يعرض 1 - 10 نتائج من 14 نتيجة بحث عن '"Е. В. Гаврилова"', وقت الاستعلام: 0.96s تنقيح النتائج
  1. 1
    دورية أكاديمية

    المصدر: Izvestiya Rossiiskoi Akademii Nauk. Seriya Geograficheskaya; Том 87, № 6 (2023): Гидроэкологические проблемы в бассейне Волги и их последствия для Каспия; 914-929 ; Известия Российской академии наук. Серия географическая; Том 87, № 6 (2023): Гидроэкологические проблемы в бассейне Волги и их последствия для Каспия; 914-929 ; 2658-6975 ; 2587-5566

    وصف الملف: application/pdf

    العلاقة: https://izvestia.igras.ru/jour/article/view/2364/1433Test; Борисов Е.В., Ермаков В.Б., Мельников В.А. Анализ периодической структуры климатических колебаний уровня Каспийского моря // Процессы в геосредах. 2019. № 2. С. 146–152.; Водный баланс и колебания уровня Каспийского моря. Моделирование и прогноз / под ред. Е.С. Нестерова. М.: Триада Лтд, 2016. 374 с.; Георгиевский В.Ю., Грек Е.А., Грек Е.Н., Лобанова А.Г., Молчанова Т.Г. Пространственно-временные изменения характеристик экстремального стока рек бассейна Волги // Метеорология и гидрология. 2018. № 10. С. 8–16.; Гидрометеорологические опасности / под ред. Г.С. Голицына, А.А. Васильева. М.: КРУК, 2001. Т. 5. 295 с.; Глобальное изменение климата и Южный федеральный округ. На пути к адаптации. Климатический центр Росгидромета. СПб.: Наукоемкие технологии, 2021. 12 с.; Катунин Д.Н. Гидроэкологические основы формирования экосистемных процессов в Каспийском море и дельте реки Волги. Астрахань: КаспНИРХ, 2014. 478 с.; Курапов А.А., Островская Е.В., Даирова Д.С., Васильева Т.В. Влияние изменений климата на биологические сообщества Северного Каспия / отв. ред. А.Ф. Сокольский. Астрахань: Издатель Сорокин Р.В., 2020. 265 с.; Леонтьев О.К., Маев Е.Г., Рычагов Г.И. Геоморфология берегов и дна Каспийского моря. М.: Изд-во Моск. ун-та, 1977. 210 с.; Лобанов В.А., Наурозбаева Ж.К. Влияние изменения климата на ледовый режим Северного Каспия: Монография. СПб.: РГГМУ, 2021. 140 с.; Методы оценки последствий изменения климата для физических и биологических систем / науч. ред. С.М. Семенов. М.: Росгидромет, 2012. 510 с.; Нестеров Е.С., Попов С.К., Лобов А.Л. Статистика и моделирование штормовых нагонов в Северном Каспии // Метеорология и гидрология. 2018. № 10. С. 53–59.; Обедиентова Г.В. Эрозионные циклы и формирование долины Волги. М.: Наука, 1977. 239 с.; Проблемы загрязнения устьевой области Волги / отв. ред. Е.В. Островская. Астрахань: Издатель Сорокин Р.В., 2021. 328 с.; Рычагов Г.И., Коротаев В.Н., Чернов А.В. История формирования палеодельт Нижней Волги // Геоморфология. 2010. № 3. С. 73–81.; Свиточ А.А. Палеогеография Большого Каспия // Вестн. Моск. ун-та. Серия 5. География. 2015. № 4. С. 69–80.; Свиточ А.А. Регрессивные эпохи большого Каспия // Водные ресурсы. 2016. Т. 43. № 2. С. 134–148.; Сиднев А.В. История развития гидрографической сети плиоцена в Предуралье. М.: Наука, 1985. 224 с.; Торопов П.А., Алешина М.А., Семенов В.А. Тенденции изменений климата Черноморско-Каспийского региона за последние 30 лет // Вестн. Моск. ун-та. Серия 5. География. 2018. № 2. С. 67–77.; Третий оценочный доклад об изменениях климата и их последствиях на территории Российской Федерации / под ред. В.М. Катцова. Росгидромет. СПб.: Наукоемкие технологии, 2022. 676 с.; Фролов А.В. Моделирование влияния оттока в залив Кара-Богаз-Гол на плотность распределения вероятности уровня Каспийского моря // Математическое моделирование и численные методы. 2016. № 3 (11). С. 79–92.; Chen J.L., Pekker T., Wilson C.R., Tapley B.D., Kostianoy A.G., Cretaux J.-F., Safarov E.S. Long-term Caspian Sea level change // Geophys. Res. Lett. 2017. Vol. 44. P. 6993–7001. https://doi.org/10.1002/2017GL073958Test; Elguindi N., Giorgi F. Projected changes in the Caspian Sea level for the 21st century based on the latest AOGCM simulations // Geophys. Res. Lett. 2006. Vol. 33. Article L08706. https://doi.org/10.1029/2006GL025943Test; Lahijani H.A.K., Azizpour J., Arpe K., Abtahi B., et al. Tracking of sea level impact on Caspian Ramsar sites and potential restoration of the Gorgan Bay on the southeast Caspian coast // Science of The Total Environ. 2023a. Vol. 857. Part 1. Article 158833.; Lahijani H., Leroy S.A.G., Arpe K., Cretaux J.-F. Caspian Sea level changes during instrumental period, its impact and forecast: A review // Earth-Science Reviews. 2023b. Vol. 241. Article 104428.; Lattuada M., Albrecht C., Wilke T. Differential impact of anthropogenic pressures on Caspian Sea ecoregions // Mar. Poll. Bull. 2019. Vol. 142. P. 274–281.; Leroy S.A.G., Reimer P.J., Lahijani H.K., Naderi Beni A., Sauer E., Chali’e F., Arpe K., Demory F., Mertens K., Belkacem D., Kakroodi A.A., Omrani Rekavandi H., Nokandeh J., Amini A. Caspian Sea levels over the last 2200 years, with new data from the S-E corner // Geomorphology. 2022. Vol. 403. Article 108136.; Nandini-Weiss Sri D., Prange M., Arpe K., Merkel U., Schulz M. Past and future impact of the winter North Atlantic Oscillation in the Caspian Sea catchment area // Int. J. of Climatology. 2020. Vol. 40. P. 2717–2731. https://doi.org/10.1002/joc.6362Test; Prange M., Wilke T., Wesselingh F.P. The other side of sea level change // Commun Earth Environ. 2020. Vol. 1 (69). https://doi.org/10.1038/s43247-020-00075-6Test; https://izvestia.igras.ru/jour/article/view/2364Test

  2. 2
    دورية أكاديمية

    المساهمون: Исследование проводилось в рамках выполнения государственного задания ФБУН Государственный научный центр вирусологии и биотехнологии «Вектор» Роспотребнадзора «Мониторинг вируса гриппа птиц и животных».

    المصدر: Problems of Particularly Dangerous Infections; № 1 (2023); 48-55 ; Проблемы особо опасных инфекций; № 1 (2023); 48-55 ; 2658-719X ; 0370-1069

