يعرض 1 - 4 نتائج من 4 نتيجة بحث عن '"Е. А. Павловская"', وقت الاستعلام: 0.79s تنقيح النتائج
  1. 1
    دورية أكاديمية

    المصدر: Medical Visualization; Принято в печать ; Медицинская визуализация; Принято в печать ; 2408-9516 ; 1607-0763

    وصف الملف: application/pdf

    العلاقة: https://medvis.vidar.ru/jour/article/view/1408/876Test; https://medvis.vidar.ru/jour/article/downloadSuppFile/1408/2223Test; https://medvis.vidar.ru/jour/article/downloadSuppFile/1408/2224Test; https://medvis.vidar.ru/jour/article/downloadSuppFile/1408/2229Test; Трофимова Т.Н., Халиков А.Д., Семенова М.Д. Возможности магнитно-резонансной томографии в изучении формирования головного мозга плода. Лучевая диагностика и терапия. 2017; 4 (8): 6–16. https://doi.org/10.22328/2079-5343-2017-4-6-15Test; Amant F., Berveiller P., Boere I.A. et al. Gynecologic cancers in pregnancy: guidelines based on a third international consensus meeting. Ann. Oncol. 2019; 30 (10): 1601–1612. https://doi.org/10.1093/annonc/mdz228Test; Parpinel G., Laudani M.E., Giunta F.P. et al. Use of positron emission tomography for pregnancy-associated cancer assessment: a review. J. Clin. Med. 2022; 11 (13): 1–11. https://doi.org/10.3390/jcm11133820Test; de Haan J., Verheecke M., Van Calsteren K. et al. Oncological management and obstetric and neonatal outcomes for women diagnosed with cancer during pregnancy: a 20-year international cohort study of 1170 patients. Lancet Oncol. 2018; 19 (3): 337–346. https://doi.org/10.1016/S1470-2045Test(18)30059-7; Abramowicz J.S., Kremkau F.W., Merz E. Obstetrical ultrasound: can the fetus hear the wave and feel the heat? Ultraschall Med. 2012; 33 (3): 215–217. https://doi.org/10.1055/s-0032-1312759Test; Aiken C.E., Lees C.C. Long-term effects of in utero Doppler ultrasound scanning-a developmental programming perspective. Med. Hypotheses. 2012; 78 (4): 539–541. https://doi.org/10.1016/j.mehy.2012.01.030Test; Tirada N., Dreizin D., Khati N.J. et al. Imaging pregnant and lactating patients. RadioGraphics. 2015; 35 (6): 1751–1765. https://doi.org/10.1148/rg.2015150031Test; Wei K., Mulvagh S.L., Carson L. et al. The safety of definity and optison for ultrasound image enhancement: a retrospective analysis of 78,383 administered contrast doses. J. Am. Soc. Echocardiogr. 2008; 21 (11): 1202–1206. https://doi.org/10.1016/j.echo.2008.07.019Test; Piscaglia F., Bolondi L., Italian Society for Ultrasound in Medicine and Biology (SIUMB) study group on ultrasound contrast agents. The safety of Sonovue in abdominal applications: retrospective analysis of 23188 investigations. Ultrasound Med. Biol. 2006; 32 (9): 1369–1375. https://doi.org/10.1016/j.ultrasmedbio.2006.05.031Test; Sidhu P.S., Cantisani V., Dietrich C.F. et al. The EFSUMB guidelines and recommendations for the clinical practice of contrast-enhanced ultrasound (CEUS) in non-hepatic applications: update 2017 (Long Version). Ultraschall Med. 2018; 39 (2): e2–e44. https://doi.org/10.1055/a-0586-1107Test; Perelli F., Turrini I., Giorgi M.G. et al. Contrast agents during pregnancy: pros and cons when really needed. Int. J. Environ. Res. Public Health. 2022; 19 (24): 16699. https://doi.org/10.3390/ijerph192416699Test; Kanal E., Barkovich A.J., Bell C. et al.; ACR Blue Ribbon Panel on MR Safety. ACR guidance document for safe MR practices: 2007; Am. J. Roentgenol. 2007. 188 (6): 1447–1474. https://doi.org/10.2214/AJR.06.1616Test; Hartwig V., Giovannetti G., Vanello N. et al. Biological effects and safety in magnetic resonance imaging: a review. Int. J. Environ. Res. Public Health. 2009; 6 (6): 1778–1798. https://doi.org/10.3390/ijerph6061778Test; Chartier A.L., Bouvier M.J., McPherson D.R. et al. The safety of maternal and fetal MRI at 3T. Am. J. Roentgenol. 2019; 213 (5): 1170–1173. https://doi.org/10.2214/AJR.19.21400Test; Ray J.G., Vermeulen M.J., Bharatha A. et al. Association between MRI exposure during pregnancy and fetal and childhood outcomes. JAMA. 2016; 316 (9): 952–961. https://doi.org/10.1001/jama.2016.12126Test; Gomes M., Matias A., Macedo F. Risks to the fetus from diagnostic imaging during pregnancy: review and proposal of a clinical protocol. Pediatr. Radiol. 2015; 45 (13): 1916–1929. https://doi.org/10.1007/s00247-015-3403-zTest; Mervak B.M., Altun E., McGinty K.A. et al. MRI in pregnancy: Indications and practical considerations. J. Magn. Reson. Imaging. 2019; 49 (3): 621–631. https://doi.org/10.1002/jmri.26317Test; Синицын В.Е. Безопасность магнитно-резонансной томографии – современное состояние вопроса. Диагностическая и интервенционная радиология. 2010. 4 (3): 61–66. https://doi.org/10.25512/DIR.2010.04.3.10Test; Behzadi A.H., Zhao Y., Farooq Z., Prince M.R. Immediate allergic reactions to gadolinium-based contrast agents: a systematic review and meta-analysis. Radiology. 2018; 286 (2): 471–482. https://doi.org/10.1148/radiol.2017162740Test; Fraum T.J., Ludwig D.R., Bashir M.R., Fowler K.J. Gadolinium-based contrast agents: a comprehensive risk assessment. J. Magn. Reson. Imaging. 2017; 46 (2): 338–353. https://doi.org/10.1002/jmri.25625Test; Cheong B.Y.C., Wilson J.M., Preventza O.A., Muthupillai R. Gadolinium-based contrast agents: updates and answers to typical questions regarding gadolinium use. Tex. Heart Inst. J. 2022; 49 (3): e217680. https://doi.org/10.14503/THIJ-21-7680Test; Potts J., Lisonkova S., Murphy D.T., Lim K. Gadolinium magnetic resonance imaging during pregnancy associated with adverse neonatal and post-neonatal outcomes. J. Pediatr. 2017; 180: 291–294. https://doi.org/10.1016/j.jpeds.2016.10.061Test; Costello J.R., Kalb B., Martin D.R. Incidence and risk factors for gadolinium-based contrast agent immediate reactions. Top. Magn. Reson. Imaging. 2016; 25 (6): 257–263. https://doi.org/10.1097/RMR.0000000000000109Test; Cowper S.E., Boyer P.J. Nephrogenic systemic fibrosis: An update. Curr. Rheumatol. Rep. 2006; 8 (2): 151–157. https://doi.org/10.1007/s11926-006-0056-9Test; Kanal E., Tweedle M.F. Residual or retained gadolinium: practical implications for radiologists and our patients. Radiology. 