يعرض 1 - 10 نتائج من 24 نتيجة بحث عن '"Г. Е. Труфанов"', وقت الاستعلام: 0.91s تنقيح النتائج
  1. 1
    دورية أكاديمية

    المساهمون: the work is supported by the Almazov National Medical Research Centre., работа поддержана ФГБУ «НМИЦ им. В.А.Алмазова» Минздрава России.

    المصدر: Diagnostic radiology and radiotherapy; Том 15, № 1 (2024); 67-77 ; Лучевая диагностика и терапия; Том 15, № 1 (2024); 67-77 ; 2079-5343

    وصف الملف: application/pdf

    العلاقة: https://radiag.bmoc-spb.ru/jour/article/view/974/633Test; Riemann D., Baglioni C., Bassetti C. et al. European guideline for the diagnosis and treatment of insomnia // Sleep Research. 2017. Vol. 26, No. 6. Р. 675–700. doi:10.1111/jsr.12594.; Taylor D.J., Lichstein K.L., Durrence H.H. Insomnia as a health risk factor // Behavioral sleep medicine. 2003. Vol. 1, No. 4. Р. 227–247. doi:10.1207/S15402010BSM0104_5.; Пизова Н.В. Бессонница: определение, распространенность, риски для здоровья и подходы к терапии // Медицинский совет. 2023. Т. 17, № 3. С. 85–91.; Ito E., Inoue Y. The International Classification of Sleep Disorders, third edition. American Academy of Sleep Medicine. Includes bibliographies and index // Nihon Rinsho. 2015. Vol. 73, No. 6. Р. 916–923.; Leger D., Massuel M.A., Metlaine A. Professional correlates of insomnia // Sleep. 2006. Vol. 29, No 2. Р. 171–178.; Farras-Permanyer L, Guardia-Olmos J and Pero-Cebollero M. Mild cognitive impairment and fMRI studies of brain functional connectivity: the state of the art // Front. Psychol. 2015. Vol. 4, No. 6. Р. 1095. doi:10.3389/fpsyg.2015.01095.; Wu Y., Zhuang Y., Qi J. Explore structural and functional brain changes in insomnia disorder: A PRISMA-compliant whole brain ALE meta-analysis for multimodal MRI // Medicine (Baltimore). 2020. Vol. 99, No. 14, pp. 19151. doi:10.1097/MD.0000000000019151.; Буккиева Т.А., Чегина Д.С., Ефимцев А.Ю., Левчук А.Г., Исхаков Д.К., Соколов А.В., Фокин В.А., Труфанов Г.Е. Функциональная МРТ покоя. Общие вопросы и клиническое применение // REJR. 2019. Т. 9, № 2. С. 150–170. doi:10.21569/22227415-2019-9-2-150-170.; Markin K., Trufanov A., Frunza D. et al. fMRI Findings in Cortical Brain Networks Interactions in Migraine Following Repetitive Transcranial Magnetic Stimulation // Front Neurol. 2022. Vol. 13. 915346. doi:10.3389/fneur.2022.915346.; Zhou F., Huang S., Gao L., Zhuang Y., Ding S., Gong H. Temporal regularity of intrinsic cerebral activity in patients with chronic primary insomnia: a brain entropy study using resting-state fMRI // Brain and Behavior. 2016. Vol. 14, No. 10. Р. 529. doi:10.1002/brb3.529.; Ran Q., Chen J., Li C. et al. Abnormal amplitude of low-frequency fluctuations associated with rapid-eye movement in chronic primary insomnia patients // Oncotarget. 2017. Vol. 17, No. 49. Р. 84877–84888. doi:10.18632/oncotarget.17921.; Dai X.J., Nie X., Liu X. et al. Gender Differences in Regional Brain Activity in Patients with Chronic Primary Insomnia: Evidence from a Resting-State fMRI Study // Clinical Sleep Medicine. 2016. Vol. 12, No. 3, pp. 363–374. doi:10.5664/jcsm.5586.; Li G., Zhang X., Zhang J., Wang E., Zhang H., Li Y. Magnetic resonance study on the brain structure and resting-state brain functional connectivity in primary insomnia patients // Medicine (Baltimore). 2018. Vol. 97, No. 34. e11944. doi:10.1097/MD.0000000000011944.; Wei Y., Leerssen J., Wassing R., Stoffers D., Perrier J., Van Someren E.J.W. Reduced dynamic functional connectivity between salience and executive brain networks in insomnia disorder // Sleep Researcher. 2020. Vol. 29, No. 2. e12953. doi:10.1111/jsr.12953.; Kim N., Won E., Cho S.E., Kang C.K., Kang S.G. Thalamocortical functional connectivity in patients with insomnia using resting-state fMRI // Psychiatry Neurosci. 2021. Vol. 23, No. 6. Р. 639–646. doi:10.1503/jpn.210066.; Leerssen J., Wassing R., Ramautar J.R., Stoffers D., Lakbila-Kamal O., Perrier J., Bruijel J., Foster-Dingley J.C., Aghajani M., van Someren E.J.W. Increased hippocampal-prefrontal functional connectivity in insomnia // Neurobiol. Learn Mem. 2019. Vol. 160. Р. 144–150. doi:10.1016/j.nlm.2018.02.006.; Li F., Liu C., Qin S., Wang X., Wan Q., Li Z., Wang L., Yang H., Jiang J., Wu W. The nucleus accumbens functional connectivity in patients with insomnia using resting-state fMRI // Front. Neurosci. 2023. Vol. 17, 1234477. doi:10.3389/fnins.2023.1234477.; Berry R.B., Budhiraja R., Gottlieb D.J., Gozal D., Iber C., Kapur V.K., Marcus C.L., Mehra R., Parthasarathy S., Quan S.F., Redline S., Strohl K.P., Davidson Ward S.L., Tangredi M.M. American Academy of Sleep Medicine. Rules for scoring respiratory events in sleep: update of the 2007 AASM Manual for the Scoring of Sleep and Associated Events. Deliberations of the Sleep Apnea Definitions Task Force of the American Academy of Sleep Medicine // Clinical Sleep Medicine. 2012. Vol. 15, No. 5. Р. 597–619. doi:10.5664/jcsm.2172.; Hui-Xia Zhou, Xiao Chen, Yang-Qian Shen, Le Li, Ning-Xuan Chen, Zhi-Chen Zhu, Francisco Xavier Castellanos, Chao-Gan Yan, Rumination and the default mode network: Meta-analysis of brain imaging studies and implications for depression // NeuroImage. 2020. Vol. 206. 116287. doi: https://doi.org/10.1016/j.neuroimage.2019.116287Test.; Bukkieva T., Pospelova M., Efimtsev A., Fionik O., Alekseeva T., Samochernych K., Gorbunova E., Krasnikova V., Makhanova A., Levchuk A., Trufanov G., Combs S., Shevtsov M. Functional Network Connectivity Reveals the Brain Functional Alterations in Breast Cancer Survivors // Journal of clinical medicine. 2022. Vol. 11, No. 3. Р. 617. doi:10.3390/jcm11030617.; Marques D.R., Gomes A.A., Caetano G. et al. Insomnia Disorder and Brain’s Default-Mode Network // Curr. Neurol. Neurosci. Rep. 2018. Vol. 18, No. 8. Р. 45. doi:10.1007/s11910-018-0861-3.; Gilbert P.E., Brushfield A.M. The role of the CA3 hippocampal subregion in spatial memory: a process oriented behavioral assessment // Prog. Neuropsychopharmacol Biol. Psychiatry. 2009. Vol. 33, No. 5. Р. 774–781. doi:10.1016/j.pnpbp.2009.03.037.; Левин О.С. Современная фармакотерапия при синдроме беспокойных ног: смена вех» Современная терапия в психиатрии и неврологии, 2017. № 2. С. 15–22.; Kumar D., Koyanagi I., Carrier-Ruiz A. et al. Sparse Activity of Hippocampal Adult-Born Neurons during REM Sleep Is Necessary for Memory Consolidation // Neuron. 2020. Vol. 5, No. 3. Р. 552–565. doi:10.1016/j.neuron.2020.05.008.; Santarnecchi E., Del Bianco C., Sicilia I., Momi D., Di Lorenzo G., Ferrone S., Sprugnoli G., Rossi S., Rossi A. Age of Insomnia Onset Correlates with a Reversal of Default Mode Network and Supplementary Motor Cortex Connectivity // Neural. Plast. 2018. Vol. 1. 3678534. doi:10.1155/2018/3678534.; Orr J.M., Smolker H.R., Banich M.T. Organization of the Human Frontal Pole Revealed by Large-Scale DTI-Based Connectivity: Implications for Control of Behavior // PLoS One. 2015. Vol. 6, No. 5, e0124797. doi:10.1371/journal.pone.0124797.; Baker C.M., Burks J.D., Briggs R.G. et al. A Connectomic Atlas of the Human Cerebrum-Chapter 7: The Lateral Parietal Lobe // Oper. Neurosurg. (Hagerstown). 2018. Vol. 1, No. 15. Р. 295–349. doi:10.1093/ons/opy261.; Killgore W.D., Schwab Z.J., Kipman M., Deldonno S.R., Weber M. Insomnia-related complaints correlate with functional connectivity between sensory-motor regions // Neuroreport. 2013. Vol. 27, No. 5. Р. 233–240. doi:10.1097/WNR.0b013e32835edbdd.; https://radiag.bmoc-spb.ru/jour/article/view/974Test

  2. 2
    دورية أكاديمية

    المصدر: Diagnostic radiology and radiotherapy; Том 14, № 4 (2023); 28-35 ; Лучевая диагностика и терапия; Том 14, № 4 (2023); 28-35 ; 2079-5343

