:10.1002/14651858.CD001387.pub2.; Appleton S., Jones T., Poole P. et al. Ipratropium bromide versus long-acting beta-2 agonists for stable chronic obstructive pulmonary disease. Cochrane Database Syst. Rev. 2006; (3): CD006101. DOI:10.1002/14651858.CD006101.; Karner C., Cates C.J. Long-acting beta2-agonist in addition to tiotropium versus either tiotropium or long-acting beta2-agonist alone for chronic obstructive pulmonary disease. Cochrane Database Syst. Rev. 2015; (10): CD008989. DOI:10.1002/14651858.cd008989.pub3.; Bateman E.D., Ferguson G.T., Barnes N. et al. Dual bronchodilation with QVA149 versus single bronchodilator therapy: the SHINE study. Eur. Respir. J. 2013; 42 (6): 1484–1494. DOI:10.1183/09031936.00200212.; Donohue J.F., Maleki-Yazdi M.R., Kilbride S. et al. Efficacy and safety of once-daily umeclidinium/vilanterol 62.5/25 mcg in COPD. Respir. Med. 2013; 107 (10): 1538–1546. DOI:10.1016/j.rmed.2013.06.001.; Vincken W., Aumann J., Chen H. et al. Efficacy and safety of coadministration of once-daily indacaterol and glycopyrronium versus indacaterol alone in COPD patients: the GLOW6 study. Int. J. Chron. Obstruct. Pulmon. Dis. 2014; 9: 215–228. DOI:10.2147/COPD.S51592.; Wedzicha J.A., Dahl R., Buhl R. et al. Pooled safety analysis of the fixed-dose combination of indacaterol and glycopyrronium (QVA149), its monocomponents, and tiotropium versus placebo in COPD patients. Respir. Med. 2014; 108 (10): 1498–1507. DOI:10.1016/j.rmed.2014.07.011.; Ulrik C.S. Clinical benefit of fixed-dose dual bronchodilation with glycopyrronium and indacaterol once daily in patients with chronic obstructive pulmonary disease: a systematic review. Int. J. Chron. Obstruct. Pulmon. Dis. 2014; 9: 331–338. DOI:10.2147/COPD.S60362.; Buhl R., Maltais F., Abrahams R. et al. Tiotropium and olodaterol fixed-dose combination versus mono-components in COPD (GOLD 2–4). Eur. Respir. J. 2015; 45 (4): 969–979. DOI:10.1183/09031936.00136014.; Singh D., Jones P.W., Bateman E.D. et al. Efficacy and safety of aclidinium bromide/formoterol fumarate fixed-dose combinations compared with individual components and placebo in patients with COPD (ACLIFORM-COPD): a multicentre, randomised study. BMC Pulm. Med. 2014; 14: 178. DOI:10.1186/1471-2466-14-178.; Beeh K.M., Westerman J., Kirsten A.M. et al. The 24-h lung-function profile of once-daily tiotropium and olodaterol fixed-dose combination in chronic obstructive pulmonary disease. Pulm. Pharmacol. Ther. 2015; 32: 53–59. DOI:10.1016/j.pupt.2015.04.002.; Wedzicha J.A., Decramer M., Ficker J.H. et al. Analysis of chronic obstructive pulmonary disease exacerbations with the dual bronchodilator QVA149 compared with glycopyrronium and tiotropium (SPARK): a randomized, double-blind, parallel-group study. Lancet Respir. Med. 2013; 1 (3): 199–209. DOI:10.1016/S2213-2600(13)70052-3.; Broekhuizen B.D., Sachs A.P., Moons K.G. et al. Diagnostic value of oral prednisolone test for chronic obstructive pulmonary disorders. Ann. Fam. Med. 2011; 9 (2): 104–109. DOI:10.1370/afm.1223.; Callahan C.M., Dittus R.S., Katz B.P. Oral corticosteroid therapy for patients with stable chronic obstructive pulmonary disease: a meta-analysis. Ann. Intern. Med. 1991; 114 (3): 216–23. DOI:10.7326/0003-4819-114-3-216.; Yang I.A., Clarke M.S., Sim E.H.A., Fong K.M. Inhaled corticosteroids for stable chronic obstructive pulmonary disease. Cochrane Database Syst. Rev. 2012; 2012 (7): CD002991. DOI:10.1002/14651858.CD002991.pub3.; Suissa S., Kezouh A., Ernst P. Inhaled corticosteroids and the risks of diabetes onset and progression. Am. J. Med. 2010; 123 (11): 1001– 1006. DOI:10.1016/j.amjmed.2010.06.019.; Izquierdo J.L., Cosio B. The dose of inhaled corticosteroids in patients with COPD: when less is better. Int. J. COPD. 2018; 13: 3539–3547. DOI:10.2147/COPD.S175047.; Calverley P.M.A., Anderson A.M.A., Ferguson G.T. et al. Salmeterol and fluticasone propionate and survival in chronic obstructive pulmonary disease. N. Engl. J. Med. 2007; 356 (8): 775–789. DOI:10.1056/NEJMoa063070.; Lipson D.A., Barnhart F., Brealey N. et al. Once-daily single-inhaler triple versus dual therapy in patients with COPD. N. Engl. J. Med. 2018; 378 (18): 1671–1680. DOI:10.1056/NEJMoa1713901.; Lipson D.A., Barnacle H., Birk R. et al. FULFIL Trial: Once-daily triple therapy for patients with chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care Med. 2017; 196 (4): 438–446. DOI:10.1164/rccm.201703-0449OC.; Aaron S.D., Vandemheen K.L., Fergusson D. et al. Tiotropium in combination with placebo, salmeterol, or fluticasone-salmeterol for treatment of chronic obstructive pulmonary disease: a randomised trial. Ann. Intern. Med. 2007; 146 (8): 545–555. DOI:10.7326/0003-4819-146-8-200704170-00152.; Welte T., Miravitlles M., Hernandez P. et al. Efficacy and tolerability of budesonide/formoterol added to tiotropium in patients with chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care Med. 2009; 180 (8): 741–750. DOI:10.1164/rccm.200904-0492OC.; Cazzola M., Ando F., Santus P. et al. A pilot study to assess the effects of combining fluticasone propionate/salmeterol and tiotropium to the airflow obstruction of patients with severe-to-very severe COPD. Pulm. Pharmacol. Ther. 2007; 20 (5): 556–561. DOI:10.1016/j.pupt.2006.06.001.; Karner C., Cates C.J. Combination inhaled steroid and long-acting beta2-agonist in addition to tiotropium versus tiotropium or combination alone for chronic obstructive pulmonary disease. Cochrane Database