2015; 275 (3): 630–634. https://doi.org/10.1148/radiol.2015150805Test; Kodzwa R. ACR manual on contrast media: 2018 updates. Radiol. Technol. 2019; 91 (1): 97–100.; De Santis M., Straface G., Cavaliere A.F. et al. Gadolinium periconceptional exposure: pregnancy and neonatal outcome. Acta Obstet. Gynecol. Scand. 2007; 86 (1): 99–101. https://doi.org/10.1080/00016340600804639Test; Thomsen H.S. ESUR guidelines on contrast agents version 10.0. Contrast Media Safety Committee, 2018; 44 p.; Gatta G., Di Grezia G., Cuccurullo V. et al. MRI in pregnancy and precision medicine: a review from literature. J. Pers. Med. 2021; 12 (1): 1–16. https://doi.org/10.3390/jpm12010009Test; Ghaghada K.B., Starosolski Z.A., Bhayana S. et al. Pre-clinical evaluation of a nanoparticle-based blood-pool contrast agent for MR imaging of the placenta. Placenta. 2017; 57: 60–70. https://doi.org/10.1016/j.placenta.2017.06.008Test; Семенова Е.С., Мащенко И.А., Труфанов Г.Е. Магнитно-резонансная томография при беременности: актуальные вопросы безопасности. Российский Электронный журнал лучевой диагностики. 2020; 10 (1): 216–230. https://doi.org/10.21569/2222-7415-2020-10-1-216-230Test; Ratnapalan S., Bentur Y., Koren G. Doctor, will that x-ray harm my unborn child? CMAJ. 2008; 179 (12): 1293–1296. https://doi.org/10.1503/cmaj.080247Test; Brent R.L. Protection of the gametes embryo/fetus from prenatal radiation exposure. Health Physics. 2015; 108 (2): 242–274. https://doi.org/10.1097/HP.0000000000000235Test; Санитарные правила и нормативы. Нормы радиационной безопасности (НРБ–99/2009): cанитарно-эпидемиологичeские правила и нормативы. Москва – Федеральный центр гигиены и эпидемиологии Роспотребнадзора. 2009. 100 c.; ACR-SPR practice parameter for imaging pregnant or potentially pregnant adolescents and women with ionizing radiation [Electronic resource]. URL: https://www.acr.org/Clinical-Resources/Radiology-Safety/Radiation-SafetyTest (accessed: 05.03.2023).; Публикация 103 Международной комиссии по радиационной защите (МКРЗ): Пер. с англ. / Под. общей ред. М.Ф. Киселёва, Н.К. Шандалы. М.: Изд-во ООО ПКФ “Алана”, 2009. 344 с.; Крылов А.С., Наркевич Б.Я., Рыжков А.Д. Определение дозы-облучения плода у беременных женщин с раком молочной железы при сцинтиграфии сторожевых лимфатических узлов. Онкологический журнал: лучевая диагностика, лучевая терапия. 2021; 4 (4); 78–87. https://doi.org/10.37174/2587-7593-2021-4-4-78-87Test; Raman S.P., Johnson P.T., Deshmukh S. et al. CT dose reduction applications: available tools on the latest generation of CT scanners. J. Am. Coll. Radiol. 2013. 10 (1): 37–41. https://doi.org/10.1016/j.jacr.2012.06.025Test; Colletti P.M., Micheli O.A., Lee K.H. To shield or not to shield: application of bismuth breast shields. Am. J. Roentgenol. 2013; 200 (3): 503–507. https://doi.org/10.2214/AJR.12.9997Test; Кондрашов И.А., Мандал В. Неионные низкоосмолярные мономерные йодированные рентгеноконтрастные средства: некоторые аспекты использования при проведении компьютерной томографии у детей. Медицинская визуализация. 2017; 6: 118–129. https://doi.org/10.24835/1607-0763-2017-6-118-129Test; Webb J.A., Thomsen H.S., Morcos S.K; Members of Contrast Media Safety Committee of European Society of Urogenital Radiology (ESUR). The use of iodinated and gadolinium contrast media during pregnancy and lactation. Eur. Radiol. 2005; 15 (6): 1234–1240. https://doi.org/10.1007/s00330-004-2583-yTest; Rajaram S., Exley C.E., Fairlie F., Matthews S. Effect of antenatal iodinated contrast agent on neonatal thyroid function. Br. J. Radiol. 2012; 85 (1015): e238–e242. https://doi.org/10.1259/bjr/29806327Test; Kochi M.H., Kaloudis E.V., Ahmed W., Moore W.H. Effect of in utero exposure of iodinated intravenous contrast on neonatal thyroid function. J. Comput. Assist. Tomogr. 2012; 36 (2): 165–169. https://doi.org/10.1097/rct.0b013e31824cc048Test; Зиновьев А.Н., Мотовилова Т.М., Качалина Т.С. Место количественной оценки проходимости маточных труб в определении прогноза лечения трубно-перитонеального бесплодия. РМЖ. Мать и дитя. 2013; 21 (14): 760.; American College of Radiology. Manual on contrast media, version 10.2; American College of Radiology: Reston, VA, USA, 2023. 148 p.; Wang P.I., Chong S.T., Kielar A.Z. et al. Imaging of pregnant and lactating patients: part 2, evidence-based review and recommendations. Am. J. Roentgenol. 2012; 198 (4): 785–792. https://doi.org/10.2214/AJR.11.8223Test; Despierres M., Boudy A.S., Selleret L. et al. Feasibility, safety and impact of (18F)-FDG PET/CT in patients with pregnancy-associated cancer: experience of the French CALG (Cancer Associé à La Grossesse) network. Acta Oncol. 2022; 61 (3): 302–308. https://doi.org/10.1080/0284186X.2021.2004323Test; Zanotti-Fregonara P., Champion C., Trébossen R. et al. Estimation of the beta+ dose to the embryo resulting from 18F-FDG administration during early pregnancy. J. Nucl. Med. 2008; 49 (4): 679–682. https://doi.org/10.2967/jnumed.107.048900Test; Benveniste H., Fowler J.S., Rooney W.D. et al. Maternal-fetal in vivo imaging: a combined PET and MRI study. J. Nucl. Med. 2003; 44 (9): 1522–1530.; Zanotti-Fregonara P., Ishiguro T., Yoshihara K. et al. 18F-FDG fetal dosimetry calculated with PET/MRI. J. Nucl. Med. 2022; 63 (10): 1592–1597. https://doi.org/10.2967/jnumed.121.263561Test; Gropper A.B., Calvillo K.Z., Dominici L. et al. Sentinel lymph node biopsy in pregnant women with breast cancer. Ann. Surg. Oncol. 2014; 21 (8): 2506–2511. https://doi.org/10.1245/s10434-014-3718-2Test; Han S.N., Amant F., Cardonick E.H. et al. Axillary staging for breast cancer during pregnancy: feasibility and safety of sentinel lymph node biopsy. Breast Cancer Res. Treat. 2018; 168 (2): 551–557. https://doi.org/10.1007/s10549-017-4611-zTest; Han S.N., Amant F., Michielsen K. et al. Feasibility of whole-body diffusion-weighted MRI for detection of primary tumour, nodal and distant metastases in women with cancer during pregnancy: a pilot study. Eur. Radiol. 2018; 28 (5): 1862–1874. https://doi.org/10.1007/s00330-017-5126-zTest; https://medvis.vidar.ru/jour/article/view/1408Test