    وصف الملف: application/pdf

    العلاقة: https://radiag.bmoc-spb.ru/jour/article/view/936/619Test; Bukkieva T.A., Chegina D.S., Efimtsev A.Yu. et al. Resting state functional MRI. General issues and clinical application // Russian Electronic Journal of Radiology. 2019. Vol. 9, No. 2. P. 150–170. doi:10.21569/2222-7415-2019-9-2-150-170.; Ogawa S., Lee T.M., Kay A.R. et al. Brain magnetic resonance imaging with contrast dependent on blood oxygenation (cerebral blood flow/brain metabolism/oxygenation) // Proc. NatI. Acad. Sci. USA. 1990. Vol. 87. P. 9868–9872. doi:10.1073/pnas.87.24.9868.; Raichle M.E., Macleod A.M., Snyder A.Z. et al. A default mode of brain function // Proceedings of the National Academy of Sciences. 1996. Vol. 98, № 2. P. 676–682.; Greicius M.D., Krasnow B., Reiss A.L. et al. Functional connectivity in the resting brain: A network analysis of the default mode hypothesis // Proc. Natl. Acad. Sci. USA. 2003. Vol. 100, No. 1. P. 253–258. doi:10.1073/pnas.0135058100.; Biswal B., Yetkin F.Z., Haughton V.M. et al. Functional Connectivity in the Motor Cortex of Resting Human Brain Using Echo-Planar MRI // Magn. Reson. Med. 1995. Vol. 34, No. 4. P. 537–541. doi:10.1002/mrm.1910340409.; Loy R., John L Gerlach J.L., Mcewen B.S. Autoradiographic localization of estradiol-binding neurons in the rat hippocampal formation and entorhinal cortex // Developmental Brain Research. 1988. Vol. 39. P. 245–251.; Адамадзе К.Б., Салий М.Г., Налимова И.Ю. Оценка нарушений репродуктивной функции с учетом психовегетативной регуляции при гипоталамической дисфункции пубертатного периода у девочек-подростков // Репродуктивное здоровье детей и подростков. 2013. № 4. С. 108–113.; Toffoletto S. et al. Emotional and cognitive functional imaging of estrogen and progesterone effects in the female human brain: a systematic review // Psychoneuroendocrinology. 2014. Vol. 50. P. 28–52. doi:10.1016/J.PSYNEUEN.2014.07.025.; Сандакова Е.А., Жуковская И.Г. Нормогонадотропные расстройства менструальной функции в репродуктивном периоде: клиническая лекция // Пермский медицинский журнал. 2022. Т. 39, № 6. С. 38–53.; Brinton R.D. Estrogen-induced plasticity from cells to circuits: predictions for cognitive function // Trends in Pharmacological Sciences. 2009. Vol. 30, No. 4. P. 212–222. doi:10.1016/j.tips.2008.12.006.; Brinton R.D., Thompson R.F., Foy M. et al. Progesterone receptors: Form and function in brain // Frontiers in Neuroendocrinology. 2008. Vol. 29, No. 2. P. 313–339. doi:10.1016/j.yfrne.2008.02.001.; Weiser M.J., Foradori C.D., Handa R.J. Estrogen receptor beta in the brain: From form to function // Brain Research Reviews. 2008. Vol. 57, No. 2. P. 309–320. doi:10.1016/j.brainresrev.2007.05.013.; Phelps E.A. Emotion and cognition: Insights from studies of the human amygdala // Ann. Rev. Psychol. 2006. Vol. 57. P. 27–53. doi:10.1146/annurev.psych.56.091103.070234.; McEwen B.S., Milner T.A. Understanding the broad influence of sex hormones and sex differences in the brain // J. Neurosci. Res. John Wiley and Sons Inc. 2017. Vol. 95, No. 1–2. P. 24–39. doi:10.1002/jnr.23809.; Comasco E., Sundström-Poromaa I. Neuroimaging the Menstrual Cycle and Premenstrual Dysphoric Disorder // Curr. Psychiatry Rep. Current Medicine Group LLC 1. 2015. Vol. 17, No. 10. doi:10.1007/s11920-015-0619-4.; Dubol M., Epperson C.N., Sacher J. et al. Neuroimaging the menstrual cycle: A multimodal systematic review // Front Neuroendocrinol. 2021. Vol. 60. doi:10.1016/j.yfrne.2020.100878.; Protopopescu X., Butler T., Pan H. et al. Hippocampal structural changes across the menstrual cycle // Hippocampus. 2008. Vol. 18, No. 10. P. 985–988. doi:10.1002/hipo.20468.; Pletzer B., Harris T.A., Hidalgo-Lopez E. Subcortical structural changes along the menstrual cycle: beyond the hippocampus // Sci. Rep. Nature Publishing Group. 2018. Vol. 8, No. 1. doi:10.1038/s41598-018-34247-4.; Pletzer B., Harris T.A., Scheuringer A. et al. The cycling brain: menstrual cycle related fluctuations in hippocampal and fronto-striatal activation and connectivity during cognitive tasks // Neuropsychopharmacology. 2019. Vol. 44, No. 11. P. 1867–1875. doi:10.1038/s41386-019-0435-3.; Hidalgo-Lopez E., Mueller K., Harris T.A. et al. Human menstrual cycle variation in subcortical functional brain connectivity: a multimodal analysis approach // Brain Struct Funct. Springer. 2020. Vol. 225, No. 2. P. 591–605. doi:10.1007/s00429-019-02019-z.; Pletzer B., Harris T.A., Ortner T. Sex and menstrual cycle influences on three aspects of attention // Physiol Behav. 2017. Vol. 179. P. 384–390. doi:10.1016/j.physbeh.2017.07.012.; Peper J.S., Koolschijn P.C.M.P. Sex steroids and the organization of the human brain // Journal of Neuroscience. Society for Neuroscience. 2012. Vol. 32, No. 20. P. 6745–6746. doi:10.1523/JNEUROSCI.1012-12.2012.; Arélin K., Mueller K., Barth C. et al. Progesterone mediates brain functional connectivity changes during the menstrual cycle-a pilot resting state MRI study // Front Neurosci. 2015. Vol. 9, No. FEB. doi:10.3389/fnins.2015.00044.; Weis S., Hodgetts S., Hausmann M. Sex differences and menstrual cycle effects in cognitive and sensory resting state networks // Brain Cogn. 2019. Vol. 131. P. 66–73. doi:10.1016/j.bandc.2017.09.003.; Chung K.C., Peisen F., Kogler L. et al. The influence of menstrual cycle and androstadienone on female stress reactions: An fMRI study // Front Hum. Neurosci. 2016. Vol. 10, No. FEB2016. doi:10.3389/fnhum.2016.00044.; Van den Heuvel M.P., Sporns O. Rich-club organization of the human connectome // Journal of Neuroscience. 2011. Vol. 31, No. 44. P. 15775–15786. doi:10.1523/JNEUROSCI.3539-11.2011.; Broyd S.J., Demanuele C., Debener S. et al. Default-mode brain dysfunction in mental disorders: A systematic review // Neuroscience and Biobehavioral Reviews. 2009. Vol. 33, No. 3. P. 279–296. doi:10.1016/j.neubiorev.2008.09.002.; Tersman Z., Collins A., Eneroth P. Cardiovascular Responses to Psychological and Physiological Stressors During the Menstrual Cycle // Psychosom Med. 1991. Vol. 53. P. 185–197.; Childs P., Dlugos А., De Wit H. Cardiovascular, hormonal, and emotional responses to the TSST in relation to sex and menstrual cycle phase // Psychophysiology. 2010. Vol. 47, No. 3. P. 550–559. doi:10.1111/j.1469-8986.2009.00961.x.; Roca C.A., Schmidt P.J., Altemus M. et al. Differential menstrual cycle regulation of hypothalamic-pituitary-adrenal axis in women with premenstrual syndrome and controls // Journal of Clinical Endocrinology and Metabolism. 2003. Vol. 88, No. 7. P. 3057–3063. doi:10.1210/jc.2002–021570.; Ossewaarde L., Hermans E.J., van Wingen G.A. et al. Neural mechanisms underlying changes in stress-sensitivity across the menstrual cycle // Psychoneuroendocrinology. 2010. Vol. 35, No. 1. P. 47–55. doi:10.1016/j.psyneuen.2009.08.011.; Berretz G., Packheiser J., Kumsta R. et al. The brain under stress — A systematic review and activation likelihood estimation meta-analysis of changes in BOLD signal associated with acute stress exposure // Neurosci Biobehav Rev. Elsevier Ltd, 2021. Vol. 124. P. 89–99. doi:10.1016/j.neubiorev.2021.01.001.; Crick F.C., Koch C. What is the function of the claustrum? // Philosophical Transactions of the Royal Society B: Biological Sciences. Royal Society, 2005. Vol. 360, No. 1458. P. 1271–1279. doi:10.1098/rstb.2005.1661.; Lindquist K.A., Wager T.D., Kober H. et al. The brain basis of emotion: A meta-analytic review // Behavioral and Brain Sciences. 2012. Vol. 35, No. 3. P. 121–143. doi:10.1017/S0140525X11000446.; Oort J. van, Tendolkar I., Hermans E.J. et al. How the brain connects in response to acute stress: A review at the human brain systems level // Neurosci Biobehav Rev. Elsevier Ltd, 2017. Vol. 83. P. 281–297. doi:10.1016/j.neubiorev.2017.10.015.; Uddin L.Q. Salience processing and insular cortical function and dysfunction // Nat. Rev. Neurosci. 2015. Vol. 16, No. 1. P. 55–61.; Uddin L.Q., Nomi J.S., Hébert-Seropian B. et al. Structure and Function of the Human Insula // Journal of Clinical Neurophysiology. 2017. Vol. 34, No. 4. P. 300–306. doi:10.1097/WNP.0000000000000377.; Seeley W.W., Menon V., Schatzberg A.F. et al. Dissociable intrinsic connectivity networks for salience processing and executive control // Journal of Neuroscience. 2007. Vol. 27, No. 9. P. 2349–2356. doi:10.1523/JNEUROSCI.5587–06.2007.; Augustine J.R. Circuitry and functional aspects of the insular lobe in primates including humans // Brain Res. Rev. 1996. Vol. 22. P. 229–244. doi:10.1016/s0165-0173(96)00011-2.; Ulrich-Lai Y.M., Herman J.P. Neural regulation of endocrine and autonomic stress responses // Nat. Rev. Neurosci. 2009. Vol. 10, No. 6. P. 397–409. doi:10.1038/nrn2647.; Altemus M., Roca C., Galliven E. et al. Increased Vasopressin and Adrenocorticotropin Responses to Stress in the Midluteal Phase of the Menstrual Cycle // J. Clin. Endocrinol. Metab. 2001. Vol. 86, No. 6. P. 2525–2530. doi:10.1210/jcem.86.6.7596.; Kirschbaum C., Kudielka B.M., Gaab J. et al. Impact of Gender, Menstrual Cycle Phase, and Oral Contraceptives on the Activity of the Hypothalamus-Pituitary-Adrenal Axis // Psychosom. Med. 1999. Vol. 61, No. 2. P. 154–162. doi:10.1097/00006842-199903000-00006.; Collins Reed S., Levin F.R., Evans S.M. Changes in mood, cognitive performance and appetite in the late luteal and follicular phases of the menstrual cycle in women with and without PMDD (premenstrual dysphoric disorder) // Horm. Behav. 2008. Vol. 54, No. 1. P. 185–193. doi:10.1016/j.yhbeh.2008.02.018.; Геворкян Г.А., Ипатова М.В., Уварова Е.В. и др. Физическая терапия в лечении девочек-подростков с первичной олигоменореей // Акушерство и гинекология: новости, мнения, обучение. 2020. Т. 8, № 2. С. 67–73. doi:10.24411/2303-9698-2020-12006.; Чеботарева Ю.Ю., Петров Ю.А. Роль стрессорных факторов в генезе олигоменореи у несовершеннолетних // Репродуктивное здоровье детей и подростков. 2021. Т. 17, № 4. С. 89–98. doi:10.33029/1816-2134-2021-17.; Аменорея и олигоменорея. Клинические рекомендации / Российское общество акушеров-гинекологов. Одобрено Научно-практическим Советом Минздрава РФ. М., 2021. https://medkirov.ru/docs/id/1E2B7C-2021Test.; https://radiag.bmoc-spb.ru/jour/article/view/936Test

  3. 3
    دورية أكاديمية

    المساهمون: The study was carried out with the support of the following source: State assignment No. 44, registration number 122041900080-5., Исследование выполнено при поддержке следующего источника: государственное задание № 44, регистрационный номер 122041900080-5.