Syst. Rev. 2011; (3): CD008532. DOI:10.1002/14651858.CD008532.pub2.; Wedzicha J.A., Calverley P.M.A., Seemungal T.A. et al. The prevention of chronic obstructive pulmonary disease exacerbations by salmeterol/fluticasone propionate or tiotropium bromide. Am. J. Respir. Crit. Care Med. 2008; 177 (1): 19–26. DOI:10.1164/rccm.200707-973OC.; Watz H., Tetzlaff K., Wouters E.F. et al. Blood eosinophil count and exacerbations in severe chronic obstructive pulmonary disease after withdrawal of inhaled corticosteroids: a post-hoc analysis of the WISDOM trial. Lancet Respir. Med. 2016; 4 (5): 390–398. DOI:10.1016/S2213-2600(16)00100-4.; Vestbo J., Anderson J.A., Brook R.D. et al. SUMMIT Investigators. Fluticasone furoate and vilanterol and survival in chronic obstructive pulmonary disease with heightened cardiovascular risk (SUMMIT): a double-blind randomised controlled trial. Lancet. 2016; 387 (10030): 1817–1826. DOI:10.1016/S0140-6736(16)30069-1.; Loke Y.K., Cavallazzi R., Singh S. Risk of fractures with inhaled corticosteroids in COPD: systematic review and meta-analysis of randomised controlled trials and observational studies. Thorax. 2011; 66 (8): 699–708. DOI:10.1136/thx.2011.160028.; Chong J., Poole P., Leung B., Black P.N. Phosphodiesterase 4 inhibitors for chronic obstructive pulmonary disease. Cochrane Database Syst. Rev. 2011; (5): CD002309. DOI:10.1002/14651858.CD002309.pub3.; Calverley P.M.A., Rabe K.F., Goehring U.M et al. Roflumilast in symptomatic chronic obstructive pulmonary disease: two randomised clinical trials. Lancet. 2009; 374 (9691): 685–694. DOI:10.1016/S0140-6736(09)61255-1.; Walters J.A.E., Walters E.H., Wood-Baker R. Oral corticosteroids for stable chronic obstructive pulmonary disease. Cochrane Database Syst. Rev. 2005; (3): CD005374. DOI:10.1002/14651858.CD005374.; Schols A.M.W.J., Wesseling G., Kester A.D.M. et al. Dose dependent increased mortality risk in COPD patients treated with oral glucocorticoids. Eur. Respir. J. 2001; 17 (3): 337–342. DOI:10.1183/09031936.01.17303370.; Man W.D.C., Kemp P., Moxham J., Polkey M.I. Skeletal muscle dysfunction in COPD: clinical and laboratory observations. Clin. Sci. (Lond.). 2009; 117 (7): 251–264. DOI:10.1042/CS20080659.; Barnes P.J. Theophylline. Am. J. Respir. Crit. Care Med. 2013; 188 (8): 901–906. DOI:10.1164/rccm.201302-0388PP.; Zhou Y., Wang X., Zeng X. et al. Positive benefits of theophylline in a randomized, double-blind, parallelgroup, placebo-controlled study of low-dose, slow-release theophylline in the treatment of COPD for 1 year. Respirology. 2006; 11 (5): 603–610. DOI:10.1111/j.1440-1843.2006.00897.x.; Ram F.S., Jones P., Jardim J. et al. Oral theophylline for chronic obstructive pulmonary disease. Cochrane Database Syst. Rev. 2002; 2002 (4): CD003902. DOI:10.1002/14651858.CD003902.; Rossi A., Kristufek P., Levine B.E. et al. Comparison of the efficacy, tolerability, and safety of formoterol dry powder and oral, slow-release theophylline in the treatment of COPD. Chest. 2002; 121 (4): 1058–1069. DOI:10.1378/chest.121.4.1058.; Donath E., Chaudhry A., Hernandez-Aya L.F., Lit L. A metaanalysis on the prophylactic use of macrolide antibiotics for the prevention of disease exacerbations in patients with chronic obstructive pulmonary disease. Respir. Med. 2013; 107 (9): 1385–1392. DOI:10.1016/j.rmed.2013.05.004.; Albert R.K., Connett J., Bailey W.C. et al. Azithromycin for prevention of exacerbations of COPD. N. Engl. J. Med. 2011; 365 (8): 689–698. DOI:10.1056/NEJMoa1104623.; Cazzola M., Calzetta L., Page C. et al. Influence of N-acetylcysteine on chronic bronchitis or COPD exacerbations: a meta-analysis. Eur. Respir. Rev. 2015; 24 (137): 451–461. DOI:10.1183/16000617.00002215.; Poole P., Black P.N., Cates C.J. Mucolytic agents for chronic bronchitis or chronic obstructive pulmonary disease. Cochrane Database Syst. Rev. 2012; (8): CD001287. DOI:10.1002/14651858.CD001287.pub4.; Al-Showair R.A., Tarsin W.Y., Assi K.H. et al. Can all patients with COPD use the correct inhalation flow with all inhalers and does training help? Respir. Med. 2007; 101 (11): 2395–2401. DOI:10.1016/j.rmed.2007.06.008.; Zeng Z., Yang D., Huang X., Xiao Z. Effect of carbocisteine on patients with COPD: a systematic review and meta-analysis. Int. J. Chron. Obstruct. Pulmon. Dis. 2017; 12: 2277–2283. DOI:10.2147/COPD.S140603.; Wieshammer S., Dreyhaupt J. Dry powder inhalers: which factors determine the frequency of handling errors? Respiration. 2008; 75 (1): 18–25. DOI:10.1159/000109374.; Chapman K.R., Voshaar T.H., Virchow J.C. Inhaler choice in primary practice. Eur. Respir. Rev. 2005; 14 (96): 117–122. DOI:10.1183/09059180.05.00009607.; Poole P.J., Chacko E., Wood-Baker R.W., Cates C.J. Influenza vaccine for patients with chronic obstructive pulmonary disease. Cochrane Database Syst. Rev. 2006; (1): CD002733. DOI:10.1002/14651858.CD002733.pub2.; Sestini P., Renzoni E., Robinson S. et al. Short-acting beta 2 agonists for stable chronic obstructive pulmonary disease. Cochrane Database Syst. Rev. 2002; (4): CD001495. DOI:10.1002/14651858.CD001495.; Van der Molen T., Cazzola M. Beyond lung function in COPD management: effectiveness of LABA/LAMA combination therapy on patient-centred outcomes. Prim. Care Respir. J. 2012; 21 (1): 101–108. DOI:10.4104/pcrj.2011.00102.; Mahler D.A., Decramer M., D`Urzo A. et al. Dual bronchodilatation with QVA149 reduces patient reported dyspnea in COPD: the BLAZE study. Eur. Respir. J. 2014; 43 (6): 