    وصف الملف: application/pdf

    العلاقة: https://journal.microbe.ru/jour/article/view/1789/1359Test; The International Committee on Taxonomy of Viruses (ICTV). Virus Taxonomy: 2021 Release. (Cited 28 Feb 2023). [Internet]. Available from: https://ictv.global/taxonomyTest.; Sreenivasan C.C., Thomas M., Kaushik R.S., Wang D., Li F. Influenza A in bovine species: a narrative literature review. Viruses. 2019; 11(6):561. DOI:10.3390/v11060561.; Osterhaus A.D., Rimmelzwaan G.F., Martina B.E., Bestebroer T.M., Fouchier R.A. Influenza B virus in seals. Science. 2000; 288(5468):1051–3. DOI:10.1126/science.288.5468.1051.; Hause B.M., Collin E.A., Liu R., Huang B., Sheng Z., Lu W., Wang D., Nelson E.A., Li F. Characterization of a novel influenza virus in cattle and Swine: proposal for a new genus in the Orthomyxoviridae family. mBio. 2014; 5(2):e00031-14. DOI:10.1128/mBio.00031-14.; Collin E.A., Sheng Z., Lang Y., Ma W., Hause B.M., Li F. Cocirculation of two distinct genetic and antigenic lineages of proposed influenza D virus in cattle. J. Virol. 2015; 89(2):1036–42. DOI:10.1128/JVI.02718-14.; Tong S., Li Y., Rivailler P., Conrardy C., Castillo D.A., Chen L.M., Recuenco S., Ellison J.A., Davis C.T., York I.A., Turmelle A.S., Moran D., Rogers S., Shi M., Tao Y., Weil M.R., Tang K., Rowe L.A., Sammons S., Xu X., Frace M., Lindblade K.A., Cox N.J., Anderson L.J., Rupprecht C.E., Donis R.O. A distinct lineage of influenza A virus from bats. Proc. Natl Acad. Sci. USA. 2012; 109(11):4269–74. DOI:10.1073/pnas.1116200109.; Tong S., Zhu X., Li Y., Shi M., Zhang J., Bourgeois M., Yang H., Chen X., Recuenco S., Gomez J., Chen L.M., Johnson A., Tao Y., Dreyfus C., Yu W., McBride R., Carney P.J., Gilbert A.T., Chang J., Guo Z., Davis C.T., Paulson J.C., Stevens J., Rupprecht C.E., Holmes E.C., Wilson I.A., Donis R.O. New world bats harbor diverse influenza A viruses. PLoS Pathog. 2013; 9(10):e1003657. DOI:10.1371/journal.ppat.1003657.; Webster R.G., Bean W.J., Gorman O.T., Chambers T.M., Kawaoka Y. Evolution and ecology of influenza A viruses. Microbiol. Rev. 1992; 56(1):152–79. DOI:10.1128/mr.56.1.152-179.1992.; Olsen B., Munster V.J., Wallensten A., Waldenström J., Osterhaus A.D., Fouchier R.A. Global patterns of influenza a virus in wild birds. Science. 2006; 312(5772):384–8. DOI:10.1126/science.1122438.; Alexander D.J. A review of avian influenza in different bird species. Vet. Microbiol. 2000; 74(1-2):3–13. DOI:10.1016/s0378-1135(00)00160-7.; Yoon S.W., Webby R.J., Webster R.G. Evolution and ecology of influenza A viruses. Curr. Top. Microbiol. Immunol. 2014; 385:359–75. DOI:10.1007/82_2014_396.; WHO/OIE/FAO H5N1 Evolution Working Group. Toward a unified nomenclature system for highly pathogenic avian influenza virus (H5N1). Emerg. Infect. Dis. 2008; 14(7):e1. DOI:10.3201/eid1407.071681.; World Health Organization. Cumulative number of confirmed human cases for avian influenza A(H5N1) reported to WHO, 2003–2023, 5 January 2023. (Cited 28 Feb 2023). [Internet]. Available from: https://www.who.int/publications/m/item/cumulative-numberof-confirmed-human-cases-for-avian-influenza-aTest(h5n1)-reported-towho-2003-2022-5-jan-2023.; World Health Organization. Avian Influenza Weekly Update Number 883. (Cited 28 Feb 2023). [Internet]. Available from: https://www.who.int/docs/default-source/wpro---documents/emergency/surveillance/avian-influenza/ai_20230217.pdf?sfvrsn=22ea0816_24#:~:text=To%20date,%20a%20total%20of,Western%20Pacific%20Region%20since%202014Test.; European Food Safety Authority; European Centre for Disease Prevention and Control; European Union Reference Laboratory for Avian Influenza; Adlhoch C., Fusaro A., Gonzales J.L., Kuiken T., Marangon S., Niqueux É., Staubach C., Terregino C., Guajardo I.M., Chuzhakina K., Baldinelli F. Avian influenza overview June – September 2022. EFSA J. 2022; 20(10):e07597. DOI:10.2903/j.efsa.2022.7597.; Oliver I., Roberts J., Brown C.S., Byrne A.M., Mellon D., Hansen R., Banyard A.C., James J., Donati M., Porter R., Ellis J., Cogdale J., Lackenby A., Chand M., Dabrera G., Brown I.H., Zambon M. A case of avian influenza A(H5N1) in England, January 2022. Euro Surveill. 2022; 27(5):2200061. DOI:10.2807/1560-7917.ES.2022.27.5.2200061.; Centers for Disease Control and Prevention. U.S. Case of Human Avian Influenza A(H5) Virus Reported. (Cited 28 Feb 2023). [Internet]. Available from: https://www.cdc.gov/media/releases/2022/s0428-avian-flu.htmlTest.; World Health Organization. Avian Influenza A (H5N1) – Spain. [Internet]. Available from: https://www.who.int/emergencies/disease-outbreak-news/item/2022-DON420Test (Cited 28 Feb 2023).; European Food Safety Authority, European Centre for Disease Prevention and Control, European Union Reference Laboratory for Avian Influenza; Adlhoch C., Fusaro A., Gonzales J.L., Kuiken T., Marangon S., Niqueux É., Staubach C., Terregino C., Aznar I., Guajardo I.M., Baldinelli F. Avian influenza overview September – December 2022. EFSA J. 2023; 21(1):e07786. DOI:10.2903/j.efsa.2023.7786.; World Health Organization (WHO). Antigenic and genetic characteristics of zoonotic influenza A viruses and development of candidate vaccine viruses for pandemic preparedness. September 2022. (Cited 28 Feb 2023). [Internet]. Available from: https://cdn.who.int/media/docs/default-source/influenza/who-influenzarecommendations/vcm-southern-hemisphere-recommendation-2023/202209_zoonotic_vaccinvirusupdate.pdf?sfvrsn=a91f123b_7Test.; World Health Organization (WHO). Genetic and antigenic characteristics of zoonotic influenza A viruses and development of candidate vaccine viruses for pandemic preparedness. February 2023. (Cited 28 Feb 2023). [Internet]. Available from: https://cdn.who.int/media/docs/default-source/influenza/who-influenzarecommendations/vcm-northern-hemisphere-recommendation-2023-2024/20230224_zoonotic_recommendations.pdf?sfvrsn=38c739fa_4Test.; European Food Safety Authority; European Centre for Disease Prevention and Control; European Union Reference Laboratory for Avian Influenza; Adlhoch C., Fusaro A., Gonzales J.L., Kuiken T., Marangon S., Niqueux É., Staubach C., Terregino C., Aznar I., Muñoz Guajardo I., Baldinelli F. Avian influenza overview December 2021 – March 2022. EFSA J. 2022; 20(4):e07289. DOI:10.2903/j.efsa.2022.7289.; European Food Safety Authority; European Centre for Disease Prevention and Control; European Union Reference Laboratory for Avian Influenza; Adlhoch C., Fusaro A., Gonzales J.L., Kuiken T., Marangon S., Niqueux É., Staubach C., Terregino C., Aznar I., Guajardo I.M., Baldinelli F. Avian influenza overview March – June 2022. EFSA J. 2022; 20(8):e07415. DOI:10.2903/j.efsa.2022.7415.; Manzoor R., Sakoda Y., Nomura N., Tsuda Y., Ozaki H., Okamatsu M., Kida H. PB2 protein of a highly pathogenic avian influenza virus strain A/chicken/Yamaguchi/7/2004 (H5N1) determines its replication potential in pigs. J. Virol. 2009; 83(4):1572–8. DOI:10.1128/JVI.01879-08.; Kim J.H., Hatta M., Watanabe S., Neumann G., Watanabe T., Kawaoka Y. Role of host-specific amino acids in the pathogenicity of avian H5N1 influenza viruses in mice. J. Gen. Virol. 2010; 91(Pt. 5):1284–9. DOI:10.1099/vir.0.018143-0.; Herfst S., Schrauwen E.J., Linster M., Chutinimitkul S., de Wit E., Munster V.J., Sorrell E.M., Bestebroer T.M., Burke D.F., Smith D.J., Rimmelzwaan G.F., Osterhaus A.D., Fouchier R.A. Airborne transmission of influenza A/H5N1 virus between ferrets. Science. 2012; 336(6088):1534–41. DOI:10.1126/science.1213362.; Suttie A., Deng Y.M., Greenhill A.R., Dussart P., Horwood P.F., Karlsson E.A. Inventory of molecular markers affecting biological characteristics of avian influenza A viruses. Virus Genes. 2019; 55(6):739–68. DOI:10.1007/s11262-019-01700-z.; Agüero M., Monne I., Sánchez A., Zecchin B., Fusaro A., Ruano M.J., Del Valle Arrojo M., Fernández-Antonio R., Souto A.M., Tordable P., Cañás J., Bonfante F., Giussani E., Terregino C., Orejas J.J. Highly pathogenic avian influenza A(H5N1) virus infection in farmed minks, Spain, October 2022. Euro Surveill. 2023; 28(3):2300001. DOI:10.2807/1560-7917.ES.2023.28.3.2300001.; Lycett S.J., Duchatel F., Digard P. A brief history of bird flu. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2019; 374(1775):20180257. DOI:10.1098/rstb.2018.0257.; Veen J., Yurlov A.K., Delany S.N., Mihantiev A.I., Selivanova M.A., Boere G.C. An Atlas of Movements of Southwest Siberian Waterbirds. Wetlands International; 2005. 60 p. (Cited 28 Feb 2023). [Internet]. Available from: http://gull-research.org/papers/articles09/atlas_SE_siberinan_waterbirds_2.pdfTest.; https://journal.microbe.ru/jour/article/view/1789Test

  3. 3
    دورية أكاديمية

    المصدر: Epidemiology and Vaccinal Prevention; Том 21, № 6 (2022); 34-47 ; Эпидемиология и Вакцинопрофилактика; Том 21, № 6 (2022); 34-47 ; 2619-0494 ; 2073-3046

    وصف الملف: application/pdf

    العلاقة: https://www.epidemvac.ru/jour/article/view/1702/890Test; Маренникова С. С., Щелкунов С. Н. Патогенные для человека ортопоксвирусы. М.: Товарищество научных изданий КМК, 1998. 386 с.; Shchelkunov S.N. Emergence and reemergence of smallpox: the need in development of a new generation smallpox vaccine. Vaccine. 2011;29S:D49–53.; Fenner F., Henderson D.A., Arita I., et al. Smallpox and Its Eradication. Geneva: World Health Organization; 1988.; Shchelkunov S.N. An increasing danger of zoonotic orthopoxvirus infections. PLoS Pathog. 2013;9:e1003756.; Щелкунов С. Н., Щелкунова Г. А. Нужно быть готовыми к возврату оспы. Вопросы вирусологии. 2019;64(5):206–14.; Yong S.E.F., Ng O.T., Ho Z.J.M., et al. Imported monkeypox, Singapore. Emerg Infect Dis. 2020;26(8):1826–30.; Noyce R.S., Lederman S., Evans D.H. Construction of an infectious horsepox virus vaccine from chemically synthesized DNA fragments. PLoS One. 2018;13(1):e0188453.; Kemper A.R., Davis M.M., Freed G.L. Expected adverse events in a mass smallpox vaccination campaign. Eff Clin Pract. 2002;5:84–90.; Якубицкий С. Н., Колосова И. В., Максютов Р. А., Щелкунов С. Н. Высокоиммуногенный вариант аттенуированного вируса осповакцины. Доклады Академии наук. 2016;466(2):241–4.; Бектимиров Т. А. Современные концепции и принципы обеспечения качества при производстве вакцинных препаратов. – Бюлл.: Вакцинация. Гарантия качества вакцин. 2000; №9.; Руководство по проведению доклинических исследований лекарственных средств (Иммунобиологические лекарственные препараты), часть вторая. ФГБУ «НЦЭСМП» Минздравсоцразвития России. М., 2012 г.; РД 42-28-8-89. Доклинические испытания новых медицинских иммунобиологических препаратов. Основные положения. М., 1989.; Европейская фармакопея. 7.0. - 7-е изд. - Москва : Ремедиум, 2011.; Moss B. Smallpox vaccines: targets of protective immunity. Immunol Rev. 2011;239:8–26.; Tscharke D.C., Smith G.L. A model for vaccinia virus pathogenesis and immunity based on intradermal injection of mouse ear pinnae. J Gen Virol. 1999;80:2751–5.; Zhang C.X., Sauder C., Malik T., et al. A mouse-based assay for the pre-clinical neurovirulence assessment of vaccinia virus-based smallpox vaccines. Biologicals. 2010;38:278–83.; Damon I. K., Davidson W.B., Hughes C.M., et al. Evaluation of smallpox vaccines using variola neutralization. J Gen Virol. 2009;90:1962–6.; Якубицкий С. Н., Колосова И. В., Максютов Р. А., Щелкунов С. Н. Аттенуация вируса осповакцины. Acta Naturae. 2015;7(4):125–34.; Щелкунов С. Н., Сергеев А. А., Якубицкий С. Н. и др. Оценка иммуногенности и протективности вируса осповакцины LIVP-GFP на трех видах лабораторных животных. Инфекция и иммунитет. 2021;11(6):1167–72.; Мухачева А. В., Перекрест В. В., Мовсесянц А. А. и др. Результаты переаттестации отраслевого стандартного образца и использование его при экспертизе качества вакцин против натуральной оспы. Эпидемиология и Вакцинопрофилактика. 2016;6:70–9.; Перекрест В. В., Мовсесянц А. А., Мухачева А. В. и др. Препараты для специфической профилактики натуральной оспы, зарегистрированные в Российской Федерации. Биопрепараты. 2013;2:4–13.; Государственная фармакопея Российской Федерации. XIII издание. 2015. М.: МЗ РФ.; Shchelkunov S.N., Yakubitskiy S.N., Sergeev A.A., et al. Effect of the route of administration of the vaccinia virus strain LIVP to mice on its virulence and immunogenicity. Viruses. 2020;12(8):795.; Sachs, L. Statistische Auswertungsmethoden; Springer: Heidelberg, Germany, 1972; 193p.; https://www.epidemvac.ru/jour/article/view/1702Test