    المصدر: Translational Medicine; Том 10, № 3 (2023); 146-153 ; Трансляционная медицина; Том 10, № 3 (2023); 146-153 ; 2410-5155 ; 2311-4495

    وصف الملف: application/pdf

    العلاقة: https://transmed.almazovcentre.ru/jour/article/view/849/511Test; Sun H, Saeedi P, Karuranga S, et al. IDF Diabetes Atlas: Global, regional and country-level diabetes prevalence estimates for 2021 and projections for 2045. Diabetes Res Clin Pract. 2022; 183:109119. DOI:10.1016/j.diabres.2021.109119.; Yuan S, Chen J, Li X, et al. Lifestyle and metabolic factors for nonalcoholic fatty liver disease: Mendelian randomization study. Eur J Epidemiol. 2022; 37(7):723–733. DOI:10.1007/s10654-022-00868-3; Riazi K, Azhari H, Charette JH, et al. The prevalence and incidence of NAFLD worldwide: a systematic review and meta-analysis. Lancet Gastroenterol Hepatol. 2022; 7(9):851–861. DOI:10.1016/S2468-1253(22)00165-0; Younossi ZM. Non-alcoholic fatty liver disease — A global public health perspective. J Hepatol. 2019; 70(3):531–544. DOI:10.1016/j.jhep.2018.10.033.; Stine JG, Wentworth BJ, Zimmet A, et al. Systematic review with meta-analysis: risk of hepatocellular carcinoma in non-alcoholic steatohepatitis without cirrhosis compared to other liver diseases. Aliment Pharmacol Ther. 2018; 48(7):696–703. DOI:10.1111/apt.14937.; Targher G, Corey KE, Byrne CD, et al. The complex link between NAFLD and type 2 diabetes mellitus - mechanisms and treatments. Nat Rev Gastroenterol Hepatol. 2021; 18(9):599–612. DOI:10.1038/s41575-021-00448-y.; Shetty AS, Sipe AL, Zulfiqar M, et al. In-Phase and Opposed-Phase Imaging: Applications of Chemical Shift and Magnetic Susceptibility in the Chest and Abdomen. Radiographics. 2019; 39(1):115–135. DOI:10.1148/rg.2019180043.; Seifeldein GS, Hassan EA, Imam HM, et al. Quantitative MDCT and MRI assessment of hepatic steatosis in genotype 4 chronic hepatitis C patients with fibrosis Egypt J Radiol Nucl Med. 2021; 52:210. DOI:10.1186/s43055-021-00590-2.; Диомидова В.Н., Тарасова Л.В., Цыганова Ю.В. и др. Ультразвуковая эластография печени с технологией затухающего сигнала позволяет оценить степень стеатоза и осуществлять динамическое наблюдение эффективности лечения НАЖБП. Экспе- риментальная и клиническая гастроэнтерология. 2020; (9):45–54. DOI:10.31146/1682-8658-ecg-181-9-45-54.; Ferraioli G, Soares Monteiro LB. Ultrasoundbased techniques for the diagnosis of liver steatosis. World J Gastroenterol. 2019; 25(40):6053–6062. DOI:10.3748/wjg.v25.i40.6053.; Ferraioli G, Berzigotti A, Barr RG, et al. Quantification of Liver Fat Content with Ultrasound: A WFUMB Position Paper. Ultrasound Med Biol. 2021; 47(10):2803–2820. DOI:10.1016/j.ultrasmedbio.2021.06.002.; Hernaez R, Lazo M, Bonekamp S, et al. Diagnostic accuracy and reliability of ultrasonography for the detection of fatty liver: a meta-analysis. Hepatology. 2011; 54(3):1082–1090. DOI:10.1002/hep.24452.; Palmentieri B, de Sio I, La Mura V, et al. The role of bright liver echo pattern on ultrasound B-mode examination in the diagnosis of liver steatosis. Dig Liver Dis. 2006; 38(7):485–489. DOI:10.1016/j.dld.2006.03.021.; Chan WK, Nik Mustapha NR, Mahadeva S, et al. Can the same controlled attenuation parameter cut-offs be used for M and XL probes for diagnosing hepatic steatosis? J Gastroenterol Hepatol. 2018; 33(10):1787–1794. DOI:10.1111/jgh.14150.; Dasarathy S, Dasarathy J, Khiyami A, et al. Validity of real time ultrasound in the diagnosis of hepatic steatosis: a prospective study. J Hepatol. 2009; 51(6):1061–1067. DOI:10.1016/j.jhep.2009.09.001.; Lee DH. Imaging evaluation of non-alcoholic fatty liver disease: focused on quantification. Clin Mol Hepatol. 2017; 23(4):290–301. DOI:10.3350/cmh.2017.0042.; Hepburn MJ, Vos JA, Fillman EP, et al. The accuracy of the report of hepatic steatosis on ultrasonography in patients infected with hepatitis C in a clinical setting: a retrospective observational study. BMC Gastroenterol. 2005; 5:14. DOI:10.1186/1471-230X-5-14.; Selvaraj EA, Mózes FE, Jayaswal ANA, et al. Diagnostic accuracy of elastography and magnetic resonance imaging in patients with NAFLD: A systematic review and meta-analysis. J Hepatol. 2021; 75(4):770–785. DOI:10.1016/j.jhep.2021.04.044.; Pu K, Wang Y, Bai S, et al. Diagnostic accuracy of controlled attenuation parameter (CAP) as a non-invasive test for steatosis in suspected non-alcoholic fatty liver disease: a systematic review and meta-analysis. BMC Gastroenterol. 2019; 19(1):51. DOI:10.1186/s12876-019-0961-9.; Karlas T, Petroff D, Sasso M, et al. Individual patient data meta-analysis of controlled attenuation parameter (CAP) technology for assessing steatosis. J Hepatol. 2017; 66(5):1022–1030. DOI:10.1016/j.jhep.2016.12.022.; Hsu C, Caussy C, Imajo K, et al. Magnetic Resonance vs Transient Elastography Analysis of Patients With Nonalcoholic Fatty Liver Disease: A Systematic Review and Pooled Analysis of Individual Participants. Clin Gastroenterol Hepatol. 2019; 17(4):630–637.e8. DOI:10.1016/j.cgh.2018.05.059.; Xiao G, Zhu S, Xiao X, et al. Comparison of laboratory tests, ultrasound, or magnetic resonance elastography to detect fibrosis in patients with nonalcoholic fatty liver disease: A meta-analysis. Hepatology. 2017; 66(5):1486–1501. DOI:10.1002/hep.29302.; Anstee QM, Lawitz EJ, Alkhouri N, et al. Noninvasive Tests Accurately Identify Advanced Fibrosis due to NASH: Baseline Data From the STELLAR Trials. Hepatology. 2019; 70(5):1521–1530. DOI:10.1002/hep.30842.; Boursier J, Guillaume M, Leroy V, et al. New sequential combinations of non-invasive fibrosis tests provide an accurate diagnosis of advanced fibrosis in NAFLD. J Hepatol. 2019; 71(2):389–396. DOI:10.1016/j.jhep.2019.04.020.; Van Dijk AM, Vali Y, Mak AL, et al. Systematic Review with Meta-Analyses: Diagnostic Accuracy of FibroMeter Tests in Patients with Non-Alcoholic Fatty Liver Disease. J Clin Med. 2021; 10(13):2910. DOI:10.3390/jcm10132910.; Loong TC, Wei JL, Leung JC, et al. Application of the combined FibroMeter vibration-controlled transient elastography algorithm in Chinese patients with nonalcoholic fatty liver disease. J Gastroenterol Hepatol. 2017; 32(7):1363–1369. DOI:10.1111/jgh.13671.; Dietrich CF, Bamber J, Berzigotti A, et al. EFSUMB Guidelines and Recommendations on the Clinical Use of Liver Ultrasound Elastography, Update 2017 (Short Version). Ultraschall Med. 2017; 38(4):377–394. DOI:10.1055/s-0043-103955.; Piazzolla VA, Mangia A. Noninvasive Diagnosis of NAFLD and NASH. Cells. 2020; 9(4):1005. DOI:10.3390/cells9041005.; Ferraioli G, Tinelli C, Lissandrin R, et al. Ultrasound point shear wave elastography assessment of liver and spleen stiffness: effect of training on repeatability of measurements. Eur Radiol. 2014; 24(6):1283–1289. DOI:10.1007/s00330-014-3140-y.; Dietrich CF, Bamber J, Berzigotti A, et al. EFSUMB Guidelines and Recommendations on the Clinical Use of Liver Ultrasound Elastography, Update 2017 (Long Version). Ultraschall Med. 2017; 38(4):e16–e47. DOI:10.1055/s-0043-103952.; Jamialahmadi T, Nematy M, Jangjoo A, et al. Measurement of Liver Stiffness with 2D-Shear Wave Elastography (2D-SWE) in Bariatric Surgery Candidates Reveals Acceptable Diagnostic Yield Compared to Liver Biopsy. Obes Surg. 2019; 29(8):2585–2592. DOI:10.1007/s11695-019-03889-2.; Rajamani AS, Rammohan A, Sai VVR, et al. Current techniques and future trends in the diagnosis of hepatic steatosis in liver donors: A review Journal of Liver Transplantation. 2022; 7:100091. DOI:10.1016/j.liver.2022.100091.; Rastogi R, Gupta S, Garg B, et al. Comparative accuracy of CT, dual-echo MRI and MR spectroscopy for preoperative liver fat quantification in living related liver donors. Indian J Radiol Imaging. 2016; 26(1):5–14. DOI:10.4103/0971-3026.178281.; Zhang Y, Wang C, Duanmu Y, et al. Comparison of CT and magnetic resonance mDIXON-Quant sequence in the diagnosis of mild hepatic steatosis. Br J Radiol. 2018; 91(1091):20170587. DOI:10.1259/bjr.20170587.; Zhang PP, Choi HH, Ohliger MA. Detection of fatty liver using virtual non-contrast dual-energy CT. Abdom Radiol (NY). 2022; 47(6):2046–2056. DOI:10.1007/s00261-022-03482-9.; Zhang YN, Fowler KJ, Hamilton G, et al. Liver fat imaging-a clinical overview of ultrasound, CT, and MR imaging. Br J Radiol. 2018; 91(1089):20170959. DOI:10.1259/bjr.20170959.; Lamb P, Sahani DV, Fuentes-Orrego JM, et al. Stratification of patients with liver fibrosis using dualenergy CT. IEEE Trans Med Imaging. 2015; 34(3):807–815. DOI:10.1109/TMI.2014.2353044.; Аллахвердиева Я.С., Воробьев С.В., Минеев Н.И. Современные возможности магнитно-резонансных технологий в диагностике ожирения печени. Медицинский вестник Северного Кавказа. 2018; 13(4):695–700. DOI:10.14300/mnnc.2018.13140.; Jayakumar S, Middleton MS, Lawitz EJ, et al. Longitudinal correlations between MRE, MRI-PDFF, and liver histology in patients with non-alcoholic steatohepatitis: Analysis of data from a phase II trial of selonsertib. J Hepatol. 2019; 70(1):133–141. DOI:10.1016/j.jhep.2018.09.024.; Caussy C, Reeder SB, Sirlin CB, et al. Noninvasive, Quantitative Assessment of Liver Fat by MRI-PDFF as an Endpoint in NASH Trials. Hepatology. 2018; 68(2):763–772. DOI:10.1002/hep.29797.; Gu J, Liu S, Du S, et al. Diagnostic value of MRIPDFF for hepatic steatosis in patients with non-alcoholic fatty liver disease: a meta-analysis. Eur Radiol. 2019; 29(7):3564–3573. DOI:10.1007/s00330-019-06072-4.; Tang A, Tan J, Sun M, et al. Nonalcoholic fatty liver disease: MR imaging of liver proton density fat fraction to assess hepatic steatosis. Radiology. 2013; 267(2):422–431. DOI:10.1148/radiol.12120896.; Bonekamp S, Tang A, Mashhood A, et al. Spatial distribution of MRI-Determined hepatic proton density fat fraction in adults with nonalcoholic fatty liver disease. J Magn Reson Imaging. 2014; 39(6):1525–1532. DOI:10.1002/jmri.24321.; Yoneda M, Honda Y, Ogawa Y, et al. Comparing the effects of tofogliflozin and pioglitazone in non-alcoholic fatty liver disease patients with type 2 diabetes mellitus (ToPiND study): a randomized prospective open-label controlled trial. BMJ Open Diabetes Res Care. 2021; 9(1):e001990. DOI:10.1136/bmjdrc-2020-001990.; Doycheva I, Cui J, Nguyen P, et al. Non-invasive screening of diabetics in primary care for NAFLD and advanced fibrosis by MRI and MRE. Aliment Pharmacol Ther. 2016; 43(1):83–95. DOI:10.1111/apt.13405.; Simchick G, Zhao R, Hamilton G, et al. Spectroscopy-based multi-parametric quantification in subjects with liver iron overload at 1.5T and 3T. Magn Reson Med. 2022; 87(2):597–613. DOI:10.1002/mrm.29021.; Шария М.А., Ширяев Г.А., Устюжанин Д.В. Протонная магнитно-резонансная спектроскопия в диагностическом алгоритме у пациента с неалкогольной жировой болезнью печени при комплексном подходе к лечению. REJR. 2014; 4(3): 91–93.; Yokoo T, Serai SD, Pirasteh A, et al. Linearity, Bias, and Precision of Hepatic Proton Density Fat Fraction Measurements by Using MR Imaging: A Meta-Analysis. Radiology. 2018; 286(2):486–498. DOI:10.1148/radiol.2017170550.; Roumans KHM, Lindeboom L, Veeraiah P, et al. Hepatic saturated fatty acid fraction is associated with de novo lipogenesis and hepatic insulin resistance. Nat. Commun. 2020; 11:1891. DOI:10.1038/s41467-020-15684-0.; Trout AT, Serai S, Mahley AD, et al. Liver Stiffness Measurements with MR Elastography: Agreement and Repeatability across Imaging Systems, Field Strengths, and Pulse Sequences. Radiology. 2016; 281(3):793–804. DOI:10.1148/radiol.2016160209.; Serai SD, Obuchowski NA, Venkatesh SK, et al. Repeatability of MR Elastography of Liver: A Meta-Analysis. Radiology. 2017; 285(1):92–100. DOI:10.1148/radiol.2017161398.; Fitzpatrick E, Dhawan A. Noninvasive biomarkers in non-alcoholic fatty liver disease: current status and a glimpse of the future. World J Gastroenterol. 2014; 20(31):10851–10863. DOI:10.3748/wjg.v20.i31.10851.; Kim BH, Lee JM, Lee YJ, et al. MR elastography for noninvasive assessment of hepatic fibrosis: experience from a tertiary center in Asia. J Magn Reson Imaging. 2011; 34(5):1110–1116. DOI:10.1002/jmri.22723.; Lee SS, Park SH. Radiologic evaluation of nonalcoholic fatty liver disease. World J Gastroenterol. 2014; 20(23):7392–7402. DOI:10.3748/wjg.v20.i23.7392.; Imajo K, Kessoku T, Honda Y, et al. Magnetic Resonance Imaging More Accurately Classifies Steatosis and Fibrosis in Patients With Nonalcoholic Fatty Liver Disease Than Transient Elastography. Gastroenterology. 2016; 150(3):626–637.e7. DOI:10.1053/j.gastro.2015.11.048.; https://transmed.almazovcentre.ru/jour/article/view/849Test