1599–1609. DOI:10.1183/09031936.00124013.; Calzetta L., Ritondo B.L., de Marco P. et al. Evaluating triple ICS/ LABA/LAMA therapies for COPD patients: a network meta-analysis of ETHOS, KRONOS, IMPACT, and TRILOGY studies. Exp. Rev. Respir. Med. 2021; 15 (1): 143–152. DOI:10.1080/17476348.2020.1816830.; Yu A.P., Guérin A., Ponce de Leon D. et al. Therapy persistence and adherence in patients with chronic obstructive pulmonary disease: multiple versus single long-acting maintenance inhalers. J. Med. Econ. 2011; 14 (4): 486–496. DOI:10.3111/13696998.2011.594123.; White P., Thorntoh H., Pinnock H. et al. Overtreatment of COPD with inhaled corticosteroids – implications for safety and costs: cross-sectional observational study. PLoS ONE. 2013; 8 (10): e75221. DOI:10.1371/journal.pone.0075221.; Rossi A., Guerriero M., Corrado A. OPTIMO/AIPO Study Group. Withdrawal of inhaled corticosteroids can be safe in COPD patients at low risk of exacerbation: a real-life study on the appropriateness of treatment in moderate COPD patients (OPTIMO). Respir. Res. 2014; 15 (1): 77. DOI:10.1186/1465-9921-15-77.; Magnussen H., Disse B., Rodriguez-Roisin R. et al. Withdrawal of inhaled glucocorticoids and exacerbations of COPD. N. Engl. J. Med. 2014; 371 (14): 1285–1294. DOI:10.1056/NEJMoa1407154.; Chapman K.R., Hurst J.R., Frent S.M. et al. Long-term triple therapy de-escalation to indacaterol/glycopyrronium in COPD patients (SUNSET): a randomized, double-blind, triple-dummy clinical trial. Am. J. Respir. Crit. Care Med. 2018; 198 (3): 329–339. DOI:10.1164/rccm.201803-0405OC.; Авдеев С.Н., Айсанов З.Р., Архипов В.В. и др. Отмена ингаляционных глюкокортикостероидов у пациентов с хронической обструктивной болезнью легких. Пульмонология. 2019; 29 (3): 334–345. DOI:10.18093/0869-0189-2019-29-3-334-345.; Naunheim K.S., Wood D.E., Mohsenifar Z. et al. Long-term follow-up of patients receiving lung-volume reduction surgery versus medical therapy for severe emphysema by the national emphysema treatment trial research group. Ann. Thorac. Surg. 2006; 82 (2): 431–443. DOI:10.1016/j.athoracsur.2006.05.069.; Orens J.B., Estenne M., Arcasoy S. et al. International guidelines for the selection of lung transplant candidates: 2006 update – a consensus report from the Pulmonary Scientific Council of the International Society for Heart and Lung Transplantation. J. Heart Lung Transplant. 2006; 25 (7): 745–755. DOI:10.1016/j.healun.2006.03.011.; Stoller J.K., Panos R.J., Krachman S. et al. Oxygen therapy for patients with COPD: current evidence and the long-term oxygen treatment trial. Chest. 2010; 138 (1): 179–187. DOI:10.1378/chest.09-2555.; Sculley J. A., Corbridge S. J., Prieto-Centurion V. et al. Home oxygen therapy for patients with COPD: Time for a Reboot. Respir. Care. 2019; 64 (12): 1574–1585. DOI:10.4187/respcare.07135.; Ergan B., Nava S. Long-term oxygen therapy in copd patients who do not meet the actual recommendations. COPD: J. Chron. Obstruct. Pulmon. Dis. 2017; 14 (3): 351–366. DOI:10.1080/15412555.2017.1319918.; Jacobs S.S., Krishnan J.A., Lederer D.J. et al. Home oxygen therapy for adults with chronic lung disease: An Official American Thoracic Society clinical practice guideline. Am. J. Respir. Crit. Care Med. 2020; 202 (10): e121–141. DOI:10.1164/rccm.202009-3608ST.; American Thoracic Society. Standards for the diagnosis and care of patients with chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care Med. 1995; 152 (5, Pt 2): 77–120. Available at: https://www.thoracic.org/statements/resources/copd1-45.pdfTest; Murphy P.B., Rehal S., Arbane G. et al. Effect of home noninvasive ventilation with oxygen therapy vs oxygen therapy alone on hospital readmission or death after an acute COPD exacerbation: a randomised clinical trial. JAMA. 2017; 317 (21): 2177–2186. DOI:10.1001/jama.2017.4451.; Kohnlein T., Windish W., Kohler D. et al. Non-invasive positive pressure ventilation for the treatment of severe stable chronic obstructive pulmonary disease: a prospective, multicenter, randomized controlled clinical trial. Lancet Respir. Med. 2014; (9): 698–705. DOI:10.1016/S2213-2600(14)70153-5.; Ergan B., Oczkowski S., Rochwerg B. et al. European Respiratory Society guideline on long-term home non-invasive ventilation for management of chronic obstructive pulmonary disease. Eur. Respir. J. 2019; 54 (3): 1901003. DOI:10.1183/13993003.01003-2019.; Duiverman M. L., Vonk J. M., Bladder G. et al. Home initiation of chronic non-invasive ventilation in COPD patients with chronic hypercapnic respiratory failure: a randomised controlled trial. Thorax. 2020; 75 (3): 244–252. DOI:10.1136/thoraxjnl-2019-213303.; Murphy P. B., Hart N. Home non-invasive ventilation for COPD: how, who and when? Arch. Bronconeumol. (Engl. Ed.) 2018; 54 (3): 149–154. DOI:10.1016/j.arbres.2017.12.005.; McEvoy R.D., Pierce R.J., Hillman D. et al. Nocturnal non-invasive nasal ventilation in stable hypercapnic COPD: a randomised controlled trial. Thorax. 2009: 64 (7): 561–566. DOI:10.1136/thx.2008.108274.; NICE Clinical Guidelines Centre (UK). Chronic obstructive pulmonary disease: management of chronic obstructive pulmonary disease in adults in primary and secondary care. London: Royal College of Physicians (UK); 2010. Available from: https://www.ncbi.nlm.nih.gov/books/NBK65039Test/; Higgings B.G., Powell R.M., Cooper S., Tattersfield A.E. Effect of salbutamol and ipratropium bromide on airway calibre and bronchial reactivity in asthma and chronic bronchitis. Eur. Respir. J. 1991; 4 (4): 415–420.; O’Driscoll B.R., Kay E.A., Taylor R.J. et al. A long-term prospective assessment of home nebulizer treatment. Respir. Med. 1992; 86 (4): 317–325. DOI:10.1016/s0954-6111(06)80031-4.; Davies L., Angus R.M., Calverley P.M. Oral corticosteroids in patients admitted to hospital with exacerbations of chronic obstructive pulmonary disease: a prospective randomized controlled trial. Lancet. 