  2. 2
    دورية أكاديمية

    المساهمون: The study was partially supported by the Karpinsky Russian Geological Research Institute project on ASE-200, sheet O-53-V., Исследование частично проводилось в рамках проекта Всероссийского научно-исследовательского геологического института им. А.П. Карпинского по ГДП-200, лист O-53-V.

    المصدر: Geodynamics & Tectonophysics; Том 15, № 1 (2024); 0742 ; Геодинамика и тектонофизика; Том 15, № 1 (2024); 0742 ; 2078-502X

    وصف الملف: application/pdf

    العلاقة: https://www.gt-crust.ru/jour/article/view/1794/802Test; Brown D., Juhlin C., Tryggvason A., Friberg M., Rybalka A., Puchkov V., Petrov G., 2006. Structural Architecture of the Southern and Middle Urals Foreland from Reflection Seismic Profiles. Tectonics 25 (1), 1–12. https://doi.org/10.1029/2005TC001834Test.; Cawood A.J., Bond C.E., 2019. Broadhaven Revisited: A New Look at Models of Fault–Fold Interaction. In: C.E. Bond, H.D. Lebit (Eds), Folding and Fracturing of Rocks: 50 Years of Research since the Seminal Text Book of J.G. Ramsay. Geological Society, London, Special Publications 487, p. 105–126. https://doi.org/10.1144/SP487.11Test.; Dahlstrom C.D.A., 1969. Balanced Cross Sections. Canadian Journal of Earth Sciences 6 (4), 743–757. https://doi.org/10.1139/e69-069Test.; Gaiduk V.V., Prokopiev A.V., 1999. Methods for Studying Fold-Thrust Belts. Nauka, Novosibirsk, 160 p. (in Russian) [Гайдук В.В., Прокопьев А.В. Методы изучения складчато-надвиговых поясов. Новосибирск: Наука, 1999. 160 с.].; Гусев Г.С. Складчатые структуры и разломы Верхояно-Колымской системы мезозоид. М.: Наука, 1979. 208 с.; Khudoley A.K., Guriev G.A., 2003. Influence of Syn-Sedimentary Faults on Orogenic Structure: Examples from the Neoproterozoic–Mesozoic East Siberian Passive Margin. Tectonophysics 365 (1–4), 23–43. https://doi.org/10.1016/S0040-1951Test(03)00016-7.; Khudoley A.K., Prokopiev A.V., 2007. Defining the Eastern Boundary of the North Asian Craton from Structural and Subsidence History Studies of the Verkhoyansk Fold-and- Thrust Belt. In: J.W. Sears, T.A. Harms, C.A. Evenchick (Eds), Whence the Mountains? Inquiries into the Evolution of Orogenic Systems: A Volume in Honor of Raymond A. Price. Geological Society of America Special Paper 433, p. 391–410. https://doi.org/10.1130/2007.2433Test(19).; Khudoley A.K., Rainbird R.H., Stern R.A., Kropachev A.P., Heaman L.M., Zanin A.M., Podkovyrov V.N., Belova V.N., Sukhorukov V.I., 2001. Sedimentary Evolution of the Riphean – Vendian Basin of Southeastern Siberia. Precambrian Research 111 (1–4), 129–163. https://doi.org/10.1016/S0301-9268Test(01)00159-0.; Lammie D., McQuarrie N., Sak P.B., 2020. Quantifying Shortening across the Central Appalachian Fold-Thrust Belt, Virginia and West Virginia, USA: Reconciling Grain-, Outcrop-, and Map-Scale Shortening. Geosphere 16 (5), 1276–1292. https://doi.org/10.1130/GES02016.1Test.; Malyshev S.V., Khudoley A.K., Glasmacher U.A., Kazakova G.G., Kalinin M.A., 2018. Constraining Age of Deformation Stages in the South-Western Part of Verkhoyansk Fold-and-Thrust Belt by Apatite and Zircon Fission-Track Analysis. Geotectonics 52, 634–646. https://doi.org/10.1134/S0016852118060055Test.; Monger J., Price R.A., 2002. The Canadian Cordillera: Geology and Tectonic Evolution. CSEG Recorder, p. 17–36.; Morley C.K., 1986. A Classification of Thrust Fronts. The American Association of Peroleum Geologists Bulletin 70 (1), 12–25. https://doi.org/10.1306/948878A2-1704-11D7-8645000102C1865DTest.; Неволин Б.С., Потапов С.В., Ставцев А.Л. Верхний протерозой (рифей) и нижний кембрий юго-восточной окраины Сибирской платформы, Юдомо-Майского прогиба и Охотского срединного массива // Новое в стратиграфии и палеонтологии позднего докембрия восточных и северных районов Сибири / Ред. В.В. Хоментовский. Новосибирск: Изд-во ИГиГ СО АН СССР, 1978. С. 21–63.; Parfenov L.M., Prokopiev A.V., Gaiduk V.V., 1995. Cretaceous Frontal Thrusts of the Verkhoyansk Fold Belt, Eastern Siberia. Tectonics 14 (2), 342–358. https://doi.org/10.1029/94TC03088Test.; Price R.A., 1981. The Cordilleran Thrust and Fold Belt in the Southern Canadian Rocky Mountains. Thrust and Nappe Tectonics. Geological Society, London, Special Publications 9, 427–448. https://doi.org/10.1144/GSL.SP.1981.009.01.39Test.; Прокопьев А.В. Кинематика мезозойской складчатости западной части Южного Верхоянья. Якутск: ЯНЦ СО АН СССР, 1989. 128 с.; Прокопьев А.В., Дейкуненко А.В. Деформационные структуры складчато-надвиговых поясов // Тектоника, геодинамика и металлогения территории Республики Саха (Якутия) / Ред. Л.