  4. 4
    دورية أكاديمية

    المساهمون: Работа выполнена при поддержке Министерства науки и Высшего образования Российской Федерации (проект № 075-15-2021-592).

    المصدر: Translational Medicine; Том 10, № 2 (2023); 123-129 ; Трансляционная медицина; Том 10, № 2 (2023); 123-129 ; 2410-5155 ; 2311-4495

    وصف الملف: application/pdf

    العلاقة: https://transmed.almazovcentre.ru/jour/article/view/756/509Test; https://transmed.almazovcentre.ru/jour/article/downloadSuppFile/756/1633Test; https://transmed.almazovcentre.ru/jour/article/downloadSuppFile/756/1634Test; https://transmed.almazovcentre.ru/jour/article/downloadSuppFile/756/1635Test; Moltoni G, Talenti G, Righini A. Brain fetal neuroradiology: a beginner’s guide. Transl Pediatr. 2021; 10(4):1065–1077. DOI:10.21037/tp-20-293.; Chartier AL, Bouvier MJ, McPherson DR, et al. The Safety of Maternal and Fetal MRI at 3 T. AJR Am J Roentgenol. 2019; 213(5):1170–1173. DOI:10.2214/AJR.19.21400.; Cai X, Chen X, Sun C, et al. Fetal MR Imaging: An Overview. MAGNETOM Flash. 2018; 2(71):87–98.; Machado-Rivas F, Jaimes C, Kirsch JE, et al. Image-quality optimization and artifact reduction in fetal magnetic resonance imaging. Pediatr Radiol. 2020; 50(13):1830–1838. DOI:10.1007/s00247-02004672-7.; Lum M, Tsiouris AJ. MRI safety considerations during pregnancy. Clin Imaging. 2020; 62:69–75. DOI:10.1016/j.clinimag.2020.02.007.; de Heer P, Brink WM, Kooij BJ, et al. Increasing signal homogeneity and image quality in abdominal imaging at 3 T with very high permittivity materials. Magn Reson Med. 2012; 68(4):1317–1324. DOI:10.1002/mrm.24438.; van Gemert J, Brink W, Remis R, et al. A simulation study on the effect of optimized high permittivity materials on fetal imaging at 3T. Magn Reson Med. 2019; 82(5):1822– 1831. DOI:10.1002/mrm.27849.; Vorobyev V, Shchelokova A, Efimtcev A, et al. Improving B1+ homogeneity in abdominal imaging at 3 T with light, flexible, and compact metasurface. Magn Reson Med. 2022; 87(1):496–508. DOI:10.1002/mrm.28946.; Kalugina, A., Puchnin, V., Koreshin, E., Efimtcev, A., Mashchenko, I., Brink, W., & Shchelokova, A. (2022). Improving fetal MRI at 3T with compact metasurfacebased pad. In Magnetic Resonance and its Applications. Spinus-2022 (pp. 86-88).; https://transmed.almazovcentre.ru/jour/article/view/756Test

  5. 5
    دورية أكاديمية

    المساهمون: The work was supported by the RGNF grant No. 22-25-00766., Работа поддержана грантом РНФ №22-25- 00766.

    المصدر: Translational Medicine; Том 9, № 6 (2022); 44-58 ; Трансляционная медицина; Том 9, № 6 (2022); 44-58 ; 2410-5155 ; 2311-4495