1999; 354 (9177): 456–460. DOI:10.1016/s0140-6736(98)11326-0.; Maltais F., Ostinelli J., Bourbeau J. et al. Comparison of nebulized budesonide and oral prednisolone with placebo in the treatment of acute exacerbation of chronic obstructive pulmonary disease: a randomized controlled trial. Am. J. Respir. Crit. Care Med. 2002: 165 (5): 698–703. DOI:10.1164/ajrccm.165.5.2109093.; Bafadhel M., McKenna S., Terry S. et al. Blood eosinophils to direct corticosteroid treatment of exacerbations of chronic obstructive pulmonary disease: a randomized placebo-controlled trial. Am. J. Respir. Crit. Care Med. 2012; 186 (1): 48–55. DOI:10.1164/rccm.201108-1553OC.; Anthonisen N.R., Manfreda J., Warren C.P. et al. Antibiotic therapy in exacerbations of chronic obstructive pulmonary disease. Ann. Intern. Med. 1987; 106 (2): 196–204. DOI:10.7326/0003-4819-106-2-196.; Miravitlles M., Kruesmann F., Haverstock D. et al. Sputum colour and bacteria in chronic bronchitis exacerbations: a pooled analysis. Eur. Respir. J. 2012; 39 (6): 1354–1360. DOI:10.1183/09031936.00042111.; Nouira S., Marghli S., Belghith M. et al. Once daily oral ofloxacin in chronic obstructive pulmonary disease exacerbation requiring mechanical ventilation: a randomised placebo-controlled trial. Lancet. 2001; 358 (9298): 2020–2025. DOI:10.1016/S0140-6736(01)07097-0.; Weis N., Almdal T. C-reactive protein – can it be used as a marker of infection in patients with exacerbation of chronic obstructive pulmonary disease. Eur. J. Intern. Med. 2006; 17 (2): 88–91. DOI:10.1016/j.ejim.2005.09.020.; Dev D., Sankaran E.W.R., Cunnife J. et al. Value of C-reactive protein in exacerbation of chronic obstructive pulmonary disease. Respir. Med. 1998; 92 (4): 664–667. DOI:10.1016/s0954-6111(98)90515-7.; Авдеев С.Н. Обострения хронической обструктивной болезни легких: выбор антибактериальной терапии. Пульмонология. 2014; (6): 65–72. DOI:10.18093/0869-0189-2014-0-6-65-72.; Wise R.A. Treatment of acute COPD exacerbation. Last full review/ revision Jun. 2020. Available at: https://www.merckmanuals.com/professional/pulmonary-disorders/chronic-obstructive-pulmonary-disease-and-related-disorders/treatment-of-acute-copd-exacerbationTest; Miravitlles M., Espinosa C., Fernandez-Laso E. et al. Relationship between bacterial flora in sputum and functional impairment in patients with acute exacerbations of COPD. Study Group of Bacterial Infection in COPD. Chest. 1999; 116 (1): 40–46. DOI:10.1378/chest.116.1.40.; Yoon H.I., Lee C.H., Kim D.K. et al. Efficacy of levofloxacin versus cefuroxime in treating acute exacerbations of chronic obstructive pulmonary disease. Int. J. Chron. Obstruct. Pulmon. Dis. 2013; 8: 329–334. DOI:10.2147/COPD.S41749.; Wilson R., Anzueto A., Miravitlles M. et. al. Moxifloxacin versus amoxicillin/clavulanic acid in outpatient acute exacerbations of COPD: MAESTRAL results. Eur. Respir. J. 2012; 40 (1): 17–27. DOI:10.1183/09031936.00090311.; Eller J., Ede A., Schaberg T. et al. Infective exacerbations of chronic bronchitis: relation between bacteriologic etiologyand lung function. Chest. 1998; 113 (6): 1542–1548. DOI:10.1378/chest.113.6.1542.; Austin M.A., Wills K.E., Blizzard L. et al. Effect of high flow oxygen on mortality in chronic obstructive pulmonary disease patients in prehospital setting: randomised controlled trial. BMJ. 2010; 341: c5462. DOI:10.1136/bmj.c5462.; Anton A., Guell R., Gymes J. et al. Predicting the result of noninvasive ventilation in severe acute exacerbations of patients with chronic airflow limitation. Chest. 2000; 117 (3): 828–833. DOI:10.1378/chest.117.3.828.; Plant P.K., Owen J.L., Elliott M.W. Early use of non-invasive ventilationfor acute exacerbations of chronic obstructive pulmonary disease on general respiratory wards: a multicentre randomised controlled trial. Lancet. 2000; 355 (9219): 1931–1935. DOI:10.1016/s0140-6736(00)02323-0.; Mehta S., Hill N.S. Noninvasive ventilation. Am. J. Respir. Crit. Care Med. 2001; 163 (2): 540–577. DOI:10.1164/ajrccm.163.2.9906116.; Авдеев С.Н., Чучалин А.Г. Неинвазивная вентиляция легких при острой дыхательной недостаточности у больных хронической обструктивной болезнью легких. Терапевтический архив. 2000; (3): 59–65.; Nava S., Hill N. Non-invasive ventilation in acute respiratory failure. Lancet. 2009; 374 (9885): 250–259. DOI:10.1016/S0140-6736(09)60496-7.; Conti G., Antonelli M., Navalesi P. et al. Noninvasive vs. conventional mechanical ventilationin patients with chronic obstructive pulmonary disease after failure of medical treatment in the ward: a randomised trial. Intensive Care Med. 2002; 28 (12): 1701–1707. DOI:10.1007/s00134-002-1478-0.; Gladwin M.T., Pierson D.J. Mechanical ventilation of the patient with severe chronic obstructive pulmonary disease. Intensive Care Med. 1998; 24 (9): 898–910. DOI:10.1007/s001340050688.; Esteban A., Frutos F., Tobin M.J. et al. A comparison of four methods of weaning patients from mechanical ventilation. Spanish lung failure collaborative group. N. Engl. J. Med. 1995; 332 (6): 345–350. DOI:10.1056/NEJM199502093320601.; Vargas F., Bui H.N., Boyer A. et al. Intrapulmonary percussive ventilation in acute exacerbations of COPD patients with mild respiratory acidosis: a randomized controlled trial [ISRCTN17802078]. Crit. Care. 2005; 9: R382. DOI:10.1186/cc3724.; Авдеев С.