М. Парфенов, М.И. Кузьмин. М.: МАИК «Наука/ Интерпериодика», 2001. С. 156–198.; Прокопьев А.В., Парфенов Л.М., Томшин М.Д., Колодезников И.И. Чехол Сибирской платформы и смежных складчато-надвиговых поясов // Тектоника, геодинамика и металлогения территории Республики Саха (Якутия) / Ред. Л.М. Парфенов, М.И. Кузьмин. М.: МАИК «Наука/Интерпериодика», 2001. С. 113–155.; Прокопьев А.В., Торо Х., Думитру Т.А., Миллер Э.Л., Хоуриган Д.К. История формирования надвиговых структур Южного Верхоянья (Восточная Якутия) на основе метода трекового датирования (AFTA) // Эволюция тектонических процессов в истории Земли: Материалы XXXVII Тектонического совещания (10‒13 февраля 2004 г.). Новосибирск: Гео, 2004. С. 86–88.; Prokopiev A.V., Toro J., Hourigan J.K., Bakharev A.G., Miller E.L., 2009. Middle Paleozoic-Mesozoic Boundary of the North Asian Craton and the Okhotsk Terrane: New Geochemical and Geochronological Data and Their Geodynamic Interpretation. Stephan Mueller Special Publication Series 4, 71–84. https://doi.org/10.5194/smsps-4-71-2009Test.; Пучков В.Н. Геология Урала и Приуралья (актуальные вопросы стратиграфии, тектоники, геодинамики и металлогении). Уфа: ДизайнПолиграфСервис, 2010. 280 с.; Ramsay J.G., Huber M.I., 1987. The Techniques of Modern Structural Geology. Vol. 2: Folds and Fractures. Academic Press, London, p. 309–700.; Razvozzhaeva E.P., 2020. A Seismostratigraphic Model of the Aldan–Maya Sedimentary Basin of the Southeastern Siberian Platform. Russian Journal of Pacific Geology 14, 505–525. https://doi.org/10.1134/S1819714020060068Test.; Razvozzhaeva E.P., Taltykin Y.V., 2023. The Structure of the Kyllakh Zone (Southern Verkhoyansk Fold and Thrust Belt) from Seismic Profiling Data. Russian Journal of Pacific Geology 17, 1–18. https://doi.org/10.1134/S1819714023010074Test.; Reks I.J., Gray D.R., 1983. Strain Patterns and Shortening in a Folded Thrust Sheet: An Example from the Southern Appalachians. Tectonophysics 93 (1–2), 99–128. https://doi.org/10.1016/0040-1951Test(83)90235-4.; Семихатов М.А., Серебряков С.Н. Сибирский гипостратотип рифея. М.: Наука, 1983. 221 с.; Sobolev P.N., Shiganova O.V., Dykhan S.V., Akhmedova A.R., 2017. New Data on the Petroleum Potential of the Aldan–Maya Depression. Russian Geology and Geophysics 58 (3–4), 529–540. https://doi.org/10.1016/j.rgg.2017.03.002Test.; Государственная геологическая карта Российской Федерации. Серия новая. Масштаб 1:1000000. Лист P-52, 53 (Якутск): Объяснительная записка. СПб.: ВСЕГЕИ, 1999. 186 с.; Государственная геологическая карта Российской Федерации. Масштаб 1:1000000. Серия Дальневосточная. Лист O-53 (Нелькан): Объяснительная записка. СПб.: ВСЕГЕИ, 2012. 364 с.; Государственная геологическая карта Российской Федерации. Масштаб 1:200000. Серия Юдомская. Лист P-53-XXX (Акра): Объяснительная записка. М.: МФ ВСЕГЕИ, 2020. 164 с.; Государственная геологическая карта СССР. Серия Майская. Масштаб 1 :200000. Лист P-53-XXIX (Акра): Объяснительная записка. М.: Аэрогеология, 1977. 60 с.; Государственная геологическая карта СССР. Масштаб 1 :200000. Серия Майская. Лист O-53-VI: Объяснительная записка. М.: Аэрогеология, 1984. 99 с.; Государственная геологическая карта СССР. Серия Майская. Масштаб 1:200000. Лист O-53-V: Объяснительная записка. М.: Союзгеолфонд, 1990. 114 с.; Сухоруков В.И. Опорные разрезы верхнего рифея хребта Улахан-Бам // Поздний докембрий и ранний палеозой Сибири. Сибирская платформа и внешняя зона Алтае-Саянской складчатой области: Сборник научных трудов / Ред. В.В. Хоментовский. Новосибирск: Изд-во ИГиГ АН СССР, 1986. С. 23–64.; Van der Pluijm B.A., Marshak S., 2004. Earth Structure: An Introduction to Structural Geology and Tectonics. W.W. Norton & Company, New York, 672 p.; Whitaker A.E., Bartholomew M.J., 1999. Layer Parallel Shortening: A Mechanism for Determining Deformation Timing at the Junction of the Central and Southern Appalachians. American Journal of Science 299 (3), 238–254. https://doi.org/10.2475/ajs.299.3.238Test.; Williams G., Chapman T., 1983. Strains Developed in the Hanging Walls of Thrusts Due to Their Slip/Propagation Rate: A Dislocation Model. Journal of Structural Geology 5 (6), 563–571. https://doi.org/10.1016/0191-8141Test(83)90068-8.; Woodward N.B., Boyer S.E., Suppe J., 1989. Balanced Geological Cross-Sections: An Essential Technique in Geological Research and Exploration. Vol. 6. Short Course in Geology. American Geophysical Union, Washington, 132 p.; Ян-Жин-Шин В.А. Тектоника Сетте-Дабанского горст-антиклинория. Якутск: ЯФ СО АН СССР, 1983. 155 с.; https://www.gt-crust.ru/jour/article/view/1794Test