    وصف الملف: application/pdf

    العلاقة: https://transmed.almazovcentre.ru/jour/article/view/729/494Test; https://transmed.almazovcentre.ru/jour/article/downloadSuppFile/729/1552Test; https://transmed.almazovcentre.ru/jour/article/downloadSuppFile/729/1553Test; Ковальзон В.М. О функциях сна. Журнал эволюционной биохимии и физиологии. 1993: 29(5–6):655–660.]; Mayer G, Jennum P, Riemann D, et al. Insomnia in central neurologic diseases--occurrence and management. Sleep Med Rev. 2011; 15(6):369–378. DOI:10.1016/j.smrv.2011.01.005.; Абабков В.А., Авакян г.Н., Авдюнина И.А. и др. Неврология: Национальное руководство. 2-е изд. / Ред.: Гусев Е.И., Коновалов А.Н., Гехт А.Б. Москва: ГЭОТАР-Медиа, 2019. 880 с.]; Клинические рекомендации: Ишемический инсульт и транзиторная ишемическая атака у взрослых.] https://cr.minzdrav.gov.ru/schema/171_2Test (2021); Медико-демографические показатели Российской Федерации в 2012 году. 2013: Стат. справочник. Минздрав России.] https://minzdrav.gov.ru/documents/8029Test (2013); Kripke DF, Garfinkel L, Wingard DL, et al. Mortality associated with sleep duration and insomnia. Arch Gen Psychiatry. 2002; 59(2):131–136. DOI:10.1001/archpsyc.59.2.131.; Chen JC, Brunner RL, Ren H, et al. Sleep duration and risk of ischemic stroke in postmenopausal women. Stroke. 2008; 39(12):3185–3192. DOI:10.1161/STROKEAHA.108.521773.; Гасанов Р.Л. Функционирование мозга в цикле «бодрствование–сон» у больных, перенесших мозговой инсульт. Диссертация доктора медицинских наук, 2000.]; Полуэктов М.Г. Сомнология и медицина сна в России. Физиология человека. 2013; 39(6):5–12.] DOI:10.7868/S0131164613060106.; American Academy of Sleep Medicine. International classification of sleep disorders, 3rd ed.: Diagnostic and coding manual. Westchester, III: American Academy of Sleep Medicine. 2014.; Laugsand LE, Strand LB, Vatten LJ, et al. Insomnia symptoms and risk for unintentional fatal injuries--the HUNT Study. Sleep. 2014; 37(11):1777–1786. DOI:10.5665/sleep.4170.; Wu MP, Lin HJ, Weng SF, et al. Insomnia subtypes and the subsequent risks of stroke: report from a nationally representative cohort. Stroke. 2014; 45(5):1349–1354. DOI:10.1161/STROKEAHA.113.003675.; Sauvet F, Leftheriotis G, Gomez-Merino D, et al. Effect of acute sleep deprivation on vascular function in healthy subjects. J Appl Physiol (1985). 2010; 108(1):68–75. DOI:10.1152/japplphysiol.00851.2009.; Okun ML. Biological Consequences of Disturbed Sleep: Important Mediators of Health? Jpn Psychol Res. 2011; 53(2):163–176. DOI:10.1111/j.1468-5884.2011.00463.x.; Grandner MA, Sands-Lincoln MR, Pak VM, et al. Sleep duration, cardiovascular disease, and proinflammatory biomarkers. Nat Sci Sleep. 2013; 5:93–107. DOI:10.2147/NSS.S31063.; Виноградов О.И., Кулагина А.М. Инсомния и расстройства дыхания во сне: новые факторы риска ишемического инсульта. Журнал неврологии и психиатрии им. С. С. Корсакова. Спецвыпуски. 2015;115(3–2):40–47.] DOI:10.17116/jnevro20151153240-47.; Tsara V, Amfilochiou A, Papagrigorakis MJ ,et al. Guidelines for diagnosis and treatment of sleep-related breathing disorders in adults and children. Definition and classification of sleep related breathing disorders in adults: different types and indications for sleep studies (Part 1). Hippokratia. 2009; 13(3):187–191.; Guilleminault C, Dement WC. Sleep apnoea syndromes. New York: Alan R, Liss Inc. 1978. p.390. DOI:10.1016/0013-4694(79)90271-2.; Tsai JC. Neurological and neurobehavioral sequelae of obstructive sleep apnea. NeuroRehabilitation. 2010; 26(1):85–94. DOI:10.3233/NRE-2010-0538.; Pizza F, Biallas M, Kallweit U, et al. Cerebral hemodynamic changes in stroke during sleep-disordered breathing. Stroke. 2012; 43(7):1951–1953. DOI:10.1161/STROKEAHA.112.656298.; Cereda CW, Tamisier R, Manconi M, et al. Endothelial dysfunction and arterial stiffness in ischemic stroke: the role of sleep-disordered breathing. Stroke. 2013; 44(4):1175–1178. DOI:10.1161/STROKEAHA.111.000112.; Wessendorf TE, Thilmann AF, Wang YM, et al. Fibrinogen levels and obstructive sleep apnea in ischemic stroke. Am J Respir Crit Care Med. 2000; 162(6):2039– 2042. DOI:10.1164/ajrccm.162.6.2001048.; Sahlin C, Sandberg O, Gustafson Y, et al. Obstructive sleep apnea is a risk factor for death in patients with stroke: a 10-year follow-up. Arch Intern Med. 2008; 168(3):297–301. DOI:10.1001/archinternmed.2007.70.; Волов Н.А., Шайдюк О.Ю., Таратухин Е.О. Синдром ночного апноэ и факторы риска сердечно-сосудистой патологии. Российский кардиологический журнал. 2008; 3:65–70.]; Can M, Açikgöz Ş, Mungan G, et al. Serum cardiovascular risk factors in obstructive sleep apnea. Chest. 2006; 129(2):233–237. DOI:10.1378/chest.129.2.233.; Nieto FJ, Young TB, Lind BK, et al. Association of sleep-disordered breathing, sleep apnea, and hypertension in a large community-based study. Sleep Heart Health Study. JAMA. 2000; 283(14):1829–1836. DOI:10.1001/jama.283.14.1829.; Gami AS, Hodge DO, Herges RM, et al. Obstructive sleep apnea, obesity, and the risk of incident atrial fibrillation. J Am Coll Cardiol. 2007; 49(5):565–571. DOI:10.1016/j.jacc.2006.08.060.; Rångemark C, Hedner JA, Carlson JT, et al. Platelet function and fibrinolytic activity in hypertensive and normotensive sleep apnea patients. Sleep. 1995; 18(3):188– 194. DOI:10.1093/sleep/18.3.188.; Bagai K, Muldowney JA 3rd, Song Y, et al. Circadian variability of fibrinolytic markers and endothelial function in patients with obstructive sleep apnea. Sleep. 2014; 37(2):359–367. DOI:10.5665/sleep.3414.; Полуэктов М.Г., Бахревский И.Е., Кошелев И.Ю. и др. Расстройства дыхания во сне при церебральном инсульте. Журнал неврологии и психиатрии им. С. С. Корсакова (приложение «Инсульт»), 2002; 5: 22–26.]; Cho ER, Kim H, Seo HS, et al. Obstructive sleep apnea as a risk factor for silent cerebral infarction. J Sleep Res. 2013; 22(4):452–458. DOI:10.1111/jsr.12034.; Stahl SM, Yaggi HK, Taylor S, et al. Infarct location and sleep apnea: evaluating the potential association in acute ischemic stroke. Sleep Med. 2015; 16(10):1198–1203. DOI:10.1016/j.sleep.2015.07.003.; Parra O, Arboix A. Stroke and sleep-disordered breathing: A relationship under construction. World J Clin Cases. 2016; 4(2):33–37. DOI:10.12998/wjcc.v4.i2.33.; Iranzo A, Santamaría J, Berenguer J, et al. Prevalence and clinical importance of sleep apnea in the first night after cerebral infarction. Neurology. 2002; 58(6):911–916. DOI:10.1212/wnl.58.6.911.; Selic C, Siccoli MM, Hermann DM, et al. Blood pressure evolution after acute ischemic stroke in patients with and without sleep apnea. Stroke. 2005; 36(12):2614–2618. DOI:10.1161/01.STR.0000189689.65734.a3.; Kaneko Y, Hajek VE, Zivanovic V, et al. Relationship of sleep apnea to functional capacity and length of hospitalization following stroke. Sleep. 2003; 26(3):293–297. DOI:10.1093/sleep/26.3.293.; Yan-fang S, Yu-ping W. Sleep-disordered breathing: impact on functional outcome of ischemic stroke patients. Sleep Med. 2009; 10(7):717–719. DOI:10.1016/j.sleep.2008.08.006.; Bassetti CL, Milanova M, Gugger M. Sleep-disordered breathing and acute ischemic stroke: diagnosis, risk factors, treatment, evolution, and long-term clinical outcome. Stroke. 2006; 37(4):967–972. DOI:10.1161/01.STR.0000208215.49243.c3.; Parra O, Arboix A, Montserrat JM, et al. Sleep-related breathing disorders: impact on mortality of cerebrovascular disease. Eur Respir J. 2004; 24(2):267–272. DOI:10.1183/09031936.04.00061503.; Parra O, Sánchez-Armengol A, Bonnin M, et al. Early treatment of obstructive apnoea and stroke outcome: a randomised controlled trial. Eur Respir J. 2011; 37(5):1128–1136. DOI:10.1183/09031936.00034410.; Фонякин А.В., Гераскина Л.А., Максимова М.Ю. и др. Распространенность и характер нарушений дыхания во сне при ишемическом инсульте. CardioСоматика. 2018; 9(2):12–16.] DOI:10.26442/22217185_2018.2.12-16.; Kernan WN, Ovbiagele B, Black HR, et al. Guidelines for the prevention of stroke in patients with stroke and transient ischemic attack: a guideline for healthcare professionals from the American Heart Association/American Stroke Association. Stroke. 2014; 45(7):2160–2236. DOI:10.1161/STR.0000000000000024.; Brown DL, McDermott M, Mowla A, et al. Brainstem infarction and sleep-disordered breathing in the BASIC sleep apnea study. Sleep Med. 2014; 15(8):887–891. DOI:10.1016/j.sleep.2014.04.003.; Johnson KG, Johnson DC. Frequency of sleep apnea in stroke and TIA patients: a meta-analysis. J Clin Sleep Med. 2010; 6(2):131–137.; Seiler A, Camilo M, Korostovtseva L, et al. Prevalence of sleep-disordered breathing after stroke and TIA: A meta-analysis. Neurology. 2019; 92(7):e648–e654. DOI:10.1212/WNL.0000000000006904.; Кравченко М.В., Коростовцева Л.С., Головкова-Кучерявая М.С. и др. Нарушения дыхания во сне при ишемическом инсульте: связь с локализацией и типом классификации TOAST. Трансляционная медицина. 2020; 7(3):14–20.] DOI:10.18705/2311-44952020-7-3-14-20.; Смирнов А. Гиперсомния. Центральный научный вестник. 2017; 12(29): 42–44.; American Academy of Sleep Medicine. International classification of sleep disorders, 3rd ed. Darien, IL: American Academy of Sleep Medicine. 2014.; Leppävuori A, Pohjasvaara T, Vataja R, et al. Insomnia in ischemic stroke patients. Cerebrovasc Dis. 2002; 14(2):90–97. DOI:10.1159/000064737.; Arzt M, Young T, Peppard PE, et al. Dissociation of obstructive sleep apnea from hypersomnolence and obesity in patients with stroke. Stroke. 2010; 41(3):e129–e134. DOI:10.1161/STROKEAHA.109.566463.; Passouant P, Cadilhac J, Baldy-Moulinier M. Physio-pathologie des hypersomnies [Physiopathology of hypersomnias]. Rev Neurol (Paris). 1967; 116(6):585–629.; Vock J, Achermann P, Bischof M, et al. Evolution of sleep and sleep EEG after hemispheric stroke. J Sleep Res. 2002; 11(4):331–338. DOI:10.1046/j.13652869.2002.00316.x.; Ferre A, Ribó M, Rodríguez-Luna D, et al. Strokes and their relationship with sleep and sleep disorders. Neurologia. 2013; 28(2):103–118. DOI:10.1016/j.nrl.2010.09.016.; Hermann DM, Siccoli M, Brugger P, et al. Evolution of neurological, neuropsychological and sleep-wake disturbances after paramedian thalamic stroke. Stroke. 2008; 39(1):62–68. DOI:10.1161/STROKEAHA.107.494955.; Catsman-Berrevoets CE, von Harskamp F. Compulsive pre-sleep behavior and apathy due to bilateral thalamic stroke: response to bromocriptine. Neurology. 1988; 38(4):647–649. DOI:10.1212/wnl.38.4.647.; Rivera VM, Meyer JS, Hata T, et al. Narcolepsy following cerebral hypoxic ischemia. Ann Neurol. 1986; 19(5):505–508. DOI:10.1002/ana.410190516.; Scammell TE, Nishino S, Mignot E, et al. Narcolepsy and low CSF orexin (hypocretin) concentration after a diencephalic stroke. Neurology. 2001; 56(12):1751–1753. DOI:10.1212/wnl.56.12.1751.; Drake ME Jr. Kleine-Levin syndrome after multiple cerebral infarctions. Psychosomatics. 1987; 28(6):329–330. DOI:10.1016/s0033-3182(87)72524-9.; Winward C, Sackley C, Metha Z, et al. A population-based study of the prevalence of fatigue after transient ischemic attack and minor stroke. Stroke. 2009; 40(3):757–761. DOI:10.1161/STROKEAHA.108.527101.; Терновых И.К., Алексеева Т.М., Коростовцева Л.С. и др. Гиперсомния и избыточная дневная сонливость при ишемическом инсульте. Артериальная гипертензия. 2021; 27(5):488– 498.] DOI:10.18705/1607-419X-2021-27-5-488-498.; Jahromi AS, Cinà CS, Liu Y, et al. Sensitivity and specificity of color duplex ultrasound measurement in the estimation of internal carotid artery stenosis: a systematic review and meta-analysis. J Vasc Surg. 2005; 41(6):962– 972. DOI:10.1016/j.jvs.2005.02.044.; Bryan RN, Levy LM, Whitlow WD, et al. Diagnosis of acute cerebral infarction: comparison of CT and MR imaging. AJNR Am J Neuroradiol. 1991; 12(4):611–620.; Pexman JH, Barber PA, Hill MD, et al. Use of the Alberta Stroke Program Early CT Score (ASPECTS) for assessing CT scans in patients with acute stroke. AJNR Am J Neuroradiol. 2001; 22(8):1534–1542.; Ananyeva NI, Trofimova TN. CT- and MRI diagnostics of acute ischemic stroke. SPb:SPbMAPO, 2006. P. 136. In Russian [Ананьева Н.И., Трофимова Т.Н. КТ- и МРТ-диагностика острых ишемических инсультов. СПб: СПбМАПО, 2006. 136 с.]; Одинак М.М., Вознюк И.А., Янишевский С.Н. и др. Возможности мультимодальной нейровизуализации для оптимизации тромболитической терапии при ишемическом мозговом инсульте. Неврология, нейропсихиатрия, психосоматика. 2016; 8(1):9–15.] DOI:10.14412/2074-2711-2016-1-9-15.; Sanossian N, Fu KA, Liebeskind DS, et al. Utilization of Emergent Neuroimaging for ThrombolysisEligible Stroke Patients. J Neuroimaging. 2017; 27(1):59–64. DOI:10.1111/jon.12369.; Nour M, Liebeskind DS. Brain imaging in stroke: insight beyond diagnosis. Neurotherapeutics. 2011; 8(3):330–339. DOI:10.1007/s13311-011-0046-0.; Ялова Е.В., Скобелева Ю.О., Абрамов А.С. и др. Лучевая диагностика острого нарушения мозгового кровообращения. Студент года 2019: сборник статей Международного научно-исследовательского конкурса: в 3 частях. 2019; 1:48–68.]; Lev MH, Farkas J, Rodriguez VR, et al. CT angiography in the rapid triage of patients with hyperacute stroke to intraarterial thrombolysis: accuracy in the detection of large vessel thrombus. J Comput Assist Tomogr. 2001; 25(4):520–528. DOI:10.1097/00004728-200107000-00003.; North American Symptomatic Carotid Endarterectomy Trial Collaborators; Barnett HJM, Taylor DW et al. Beneficial effect of carotid endarterectomy in symptomatic patients with high-grade carotid stenosis. N Engl J Med. 1991; 325(7):445–453. DOI:10.1056/NEJM199108153250701.; Yadav JS, Wholey MH, Kuntz RE, et al. Protected carotid-artery stenting versus endarterectomy in high-risk patients. N Engl J Med. 2004; 351(15):1493–1501. DOI:10.1056/NEJMoa040127.; Zhu G, Michel P, Aghaebrahim A, et al. Prediction of recanalization trumps prediction of tissue fate: the penumbra: a dual-edged sword. Stroke. 2013; 44(4):1014– 1019. DOI:10.1161/STROKEAHA.111.000229.; Fiebach JB, Schellinger PD, Jansen O, et al. CT and diffusion-weighted MR imaging in randomized order: diffusion-weighted imaging results in higher accuracy and lower interrater variability in the diagnosis of hyperacute ischemic stroke. Stroke. 2002; 33(9):2206–2210. DOI:10.1161/01.str.0000026864.20339.cb.; Mullins ME, Schaefer PW, Sorensen AG, et al. CT and conventional and diffusion-weighted MR imaging in acute stroke: study in 691 patients at presentation to the emergency department. Radiology. 2002; 224(2):353–360. DOI:10.1148/radiol.2242010873.; Aoki J, Kimura K, Iguchi Y, et al. FLAIR can estimate the onset time in acute ischemic stroke patients. J Neurol Sci. 2010; 293(1-2):39–44. DOI:10.1016/j.jns.2010.03.011.; Sanossian N, Saver JL, Alger JR, et al. Angiography reveals that fluid-attenuated inversion recovery vascular hyperintensities are due to slow flow, not thrombus. AJNR Am J Neuroradiol. 2009; 30(3):564–568. DOI:10.3174/ajnr.A1388.; Haacke EM, Xu Y, Cheng YC, et al. Susceptibility weighted imaging (SWI). Magn Reson Med. 2004; 52(3):612–618. DOI:10.1002/mrm.20198.; Rovira A, Orellana P, Alvarez-Sabín J, et al. Hyperacute ischemic stroke: middle cerebral artery susceptibility sign at echo-planar gradient-echo MR imaging. Radiology. 2004; 232(2):466–473. DOI:10.1148/radiol.2322030273.; Leiva-Salinas C, Wintermark M. Imaging of acute ischemic stroke. Neuroimaging Clin N Am. 2010; 20(4):455–468. DOI:10.1016/j.nic.2010.07.002.; Adams HP Jr, del Zoppo G, Alberts MJ, et al. Guidelines for the early management of adults with ischemic stroke: a guideline from the American Heart Association/American Stroke Association Stroke Council, Clinical Cardiology Council, Cardiovascular Radiology and Intervention Council, and the Atherosclerotic Peripheral Vascular Disease and Quality of Care Outcomes in Research Interdisciplinary Working Groups: the American Academy of Neurology affirms the value of this guideline as an educational tool for neurologists. Stroke. 2007; 38(5):1655– 1711. DOI:10.1161/STROKEAHA.107.181486.; Максимова М.Ю., Коробкова Д.З., Кротенкова М.В. Методы визуализации пенумбры при ишемическом инсульте //Вестник рентгенологии и радиологии. 2013; 6:57-66.]; Kane I, Carpenter T, Chappell F, et al. Comparison of 10 different magnetic resonance perfusion imaging processing methods in acute ischemic stroke: effect on lesion size, proportion of patients with diffusion/ perfusion mismatch, clinical scores, and radiologic outcomes. Stroke. 2007; 38(12):3158–3164. DOI:10.1161/STROKEAHA.107.483842.; Беляевская А.А., Меладзе Н.В., Шария М.А. и др. Современные возможности функциональной магнитно-резонансной томографии в нейровизуализации. Медицинская визуализация. 2018; 1:7–16.] DOI:10.24835/1607-0763-2018-1-7-16.; Heiss WD. The concept of the penumbra: can it be translated to stroke management? Int J Stroke. 2010; 5(4):290–295. DOI:10.1111/j.1747-4949.2010.00444.x.; González RG, Hirsch JA, Koroshetz WS, et al. Acute ischemic stroke: imaging and intervention. Berlin: Springer-Verlag; 2006. p.297.; Liu J, Cai W, Zhao M, et al. Reduced resting-state functional connectivity and sleep impairment in abstinent male alcohol-dependent patients. Hum Brain Mapp. 2019; 40(17):4941–4951. DOI:10.1002/hbm.24749.; Zeng Q, Luo X, Li K, et al. Distinct Spontaneous Brain Activity Patterns in Different Biologically-Defined Alzheimer’s Disease Cognitive Stage: A Preliminary Study. Front Aging Neurosci. 2019; 11:350. DOI:10.3389/fnagi.2019.00350.; Yousaf T, Pagano G, Wilson H, et al. Neuroimaging of Sleep Disturbances in Movement Disorders. Front Neurol. 2018; 9:767. DOI:10.3389/fneur.2018.00767.; Askenasy JJ, Goldhammer I. Sleep apnea as a feature of bulbar stroke. Stroke. 1988; 19(5):637–639. DOI:10.1161/01.str.19.5.637.; Chaudhary BA, Elguindi AS, King DW. Obstructive sleep apnea after lateral medullary syndrome. South Med J. 1982; 75(1):65–67. DOI:10.1097/00007611-19820100000016.; Mohsenin V, Valor R. Sleep apnea in patients with hemispheric stroke. Arch Phys Med Rehabil. 1995; 76(1):71–76. DOI:10.1016/s0003-9993(95)80046-8.; Harbison J, Ford GA, James OF, et al. Sleepdisordered breathing following acute stroke. QJM. 2002; 95(11):741–747. DOI:10.1093/qjmed/95.11.741.; Noradina AT, Hamidon BB, Roslan H, et al. Risk factors for developing sleep-disordered breathing in patients with recent ischaemic stroke. Singapore Med J. 2006; 47(5):392–399.; Bonnin-Vilaplana M, Arboix A, Parra O, et al. Sleep-related breathing disorders in acute lacunar stroke. J Neurol. 2009; 256(12):2036–2042. DOI:10.1007/s00415009-5236-x.; Kepplinger J, Barlinn K, Boehme AK, et al. Association of sleep apnea with clinically silent microvascular brain tissue changes in acute cerebral ischemia. J Neurol. 2014; 261(2):343–349. DOI:10.1007/s00415-013-7200-z.; Fisse AL, Kemmling A, Teuber A, et al. The Association of Lesion Location and Sleep Related Breathing Disorder in Patients with Acute Ischemic Stroke. PLoS One. 2017; 12(1):e0171243. DOI:10.1371/journal.pone.0171243.; https://transmed.almazovcentre.ru/jour/article/view/729Test