Н., Гусева Н.А., Нуралиева Г.С. Эффективность метода высокочастотных колебаний грудной стенки при обострении хронической обструктивной болезни легких. Пульмонология. 2016; 26 (4): 466–472. DOI:10.18093/0869-0189-2016-26-4-466-472.; Waschki B., Kirsten A., Holz O. et al. Physical activity is the strongest predictor of all-cause mortality in patients with COPD: a prospective cohort study. Chest. 2011; 140 (2): 331–342. DOI:10.1378/chest.10-2521.; Nici L., Donner C., Wouters E. et al. American Thoracic Society/ European Respiratory Society statement on pulmonary rehabilitation. Am. J. Respir. Crit. Care Med. 2006; 173 (12): 1390–1413. DOI:10.1164/rccm.200508-1211ST.; Ries A.L., Bauldoff G.S., Carlin B.W. et al. Pulmonary rehabilitation: joint ACCP/AACVPR evidence-based clinical practice guidelines. Chest. 2007; 131 (5, Suppl.): 4S–42S. DOI:10.1378/chest.06-2418.; Puhan M.A., Gimeno-Santos E., Scharplatz M. et al. Pulmonary rehabilitation following exacerbations of chronic obstructive pulmonary disease. Cochrane Database Syst. Rev. 2011; (10): CD005305. DOI:10.1002/14651858.CD005305.pub3.; Celli B.R. Pulmonary rehabilitation in patients with COPD. Am. J. Respir. Crit. Care Med. 1995; 152 (3): 861–864. DOI:10.1164/ajrccm.152.3.7663796.; Troosters T., Casaburi R., Gosselink R., Decramer M. Pulmonary rehabilitation in chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care Med. 2005; 172 (1): 19–38. DOI:10.1164/rccm.200408-1109SO.; Puhan M.A., Busching G., Schunemann H.J. et al. Interval versus continuous high-intensity exercise in chronic obstructive pulmonary disease: a randomized trial. Ann. Intern. Med. 2006; 145 (11): 816–825. DOI:10.7326/0003-4819-145-11-200612050-00006.; Mahler D.A. Pulmonary rehabilitation. Chest. 1998; 113 (4, Suppl): 263S–268S. DOI:10.1378/chest.113.4_supplement.263s.; Belman M.J., Botnick W.C., Nathan S.D., Chon K.H. Ventilatory load characteristics during ventilatory muscle training. Am. J. Respir. Crit. Care Med. 1994; 149 (4, Pt 1): 925–929. DOI:10.1164/ajrccm.149.4.8143057.; O’Brien K., Geddes E.L., Reid W.D. et al. Inspiratory muscle training compared with other rehabilitation interventions in chronic obstructive pulmonary disease: a systematic review update. J. Cardiopulm. Rehabil. Prev. 2008; 28 (2): 128–141. DOI:10.1097/01.HCR.0000314208.40170.00.; Heffner J.E., Fahy B., Hilling L., Barbieri C. Outcomes of advance directive education of pulmonary rehabilitation patients. Am. J. Respir. Crit. Care Med. 1997; 155 (3): 1055–1059. DOI:10.1164/ajrccm.155.3.9116986.; Zwerink M., Brusse-Keizer M., van der Valk P.D. et al. Self management for patients with chronic obstructive pulmonary disease. Cochrane Database Syst. Rev. 2014; 2014 (3): CD002990. DOI:10.1002/14651858.CD002990.pub3.; Bischoff E.W., Hamd D.H., Sedeno M. et al. Effects of written action plan adherence on COPD exacerbation recovery. Thorax. 2011; 66 (1): 26–31. DOI:10.1136/thx.2009.127621.; Van Eerd E.A., van der Meer R.M., van Schayk O.C., Kotz D. Smoking cessation for people with chronic obstructive pulmonary disease. Cochrane Database Syst. Rev. 2016; 2016 (8): CD010744. DOI:10.1002/14651858.CD010744.pub2.; Romieu I., Riojas-Rodriguez H., Marron-Mares A.T. et al. Improved biomass stove intervention in rural Mexico: impact on the respiratory health of women. Am. J. Respir. Crit. Care Med. 2009; 180 (7): 649–656. DOI:10.1164/rccm.200810-1556OC.; Mathew T., Kaur A., Ross J. For patients with COPD, does pneumococcal vaccination reduce the incidence of pneumococcal pneumonia? Evidence-Based Practice. 2018; 21 (1): Е15. DOI:10.1097/01.EBP.0000541953.43152.a6.; Sandelowsky H., Natalishvili N., Krakau I. et al. COPD management by Swedish general practitioners – baseline results of the PRIMAIR study. Scand. J. Prim. Health Care. 2018; 36 (1): 5–13. DOI:10.1080/02813432.2018.1426148.; Jochmann A., Neubauer F., Miedinger D. et al. General practitioner’s adherence to the COPD GOLD guidelines: baseline data of the Swiss COPD Cohort Study. Swiss Med. Wkly. 2010; 140: 13053. DOI:10.4414/smw.2010.13053.; Ragaišienė G., Kibarskytė R., Gauronskaitė R. et al. Diagnosing COPD in primary care: what has real life practice got to do with guidelines? Multidiscip. Respir. Med. 2019; 14: 28. DOI:10.1186/s40248-019-0191-6.; Matsunaga K., Oishi K., Miravitlles M., Anzueto A. Time to revise COPD treatment algorithm. Int. J. Chron. Obstruct. Pulmon. Dis. 2019; 14: 2229–2234. DOI:10.2147/COPD.S219051.; Белевский А.С. Организация и проведение обучения больных хронической обструктивной болезнью легких: методические рекомендации. М.: Атмосфера; 2003.; Schermer T., Smeenk F., van Weel C. Referral and consultation in asthma and COPD: an exploration of pulmonologists’ views. Neth. J. Med. 2003; 61 (3): 71–81.; Oliveira A.S., Munhá J., Bugalho A. et al. Identification and assessment of COPD exacerbations. Pulmonology. 2018; 24 (1): 42–47. DOI:10.1016/j.rppnen.2017.10.006.; Walters J. A. E. et al. Pneumococcal vaccines for preventing pneumonia in chronic obstructive pulmonary disease. Cochrane Database Syst. Rev. 2017; 1 (1): CD001390. DOI:10.1002/14651858.CD001390.pub4.; Авдеев С.Н. Длительная кислородотерапия при хронической дыхательной недостаточности. М.: ФГУ «НИИ пульмонологии ФМБА» России; 2011.; Авдеев С.