  4. 4
    دورية أكاديمية

    المصدر: Problems of Particularly Dangerous Infections; № 4 (2021); 143-149 ; Проблемы особо опасных инфекций; № 4 (2021); 143-149 ; 2658-719X ; 0370-1069

    وصف الملف: application/pdf

    العلاقة: https://journal.microbe.ru/jour/article/view/1604/1266Test; Lázaro-Frías A., Gómez-Medina S., Sánchez-Sampedro L., Ljungberg K., Ustav M., Liljeström P., Muñoz-Fontela C., Esteban M., García-Arriaza J. Distinct immunogenicity and efficacy of poxvirus-based vaccine candidates against Ebola virus expressing GP and VP40 proteins. J. Virol. 2018; 92(11):e00363-18. DOI:10.1128/JVI.00363-18.; Malherbe D.C., Domi A., Hauser M.J., Meyer M., Gunn B.M., Alter G., Bukreyev A., Guirakhoo F. Modified vaccinia Ankara vaccine expressing Marburg virus-like particles protects guinea pigs from lethal Marburg virus infection. NPJ Vaccines. 2020; 5:78. DOI:10.1038/s41541-020-00226-y.; Volz A., Sutter G. Modified vaccinia virus Ankara: history, value in basic research, and current perspectives for vaccine development. Adv. Virus Res. 2017; 97:187–243. DOI:10.1016/bs.aivir.2016.07.001.; Kolesnikova L., Bohil A.B., Cheney R.E., Becker S. Budding of Marburgvirus is associated with filopodia. Cell Microbiol. 2007; 9(4):939–51. DOI:10.1111/j.1462-5822.2006.00842.x.; Dye J.M., Warfield K.L., Wells J.B., Unfer R.C., Shulenin S., Vu H., Nichols D.K., Aman M.J., Bavari S. Virus-like particle vaccination protects nonhuman primates from lethal aerosol exposure with Marburgvirus (VLP vaccination protects macaques against aerosol challenges). Viruses. 2016; 8(4):94. DOI:10.3390/v8040094.; Ткачева А.В., Сиволобова Г.Ф., Гражданцева А.А., Шевелев О.Б., Разумов И.А., Завьялов Е.Л., Локтев В.Б., Кочнева Г.В. Таргетная терапия глиобластомы человека с использованием онколитического потенциала парвовируса и аттенуированных штаммов вируса осповакцины. Молекулярная генетика, микробиология и вирусология. 2019; 37(2):83–91. DOI:10.17116/molgen20193702183.; Kochneva G.V., Grazhdantseva A.A., Sivolobova G.F., Tkacheva A.V., Shvalov A.N., Unusova A.Yu., Ryabchikova E.I., Netesov S.V. Model of artificial metastasis of human epidermoid carcinoma A431 in nude mice for the examination of oncolytic activity of the vaccinia virus. Russ. J. Genet. Appl. Res. 2016; 6(4):469–76. DOI:10.1134/S2079059716040109.; Полтавченко А.Г., Ерш А.В., Таранов О.С., Якубицкий С.Н., Филатов П.В. Быстрый иммунохимический метод выявления ортопоксвирусов (Orthopoxvirus, Chordopoxvirinae, Poxviridae). Вопросы вирусологии. 2019; 64(6):291–7. DOI:10.36233/0507-4088-2019-64-6-291-297.; Srivastava R., Roy S., Coulon P.-G., Vahed H., Prakash S., Dhanushkodi N., Kim G.J., Fouladi M.A., Campo J., Teng A.A., Liang X., Schaefer H., BenMohamed L. Therapeutic mucosal vaccination of herpes simplex virus 2-infected guinea pigs with ribonucleotide reductase 2 (RR2) protein boosts antiviral neutralizing antibodies and local tissue-resident CD4+ and CD8+ TRM cells associated with protection against recurrent genital herpes. J. Virol. 2019; 93(9):e02309-18. DOI:10.1128/JVI.02309-18.; Reguzova A., Antonets D., Karpenko L., Ilyichev A., Maksyutov R., Bazhan S. Design and evaluation of optimized artificial HIV-1 poly-T cell-epitope immunogens. PLoS One. 2015; 10(3):e0116412. DOI:10.1371/journal.pone.0116412.; Gilchuk I., Gilchuk P., Sapparapu G., Lampley R., Singh V., Kose N., Blum D.L., Hughes L.J., Satheshkumar P.S., Townsend M.B., Kondas A.V., Reed Z., Weiner Z., Olson V.A., Hammarlund E., Raue H.-P., Slifka M.K., Slaughter J.C., Graham B.S., Edwards K.M., Eisenberg R.J., Cohen G.H., Joyce S., Crowe J.R. Jr. Crossneutralizing and protective human antibody specificities to poxvirus infections. Cell. 2016; 167(3):684–694.e9. DOI:10.1016/j.cell.2016.09.049.; https://journal.microbe.ru/jour/article/view/1604Test

  5. 5
    دورية أكاديمية

    المصدر: Vavilov Journal of Genetics and Breeding; Том 26, № 4 (2022); 394-401 ; Вавиловский журнал генетики и селекции; Том 26, № 4 (2022); 394-401 ; 2500-3259 ; 2500-0462