  6. 6
    دورية أكاديمية

    المصدر: Diagnostic radiology and radiotherapy; Том 14, № 3 (2023); 46-52 ; Лучевая диагностика и терапия; Том 14, № 3 (2023); 46-52 ; 2079-5343

    وصف الملف: application/pdf

    العلاقة: https://radiag.bmoc-spb.ru/jour/article/view/904/608Test; Furman S., Schwedel J.B. An intracardial pacemaker for Stokes? Adams seizures // NE JM. 1959. Vol. 261. Р. 943–948. doi:10.1056/NEJM195911052611904.; Sutton R. Ventricular pacing: what docs it do? // Eur. JCPE. 1993. Vol. 3. Р. 194–196.; Liu P, Wang Q, Sun H, Qin X, Zheng Q Left Bundle Branch Pacing: Current Knowledge and Future Prospects // Front. Cardiovasc. Med. 2021. Vol. 8. Р. 630399. doi:10.3389/fcvm.2021.630399.; Deshmukh P., Casavant D.A., Romanyshyn M., Anderson K. Permanent, direct His-bundle pacing: a novel approach to cardiac pacing in patients with normal His-Purkinje activation // Circulation. 2000. Vol. 101. Р. 869–877. doi:10.1161/01.cir.101.8.869.; Arnold A.D., Shun-Shin M.J., Keene D. et al. His Resynchronization Versus Biventricular Pacing in Patients With Heart Failure and Left Bundle Branch Block // J. Am. Coll Cardiol. 2018. Vol. 72, No. 24. Р. 3112–3122. doi:10.1016/j.jacc.2018.09.073.; Abdelrahman M., Subzposh F.A., Beer D. et al. Clinical Outcomes of His Bundle Pacing Compared to Right Ventricular Pacing // J. Am. Coll Cardiol. 2018. Vol. 71, Nо. 20. Р. 2319–2330. doi:10.1016/j.jacc.2018.02.048.; Богачевский А.Н., Богачевская С.А., Бондарь В.Ю. Имплантация постоянных кардиостимуляторов под ультразвуковым контролем // Вестник аритмологии. 2014. Т. 78. С. 42–46.; Devabhaktuni S., Mar P.L., Shirazi J. et al. How to Perform His Bundle Pacing: Tools and Techniques // Card Electrophysiol. Clin. 2018. Vol. 10, No. 3. Р. 495– 502. doi:10.1016/j.ccep.2018.05.008.; Bae K.T. Intravenous contrast medium administration and scan timing at CT: considerations and approaches // Radiology. 2010. Vol. 256. Р. 32–61. doi:10.1148/radiol.10090908.; Bae K.T., Seeck B.A., Hildebolt C.F. et al. Contrast enhancement in cardiovascular MDCT: effect of body weight, height, body surface area, body mass index, and obesity // AJR Am. J. Roentgenol. 2008. Vol. 190. Р. 777–784. doi:10.2214/AJR.07.2765.; Abbara S., Arbab-Zadeh A., Callister T.Q. et al. SCCT guidelines for performance of coronary computed tomographic angiography: A report of the Society of Cardiovascular Computed Tomography Guidelines Committee // J. Cardiovasc. Comput. Tomogr. 2009. Vol. 3. Р. 190–204. doi:10.1016/j.jcct.2009.03.004.; Scholtz J.E., Ghoshhajra B. Advances in cardiac CT contrast injection and acquisition protocols // Cardiovasc. Diagn. Ther. 2017. Vol. 7, No. 5. Р. 439–451. doi:10.21037/cdt.2017.06.077. Bogachevsky A.N., Bogachevskaya S.A., Bondar V.Yu. Ultrasound-guided permanent pacemaker implantation. Journal of Arrhythmology, 2014, Vol. 78. рр. 42–46 (In Russ.).; https://radiag.bmoc-spb.ru/jour/article/view/904Test

  7. 7
    دورية أكاديمية

    المساهمون: Работа выполнена при поддержке Министерства науки и высшего образования Российской Федерации (проект № 075-15-2021-592).

    المصدر: Medical Visualization; Том 27, № 4 (2023); 170-178 ; Медицинская визуализация; Том 27, № 4 (2023); 170-178 ; 2408-9516 ; 1607-0763

    مصطلحات موضوعية: МСКТ, DEI, DER, DED, hemochromatosis, CT, ДЭИ, ДЭО, ДЭР, гемохроматоз

    وصف الملف: application/pdf

    العلاقة: https://medvis.vidar.ru/jour/article/view/1357/852Test; Anderson L.J., Holden S., Davis B. et al. Cardiovascular T2-star (T2*) magnetic resonance for the early diagnosis of myocardial iron overload. Eur. Heart J. 2001; 22 (23): 2171–2179. http://doi.org/10.1053/euhj.2001.2822Test; Zachrisson H., Engstrom E., Engvall J. et al. Soft tissue discrimination ex vivo by dual energy computed tomography. Eur. J. Radiol. 2010; 75: e124–e128.; Fischer M.A., Gnannt R., Raptis D. et al. Quantification of liver fat in the presence of iron and iodine: an ex-vivo dual-energy CT study. Invest. Radiol. 2011; 46 (6): 351–358. http://doi.org/10.1097/RLI.0b013e31820e1486Test; Patel T., Kozakowski K., Hruby G., Gupta M. Skin to stone distance is an independent predictor of stone-free status following shockwave lithotripsy. J. Endourol. 2009; 23 (9): 1383–1385. http://doi.org/10.1089/end.2009.0394Test; Primak A.N., Ramirez Giraldo J.C., Liu X. et al. Improved dual-energy material discrimination for dual-source CT by means of additional spectral filtration. Med. Phys. 2009; 36 (4): 1359–1369.; Garbowski M.W., Carpenter J.P., Smith G. et al. Biopsybased calibration of T2* magnetic resonance for estimation of liver iron concentration and comparison with R2 Ferriscan. J. Cardiovasc. Magn. Reson. 2014; 16 (1): 40. http://doi.org/10.1186/1532-429X-16-40Test; Vitrano A., Sacco M., Rosso R. et al. Longitudinal changes in LIC and other parameters in patients receiving different chelation regimens: Data from LICNET. Eur. J. Haematol. 2018; 100 (2): 124–130. http://doi.org/10.1111/ejh.12989Test; Kohgo Y., Urabe A., Kilinç Y. et al. Deferasirox Decreases Liver Iron Concentration in Iron-Overloaded Patients with Myelodysplastic Syndromes, Aplastic Anemia and Other Rare Anemias. Acta Haematol. 2015; 134 (4): 233–242. http://doi.org/10.1159/000381893Test; Wood J.C., Mo A., Gera A. et al. Quantitative computed tomography assessment of transfusional iron overload. Br. J. Haematol. 2011; 153 (6): 780–785. http://doi.org/10.1111/j.1365-2141.2011.08590.xTest; Nielsen P., Engelhardt R., Fischer R. et al. Noninvasive liver-iron quantification by computed tomography in ironoverloaded rats. Invest. Radiol. 1992; 27 (4): 312–317. http://doi.org/10.1097/00004424-199204000-00012Test; Peng Y., Ye J., Liu C. et al. Simultaneous hepatic iron and fat quantification with dual-energy CT in a rabbit model of coexisting iron and fat. Quant. Imaging Med. Surg. 2021; 11 (5): 2001–2012. http://doi.org/10.21037/qims-20-902Test; Tsurusaki M., Sofue K., Hori M. et al. Dual-Energy Computed Tomography of the Liver: Uses in Clinical Practices and Applications. Diagnostics (Basel). 2021; 11 (2): 161. http://doi.org/10.3390/diagnostics11020161Test; Fischer M.A., Reiner C.S., Raptis D. et al. Quantification of liver iron content with CT-added value of dual-energy. Eur. Radiol. 2011; 21 (8): 1727–1732. http://doi.org/10.1007/s00330-011-2119-1Test; Werner S., Krauss B., Haberland U. et al. Dual-energy CT for liver iron quantification in patients with haematological disorders. Eur. Radiol. 2019; 29 (6): 2868–2877. http://doi.org/10.1007/s00330-018-5785-4Test; https://medvis.vidar.ru/jour/article/view/1357Test

  8. 8
    دورية أكاديمية

    المساهمون: the study was supported by the state task of the Ministry of Health of the Russian Federation USAIS RDTW 122041500020-5., работа выполнена при финансовой поддержке государственного задания Министерства здравоохранения Российской Федерации: ЕГИСУ НИОКТР 122041500020-5.