Н. Неинвазивная вентиляция легких у пациентов с хронической обструктивной болезнью легких в стационаре и домашних условиях. Пульмонология. 2017; 27 (2): 232–249. DOI:10.18093/0869-0189-2017-27-2-232-249.; Milačić N., Milačić B., Dunjic O. et al. Validity of CAT and mMRC – dyspnea score in evaluation of COPD severity. Acta Medica Medianae. 2015; 54 (1): 66–70. Available at: https://www.semanticscholar.org/paper/VALIDITY-OF-CAT-AND-MMRC-%E2%80%93-DYSPNEASCORE-IN-OF-COPD-Milaci%C4%87-Milaci%C4%87/fe7f485730f84d73ca35acd03b284ec19b86417aTest; Mahler D.A., Faryniarz K., Tomlinson D. et al. Impact of dyspnea and physiologic function on general health status in patients with chronic obstructive pulmonary disease. Chest. 1992; 102 (2): 395–401. DOI:10.1378/chest.102.2.395.; Gruffydd-Jones K., Marsden H.C., Holmes S. et al. Utility of COPD Assessment Test (CAT) in primary care consultations: a randomised controlled trial. Prim. Care Respir. J. 2013; 22 (1): 37–43. DOI:10.4104/pcrj.2013.00001.; Grouse L., DeWeerdt S., eds. IPAG Diagnosis and Management Handbook. Chronic Airways Diseases: A Guide for Primary Care Physicians. Edgewater, MCR Vision, Inc.; 2005.; Celli B.R. Change in the BODE index reflects disease modification in COPD: lessons from lung volume reduction surgery. Chest. 2006; 129 (4): 835–836. DOI:10.1378/chest.129.4.835.; https://journal.pulmonology.ru/pulm/article/view/4108Test

  8. 8
    دورية أكاديمية

    المساهمون: The Expert Council of the Russian Respiratory Society was held with the support of Novartis Pharma LLC. The representatives of Novartis Pharma LLC did not participate in the writing of this article, are not responsible for the content of the article, and are not responsible for any possible financial or other agreements with any third parties related to this article. The opinion of Novartis Pharma LLC may differ from the opinion of the author of the article and the editorial board., Совет экспертов Российского респираторного общества проведен при поддержке Общества с ограниченной ответственностью «Новартис Фарма». В написании настоящей статьи представители Общества с ограниченной ответственностью «Новартис Фарма» не принимали участия, не несут ответственности за содержание статьи и любые возможные, относящиеся к данной статье договоренности либо финансовые соглашения с любыми третьими лицами. Мнение Общества с ограниченной ответственностью «Новартис Фарма» может отличаться от мнения авторов статьи и редакции.

    المصدر: PULMONOLOGIYA; Том 31, № 1 (2021); 66-74 ; Пульмонология; Том 31, № 1 (2021); 66-74 ; 2541-9617 ; 0869-0189

    وصف الملف: application/pdf

    العلاقة: https://journal.pulmonology.ru/pulm/article/view/2268/1818Test; Global, regional, and national deaths, prevalence, disability-adjusted life years, and years lived with disability for chronic obstructive pulmonary disease and asthma, 1990—2015: a systematic analysis for the Global Burden of Disease Study 2015. Lancet Respir. Med. 2017; 5 (9): 691—706. DOI:10.1016/S2213-2600(17)30293-X.; Chuchalin A., Khaltaev N., Antonov N. et al. Chronic respiratory diseases and risk factors in 12 regions of the Russian Federation. Int. J. Chron. Obstruct. Pulmon. Dis. 2014; 9 (1): 963—974. DOI:10.2147/COPD.S67283.; Global Initiative for Asthma. 2020 GINA Report, Global Strategy for Asthma Management and Prevention. Available at: https://ginasthma.org/gina-reportsTest/ [Accessed: July 17, 2020].; Stanford R.H., Gilsenan A.W., Ziemiecki R. et al. Predictors of uncontrolled asthma in adult and pediatric patients: Analysis of the Asthma Control Characteristics and Prevalence Survey Studies (ACCESS). J. Asthma. 2010; 47 (3): 257—262. DOI:10.3109/02770900903584019.; Buhl R., Heaney L.G., Loefroth E. et al. One-year follow up of asthmatic patients newly initiated on treatment with medium- or high-dose inhaled corticosteroid-long-acting p2-agonist in UK primary care settings. Respir. Med. 2020; 162: 105859. DOI:10.1016/j.rmed.2019.105859.; Bateman E.D., Boushey H.A., Bousquet J. et al. Can guideline-defined asthma control be achieved? The Gaining Optimal Asthma ControL study. Am. J. Respir. Crit. Care Med. 2004; 170 (8): 836—844. DOI:10.1164/rccm.200401-033OC.; Price D., Fromer L., Kaplan A. et al. Is there a rationale and role for long-acting anticholinergic bronchodilators in asthma? NPJ Prim. Care Respir. Med. 2014; 24: 14023. DOI:10.1038/npjpcrm.2014.23.; Meurs H., Dekkers B.G., Maarsingh H. et al. Muscarinic receptors on airway mesenchymal cells: Novel findings for an ancient target. Pulm. Pharmacol. Ther. 2013; 26 (1): 145—155. DOI:10.1016/j.pupt.2012.07.003.; Alagha K., Palot A., Sofalvi T. et al. Long-acting muscarinic receptor antagonists for the treatment of chronic airway diseases. Ther. Adv. Chronic. Dis. 2014; 5 (2): 85—98. DOI:10.1177/2040622313518227.; Kerstjens H.A.M., Engel M., Dahl R. et al. Tiotropium in asthma poorly controlled with standard combination therapy. N. Engl. J. Med. 2012; 367 (13): 1198—207. DOI:10.1056/NEJMoa1208606.; Kew K.M., Dahri K. Long-acting muscarinic antagonists (LAMA) added to combination long-acting beta2-agonists and inhaled corticosteroids (LABA/ICS) versus LABA/ICS for adults with asthma. Cochrane Database Syst. Rev. 2015; (5): CD011721. DOI:10.1002/14651858.CD011721.; Kerstjens H.A.M., Maspero J., Chapman K.R. et al. Once-daily, single-inhaler mometasone—indacaterol—glycopyrronium versus mometasone—indacaterol or twice-daily fluti-casone—salmeterol in