    وصف الملف: application/pdf

    العلاقة: https://vavilov.elpub.ru/jour/article/view/3390/1625Test; Albarnaz J.D., Torres A.A., Smith G.L. Modulating vaccinia virus immunomodulators to improve immunological memory. Viruses. 2018; 10(3):101. DOI 10.3390/v10030101.; Blanchard T.J., Alcami A., Andrea P., Smith G.L. Modified vaccinia virus Ankara undergoes limited replication in human cells and lacks several immunomodulatory proteins: implications for use as a human vaccine. J. Gen. Virol. 1998;79(Pt. 5):1159-1167. DOI 10.1099/0022-1317-79-5-1159.; Drexler I., Heller K., Wahren B., Erfle V., Sutter G. Highly attenuated modified vaccinia virus Ankara replicates in baby hamster kidney cells, a potential host for virus propagation, but not in various human transformed and primary cells. J. Gen. Virol. 1998;79(Pt. 2): 347-352. DOI 10.1099/0022-1317-79-2-347.; Eto A., Saito T., Yokote H., Kurane I., Kanatani Y. Recent advances in the study of live attenuated cell-cultured smallpox vaccine LC16m8. Vaccine. 2015;33(45):6106-6111. DOI 10.1016/j.vaccine.2015.07.111.; Falkner F.G., Moss B. Transient dominant selection of recombinant vaccinia viruses. J. Virol. 1990;64(6):3108-3111. DOI 10.1128/JVI.64.6.3108-3111.1990.; Guidelines for Clinical Trials of Medicinal Products (Immunobiological Medicinal Products). Part 2. Moscow: Grif and K Publ., 2012. (in Russian); Katoh K., Misawa K., Kuma K., Miyata T. MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res. 2002;30(14):3059-3066. DOI 10.1093/nar/gkf436.; Kidokoro M., Shida H. Vaccinia virus LC16m8∆ as a vaccine vector for clinical applications. Vaccines. 2014;2(4):755-771. DOI 10.3390/vaccines2040755.; Kretzschmar M., Wallinga J., Teunis P., Xing S., Mikolajczyk R. Frequency of adverse events after vaccination with different vaccinia strains. PLoS Med. 2006;3(8):e272. DOI 10.1371/journal.pmed.0030272.; Li H., Durbin R. Fast and accurate short read alignment with Burrows– Wheeler transform. Bioinformatics. 2009;25(14):1754-1760. DOI 10.1093/bioinformatics/btp324.; Li H., Handsaker B., Wysoker A., Fennell T., Ruan J., Homer N., Marth G., Abecasis G., Durbin R. The sequence alignment/map format and SAMtools. Bioinformatics. 2009;25(16):2078-2079. DOI 10.1093/bioinformatics/btp352.; McKenna A., Hanna M., Banks E., Sivachenko A., Cibulskis K., Kernytsky A., Garimella K., Altshuler D., Gabriel S., Daly M., DePristo M.A. The genome analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 2010;20(9):1297-1303. DOI 10.1101/gr.107524.110.; Moss B. Smallpox vaccines: Targets of protective immunity. Immunol. Rev. 2011;239(1):8-26. DOI 10.1111/j.1600-065X.2010.00975.x.; Nolen L.D., Osadebe L., Katomba J., Likofata J., Mukadi D., Monroe B., Doty J., Hughes C.M., Kabamba J., Malekani J., Bomponda P.L., Lokota J.I., Balilo M.P., Likafi T., Lushima R.S., Ilunga B.K., Nkawa F., Pukuta E., Karhemere S., Tamfum J.J., Nguete B., Wemakoy E.O., McCollum A.M., Reynolds M.G. Extended human-to-human transmission during a monkeypox outbreak in the Democratic Republic of the Congo. Emerg. Infect. Dis. 2016;22(6):1014-1021. DOI 10.3201/eid2206.150579.; Okonechnikov K., Golosova O., Fursov M., UGENE team. Unipro UGENE: a unified bioinformatics toolkit. Bioinformatics. 2012; 28(8):1166-1167. DOI 10.1093/bioinformatics/bts091.; Reynolds M.G., Doty J.B., McCollum A.M., Olson V.A., Nakazawa Y. Monkeypox re-emergence in Africa: a call to expand the concept and practice of One Health. Expert Rev. Anti Infect. Ther. 2019;17(2): 129-139. DOI 10.1080/14787210.2019.1567330.; Robinson J.T., Thorvaldsdottir H., Winckler W., Guttman M., Lander E.S., Getz G., Mesirov J.P. Integrative genomics viewer. Nat. Biotechnol. 2011;29(1):24-26. DOI 10.1038/nbt.1754.; Sanchez-Sampedro L., Perdiguero B., Mejias-Perez E., Garcia-Arriaza J., Di Pilato M., Esteban M. The evolution of poxvirus vaccines. Viruses. 2015;7(4):1726-1803. DOI 10.3390/v7041726.; Shchelkunov S.N. Emergence and reemergence of smallpox: the need in development of a new generation smallpox vaccine. Vaccine. 2011;29(Suppl. 4):D49-D53. DOI 10.1016/j.vaccine.2011.05.037.; Shchelkunov S.N. An increasing danger of zoonotic orthopoxvirus infections. PLoS Pathog. 2013;9(12):e1003756. DOI 10.1371/journal.ppat.1003756.; Shchelkunov S.N., Shchelkunova G.A. Genes that control vaccinia virus immunogenicity. Acta Naturae. 2020;12(1):33-41. DOI 10.32607/actanaturae.10935.; Singh R.K., Balamurugan V., Bhanuprakash V., Venkatesan G., Hosamani M. Emergence and reemergence of vaccinia-like viruses: global scenario and perspectives. Indian J. Virol. 2012;23(1):1-11. DOI 10.1007/s13337-012-0068-1.; Smallpox and its Eradication. Geneva: World Health Organization, 1988.; Volz A., Sutter G. Modified vaccinia virus Ankara. History, value in basic research, and current perspectives for vaccine development. Adv. Virus Res. 2017;97:187-243. DOI 10.1016/bs.aivir.2016.07.001.; Yakubitskiy S.N., Kolosova I.V., Maksyutov R.A., Shchelkunov S.N. Attenuation of vaccinia virus. Acta Naturae. 2015;7(4):113-121. DOI 10.32607/20758251-2015-7-4-113-121.; Yakubitskiy S.N., Kolosova I.V., Maksyutov R.A., Shchelkunov S.N. Highly immunogenic variant of attenuated vaccinia virus. Dokl. Biochem. Biophys. 2016;466:35-38. DOI 10.1134/S1607672916010105.; https://vavilov.elpub.ru/jour/article/view/3390Test

  6. 6
    كتاب
  7. 7
    دورية أكاديمية

    المساهمون: Работа выполнена в рамках Государственного задания ФБУН ГНЦ ВБ «Вектор» Роспотребнадзора

    المصدر: Problems of Particularly Dangerous Infections; № 3 (2021); 33-39 ; Проблемы особо опасных инфекций; № 3 (2021); 33-39 ; 2658-719X ; 0370-1069