    المصدر: The Siberian Journal of Clinical and Experimental Medicine; Том 38, № 3 (2023); 128-134 ; Сибирский журнал клинической и экспериментальной медицины; Том 38, № 3 (2023); 128-134 ; 2713-265X ; 2713-2927

    وصف الملف: application/pdf

    العلاقة: https://www.sibjcem.ru/jour/article/view/1955/868Test; Furman S., Schwedel J.B. An intracardial pacemaker for Stokes-Adams seizures. N. Engl. J. Med.1959;261:943–948. DOI:10.1056/NEJM195911052611904.; Sutton R. Ventricular pacing: what docs it do? Eur. JCPE. 1993;3:194–196.; Karpawich P., Gates J., Stokes K. Septal His-Purkinje ventricular pacing in canines: a new endocardial electrode approach. PACE. 1992;15:2011–2015. DOI:10.1111/j.1540-8159.1992.tb03012.x.; Deshmukh P., Casavant D.A., Romanyshyn M., Anderson K. Permanent, direct His-bundle pacing: А novel approach to cardiac pacing in patients with normal His-Purkinje activation. Circulation. 2000;101(8):869–877. DOI:10.1161/01.cir.101.8.869.; Arnold A.D., Shun-Shin M.J., Keene D., Howard J.P., Sohaib S.M.A., Wright I.J. et al. His resynchronization versus biventricular pacing in patients with heart failure and left bundle branch block. J. Am. Coll Cardiol. 2018;72(24):3112–3122. DOI:10.1016/j.jacc.2018.09.073.; Vijayaraman P., Zalavadia D., Haseeb A., Dye C., Madan N., Skeete J.R. et al. Clinical outcomes of conduction system pacing compared to biventricular pacing in patients requiring cardiac resynchronization therapy. Heart Rhythm. 2022;19(8):1263–1271. DOI:10.1016/j.hrthm.2022.04.023.; Abdelrahman M., Subzposh F.A., Beer D., Durr B., Naperkowski A., Sun H. et al. Clinical outcomes of his bundle pacing compared to right ventricular pacing. J. Am. Coll Cardiol. 2018;71(20):2319–2330. DOI:10.1016/j.jacc.2018.02.048.; Mala A., Osmancik P., Herman D., Curila K., Stros P., Vesela J. et al. Can QRS morphology be used to differentiate between true septal vs. apparently septal lead placement? An analysis of ECG of real mid-septal, apparent midseptal, and apical pacing. Eur. Heart J. Suppl. 2020;22(Supplement F):F14–F22. DOI:10.1093/eurheartj/suaa094.; Ponnusamy S.S., Arora V., Namboodiri N., Kumar V., Kapoor A., Vijayaraman P. Left bundle branch pacing: A comprehensive review. J. Cardiovasc. Electrophysiol. 2020;31:2462–2473. DOI:10.1111/jce.14681.; Zanon F., Abdelrahman M., Marcantoni L., Naperkowski F., Subzposh F.A., Pastore G. et al. Long term performance and safety of his bundle pacing: A multicenter experience. J. Cardiovasc. Electrophysiol. 2019;30(9):1594–1601. DOI:10.1111/jce.14063.; Keene D., Arnold A.D., Jastrzębski M., Burri H., Zweibel S., Crespo E. et al. His bundle pacing, learning curve, procedure characteristics, safety and feasibility: Insights from a large international observational study. J. Cardiovasc. Electrophysiol. 2019;30(10):1984–1993. DOI:10.1111/jce.14064.; Devabhaktuni S., Mar P.L., Shirazi J., Dandamudi G. How to perform his bundle pacing: tools and techniques. Card. Electrophysiol. Clin. 2018;10(3):495–502. DOI:10.1016/j.ccep.2018.05.008.; Богачевский А.Н., Богачевская С.А., Бондарь В.Ю. Имплантация постоянных кардиостимуляторов под ультразвуковым контролем. Вестник аритмологии. 2014;(78):42–46.; Кавтеладзе З.А., Глаголев В.Э. Возможности высокоскоростной 64-спиральной компьютерной томографии в диагностике поражений периферических и коронарных артерий. Диагностика. 2007;12:33–44.; https://www.sibjcem.ru/jour/article/view/1955Test

  9. 9
    دورية أكاديمية

    المصدر: Translational Medicine; Том 9, № 5 (2022); 5-19 ; Трансляционная медицина; Том 9, № 5 (2022); 5-19 ; 2410-5155 ; 2311-4495

    وصف الملف: application/pdf

    العلاقة: https://transmed.almazovcentre.ru/jour/article/view/721/481Test; https://transmed.almazovcentre.ru/jour/article/downloadSuppFile/721/1516Test; https://transmed.almazovcentre.ru/jour/article/downloadSuppFile/721/1517Test; https://transmed.almazovcentre.ru/jour/article/downloadSuppFile/721/1518Test; https://transmed.almazovcentre.ru/jour/article/downloadSuppFile/721/1519Test; https://transmed.almazovcentre.ru/jour/article/downloadSuppFile/721/1520Test; https://transmed.almazovcentre.ru/jour/article/downloadSuppFile/721/1521Test; https://transmed.almazovcentre.ru/jour/article/downloadSuppFile/721/1522Test; https://transmed.almazovcentre.ru/jour/article/downloadSuppFile/721/1523Test; Bonati LH, Kakkos S, Berkefeld J, et al. European Stroke Organisation guideline on endarterectomy and stenting for carotid artery stenosis. Eur Stroke J. 2021; 6(2):I-XLVII. DOI:10.1177/23969873211012121.; Clark M, Unnam S, Ghosh S. A review of carotid and vertebral artery dissection. Br J Hosp Med (Lond). 2022; 83(4):1–11. DOI:10.12968/hmed.2021.0421; Hemingway JF, Singh N. Atherosclerotic Disease of the Carotid Artery Guidelines. https://emedicine.medscapeTest. com/article/463147-guidelines (29 September 2021).; Jeong HW, Seo JH, Kim ST, et al. Clinical practice guideline for the management of intracranial aneurysms. Neurointervention. 2014; 9(2):63–71. DOI:10.5469/ neuroint.2014.9.2.63.; Kuo AH, Nagpal P, Ghoshhajra BB, et al. Vascular magnetic resonance angiography techniques. Cardiovasc Diagn Ther. 2019; 9(Suppl 1):S28–S36. DOI:10.21037/cdt.2019.06.07.; Lancellotti P, Płońska-Gościniak E, Garbi M, et al. Cardiovascular imaging practice in Europe: a report from the European Association of Cardiovascular Imaging. Eur Heart J Cardiovasc Imaging. 2015; 16(7):697–702. DOI:10.1093/ehjci/jev116.; Steiner T, Juvela S, Unterberg A, et al. European Stroke Organization. European Stroke Organization guidelines for the management of intracranial aneurysms and subarachnoid haemorrhage. Cerebrovasc Dis. 2013; 35(2):93–112. DOI:10.1159/000346087.; Thompson BG, Brown RD Jr, Amin-Hanjani S, et al. Guidelines for the Management of Patients With Unruptured Intracranial Aneurysms: A Guideline for Healthcare Professionals From the American Heart Association/American Stroke Association. Stroke. 2015; 46(8):2368–400. DOI:10.1161/STR.0000000000000070.; Aboyans V, Ricco JB, Bartelink MEL, et al. 2017 ESC Guidelines on the Diagnosis and Treatment of Peripheral Arterial Diseases, in collaboration with the European Society for Vascular Surgery (ESVS): Document covering atherosclerotic disease of extracranial carotid and vertebral, mesenteric, renal, upper and lower extremity arteries Endorsed by: the European Stroke Organization (ESO)The Task Force for the Diagnosis and Treatment of Peripheral Arterial Diseases of the European Society of Cardiology (ESC) and of the European Society for Vascular Surgery (ESVS). Eur Heart J. 2018; 39(9):763–816. DOI:10.1093/eurheartj/ehx095.; Vishnyakova MV (Jr). Occlusive carotid disease assessment: history and new diagnostic technologies. Kreativnaya Kardiologiya=Creative Cardiology. 2017; 11 (3): 247–261. In Russian [Вишнякова М.В., мл. Оценка окклюзирующего поражения сонных артерий: история, тенденции развития диагностических технологий. Креативная кардиология. 2017; 11 (3): 247–261.] DOI:10.24022/1997-3187-2017-11-3-247-261.; Pak NT, Kobelev E, Usov WYu, et al. Evaluation of the severity of atherosclerotic degeneration of the aortic arch wall using computed tomographic angiography to predict the risk of stroke in patients with carotid stenosis in the early postoperative period. Creative Cardiology. 2022; 16(1): 77–91. In Russian [Пак Н.Т., Кобелев Е., Усов В.Ю. и др. Оценка выраженности атеросклеротической дегенерации стенки дуги аорты методом компьютерно-томографической ангиографии для прогнозирования риска острых сосудистых событий у пациентов со стенозами сонных артерий в раннем послеоперационном периоде. Креативная кардиология. 2022; 16(1): 77–91.] DOI:10.24022/1997-3187-2022-16-1-77-91.; Приказ Министерства здравоохранения Российской Федерации № 557н от 8 июня 2020 г. «Об утверждении Правил проведения ультразвуковых исследований». https://minjust.consultant.ru/documents/23536Test (14 September 2020); Приказ Министерства здравоохранения Российской Федерации № 560н от 9 июня 2020 г. «Об утверждении Правил проведения рентгенологических исследований». https://minjust.consultant.ru/documents/23525Test (14 September 2020); Fokin VA. Standardization of MRI Studies Using an Automatic Magnetic Resonance Contrast Agent Injector. Journal of radiology and nuclear medicine. 2020; 101(4):235–243. In Russian [Фокин В.А. К вопросу о стандартизации МРТ-исследований с использованием автоматического инъектора для введения магнитно-резонансных контрастных средств. Вестник рентгенологии и радиологии. 2020; 101(4):235–243.] DOI:10.20862/0042-4676-2020-101-4-235-243.; Shumilina MV. Angiological bases of complex ultrasonic diagnostics of a pathology of vessels. Klinicheskaya Fiziologiya Krovoobrascheniya=Clinical Physiology of Circulation. 2016; 13(1): 5–36. In Russian [Шумилина М.В. Ангиологические основы комплексной ультразвуковой диагностики патологии сосудов. Клиническая физиология кровообращения. 2016; 13(1): 5–36.]; Shumilina MV, Mukaseeva AV. Standardization of ultrasound examinations of brachiocephalic vessels. Necessary and sufficient indicators of stenosis of the internal carotid arteries for cardiovascular surgery. Klinicheskaya Fiziologiya Krovoobrascheniya=Clinical Physiology of Circulation. 2012; 4:51–59. In Russian [Шумилина М.В., Мукасеева А.В. Стандартизация ультразвуковых обследований брахиоцефальных сосудов. Необходимые и достаточные показатели стенозов внутренних сонных артерий для кардиоваскулярных операций. Клиническая физиология кровообращения. 2012; 4:51–59.]; https://transmed.almazovcentre.ru/jour/article/view/721Test