  3. 3
    دورية أكاديمية

    المصدر: Medical Visualization; Том 28, № 1 (2024); 141-156 ; Медицинская визуализация; Том 28, № 1 (2024); 141-156 ; 2408-9516 ; 1607-0763

    وصف الملف: application/pdf

    العلاقة: https://medvis.vidar.ru/jour/article/view/1341/854Test; FIGO Committee on Gynecologic Oncology. Revised FIGO staging for carcinoma of the vulva, cervix, and endometrium. Int. J. Gynaecol. Obstet. 2009; 105 (2): 103–104. http://doi.org/10.1016/j.ijgo.2009.02.012Test; FIGO Committee on Gynecologic Oncology. Revised FIGO staging for carcinoma of the cervix uteri. Int. J. Gynaecol. Obstet. 2019; 145 (1): 129–135. http://doi.org/10.1002/ijgo.12749Test; Bhatla N., Aoki D., Sharma D.N., Sankaranarayanan R. Cancer of the cervix uteri. Int. J. Gynaecol. Obstet. 2018; 143 (Suppl. 2): 22–36. http://doi.org/10.1002/ijgo.12611Test; Berek J.S., Matsuo K., Grubbs B.H. et al. Multidisciplinary perspectives on newly revised 2018 FIGO staging of cancer of the cervix uteri. J. Gynecol. Oncol. 2019; 30 (2): e40. http://doi.org/10.3802/jgo.2019.30.e40Test; Bhatla N., Aoki D., Sharma D.N., Sankaranarayanan R. Corrigendum to “Revised FIGO staging for carcinoma of the cervix uteri”. Int. J. Gynecol. Obstet. 2019; 145: 129–135. http://doi.org/10.1002/ijgo.12969Test; Lee S.I., Atri M. 2018 FIGO staging system for uterine cervical cancer: enter cross-sectional imaging. Radiology. 2019; 292 (1): 15–24. http://doi.org/10.1148/radiol.2019190088Test; Olawaiye A.B., Baker T.P., Washington M.K., Mutch D.G. The new (Version 9) American Joint Committee on Cancer tumor, node, metastasis staging for cervical cancer. CA Cancer J. Clin. 2021; 71 (4): 287–298. http://doi.org/10.3322/caac.21663Test; FIGO CANCER REPORT 2021 Cancer of the cervix uteri: 2021 update International Journal of Obstetrics and Gynaecology. 155 (S1). Special Issue: FIGO Cancer Report 2021 October: 28–44. https://doi.org/10.1002/ijgo.13967Test; Клинические рекомендации, одобренные научным советом МЗ РФ, Рак шейки матки, 2020 г. 48 с. https://oncology.ru/specialist/treatment/references/actual/537.pdf?ysclid=lp6m9w7k57670993368Test; Tian Y., Luo H. Diagnostic accuracy of transvaginal ultrasound examination for local staging of cervical cancer: a systematic review and meta-analysis. Med. Ultrason. 2022; 24 (3): 348–355. http://doi.org/10.11152/mu-3246Test; Cibula D., Pötter R., Planchamp F. et al. The European Society of Gynaecological Oncology/European Society for Radiotherapy and Oncology/European Society of Pathology Guidelines for the Management of Patients With Cervical Cancer. Int. J. Gynecol. Cancer. 2018; 28 (4): 641–655. http://doi.org/10.1097/IGC.0000000000001216Test; Marth C., Landoni F., Mahner S. et al.; ESMO Guidelines Committee. Cervical cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann. Oncol. 2017; 28 (Suppl_4): iv72–iv83. http://doi.org/10.1093/annonc/mdx220Test; Chino J., Annunziata C.M., Beriwal S. et al. Radiation Therapy for Cervical Cancer: Executive Summary of an ASTRO Clinical Practice Guideline. Pract. Radiat. Oncol. 2020; 10 (4): 220–234. http://doi.org/10.1016/j.prro.2020.04.002Test; Hricak H., Gatsonis C., Chi D.S. et al. Role of imaging in pretreatment evaluation of early invasive cervical cancer: results of the intergroup study American College of Radiology Imaging Network 6651-Gynecologic Oncology Group 183. J. Clin. Oncol. 2005; 23 (36): 9329–9337. http://doi.org/10.1200/JCO.2005.02.0354Test; Xiao M., Yan B., Li Y. et al. Diagnostic performance of MR imaging in evaluating prognostic factors in patients with cervical cancer: a meta-analysis. Eur. Radiol. 2020; 30 (3): 1405–1418. http://doi.org/10.1007/s00330-019-06461-9Test; Thomeer M.G., Gerestein C., Spronk S. et al. Clinical examination versus magnetic resonance imaging in the pretreatment staging of cervical carcinoma:systematic review and meta-analysis. Eur. Radiol. 2013; 23: 2005–2018. http://doi.org/10.1007/s00330-013-2783-4Test; Manganaro L., Lakhman Y., Bharwani N. et al. Staging, recurrence and follow-up of uterine cervical cancer using MRI: Updated Guidelines of the European Society of Urogenital Radiology after revised FIGO staging 2018. Eur. Radiol. 2021; 31 (10): 7802–7816. http://doi.org/10.1007/s00330-020-07632-9Test. Erratum in: Eur. Radiol. 2021 Jun 17. PMID: 33852049; Bourgioti C., Chatoupis K., Moulopoulos L.A. Current imaging strategies for the evaluation of uterine cervical cancer. Wld J. Radiol. 2016; 8 (4): 342–354. http://doi.org/10.4329/wjr.v8.i4.342Test; Nogami Y., Iida M., Banno K. et al. Application of FDG-PET in cervical cancer and endometrial cancer: utility and future prospects. Anticancer Res. 2014; 34 (2): 585–592. PMID: 24510987; Mirpour S., Mhlanga J., Logeswaran P. et al. The role of PET/CT in the management of cervical cancer. Am. J. Roentgenol. 