    وصف الملف: application/pdf

    العلاقة: https://journal.microbe.ru/jour/article/view/1545/1230Test; International Committee on Taxonomy of Viruses (ICTV) New MSL including all taxa updates since the 2018b release. Updates approved during EC 51, Berlin, Germany, 2019. (Cited 21 Dec 2020). [Internet]. Available from: https://talk.ictvonline.org/files/master-species-lists/m/msl/9601Test.; Reynolds M.G., Guagliardo S.A.J., Nakazawa Y., Doty J.B., Mauldin M.R. Understanding orthopoxvirus host range and evolution: from the enigmatic to the usual suspects. Curr. Opin. Virol. 2018; 28:108–15. DOI:10.1016/j.coviro.2017.11.012.; Thèves C., Biagini P., Crubézy E. The rediscovery of smallpox. Clin. Microbiol. Infec. 2014; 20(3):210–18. DOI:10.1111/1469-0691.12536.; Vora N.M., Li Y., Geleishvili M., Emerson G.L., Khmaladze E., Maghlakelidze G., Navdarashvili A., Zakhashvili K., Kokhreidze M., Endeladze M., Mokverashvili G., Satheshkumar P.S., GallardoRomero N., Goldsmith C.S., Metcalfe M.G., Damon I., Maes E.F., Reynolds M.G., Morgan J., Carroll D.S. Human infection with a zoonotic orthopoxvirus in the country of Georgia. N. Engl. J. Med. 2015; 372(13):1223–30. DOI:10.1056/NEJMoa1407647.; Springer Y.P., Hsu C.H., Werle Z.R., Olson L.E., Cooper M.P., Castrodale L.J., Fowler N., McCollum A.M., Goldsmith C.S., Emerson G.L., Wilkins K., Doty J.B., Burgado J., Gao J.X., Patel N., Mauldin M.R., Reynolds M.G., Satheshkumar P.S., Davidson W., Li Y., McLaughlin J.B. Novel Orthopoxvirus infection in an Alaska resident. Clin. Infect. Dis. 2017; 64(12):1737–41. DOI:10.1093/cid/cix219.; Gigante C.M., Gao J., Tang S., McCollum A.M., Wilkins K., Reynolds M.G., Davidson W., McLaughlin J., Olson V.A., Li Y. Genome of Alaskapox virus, a novel orthopoxvirus isolated from Alaska. Viruses. 2019; 11(8):708. DOI:10.3390/v11080708.; Lanave G., Dowgier G., Decaro N., Albanese F., Brogi E., Parisi A., Losurdo M., Lavazza A., Martella V., Buonavoglia C., Elia G. Novel orthopoxvirus and lethal disease in cat, Italy. Emerg. Infect. Dis. 2018; 24(9):1665–73. DOI:10.3201/eid2409.171283.; Noyce R.S., Lederman S., Evans D.H. Construction of an infectious horsepox virus vaccine from chemically synthesized DNA fragments. PLoS One. 2018; 13(1):e0188453. DOI:10.1371/journal.pone.0188453.; Prichard M.N., Kern E.K. Orthopoxvirus targets for the development of new antiviral agents. Antiviral Res. 2012; 94(2):111–25. DOI:10.1016/j.antiviral.2012.02.012.; Von Magnus P., Andersen E.K., Petersen K.B., BirchAndersen A. A pox-like disease in cynomolgus monkeys. Acta Path. Microbiol. Scand. 1959; 46:156–76. DOI:10.1111/j.1699-0463.1959.tb00328.x.; Yinka-Ogunleye A., Aruna O., Dalhat M., Ogoina D., McCollum A., Disu Y., Mamadu I., Akinpelu A., Ahmad A., Burga J., Ndoreraho A., Nkunzimana E., Manneh L., Mohammed A., Adeoye O., Tom-Aba D., Silenou B., Ipadeola O., Saleh M., Adeyemo A., Nwadiutor I., Aworabhi N., Uke P., John D., Wakama P., Reynolds M., Mauldin M., Doty J., Wilkins K., Musa J., Khalakdina A., Adedeji A., Mba N., Ojo O., Krause G., Ihekweazu C., Mandra A., Davidson W., Olson V., Li Y., Radford K., Zhao H., Townsend M., Burgado J., Satheshkumar P. Outbreak of human monkeypox in Nigeria in 2017–18: a clinical and epidemiological report. Lancet Infect. Dis. 2019; 19(8):872–9. DOI:10.1016/S1473-3099(19)30294-4.; McCollum A.M., Damon I.K. Human monkeypox. Clin. Infect. Dis. 2014; 58(2):260–7. DOI:10.1093/cid/cit703.; Reynolds M.G., Emerson G.L., Pukuta E., Karhemere S., Muyembe J.J., Bikindou A., McCollum A.M., Moses C., Wilkins K., Zhao H., Damon I.K., Karem K.L., Li Y., Carroll D.S., Mombouli J.V. Detection of human monkeypox in the Republic of the Congo following intensive community education. Am. J. Trop. Med. Hyg. 2013; 88(5):982–5. DOI:10.4269/ajtmh.12-0758.; An Update of Monkeypox Outbreak in Nigeria. (Cited 18 Jun 2020.) [Internet]. Available from: https://ncdc.gov.ng/themes/common/files/sitreps/94f37c2c44615b2b3a473704490bbc32.pdfTest.; Sadeuh-Mba S.A., Yonga M.G., Els M., Batejat C., Eyangoh S., Caro V., Etoundi A., Carniel E., Njouom R. Monkeypox virus phylogenetic similarities between a human case detected in Cameroon in 2018 and the 2017–2018 outbreak in Nigeria. Infect. Genet. Evol. 2019; 69:8–11. DOI:10.1016/j.meegid.2019.01.006.; Brown K., Leggat P.A. Human monkeypox: current state of knowledge and implications for the future. Trop. Med. Infect. Dis. 2016; 1(1):8. DOI:10.3390/tropicalmed1010008.; Vaughan A., Aarons E., Astbury J., Balasegaram S., Beadsworth M., Beck C.R., Chand M., O’Connor C., Dunning J., Ghebrehewet S., Harper N., Howlett-Shipley R., Ihekweazu C., Jacobs M., Kaindama L., Katwa P., Khoo S., Lamb L., Mawdsley S., Morgan D., Palmer R., Phin N., Russell K., Said B., Simpson A., Vivancos R., Wade M., Walsh A., Wilburn J. Two cases of monkeypox imported to the United Kingdom, September 2018. Euro Surveill. 2018; 23(38):1800509. DOI:10.2807/1560-7917.ES.2018.23.38.1800509.; Erez N., Achdout H., Milrot E., Paran N., Schwartz Y., Wiener-Well Y., Politi B., Tamir H., Israely T., Weiss S., Beth-Din A., Shifman O., Israeli O., Yitzhaki S., Shapira S.C., Melamed S., Schwartz E. Diagnosis of imported monkeypox, Israel, 2018. Emerg. Infect. Dis. 2019; 25(5):980–3. DOI:10.3201/eid2505.190076.; Ng O.T., Lee V., Marimuthu K., Vasoo S., Chan G., Lin R.T.P., Leo Y.S. A case of imported Monkeypox in Singapore. Lancet Infect. Dis. 2019; 19(11):1166. DOI:10.1016/S1473-3099(19)30537-7.; Eis-Hübinger A.M., Gerritzen A., Schneweis K.E., Pfeiff B., Pullmann H., Mayr A., Czerny C.P. Fatal cowpox-like virus infection transmitted by cat. Lancet. 1990; 336(8719):880, DOI:10.1016/0140-6736(90)92387-w.; Gazzani P., Gach J.E., Colmenero I., Martin J., Morton H., Brown K., Milford D.V. Fatal disseminated cowpox virus infection in an adolescent renal transplant recipient. Pediatr. Nephrol. 2017; 32(3):533–6. DOI:10.1007/s00467-016-3534-y.; Baxby D. Is cowpox misnamed? A review of 10 human cases. Br. Med. J. 1977; 1(6073):1379–81. DOI:10.1136/bmj.1.6073.1379.; Baxby D., Shackleton W.B., Wheeler J., Turner A. Comparison of cowpox-like viruses isolated from European zoos. Brief report. Arch. Virol. 1979; 61(4):337–40. DOI:10.1007/BF01315021.; Ninove L., Domart Y., Vervel C., Voinot C., Salez N., Raoult D., Meyer H., Capek I., Zandotti C., Charrel R.N. Cowpox virus transmission from pet rats to humans, France. Emerg. Infect. Dis. 2009; 15(5):781–4. DOI:10.3201/eid1505.090235.; Becker C., Kurth A., Hessler F., Kramp H., Gokel M., Hoffmann R., Kuczka A., Nitsche A. Cowpox virus infection in pet rat owners: not always immediately recognized. Dtsch. Arztebl. Int. 2009; 106(19):329–34. DOI:10.3238/arztebl.2009.0329.; Campe H., Zimmermann P., Glos K., Bayer M., Bergemann H., Dreweck C., Graf P., Weber B.K., Meyer H., Büttner M., Busch U., Sing A. Cowpox virus transmission from pet rats to humans, Germany. Emerg. Infect. Dis. 2009; 15(5):777–80. DOI:10.3201/eid1505.090159.; Kinnunen P.M., Holopainen J.M., Hemmilä H., Piiparinen H., Sironen T., Kivelä T., Virtanen J., Niemimaa J., Nikkari S., Järvinen A., Vapalahti O. Severe Ocular Cowpox in a Human, Finland. Emerg. Infect. Dis. 2015; 21(12):2261–3. DOI:10.3201/eid2112.150621.; Ducournau C., Ferrier-Rembert A., Ferraris O., Joffre A., Favier A.L., Flusin O., Van Cauteren D., Kecir K., Auburtin B., Védy S., Bessaud M., Peyrefitte C.N. Concomitant human infections with 2 cowpox virus strains in related cases, France, 2011. Emerg. Infect. Dis. 2013; 19(12):1996–9. DOI:10.3201/eid1912.130256.; Eder I., Vollmar P., Pfeffer M., Naether P., Rodloff A.C., Meyer H. Two distinct clinical courses of human cowpox, Germany, 2015. Viruses. 2017; 9(12):375. DOI:10.3390/v9120375.; Popova A.Yu., Maksyutov R.A., Taranov O.S., Tregubchak T.V., Zaikovskaya A.V., Sergeev A.A., Vlashchenko I.V., Bodnev S.A., Ternovoi V.A., Alexandrova N.S., Tarasov A.L., Konovalova N.V., Koroleva A.A., Bulychev L.E., Pyankov O.V., Demina Y.V., Agafonov A.P., Shchelkunov S.N., Miheev V.N. Cowpox in a human, Russia, 2015. Epidemiol. Infect. 2017; 145(4):755–9. DOI:10.1017/S0950268816002922.; Żaba R., Jałowska M., Kowalczyk M.J., BowszycDmochowska M., Adamski Z., Szkaradkiewicz A. Cowpox virus infection in a child after contact with a domestic cat: a case report. New Microbiol. 2017; 40(2):148–50.; McCollum A.M., Austin C., Nawrocki J., Howland J., Pryde J., Vaid A., Holmes D., Weil M.R., Li Y., Wilkins K., Zhao H., Smith S.K., Karem K., Reynolds M.G., Damon I.K. Investigation of the first laboratory-acquired human cowpox virus infection in the United States. J. Infect. Dis. 2012, 206(1):63–8. DOI:10.1093/infdis/jis302.; Andreani J., Arnault J.P., Bou Khalil J.Y., Abrahão J., Tomei E., Vial E., Le Bideau M., Raoult D., La Scola B. Atypical cowpox virus infection in smallpox-vaccinated patient, France. Emerg. Infect. Dis. 2019; 25(2):212–9. DOI:10.3201/eid2502.171433.; Lane J.M., Ruben F.L., Neff J.M., Millar J.D. Complications of smallpox vaccination, 1968: results of ten statewide surveys. J. Infect. Dis. 1970; 122(4):303–9. DOI:10.1093/infdis/122.4.303.; Borisevich S.V., Marennikova S.S., Stovba L.F., Makhlaĭ A.A., Loginova S.Ia., Terent’ev A.I., Krotkov V.T., Perekrest V.V., Krasnianskiĭ V.P. [Vaccine-like viruses: Peculiarities of circulation in the South America]. Vopr. Virusol. 2014; 59(2):10–4. [In Russ.]; Abrahão J.S., Campos R.K., Trindade G. de S., Guimarães da Fonseca F., Ferreira P.C., Kroon E.G. Outbreak of severe zoonotic vaccinia virus infection, Southeastern Brazil. Emerg. Infect. Dis. 2015; 21(4):695–8. DOI:10.3201/eid2104.140351.; Bhanuprakash V., Venkatesan G., Balamurugan V., Hosamani M., Yogisharadhya R., Gandhale P., Reddy K.V., Damle A.S., Kher H.N., Chandel B.S., Chauhan H.C., Singh R.K. Zoonotic infections of buffalopox in India. Zoonoses Public Health. 2010; 57(7-8):e149-55. DOI:10.1111/j.1863-2378.2009.01314.x.; Venkatesan G., Balamurugan V., Prabhu M., Yogisharadhya R., Bora D.P., Gandhale P.N., Sankar M.S., Kulkarni A.M., Singh R.K., Bhanuprakash V. Emerging and re-emerging zoonotic buffalopox infection: a severe outbreak in Kolhapur (Maharashtra), India. Vet. Ital. 2010; 46(4):439–48.; Whitehouse E.R., Rao A.K., Yu Y.C., Yu P.A., Griffin M., Gorman S., Angel K.A., McDonald E.C., Manlutac A.L., de Perio M.A., McCollum A.M., Davidson W., Wilkins K., Ortega E., Satheshkumar P.S., Townsend M.B., Isakari M., Petersen B.W. Novel treatment of a vaccinia virus infection from an occupational needlestick – San Diego, California, 2019. Morb. Mortal. Wkly Rep. (MMWR). 2019; 68(42):943–6. DOI:10.15585/mmwr.mm6842a2.; Riyesh T., Karuppusamy S., Bera B.C., Barua S., Virmani N., Yadav S., Vaid R.K., Anand T., Bansal M., Malik P., Pahuja I., Singh R.K. Laboratory-acquired buffalopox virus infection, India. Emerg. Infect. Dis. 2014; 20(2):324–6. DOI:10.3201/eid2002.130358.; Lu B., Cui L.B., Gu M.H., Shi C., Sun C.W., Zhao K.C., Bi J., Tan Z.M., Guo X.L., Huo X., Bao C.J. Outbreak of vaccinia virus infection from occupational exposure, China, 2017. Emerg. Infect. Dis. 2019; 25(6):1192–5. DOI:10.3201/eid2506.171306.; Hughes C.M., Blythe D., Li Y., Reddy R., Jordan C., Edwards C., Adams C., Conners H., Rasa C., Wilby S., Russell J., Russo K.S., Somsel P., Wiedbrauk D.L., Dougherty C., Allen C., Frace M., Emerson G., Olson V.A., Smith S.K., Braden Z., Abel J., Davidson W., Reynolds M., Damon I.K. Vaccinia virus infections in martial arts gym, Maryland, USA, 2008. Emerg. Infect. Dis. 2011; 17(4):730–3. DOI:10.3201/eid1704.101010.; https://journal.microbe.ru/jour/article/view/1545Test

    الإتاحة: https://doi.org/10.21055/0370-1069-2021-3-33-3910.1016/j.coviro.2017.11.01210.1111/1469-0691.1253610.1056/NEJMoa140764710.1093/cid/cix21910.3390/v1108070810.3201/eid2409.17128310.1371/journal.pone.018845310.1016/j.antiviral.2012.02.01210.1111/j.1699-0463.1959.tb00328.x10.1016/S1473-3099Test(19)30294-410.1093/cid/cit70310.4269/ajtmh.12-075810.1016/j.meegid.2019.01.00610.3390/tropicalmed101000810.2807/1560-7917.ES.2018.23.38.180050910.3201/eid2505.19007610.1016/S1473-3099(19)30537-710.1016/0140-6736(90)92387-w10.1007/s00467-016-3534-y10.1007/BF0131502110.3201/eid1505.09023510.3238/arztebl.2009.032910.3201/eid1505.09015910.3201/eid2112.15062110.3201/eid1912.13025610.3390/v912037510.1017/S095026881600292210.1093/infdis/jis30210.3201/eid2502.17143310.1093/infdis/122.4.30310.3201/eid2104.14035110.1111/j.1863-2378.2009.01314.x10.15585/mmwr.mm6842a210.3201/eid2002.13035810.3201/eid2506.17130610.3201/eid1704.101010
    https://journal.microbe.ru/jour/article/view/1545Test

  8. 8
    دورية أكاديمية

    المساهمون: Исследование проводилось в рамках выполнения государственного задания ФБУН ГНЦ ВБ «Вектор» Роспотребнадзора «Мониторинг вируса гриппа птиц и животных».