patients with inadequately controlled asthma (IRIDIUM): a randomised, double-blind, controlled phase 3 study. Lancet Respir. Med. 2020; 8 (10): 1000—1012. DOI:10.1016/S2213-2600(20)30190-9.; Gessner C., Kornmann O., Maspero J. et al. Fixed-dose combination of indacaterol/glycopyrronium/mometasone furoate once-daily versus salmeterol/fluticasone twice-daily plus tiotropium once-daily in patients with uncontrolled asthma: A randomised, phase IIIb, non-inferiority study (ARGON). Respir. Med. 2020; 170: 106021. DOI:10.1016/j.rmed.2020.106021.; Papi A., Humbert M., Kostikas K. et al. Medium-dose inda-caterol/glycopyrronium/mometasone furoate fixed-dose combination improves lung function compared with high-dose indacaterol/mometasone furoate and salmeterol/fluti-casone and reduces exacerbation rates versus high-dose sal-meterol/fluticasone in moderate-to-severe asthma: The IRIDIUM study. Am. J. Respir. Crit. Care Med. 2020; 201: A3008. DOI:10.1164/ajrccm-conference.2020.201.1_MeetingAbstracts.A3008.; Российское респираторное общество. Бронхиальная астма: Федеральные клинические рекомендации. 2019. Доступно на: http://spulmo.ru/upload/kr_bronhastma_2019.pdfTest [Дата обращения 17.07.20].; Derendorf H., Nave R., Drollmann A. et al. Relevance of pharmacokinetics and pharmacodynamics of inhaled corticosteroids to asthma. Eur. Respir. J. 2006; 28 (5): 1042— 1050. DOI:10.1183/09031936.00074905.; Cowie R.L., Giembycz M.A., Leigh R. Mometasone furoate: an inhaled glucocorticoid for the management of asthma in adults and children. Expert Opin. Pharmacother. 2009; 10 (12): 2009—2014. DOI:10.1517/14656560903078428.; Donohue J.F., Betts K.A., Du E.X. et al. Comparative efficacy of long-acting p2-agonists as monotherapy for chronic obstructive pulmonary disease: a network metaanalysis. Int. J. Chron. Obstruct. Pulmon. Dis. 2017; 12: 367381. DOI:10.2147/COPD.S119908.; Blais C.M., Davis B.E., Cockcroft D.W. The effect of gly-copyrronium and indacaterol, as monotherapy and in combination, on the methacholine dose-response curve of mild asthmatics: a randomized three-way crossover study. Respir. Res. 2017; 18 (1): 146. DOI:10.1186/s12931-017-0628-4.; Sanders M.J. Guiding inspiratory flow: development of the In-Check DIAL G16, a tool for improving inhaler technique. Pulm. Med. 2017; 2017: 1495867. DOI:10.1155/2017/1495867.; Altman P., Wehbe L., Dederichs J. et al. Comparison of peak inspiratory flow rate via the Breezhaler®, Ellipta® and HandiHaler® dry powder inhalers in patients with moderate to very severe COPD: a randomized cross-over trial. BMC Pulm. Med. 2018; 18 (1): 100. DOI:10.1186/s12890-018-0662-0.; Dolovich M.A., Kuttler A., Dimke T.J., Usmani O.S. Biophysical model to predict lung delivery from a dual bronchodilator dry-powder inhaler. Int. J. Pharm. 2019; 1: 100018. DOI:10.1016/j.ijpx.2019.100018.; Sanduzzi A., Balbo P., Candoli P. et al. COPD: adherence to therapy. Multidiscip. Respir. Med. 2014; 9: 60. DOI:10.1186/2049-6958-9-60.; Price D., Keininger D.L., Viswanad B. et al. Factors associated with appropriate inhaler use in patients with COPD -lessons from the REAL survey [Erratum]. Int. J. Chron. Obstruct. Pulmon. Dis. 2018; 13: 2253-2254. DOI:10.2147/COPD.S178410.; Визель А.А., Резяпова А.И., Визель И.Ю., Амиров Н.Б. К поиску «идеального» средства доставки лекарственных веществ при обструктивных заболеваниях органов дыхания: наблюдательное исследование в сравнении с данными литературы. Вестник современной клинической медицины. 2020; 13 (2): 22-30. DOI:10.20969/VSKM.2020.13(2).22-30.; Vaidya S.S., Khindri S., Robinson J. et al. Pharmacokinetics (PK) of single doses of mometasone furoate (MF) delivered via the Breezhaler® (BH) and Twisthaler® (TH) devices in healthy subjects. Eur. Respir. J. 2012; 40 (Suppl. 56): 2145. Available at: https://erj.ersjournals.com/content/erj/40/Suppl_56/P2145.full.pdfTest; Buhl R., Tanase A.M., Hosoe M. et al. A randomized, double-blind study to compare the efficacy and safety of two doses of mometasone furoate delivered via Breezhaler® or Twisthaler® in patients with asthma. Pulm. Pharmacol. Ther. 2020; 62: 101919. DOI:10.1016/j.pupt.2020.101919.; Saini S.D., Schoenfeld P., Kaulback K., Dubinsky M.C. Effect of medication dosing frequency on adherence in chronic diseases. Am. J. Manag. Care. 2009; 15 (6): e22-33.; Beier J., Watz H., Scholz V. The efficacy of the combination indacaterol/glycopyrronium/mometasone furoate is independent of time of dosing in patients with asthma. Am. J. Respir. Crit. Care Med. 2019; 199: A1277. DOI:10.1164/ajrc-cm-conference.2019.199.1_MeetingAbstracts.A1277.; Virchow J.C., Kuna P., Paggiaro P. et al. Single inhaler extrafine triple therapy in uncontrolled asthma (TRIMARAN and TRIGGER): two double-blind, parallel-group, randomised, controlled phase 3 trials. Lancet. 2019; 394 (10210): 1737-1749. DOI:10.1016/S0140-6736(19)32215-9.; Lee L.A., Bailes Z., Barnes N. et al. Efficacy and safety of once-daily single-inhaler triple therapy (FF/UMEC/VI) versus FF/VI in patients with inadequately controlled asthma (CAPTAIN): a double-blind, randomised, phase 3A trial. Lancet Respir. Med. 2021; 9 (1): 69-84. DOI:10.1016/S2213-2600(20)30389-1.; https://journal.pulmonology.ru/pulm/article/view/2268Test

  9. 9
    دورية أكاديمية

    المصدر: PULMONOLOGIYA; Том 31, № 3 (2021); 296-303 ; Пульмонология; Том 31, № 3 (2021); 296-303 ; 2541-9617 ; 0869-0189

    وصف الملف: application/pdf