2013; 201 (2): W192–205. http://doi.org/10.2214/AJR.12.9830Test; Choi H.J., Ju W., Myung S.K., Kim Y. Diagnostic performance of computer tomography, magnetic resonance imaging, and positron emission tomography or positron emission tomography/computer tomography for detection of metastatic lymph nodes in patients with cervical cancer: meta-analysis. Cancer Sci. 2010; 101 (6): 1471–1479. http://doi.org/10.1111/j.1349-7006.2010.01532.xTest; Liu B., Gao S., Li S. A comprehensive comparison of CT, MRI, positron emission tomography or positron emission tomography/ CT, and diffusion weighted imaging-MRI for detecting the lymph nodes metastases in patients with cervical cancer: a metaanalysis based on 67 studies. Gynecol. Obstet Invest. 2017; 82 (3): 209–222. http://doi.org/10.1159/000456006Test; Ruan J., Zhang Y., Ren H. Meta-analysis of PET/CT Detect Lymph Nodes Metastases of Cervical Cancer. Open Med. (Wars.) 2018; 13: 436–442. http://doi.org/10.1515/med-2018-0065Test; Young P., Daniel B., Sommer G. et al. Intravaginal gel for staging of female pelvic cancers–preliminary report of safety, distention, and gel-mucosal contrast during magnetic resonance examination. J. Comput. Assist. Tomogr. 2012; 36 (2): 253–256. http://doi.org/10.1097/RCT.0b013e3182483c05Test; Van Hoe L., Vanbeckevoort D., Oyen R. et al. Cervical carcinoma: optimized local staging with intravaginal contrast-enhanced MR imaging–preliminary results. Radiology. 1999; 213 (2): 608–611. http://doi.org/10.1148/radiology.213.2.r99oc23608Test; Akata D., Kerimoglu U., Hazirolan T. et al. Efficacy of transvaginal contrast-enhanced MRI in the early staging of cervical carcinoma. Eur. Radiol. 2005; 15 (8): 1727–1733. https://doi.org/10.1007/s00330-005-2645-9Test; Li X., Wang L., Li Y., Song P. The value of diffusionweighted imaging in combination with conventional magnetic resonance imaging for improving tumor detection for early cervical carcinoma treated with fertility-sparing surgery. Int. J. Gynecol. Cancer. 2017; 27 (8):1761–1768. http://doi.org/10.1097/IGC.0000000000001113Test; Woo S., Moon M.H., Cho J.Y. et al. Diagnostic performance of MRI for assessing parametrial invasion in cervical cancer: a head-to-head comparison between oblique and true axial T2-weighted images. Korean J. Radiol. 2019; 20 (3): 378–384. http://doi.org/10.3348/kjr.2018.0248Test; Hori M., Kim T., Onishi H. et al Uterine tumors: comparison of 3D versus 2D T2-weighted turbo spin-echo MR imaging at 3.0 T-initial experience. Radiology. 2011; 258 (1): 154–163. http://doi.org/10.1148/radiol.10100866Test; Hwang J., Hong S.S., Kim H.J. et al. Reduced field-of-view diffusion-weighted MRI in patients with cervical cancer. Br. J. Radiol. 2018; 91 (1087): 20170864. http://doi.org/10.1259/bjr.20170864Test; Huang J.-W., Song J.-C., Chen T. et al. Making the invisible visible: improving detectability of MRI-invisible residual cervical cancer after conisation by DCE-MRI. Clin. Radiol. 2019; 74 (2): 166.e15–166.e21. http://doi.org/10.1016/j.crad.2018.10.013Test; Bermudez A., Bhatla N., Leung E. FIGO cancer report 2015. Cancer of the cervix uteri. Int. J. Gynecol. Obstet. 2015; 131: S88–95. http://doi.org/10.1016/j.ijgo.2015.06.004Test; Bentivegna E., Gouy S., Maulard A. et al. Oncological outcomes after fertility-sparing surgery for cervical cancer: a systematic review. Lancet Oncol. 2016; 17 (6): e240–e253. http://doi.org/10.1016/S1470-2045Test(16)30032-8; Zhang Q., Li W., Kanis M.J. et al. Oncologic and obstetrical outcomes with fertility-sparing treatment of cervical cancer: a systematic review and meta-analysis. Oncotarget. 2017; 8 (28): 46580–46592. http://doi.org/10.18632/oncotarget.16233Test; Bentivegna E., Maulard A., Pautier P. et al. Fertility results and pregnancy outcomes after conservative treatment of cervical cancer: a systematic review of the Literature. Fertil Steril. 2016; 106 (5): 1195–1211.e5. https://doi.org/10.1016/j.fertnstert.2016.06.032Test; Koh W.J., Abu-Rustum N.R., Bean S. et al. Cervical Cancer, Version 3.2019, NCCN Clinical Practice Guidelines in Oncology. J. Natl. Compr. Canc. Netw. 2019; 17 (1): 64–84. http://doi.org/10.6004/jnccn.2019.0001Test; Engin G. Cervical cancer: MR imaging findings before, during, and after radiation therapy. Eur. Radiol. 2006; 16 (2): 313–324. http://doi.org/10.1007/s00330-005-2804-zTest; Hricak H., Yu K.K. Radiology in invasive cervical cancer. Am. J. Roentgenol. 1996; 167: 1101–1108. http://doi.org/10.2214/ajr.167.5.8911159Test; Lakhman Y., Akin O., Park K.J. et al. Stage IB1 cervical cancer: role of preoperative MR imaging in selection of patients for fertility-sparing radical trachelectomy. Radiology. 2013; 269 (1): 149–158. https://doi.org/10.1148/radiol.13121746Test; Noël P., Dubé M., Plante M., St-Laurent G. Early cervical carcinoma and fertility-sparing treatment options: MR imaging as a tool in patient selection and a follow-upmodality. Radiographics. 