    المصدر: Problems of Particularly Dangerous Infections; № 2 (2021); 33-40 ; Проблемы особо опасных инфекций; № 2 (2021); 33-40 ; 2658-719X ; 0370-1069

    وصف الملف: application/pdf

    العلاقة: https://journal.microbe.ru/jour/article/view/1470/1207Test; Sreenivasan C.C., Thomas M., Kaushik R.S., Wang D., Li F. Influenza A in bovine species: a narrative literature review. Viruses. 2019; 11(6):561. DOI:10.3390/v11060561.; Krammer F., Smith G.J.D., Fouchier R.A.M., Peiris M., Kedzierska K., Doherty P.C., Palese P., Shaw M.L., Treanor J., Webster R.G., García-Sastre A. Influenza. Nat. Rev. Dis. Primers. 2018; 4(1):3. DOI:10.1038/s41572-018-0002-y.; Tong S., Li Y., Rivailler P., Conrardy C., Castillo D.A., Chen L.M., Recuenco S., Ellison J.A., Davis C.T., York I.A., Turmelle A.S., Moran D., Rogers S., Shi M., Tao Y., Weil M.R., Tang K., Rowe L.A., Sammons S., Xu X., Frace M., Lindblade K.A., Cox N.J., Anderson L.J., Rupprecht C.E., Donis R.O. A distinct lineage of influenza A virus from bats. Proc. Natl Acad. Sci. USA. 2012; 109(11):4269–74. DOI:10.1073/pnas.1116200109.; Tong S., Zhu X., Li Y., Shi M., Zhang J., Bourgeois M., Yang H., Chen X., Recuenco S., Gomez J., Chen L.M., Johnson A., Tao Y., Dreyfus C., Yu W., McBride R., Carney P.J., Gilbert A.T., Chang J., Guo Z., Davis C.T., Paulson J.C., Stevens J., Rupprecht C.E., Holmes E.C., Wilson I.A., Donis R.O. New world bats harbor diverse influenza A viruses. PLoS Pathog. 2013; 9(10):e1003657. DOI:10.1371/journal.ppat.1003657.; Yoon S.W., Webby R.J., Webster R.G. Evolution and ecology of influenza A viruses. Curr. Top. Microbial. Immunol. 2014; 385:359–75. DOI:10.1007/82_2014_396.; Webster R.G., Bean W.J., Gorman O.T., Chambers T.M., Kawaoka Y. Evolution and ecology of influenza A viruses. Microbiol. Rev. 1992; 56(1):152–79.; Alexander D.J. A review of avian influenza in different bird species. Vet. Microbiol. 2000; 74(1-2):3–13. DOI:10.1016/s03781135(00)00160-7.; Webster R.G., Hulse D.J. Microbial adaptation and change: avian influenza. Rev. Sci. Tech. 2004; 23(2):453–465. DOI:10.20506/rst.23.2.1493.; Tumpey T.M., Maines T.R., Van Hoeven N., Glaser L., Solórzano A., Pappas C., Cox N.J., Swayne D.E., Palese P., Katz J.M., García-Sastre A. A two-amino acid change in the hemagglutinin of the 1918 influenza virus abolishes transmission. Science. 2007; 315(5812):655–59. DOI:10.1126/science.1136212.; Abdelwhab el-S.M., Veits J., Mettenleiter T.C. Genetic changes that accompanied shifts of low pathogenic avian influenza viruses toward higher pathogenicity in poultry. Virulence. 2013; 4(6):441–52. DOI:10.4161/viru.25710.; Lee C.W., Senne D.A., Suarez D.L. Effect of vaccine use in the evolution of Mexican lineage H5N2 avian influenza virus. J. Virol. 2004; 78(15):8372–81. DOI:10.1128/JVI.78.15.8372-8381.2004.; Lycett S.J., Duchatel F., Digard P. A brief history of bird flu. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 2019; 374(1775):20180257. DOI:10.1098/rstb.2018.0257.; Smith G.J.D., Donis R.O., World Health Organization/World Organization for Animal Health/Food and Agriculture Organization (WHO/OIE/FAO) H5 Evolution Working Group. Nomenclature updates resulting from the evolution of avian influenza A(H5) virus clades 2.1.3.2a, 2.2.1, and 2.3.4 during 2013–2014. Influenza Other Respir. Viruses. 2015; 9(5):271–6. DOI:10.1111/irv.12324.; Olsen B., Munster V.J., Wallensten A., Waldenström J., Osterhaus A.D., Fouchier R.A. Global patterns of influenza a virus in wild birds. Science. 2006; 312(5772):384–8. DOI:10.1126/science.1122438.; Easterday B.C., Trainer D.O., Tůmová B., Pereira H.G. Evidence of infection with influenza viruses in migratory waterfowl. Nature. 1968; 219(5153):523–4. DOI:10.1038/219523a0.; Downie J.C., Laver W.G. Isolation of a type A influenza virus from an Australian pelagic bird. Virology. 1973; 51(2):259–69. DOI:10.1016/0042-6822(73)90426-1.; Downie J.C., Webster R.G., Schild G.C., Dowdle W.R., Laver W.G. Characterization and ecology of a type A influenzavirus isolated from a sheawater. Bull. World Health Organ. 1973; 49(6):559–66.; Kuiken T. Is low pathogenic avian influenza virus virulent for wild waterbirds? Proc. Biol. Sci. 2013; 280(1763):20130990. DOI:10.1098/rspb.2013.0990.; Jourdain E., Gunnarsson G., Wahlgren J., Latorre-Margalef N., Bröjer C., Sahlin S., Svensson L., Waldenström J., Lundkvist A., Olsen B. Influenza virus in a natural host, the mallard: experimental infection data. PloS One. 2010; 5(1):e8935. DOI:10.1371/journal.pone.0008935.; Runstadler J., Hill N., Hussein I.T.M., Puryear W., Keogh M. Connecting the study of wild influenza with the potential for pandemic disease. Infect. Genet. Evol. 2013; 17:162–87. DOI:10.1016/j.meegid.2013.02.020.; Brown J.D., Stallknecht D.E., Swayne D.E. Experimental infection of swans and geese with highly pathogenic avian influenza virus (H5N1) of Asian lineage. Emerg. Infect. Dis. 2008; 14(1):136– 42. DOI:10.3201/eid1401.070740.; Lam T.T., Ip H.S., Ghedin E., Wentworth D.E., Halpin R.A., Stockwell T.B., Spiro D.J., Dusek R.J., Bortner J.B., Hoskins J., Bales B.D., Yparraguirre D.R., Holmes E.C. Migratory flyway and geographical distance are barriers to the gene flow of influenza virus among North American birds. Ecol. Lett. 2012; 15(1):24–33. DOI:10.1111/j.1461-0248.2011.01703.x.; Scotch M., Lam T.T., Pabilonia K.L., Anderson T., Baroch J., Kohler D., DeLiberto T.J. Diffusion of influenza viruses among migratory birds with a focus on the Southwest United States. Infect. Genet. Evol. 2014; 26:185–93. DOI:10.1016/j.meegid.2014.05.029.; Tian H., Zhou S., Dong L., Van Boeckel T.P., Cui Y., Newman S.H., Takekawa J.Y., Prosser D.J., Xiao X., Wu Y., Cazelles B., Huang S., Yang R., Grenfell B.T., Xu B. Avian influenza H5N1 viral and bird migration networks in Asia. Proc. Natl Acad. Sci. USA. 2015; 112(1):172–7. DOI:10.1073/pnas.1405216112.; Gonzalez-Reiche A.S., Müller M.L., Ortiz L., CordónRosales C., Perez D.R. Prevalence and diversity of low pathogenicity avian influenza viruses in wild birds in Guatemala, 2010–2013. Avian Dis. 2016; 60(1 Suppl):359–64. DOI:10.1637/11130-050715-Reg.; World Health Organization (WHO). Antigenic and genetic characteristics of zoonotic influenza viruses and candidate vaccine viruses developed for potential use in human vaccines. [Электронный ресурс]. URL: https://www.who.int/influenza/vaccines/virus/202002_zoonotic_vaccinevirusupdate.pdf?ua=1Test (дата обращения 10.02.2021).; World Health Organization (WHO). Antigenic and genetic characteristics of zoonotic influenza viruses and candidate vaccine viruses developed for potential use in human vaccines. [Электронный ресурс]. URL: https://www.who.int/influenza/vaccines/virus/202009_zoonotic_vaccinevirusupdate.pdf?ua=1Test (дата обращения 10.02.2021).; World organization for animal health (OIE). Update on highly pathogenic avian influenza in animals (type h5 and h7). Paris: OIE; 2020. [Электронный ресурс]. URL: http://www.oie.int/en/animal-health-in-the-world/update-on-avian-influenza/2020Test/ (дата обращения 31.01.2020).; European Food Safety Authority, European Centre for Disease Prevention and Control and European Union Reference Laboratory for Avian Influenza; Adlhoch C., Fusaro A., Gonzales J.L., Kuiken T., Marangon S., Niqueux É., Staubach C., Terregino C., Baldinelli F. Avian influenza overview August – December 2020. EFSA J. 2020; 18(12):e06379. DOI:10.2903/j.efsa.2020.6379.; Li Y.T., Chen C.C., Chang A.M., Chao D.Y., Smith G.J.D. Co-circulation of both low and highly pathogenic avian influenza H5 viruses in current poultry epidemics in Taiwan. Virus Evol. 2020; 6(1):veaa037. DOI:10.1093/ve/veaa037.; World Health Organization (WHO). Cumulative number of confirmed human cases of avian influenza A(H5N1) reported to WHO. [Электронный ресурс]. URL: https://www.who.int/influenza/human_animal_interface/H5N1_cumulative_table_archives/enTest/ (дата обращения 10.02.2021).; World Health Organization (WHO), 2020. Avian Influenza Weekly Update Number 777. WHO, Geneva. 3 p. [Электронный ресурс]. URL: https://www.who.int/docs/default-source/wpro--documents/emergency/surveillance/avian-influenza/ai-20210129.pdf?sfvrsn=c0382d50_86Test (дата обращения 10.02.2021).; World Health Organization (WHO), 2019. Influenza at the human-animal interface – Summary and assessment, 24 October to 9 December 2020. Geneva. 6 p. [Электронный ресурс]. URL: https://www.who.int/influenza/human_animal_interface/Influenza_Summary_IRA_HA_interface_09_12_2020.pdf?ua=1Test (дата обращения 10.02.2021).; European Food Safety Authority, European Centre for Disease Prevention and Control and European Union Reference Laboratory for Avian Influenza; Adlhoch C., Fusaro A., Kuiken T., Niqueux É., Staubach C., Terregino C., Muñoz Guajardo I., Baldinelli F. Avian influenza overview May – August 2020. EFSA J. 2020; 18(9):e06270. DOI:10.2903/j.efsa.2020.6270.; Dong X., Xiong J., Huang C., Xiang J., Wu W., Chen N., Wen D., Tu C., Qiao X., Kang L., Yao Z., Zhang D., Chen Q. RETRACTED ARTICLE: Human H9N2 Avian influenza infection: Epidemiological and clinical characterization of 16 cases in China. Virol. Sin. 2020; 1–4. Advance online publication. DOI:10.1007/s12250-020-00248-9.; Марченко В.Ю., Гончарова Н.И., Tran Thi Nhai, Trinh Khac Sau, Nguyen Ngoc Quyen, Гаврилова Е.В., Максютов Р.А., Рыжиков А.Б. Обзор эпизоотологической ситуации по высокопатогенному вирусу гриппа птиц в России в 2019 г. Проблемы особо опасных инфекций. 2020; 2:31–37. DOI:10.21055/03701069-2020-2-31-37.; Марченко В.Ю., Суслопаров И.М., Игнатьев В.Э., Гаврилова Е.В., Максютов Р.А., Рыжиков А.Б. Обзор ситуации по высокопатогенному вирусу гриппа птиц субтипа H5 в России в 2016–2017 гг. Проблемы особо опасных инфекций. 2018; 1:30– 35. DOI:10.21055/0370-1069-2018-1-30-35.; Марченко В.Ю., Гончарова Н.И., Евсеенко В.А., Суслопаров И.М., Гаврилова Е.В., Максютов Р.А., Рыжиков А.Б. Обзор эпидемиологической ситуации по высокопатогенному вирусу гриппа птиц в России в 2018 г. Проблемы особо опасных инфекций. 2019; 1:42–49. DOI:10.21055/0370-1069-2019-1-42-49.; World organization for animal health (OIE). Highly Pathogenic Avian Influenza (HPAI) Report N° 20: December 25 to January 14, 2021. Paris: OIE; 2020. [Электронный ресурс]. URL: https://www.oie.int/fileadmin/Home/eng/Animal_Health_in_the_World/docs/pdf/OIE_AI_situation_report/HPAI_asof14012021.pdfTest (дата обращения 24.03.2020).; World organization for animal health (OIE). Highly Pathogenic Avian Influenza (HPAI) Report N° 21: January 15 to February 04, 2021. Paris: OIE; 2020. [Электронный ресурс]. URL: https://www.oie.int/fileadmin/Home/eng/Animal_Health_in_the_World/docs/pdf/OIE_AI_situation_report/HPAI___asof04022021Test. pdf (дата обращения 24.03.2020).; https://journal.microbe.ru/jour/article/view/1470Test