    العلاقة: https://journal.pulmonology.ru/pulm/article/view/2365/1839Test; Министерство здравоохранения Российской Федерации. Временные методические рекомендации: Профилактика, диагностика и лечение новой коронавирусной инфекции (COVID-19). Версия 9 (26.10.2020). Доступно на: https://endoexpert.ru/dokumenty-i-prikazy/versiya-9-ot-26-10-2020-vremennye-metodicheskie-rekomendatsii-profilaktika-diagnostika-i-lechenie-noTest/; Министерство здравоохранения Российской Федерации. Методические рекомендации: особенности клинических проявлений и лечения заболевания, вызванного новой коронавирусной инфекцией (COVID-19) у детей. Версия 2 (03.07.2020). Доступно на: https://static-0.minzdrav.gov.ru/system/attachments/attaches/000/050/914/original/03062020_%D0%B4%D0%B5%D1%82%D0%B8_COVID-19_v2.pdfTest; Геппе Н.А. и др. (ред.). Внебольничная пневмония у детей: Клиническое руководство. М.: МедКом-Про; 2020.; Баранов А.А. (ред.). Клинические рекомендации по диагностике и лечению острых респираторных заболеваний (ОРЗ); лечению пневмонии у детей. М.; 2014. Доступно на: https://minzdrav.govmurman.ru/files/Klinicheskie_rekomendatcii_ORZ.pdfTest; Ackermann M., Stijn E.V., Kuehnel M. et al. Pulmonary vascular endothelialitis, thrombosis, and angiogenesis in COVID-19. N. Engl. J. Med. 2020; 383 (2): 120–128. DOI:10.1056/NEJMoa2015432.; Лобанова О.А., Трусова Д.С., Руденко Е.Е. и др. Патоморфология новой коронавирусной инфекции COVID-19. Cибирский журнал клинической и экспериментальной медицины. 2020; 35 (3): 47–52. DOI:10.29001/2073-8552-2020-35-3-47-52.; Pavone P., Ceccarelli M., Taibi R. et al. Outbreak of COVID-19 infection in children: fear and serenity. Eur. Rev. Med. Pharmacol. Sci. 2020; 24 (8): 4572–4575. DOI:10.26355/eurrev_202004_21043.; Синопальников А.И. Антибиотики и внебольничные инфекции нижних дыхательных путей. Кому? Какой? Клиническая микробиология и антимикробная химиотерапия. 2019; 21 (1): 27–38. DOI:10.36488/cmac.2019.1.27-38.; Александрович Ю.С., Байбарина Е.Н., Баранов А.А. и др. Ведение детей с заболеванием, вызванным новой коронавирусной инфекцией (SARS-CoV-2). Педиатрическая фармакология. 2020; 17 (2): 103–118. DOI:10.15690/pf.v17i2.2096.; Shen K., Yang Y., Wang T. et al. Diagnosis, treatment, and prevention of 2019 novel coronavirus infection in children: experts’ consensus statement. World J. Pediatr. 2020; 16 (3): 223–231. DOI:10.1007/s12519-020-00343-7.; Song Y., Zhang M., Yin L. et al. COVID-19 treatment: close to a cure? A rapid review of pharmacotherapies for the novel coronavirus (SARS-CoV-2). Int. J. Antimicrob. Agents. 2020; 56 (2): 106080. DOI:10.1016/j.ijantimicag.2020.106080.; https://journal.pulmonology.ru/pulm/article/view/2365Test

  10. 10
    دورية أكاديمية

    المصدر: PULMONOLOGIYA; № 2 (2002); 28-30 ; Пульмонология; № 2 (2002); 28-30 ; 2541-9617 ; 0869-0189

    وصف الملف: application/pdf

    العلاقة: https://journal.pulmonology.ru/pulm/article/view/2914/2320Test; Айсанов З.Р., Чучалин А.Г . Физиология дыхания. В кн.: Чучалин А.Г. (ред.) Бронхиальная астма. М .: Агар; 1997; Т. 1, гл. 10: 242-290.; Стандартизация легочных функциональных тестов. Официальный отчет Европейского респираторного общества. Пульмонология 1993; Прил.: 6-44.; Метод оптимизации антиастматической терапии / Чучалин А.Г., Антонов Н.С., Сахарова Г.М . и др. М .; 1997.; Чучалин А.Г. Пульмонология в России и пути ее развития. Пульмонология 1998; 4: 6-22.; Чучалин А.Г., Черняк Б.А., Медникова О.Б., Беда М.Б. Эффективность сочетанного применения флутиказона пропионата и сальметерола при 18-месячной терапии больных стероидозависимой бронхиальной астмой. Там же, 3: 64-70.; Шмелев Е.И. Хронический обструктивный бронхит. В кн.: Чучалин А.Г. (ред.) Хронические обструктивные болезни легких. М.: ЗАО Изд-во "БИНОМ "; СПб: "Невский диалект"; 1998; гл. 3: 39-56.; Шмушкович Б.И., Чеглакова Т.А., Чучалин А.Г. Бронхиальная астма. Механизмы кортикозависимости. Пульмонология 1993; 1: 35-49.; Шмушкович Б.И. Кортикозависимая бронхиальная астма (вопросы клиники, осложнений, патогенеза и лечения): Автореф. дис. . д-ра мед. наук. М .; 1995.; Шмушкович Б.И. Глюкокортикоидные гормоны в лечении больных бронхиальной астмой. В кн.: Чучалин А.Г. (ред.) Бронхиальная астма. М .: Агар; 1997; т. 2, гл. 25: 213-223.; Barnes P.J. Effects of p2-agonists and steroids on p2-adrenoceptors. Eur. Respir. Rev. 1998; 8 (55): 225-226.; Global initiative for asthma. Global strategy for asthma management and prevention. NHLBI/WHO workshop report. 1993 (National Institutes of Health Publ. № 95-3659, January 1995). Bethesda; 1995. 1-176.; Lebowitz M.D., Knudson R., Burrows B. Tucson epidemiologic study of obstructive lung diseases. 1: Methodology and prevalence of disease. Am. J. Epidemiol. 1975; 102 (2): 137-152.; Lundback B., SandstrOm Т., Garett R. et al. Comparison of oral corticosteroid sparing effect of inhaled fluticasone propionate (FP) 750 %7Cig bd via the Dischaler with budesonide (BUD) 800 %7Cig bd via the Turbuhaler in patients with chronic severe asthma. Eur. Respir. J. 1997; 10 (suppl. 25): 172s.; Noonan М., Chervinsky P., Busse W.W. et al. Fluticasone propionate reduces oral prednisone use while it improves asthma control and quality of life. Am. J. Respir. Crit. Care Med. 1995; 152: 1467-1473.; Westbroek J., Saarelainen S., Laher M. et al. Oral steroid-sparing effect of nebulised fluticasone propionate 2 mg twice daily, 0.5 mg twice daily and placebo in patients with severe chronic asthma. Eur. Respir. J. 1997; 10 (suppl. 25): 173s.; https://journal.pulmonology.ru/pulm/article/view/2914Test