2014; 34 (4): 1099–1119. https://doi.org/10.1148/rg.344130009Test; Downey K., Attygalle A.D., Morgan V.A. et al. Comparison of optimised endovaginal vs external array coil T2-weighted and diffusion-weighted imaging techniques for detecting suspected early stage (IA/IB1) uterine cervical cancer. Eur. Radiol. 2016; 26 (4): 941–950. http://doi.org/10.1007/s00330-015-3899-5Test; DeSouza N.M., Rockall A., Freeman S. Functional MR imaging in gynecologic cancer. Magn. Reson. Imaging Clin. N. Am. 2016; 24 (1): 205–222. http://doi.org/10.1016/j.mric.2015.08.008Test; Woo S., Suh C.H., Kim S.Y. et al. Magnetic resonance imaging for detection of parametrial invasion in cervical cancer: an updated systematic review and meta-analysis of the literature between 2012 and 2016. Eur. Radiol. 2018; 28 (2): 530–541. http://doi.org/10.1007/s00330-017-4958-xTest; Park J.J., Kim C.K., Park S.Y., Park B.K. Parametrial invasion in cervical cancer: fused T2-weighted imaging and high-b-value diffusion-weighted imaging with background body signal suppression at 3 T. Radiology. 2015; 274 (3): 734–741. http://doi.org/10.1148/radiol.14140920Test; Sala E., Rockall A.G., Freeman S.J. et al. The Added Role of MR Imaging in Treatment Stratification of Patients with Gynecologic Malignancies: What the Radiologist Needs to Know. Radiology. 2013; 266: 717–740. http://doi.org/10.1148/radiol.12120315Test; Raithatha A., Papadopoulou I., Stewart V. et al. Cervical cancer staging: a resident’s primer: women’s imaging. Radiographics. 2016; 36 (3): 933–934. http://doi.org/10.1148/rg.2016150173Test; Eisenhauer E.A., Therasse P., Bogaerts J. et. al. New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1). Eur. J. Cancer. 2009; 45 (2): 228–247. http://doi.org/10.1016/j.ejca.2008.10.026Test; Zhang A., Song J., Ma Z., Chen T. Application of apparent diffusion coefficient values derived from diffusion-weighted imaging for assessing different sized metastatic lymph nodes in cervical cancers. Acta Radiol. 2020; 61 (6): 848–855. https://doi.org/10.1177/0284185119879686Test; Qi Y.F., He Y.L., Lin C.Y. et al. Diffusion-weighted imaging of cervical cancer: Feasibility of ultra-high b-value at 3T. Eur. J. Radiol. 2020; 124: 108779. http://doi.org/10.1016/j.ejrad.2019.108779Test; Elsholtz F.H.J., Asbach P., Haas M. et al. Introducing the Node Reporting and Data System 1.0 (Node-RADS): a concept for standardized assessment of lymph nodes in cancer. Eur. Radiol. 2021; 31 (8): 6116–6124. https://doi.org/10.1007/s00330-020-07572-4Test; Wong T.Z., Jones E.L., Coleman R.E. Positron emission tomography with 2-deoxy-2-[(18)F]fluoro-D-glucose for evaluating local and distant disease in patients with cervical cancer. Mol. Imaging Biol. 2004; 6 (1): 55–62. http://doi.org/10.1016/j.mibio.2003.12.004Test; Hameeduddin A., Sahdev A. Diffusion-weighted imaging and dynamic contrast-enhanced MRI in assessing response and recurrent disease in gynaecological malignancies. Cancer Imaging. 2015; 15 (1): 3. http://doi.org/10.1186/s40644-015-0037-1Test; Young H., Baum R., Cremerius U. et al. Measurement of clinical and subclinical tumour response using [18F]-fluorodeoxyglucose and positron emission tomography: review and 1999 EORTC recommendations. European Organization for Research and Treatment of Cancer (EORTC) PET Study Group. Eur. J. Cancer. 1999; 35 (13): 1773–1782. http://doi.org/10.1016/s0959-8049Test(99)00229-4; Wang X., Koch S. Positron emission tomography/ computed tomography potential pitfalls and artifacts. Curr. Probl. Diagn. Radiol. 2009; 38 (4): 156–169. http://doi.org/10.1067/j.cpradiol.2008.01.001Test; Amit A., Person O., Keidar Z. FDG PET/CT in monitoring response to treatment in gynecological malignancies. Curr. Opin. Obstet. Gynecol. 2013; 25 (1): 17–22. http://doi.org/10.1097/GCO.0b013e32835a7e96Test; American College of Radiology ACR Appropriateness Criteria: Pretreatment Planning of Invasive Cancer of the Cervix. https://acsearch.acr.org/docs/69461/NarrativeTest/; Moore K.N., Herzog T.J., Lewin S. et al. A comparison of cisplatin/paclitaxel and carboplatin/paclitaxel in stage IVB, recurrent or persistent cervical cancer. Gynecol. Oncol. 2007; 105 (2): 299–303. http://doi.org/10.1016/j.ygyno.2006.12.031Test; Lorusso D., Petrelli F., Coinu A. et al. A systematic review comparing cisplatin and carboplatin plus paclitaxel-based chemotherapy for recurrent or metastatic cervical cancer. Gynecol. Oncol. 2014; 133 (1): 117–123. http://doi.org/10.1016/j.ygyno.2014.01.042Test; Bodurka-Bevers D., Morris M., Eifel P.J. et al. Posttherapy surveillance of women with cervical cancer: an outcomes analysis. Gynecol. Oncol. 2000; 78 (2): 187–193. http://doi.org/10.1006/gyno.2000.5860Test.; Scottish Intercollegiate Guidelines Network. Management of cervical cancer/ (SIGN guideline no 99) 2008; National Comprehensive Cancer Network (NCCN) guidelines for cervical cancer/ 2022; https://medvis.vidar.ru/jour/article/view/1341Test