  9. 9
    دورية أكاديمية

    المصدر: Problems of Particularly Dangerous Infections; № 1 (2019); 42-49 ; Проблемы особо опасных инфекций; № 1 (2019); 42-49 ; 2658-719X ; 0370-1069 ; 10.21055/0370-1069-2019-1

    وصف الملف: application/pdf

    العلاقة: https://journal.microbe.ru/jour/article/view/1124/1012Test; Krammer F., Smith G.J.D., Fouchier R.A.M., Peiris M., Kedzierska K., Doherty P.C., Palese P., Shaw M.L., Treanor J., Webster R.G., García-Sastre A. Influenza. Nat. Rev. Dis. Primers. 2018; 4(1):3. DOI:10.1038/s41572-018-0002-y.; Tong S., Li Y., Rivailler P., Conrardy C., Castillo D.A., Chen L-M., Recuenco S., Ellison J.A., Davis C.T., York I.A., Turmelle A.S., Moran D., Rogers S., Shi M., Tao Y., Weil M.R., Tang K., Rowe L.A., Sammons S., Xu X., Frace M., Lindblade K.A., Cox N.J., Anderson L.J., Rupprecht C.E., Donis R.O. A distinct lineage of influenza A virus from bats. Proc. Natl. Acad. Sci. USA. 2012; 109(11):4269–74. DOI:10.1073/pnas.1116200109.; Tong S., Zhu X., Li Y., Shi M., Zhang J., Bourgeois M., Yang H., Chen X., Recuenco S., Gomez J., Chen L-M., Johnson A, Tao Y., Dreyfus C., Yu W., McBride R., Carney P.J., Gilbert A.T., Chang J., Guo Z., Davis C.T., Paulson J.C., Stevens J., Rupprecht C.E., Holmes E.C., Wilson I.A., Donis R.O. New World Bats Harbor Diverse Influenza A Viruses. PLoS Pathog. 2013; 9(10):e1003657. DOI:10.1371/journal.ppat.1003657.; Olsen B., Munster V.J., Wallensten A., Waldenström J., Osterhaus A.D., Fouchier R.A. Global patterns of influenza a virus in wild birds. Science. 2006; 312(5772):384–8. DOI:10.1126/science.1122438.; Webster R.G., Bean W.J., Gorman O.T., Chambers T.M., Kawaoka Y. Evolution and ecology of influenza A viruses. Microbiol Rev. 1992; 56(1):152–79. PMID: 1579108. PMCID: PMC372859.; Yoon S.W., Webby R.J., Webster R.G. Evolution and ecology of influenza A viruses. Curr. Top. Microbiol. Immunol. 2014; 385:359–75. DOI:10.1007/82_2014_396.; Toward a Unified Nomenclature System for Highly Pathogenic Avian Influenza Virus (H5N1). WHO, OIE, FAO, H5N1 Evolution Working Group. Emerg. Infect. Dis. 2008; 14(7):e1. DOI:10.3201/eid1407.071681.; Xu X., Subbarao K., Cox N.J., Guo Y. Genetic characterization of the pathogenic influenza A/Goose/Guangdong/1/96 (H5N1) virus: similarity of its hemagglutinin gene to those of H5N1 viruses from the 1997 outbreaks in Hong Kong. Virology 1999; 261(1):15–9. DOI:10.1006/viro.1999.9820.; Cumulative number of confirmed human cases of avian influenza A(H5N1) reported to WHO. World Health Organization (WHO). [Электронный ресурс]. URL: https://www.who.int/influenza/human_animal_interface/H5N1_cumulative_table_archives/enTest/ (дата обращения: 21.01.2019 г.).; Adlhoch С., Brouwer A., Kuiken T., Miteva A., Mulatti P., Smietanka K., Staubach C., Gogin A., Muñoz Guajardo I., Baldinelli F. Avian influenza overview August–November 2018. EFSA Journal. 16(12):e05573. DOI:10.2903/j.efsa.2018.5573.; Antigenic and genetic characteristics of zoonotic influenza viruses and candidate vaccine viruses developed for potential use in human vaccines. World Health Organization (WHO). [Электронный ресурс]. URL: https://www.who.int/influenza/vaccines/virus/201809_zoonotic_vaccinevirusupdate.pdf?ua=1Test (дата обращения: 21.01.2019 г.).; Марченко В.Ю., Суслопаров И.М., Игнатьев В.Э., Гаврилова Е.В., Максютов Р.А., Рыжиков А.Б. Обзор ситуации по высокопатогенному вирусу гриппа птиц субтипа H5 в России в 2016–2017 гг. Проблемы особо опасных инфекций. 2018; 1:30–35. DOI:10.21055/0370-1069-2018-1-30-35.; Update on highly pathogenic avian influenza in animals (types h5 and h7). World organization for animal health (OIE). Paris: OIE; 2018. [Электронный ресурс]. URL: http://www.oie.int/en/animal-health-in-the-world/update-on-avian-influenza/2018Test/ (дата обращения: 21.01.2019 г.).; H7N9 situation update. Food and Agriculture Organization of the United Nation (FAO). [Электронный ресурс] URL: http://www.fao.org/ag/againfo/programmes/en/empres/H7N9/situation_update.htmlTest (дата обращения: 21.01.2019).; Human infection with avian influenza A(H7N9) virus –China: Update. World Health Organization (WHO). [Электронный ресурс]. URL: https://www.who.int/csr/don/05-september-2018-ah7n9-china/enTest/ (дата обращения: 21.01.2019 г.).; Marchenko V., Goncharova N., Susloparov I., Kolosova N., Gudymo A., Svyatchenko S., Danilenko A., Durymanov A., Gavrilova E., Maksyutov R., Ryzhikov A. Isolation and characterization of H5Nx highly pathogenic avian influenza viruses of clade 2.3.4.4 in Russia. Virology. 2018; 525:216–23. DOI:10.1016/j.virol.2018.09.024.; Волков М.С., Ирза В.Н., Варкентин А.В. Опыт ликвидации высокопатогенного гриппа птиц на территории Российской Федерации в 2016–2017 гг. Ветеринария сегодня. 2018; 1:3–10. DOI:10.29326/2304-196X-2018-1-24-3-7.; Update on highly pathogenic avian influenza in animals (types h5 and h7). World organization for animal health (OIE). Paris: OIE; 2019. [Электронный ресурс]. URL: http://www.oie.int/en/animal-health-in-the-world/update-on-avian-influenza/2019Test/ (дата обращения: 21.01.2019 г.).; Whitworth D., Newman S.H., Mundkur T., Harris P. Wild Birds and Avian Influenza: an introduction to applied field research and disease sampling techniques. FAO Animal Production and Health Manual. Rome; 2007. No. 5. 120 p.; Verhagen J.H., Herfst S., Fouchier R.A.M. How a virus travels the world. Science. 2015; 347(6222):616–7. DOI:10.1126/science.aaa6724.; Veen J., Yurlov A.K., Delany S.N., Mihantiev A.I., Selivanova M.A., Boere G.C. An atlas of movements of Southwest Siberian waterbirds. Wetlands International; 2005. P. 60. [Электронный ресурс]. URL: http://gull-research.org/barabensis/imagesross1/atlas_SE_siberinan_waterbirds_2.pdfTest (дата обращения: 21.01.2019 г.).; https://journal.microbe.ru/jour/article/view/1124Test

  10. 10
    دورية أكاديمية

    المصدر: Problems of Particularly Dangerous Infections; № 1 (2018); 30-35 ; Проблемы особо опасных инфекций; № 1 (2018); 30-35 ; 2658-719X ; 0370-1069 ; 10.21055/0370-1069-2018-1

    وصف الملف: application/pdf

    العلاقة: https://journal.microbe.ru/jour/article/view/456/446Test; Марченко В.Ю., Суслопаров И.М., Колосова Н.П., Гончарова Н.И., Шиповалов А.В., Дурыманов А.Г., Ильичева Т.Н., Будацыренова Л.В., Иванова В.К., Игнатьев Г.А., Ершова С.Н., Тюляхова В.С., Михеев В.Н., Рыжиков А.Б. Выделение высокопатогенного вируса гриппа а субтипа H5N8 на территории Республики Саха (Якутия). Дальневост. журн. инфекцион. патол. 2015, 28:38–43.; Марченко В.Ю., Суслопаров И.М., Сапронова Н.Ю., Гончарова Н.И., Колосова Н.П., Евсеенко В.А., Святченко С.В., Пьянкова О.Г., Зиатдинов В.Б., Лиманская О.С., Джамбинов С.Д., Шендо Г.Л., Михеев В.Н., Максютов Р.А., Рыжиков А.Б. Анализ штаммов гриппа , вызвавших вспышки в россии в 2016–2017 гг. Пробл. особо опасных инф. 2017; 3:68–74. DOI:10.21055/03701069-2017-3-68-74.; Марченко В.Ю., Суслопаров И.М., Шиповалов А.В., Михеев В.Н., Рыжиков А.Б. Циркуляция высокопатогенного вируса гриппа птиц в россии в 2014–2015 гг. Пробл. особо опасных инф. 2016; 1:48–54. DOI:10.21055/0370-1069-2016-1-48-54.; Adlhoch C., Gossner C., Koch G., Brown I., Bouwstra R., Verdonck F., Penttinen P., Harder T. Comparing introduction to Europe of highly pathogenic avian influenza viruses A(H5N8) in 2014 and A(H5N1) in 2005. Euro Surveill. 2014; 19(50):pii=20996.; Alexander D.J. A review of avian influenza in different bird species. Vet. Microbiol. 2000; 74(1–2):3–13.; Animal and Plant Health Agency (APHA), UK. Situation assessment following detection and spread of H5N8 HPAI in EU Member States since October 2016. 2017 [cited 19 Jul 2017]. Available from: https://science.vla.gov.uk/flu-lab-net/docs/outbreakhpai-h5n8-eu-rope.pdfTest.; FAO. H5N8 highly pathogenic avian influenza (HPAI) of clade 2.3.4.4 detected through surveillance of wild migratory birds in the Tyva Republic, the Russian Federation – potential for international spread. Rome; 2016. Available from: http://www.fao.org/3/ai6113e.pdfTest.; FAO. Highly pathogenic avian influenza (H5N1 HPAI) spread in the Middle East: risk assessment. Rome; 2016. Available from: http://www.fao.org/3/a-i6155e.pdfTest.; Lee D.H., Torchetti M.K., Killian M.L., DeLiberto T.J., Swayne D.E. Reoccurrence of avian influenza A(H5N2) virus clade 2.3.4.4 in wild birds, Alaska, USA, 2016. Emerg. Infect. Dis. 2017; 23(2):365–7. DOI:10.3201/eid2302.161616.; Lvov D.K., Shchelkanov M.Y., Prilipov A.G., Vlasov N.A., Fedyakina I.T., Deryabin P.G., Alkhovsky S.V., Grebennikova T.V., Zaberezhny A.D., Suarez D.L. Evolution of highly pathogenic avian influenza H5N1 virus in natural ecosystems of northern Eurasia (2005–08). Avian Dis. 2010; 54(1 Suppl):483–95.; Marchenko V.Y., Susloparov I.M., Kolosova N.P., Goncharova N.I., Shipovalov A.V., Durymanov A.G., Ilyicheva T.N., Budatsirenova L.V., Ivanova V.K., Ignatyev G.A., Ershova S.N., Tulyahova V.S., Mikheev V.N., Ryzhikov A.B. Influenza A(H5N8) virus isolation in Russia, 2014. Arch. Virol. 2015; 160(11):2857–60. DOI:10.1007/s00705-015-2570-4.; Marchenko V.Y., Susloparov I.M., Komissarov A.B., Fadeev A., Goncharova N.I., Shipovalov A.V., Svyatchenko S.V., Durymanov A.G., Ilyicheva T.N., Salchak L.K., Svintitskaya E.P., Mikheev V.N., Ryzhikov A.B. Reintroduction of highly pathogenic avian influenza A/H5N8 virus of clade 2.3.4.4. in Russia. Arch. Virol. 2017; 162:1381–5. DOI:10.1007/s00705-017-3246-z.; Sharshov K., Romanovskaya A., Uzhachenko R., Durymanov A., Zaykovskaya A. Kurskaya O., Ilinykh P., Silko N., Kulak M., Alekseev A., Zolotykh S., Shestopalov A., Drozdov I. Genetic and biological characterization of avian influenza H5N1 viruses isolated from wild birds and poultry in Western Siberia. Arch. Virol 2010; 155(7):1145–50. DOI:10.1007/s00705-010-0676-2.; Sims L.D., Brown I.H. Multi-continental panzootic of H5 highly pathogenic avian influenza (1996–2015). In: Swayne D.E., editor. Animal Influenza. Wiley-Blackwell; 2016. P. 202–47.; Sims L., Harder T., Brown I., Nicolas G., Belot G., von Dobschuetz S., Kamata A., Kivaria F., Palamara E., Bruni M., Dauphin G., Raizman E., Lubroth J. Highly pathogenic H5 avian influenza in 2016 and 2017 – observations and future perspectives. FOCUS ON. Rome; 2017. No. 11, Nov 2017. Available from: http:// www.fao.org/3/a-i8068e.pdf.; Smith G.J., Donis R.O. World Health Organization/World Organisation for Animal Health/Food and Agriculture Organization of the United Nations (WHO/OIE/FAO) H5 Evolution Working Group. Nomenclature updates resulting from the evolution of avian influenza A(H5) virus clades 2.1.3.2a, 2.2.1, and 2.3.4 during 2013–2014. Influenza Other Respir. Viruses. 2015; 9(5):271–6. DOI:10.1111/irv.12324.; Tong S., Li Y., Rivailler P., Conrardy C., Castillo D.A., Chen L-M., Recuenco S., Ellison J.A., Davis C.T., York I.A., Turmelle A.S., Moran D., Rogers S., Shi M., Tao Y., Weil M.R., Tang K., Rowe L.A., Sammons S., Xu X., Frace M., Lindblade K.A., Cox N.J., Anderson L.J., Rupprecht C.E., Donis R.O. A distinct lineage of influenza A virus from bats. Proc. Natl. Acad. Sci. 2012; 109:4269–74.; Tong S., Zhu X., Li Y., Shi M., Zhang J., Bourgeois M., Yang H., Chen X., Recuenco S., Gomez J., Chen L-M., Johnson A, Tao Y., Dreyfus C., Yu W., McBride R., Carney P.J., Gilbert A.T., Chang J., Guo Z., Davis C.T., Paulson J.C., Stevens J., Rupprecht C.E., Holmes E.C., Wilson I.A., Donis R.O. New World Bats Harbor 352018, issue 1 Diverse Influenza A Viruses. PLoS Pathog. 2013; 9:e1003657.; Veen J., Yurlov A.K., Delany S.N., Mihantiev A.I., Selivanova M.A., Boere G.C. An atlas of movements of Southwest Siberian waterbirds. Wetlands International; 2005. 60 p. Available from: http://gull-research.org/barabensis/imagesross1/atlas_SE_siberinan_waterbirds_2.pdfTest.; Webster R.G., Bean W.J., Gorman O.T., Chambers T.M., Kawaoka Y. Evolution and ecology of influenza A viruses. Microbiol. Rev. 1992; 56:152–79.; World Health Organization (WHO). Antigenic and genetic characteristics of zoonotic influenza viruses and candidate vaccine viruses developed for potential use in human vaccines. (Cited 21.09.2017). Available from: http://www.who.int/influenza/vaccines/virus/characteristics_virus_vaccines/enTest/.; World Health Organization (WHO). Cumulative number of confirmed human cases of avian influenza A(H5N1) reported to WHO. (Cited 07.12.2017). Available from: http://www.who.int/influenza/human_animal_interface/H5N1_cumulative_table_archives/enTest/.; World Health Organization (WHO). WHO risk assessments of human infection with avian influenza A(H7N9) virus. (Cited 07.12.2017). Available from: http://who.int/influenza/human_animal_interface/HAI_Risk_Assessment/enTest/.; World organization for animal health (OIE). Update on highly pathogenic avian influenza in animals (type h5 and h7). Paris: OIE; 2018 (cited 11.01.2018). Available from: http://www.oie.int/en/animal-health-in-the-world/update-on-avian-influenza/2018Test/; https://journal.microbe.ru/jour/article/view/456Test