  4. 4
    دورية أكاديمية

    المصدر: Translational Medicine; Том 3, № 5 (2016); 64-74 ; Трансляционная медицина; Том 3, № 5 (2016); 64-74 ; 2410-5155 ; 2311-4495 ; 10.18705/2311-4495-2016-3-5

    وصف الملف: application/pdf

    العلاقة: https://transmed.almazovcentre.ru/jour/article/view/227/221Test; Zimmermann A, Bernuit D, Gerlinger C, Schaefers M, Geppert K. Prevalence, symptoms and management of uterine fibroids: an international internet-based survey of 21,746 women. BMC Womens Health. 2012; 12:16.; Kido A, Ascher SM, Kishimoto K, Hahn W, Jha RC, T ogashi K, Spies JB. Comparison of uterine peristalsis before and after uterine artery embolization at 3-T MRI. AJR Am J Roentgenol. 2011; 196(6): 1431-1435.; Hillard PJA. Benign diseases of the female reproductive tract: symptoms and signs. In: Berek J, ed. Novak’s gynecology. 13th ed. Philadelphia, PA: Lippincott Williams & Wilkins, 2002: 351–420.; Sidorova IS, U nanyan AL, Ageev MB et al. Current status of the pathogenesis, clinical features, diagnosis, and treatment of uterine fibromas in reproductive age women. Obstetrics, gynecology, reproduction. 2012; 6(4):22-28. In Russian [Сидорова И .С., А .Л. У нанян, А геев М.Б. и др. Современное состояние вопроса о патогенезе, клинике, диагностике и лечении миомы матки у женщин репродуктивного возраста. А кушерство, гинекология, репродукция. 2012; 6(4):22−28].; Vyhlyaeva EM. U terine fibroids diagnostics and treatment guideline. M.: MEDpress- inform, 2004. p. 400. In Russian [Вихляева Е. М. Р уководство по диагностике и лечению больных лейомиомой матки. М.: МЕДпрессинформ, 2004. с. 400].; Trufanov GE, Panov VO. Diagnostic imaging in gynecology guideline. SPb.: ELBI, 2008. p. 590. In Russian [Труфанов Г .Е., Панов В.О. Р уководство по лучевой диагностике в гинекологии. СПб.: ЭЛБИ, 2008. с. 590].; Tikhomirov AM, O leynik ChG, Lubnin DM. Uterine fibroids treatment tactics: for obstetricians and gynecologists. M.: Medical information agency, 2007. p.176. In Russian [Тихомиров А .М., О лейник Ч.Г., Лубнин Д .М. Т актика лечения больных миомой матки: методическое пособие для врачей акушеров-гинекологов. М.: Медицинское информационное агентство, 2007. с.176].; Bulman JC, Ascher SM, Spies JB. Current concepts in uterine fibroid embolization. Radiographics. 2012; 32:1735−1750.; Walker WJ, Pelage JP. U terine artery embolization for symptomatic fibroids: clinical results in 400 women with imaging follow-up. BJOG. 2002; 109: 1262-1272.; Spies JB et al. U terine artery embolization for leiomyomata. O bstet. Gynecol. 2001; 98(1): 29−34.; Moss J, Cooper K, Khaud A et al. Randomized comparison of uterine artery embolization (UAE) with surgical treatment in patients with symptomatic uterine fibroids (REST trial): 5-year results. BJOG. 2011; 118: 936–944.; Tomislav S, Josip M, Liana CS, Marko V, Marko J, Ante R, Dzenis J, Leo G, Ivica S, Marijan T , Situm K. Uterine artery embolization as nonsurgical treatment of uterine myomas. ISRN O bstet Gynecol. 2011; 2011:489281.; Hubert J et al. Imaging the female pelvis: when should MRI be considered. Appl. Radiol. 2008; 37(1): 9−24.; Siddiqui N, Nikolaidis P et al. U terine artery embolization: pre- and postprocedual evaluation using magnetic resonance imaging. Abdominal imaging. 2013; 38:1161−1177.; Spielmann AL, Keogh C et al. Comparison of MRI and sonography in the preliminary evaluation for fibroid embolization. AJR. 2006; 187:1499−1504.; Levens ED, Wesley R, Premkumar A, Blocker W, Nieman LK. Magnetic resonance imaging and transvaginal ultrasound for determining fibroid burden: implications for research and clinical care. Am J O bstet Gynecol. 2009; 200(5):537.e1-7.; Muraze E et al. U terine Leiomyomas: histopathologic features, MR imaging findings, differential diagnosis and treatment. RadioGraphics. 1999: 19:1179−1197.; Rein MS, Friedman AJ. Progesterone: critical role in the pathogenesis of uterine myomas. Am. J. O bstet. Gynecol. 1995; 172:14−18.; Ueda H, T ogashi K, Konishi I et al. U nusual appearances of uterine leiomyomas: MR imaging findings and their histopathologic backgrounds. RadiogGraphics. 1999; 19(11): 131−145.; https://transmed.almazovcentre.ru/jour/article/view/227Test