  10. 10
    دورية أكاديمية

    المصدر: Translational Medicine; Том 9, № 2 (2022); 70-80 ; Трансляционная медицина; Том 9, № 2 (2022); 70-80 ; 2410-5155 ; 2311-4495

    وصف الملف: application/pdf

    العلاقة: https://transmed.almazovcentre.ru/jour/article/view/650/465Test; https://transmed.almazovcentre.ru/jour/article/downloadSuppFile/650/1321Test; https://transmed.almazovcentre.ru/jour/article/downloadSuppFile/650/1322Test; https://transmed.almazovcentre.ru/jour/article/downloadSuppFile/650/1323Test; https://transmed.almazovcentre.ru/jour/article/downloadSuppFile/650/1324Test; https://transmed.almazovcentre.ru/jour/article/downloadSuppFile/650/1325Test; Thrall JH. Moreton Lecture: Imaging in the Age of Precision Medicine. J Am Coll Radiol. 2015; 12(10):1106–1111. DOI:10.1016/j.jacr.2015.06.003.; Sun X, Gierach GL, Sandhu R, et al. Relationship of mammographic density and gene expression: analysis of normal breast tissue surrounding breast cancer. Clin Cancer Res. 2013; 19(18):4972–4982. DOI:10.1158/1078-0432.CCR-13-0029.; Kelly PJ, Daumas-Duport C, Kispert DB, et al. Imaging-based stereotaxic serial biopsies in untreated intracranial glial neoplasms. J Neurosurg. 1987; 66(6):865–874. DOI:10.3171/jns.1987.66.6.0865.; Zinn PO, Sathyan P, Mahajan B, et al. A novel volume-age-KPS (VAK) glioblastoma classification identifies a prognostic cognate microRNA-gene signature. PLoS One. 2012; 7(8):e41522. DOI:10.1371/journal.pone.0041522.; Colen RR, Wang J, Singh SK, et al. Glioblastoma: imaging genomic mapping reveals sex-specific oncogenic associations of cell death. Radiology. 2015; 275(1):215–227. DOI:10.1148/radiol.14141800.; Colen RR, Vangel M, Wang J, et al. Imaging genomic mapping of an invasive MRI phenotype predicts patient outcome and metabolic dysfunction: a TCGA glioma phenotype research group project. BMC Med Genomics. 2014; 7:30. DOI:10.1186/1755-8794-7-30.; Gillies RJ, Kinahan PE, Hricak H. Radiomics: Images Are More than Pictures, They Are Data. Radiology. 2016; 278(2):563–77. DOI:10.1148/radiol.2015151169.; Osborn AG, Salzman KL, Jhaveri MD, et al. Diagnostic Imaging: Brain. Philadelphia. PA. USA: Elsevier Health Sciences, 2015. p.1300; Zinn PO, Mahajan B, Sathyan P, et al. Radiogenomic mapping of edema/cellular invasion MRI-phenotypes in glioblastoma multiforme. PLoS One. 2011; 6(10):e25451. DOI:10.1371/journal.pone.0025451.; Naeini KM, Pope WB, Cloughesy TF, et al. Identifying the mesenchymal molecular subtype of glioblastoma using quantitative volumetric analysis of anatomic magnetic resonance images. Neuro Oncol. 2013; 15(5):626–634. DOI:10.1093/neuonc/not008.; Phillips HS, Kharbanda S, Chen R, et al. Molecular subclasses of high-grade glioma predict prognosis, delineate a pattern of disease progression, and resemble stages in neurogenesis. Cancer Cell. 2006; 9(3):157–573. DOI:10.1016/j.ccr.2006.02.019.; Ellingson BM, Lai A, Harris RJ, et al. Probabilistic radiographic atlas of glioblastoma phenotypes. AJNR Am J Neuroradiol. 2013; 34(3):533–540. DOI:10.3174/ajnr.A3253.; Hegi ME, Diserens AC, Gorlia T, et al. MGMT gene silencing and benefit from temozolomide in glioblastoma. N Engl J Med. 2005; 352(10):997–1003. DOI:10.1056/NEJMoa043331.; Aghi M, Gaviani P, Henson JW, et al. Magnetic resonance imaging characteristics predict epidermal growth factor receptor amplification status in glioblastoma. ClinCancer Res. 2005; 11(24 Pt 1):8600–8605. DOI:10.1158/1078-0432.CCR-05-0713.; Pope WB, Chen JH, Dong J, et al. Relationship between gene expression and enhancement in glioblastoma multiforme: exploratory DNA microarray analysis. Radiology. 2008; 249(1):268–277. DOI:10.1148/radiol.2491072000.; Diehn M, Nardini C, Wang DS, et al. Identification of noninvasive imaging surrogates for brain tumor geneexpression modules. Proc Natl Acad Sci U S A. 2008; 105(13):5213–8. DOI:10.1073/pnas.0801279105.; Wangaryattawanich P, Hatami M, Wang J, et al. Multicenter imaging outcomes study of The Cancer Genome Atlas glioblastoma patient cohort: imaging predictors of overall and progression-free survival. Neuro Oncol. 2015; 17(11):1525–1537. DOI:10.1093/neuonc/nov117.; Barajas RF Jr, Phillips JJ, Parvataneni R, et al. Regional variation in histopathologic features of tumor specimens from treatment-naive glioblastoma correlates with anatomic and physiologic MR Imaging. Neuro Oncol. 2012; 14(7):942–954. DOI:10.1093/neuonc/nos128.; Ribas A, Chmielowski B, Glaspy JA. Do we need a different set of response assessment criteria for tumor immunotherapy? ClinCancer Res. 2009; 15(23):7116–7118. DOI:10.1158/1078-0432.CCR-09-2376.; Andronesi OC, Loebel F, Bogner W, et al. Treatment Response Assessment in IDH-Mutant Glioma Patients by Noninvasive 3D Functional Spectroscopic Mapping of 2-Hydroxyglutarate. Clin Cancer Res. 2016; 22(7):1632–1641. DOI:10.1158/1078-0432.CCR-15-0656.; Elshafeey N, Hassan I, Zinn PO, Colen RR. From K-space to Nucleotide: Insights Into the Radiogenomics of Brain Tumors. Top Magn Reson Imaging. 2017; 26(1):33–41. DOI:10.1097/RMR.0000000000000114.; Yan H, Parsons DW, Jin G, et al. IDH1 and IDH2 mutations in gliomas. N Engl J Med. 2009; 360(8):765–773. DOI:10.1056/NEJMoa0808710.; Cancer Genome Atlas Research Network, Brat DJ, Verhaak RG, et al. Comprehensive, Integrative Genomic Analysis of Diffuse Lower-Grade Gliomas. N Engl J Med. 2015; 372(26):2481–2498. DOI:10.1056/NEJMoa1402121.; Reitman ZJ, Yan H. Isocitrate dehydrogenase 1 and 2 mutations in cancer: alterations at a crossroads of cellular metabolism. J Natl Cancer Inst. 2010; 102(13):932–941. DOI:10.1093/jnci/djq187.; Bledea R, Vasudevaraja V, Patel S, et al. Functional and topographic effects on DNA methylation in IDH1/2 mutant cancers. Sci Rep. 2019; 9(1):16830. DOI:10.1038/s41598-019-53262-7.; Chaddad A, Kucharczyk MJ, Daniel P, et al. Radiomics in Glioblastoma: Current Status and Challenges Facing Clinical Implementation. Front Oncol. 2019; 9:374. DOI:10.3389/fonc.2019.00374.; Tateishi K, Wakimoto H, Cahill DP. IDH1 Mutation and World Health Organization 2016 Diagnostic Criteria for Adult Diffuse Gliomas: Advances in Surgical Strategy. Neurosurgery. 2017; 64(CN_suppl_1):134–138. DOI:10.1093/neuros/nyx247.; Тюрина А.Н. 3D протонная магнитно-резонансная спектроскопия в диагностике глиальных опухолей головного мозга (диссертация). Москва, 2019.; Öz G, Deelchand DK, Wijnen JP, et al. Advanced single voxel ¹H magnetic resonance spectroscopy techniques in humans: Experts’ consensus recommendations. NMR Biomed. 2020; e4236. DOI:10.1002/nbm.4236.; Andronesi OC. Precision oncology in the era of radiogenomics: the case of D-2HG as an imaging biomarker for mutant IDH gliomas. Neuro Oncol. 2018; 20(7):865–867. DOI:10.1093/neuonc/noy085.; Suh CH, Kim HS, Jung SC, et al. 2-Hydroxyglutarate MR spectroscopy for prediction of isocitrate dehydrogenase mutant glioma: a systemic review and meta-analysis using individual patient data. Neuro Oncol. 2018; 20(12):1573–1583. DOI:10.1093/neuonc/noy113.; Bhandari A, Sharma C, Ibrahim M, et al. The role of 2-hydroxyglutarate magnetic resonance spectroscopy for the determination of isocitrate dehydrogenase status in lower grade gliomas versus glioblastoma: a systematic review and meta-analysis of diagnostic test accuracy. Neuroradiology. 2021; 63(11):1823–1830. DOI:10.1007/s00234-021-02702-1.; Lasocki A, Rosenthal MA, Roberts-Thomson SJ, et al. Neuro-Oncology and Radiogenomics: Time to Integrate? AJNR Am J Neuroradiol. 2020; 41(11):1982–1988. DOI:10.3174/ajnr.A6769.; Louis DN, Perry A, Reifenberger G, et al. The 2016 World Health Organization Classification of Tumors of the Central Nervous System: a summary. Acta Neuropathol. 2016; 131(6):803–820. DOI:10.1007/s00401-016-1545-1.; Li ZC, Bai H, Sun Q, et al. Multiregional radiomics profiling from multiparametric MRI: Identifying an imaging predictor of IDH1 mutation status in glioblastoma. Cancer Med. 2018; 7(12):5999–6009. DOI:10.1002/cam4.1863.; Brownlee J. How to use ROC curves and precision-recall curves for classification in Python. Machine learning mastery. 2018. https://machinelearningmastery.com/roccurves-and-precision-recall-curves-for-classification-in-pythonTest/ (January 2021).; Kesler SR, Harrison RA, Petersen ML, et al. Presurgical connectome features predict IDH status in diffuse gliomas. Oncotarget. 2019; 10(60):6484–6493. DOI:10.18632/oncotarget.27301.; Han L, Wang S, Miao Y, et al. MRI texture analysis based on 3D tumor measurement reflects the IDH1 mutations in gliomas — A preliminary study. Eur J Radiol. 2019; 112:169–179. DOI:10.1016/j.ejrad.2019.01.025.; Lewis MA, Ganeshan B, Barnes A, et al. Filtration-histogram based magnetic resonance texture analysis (MRTA) for glioma IDH and 1p19q genotyping. Eur J Radiol. 2019; 113:116–123. DOI:10.1016/j.ejrad.2019.02.014.; Yu J, Shi Z, Lian Y, et al. Noninvasive IDH1 mutation estimation based on a quantitative radiomics approach for grade II glioma. Eur Radiol. 2017; 27(8):3509–3522. DOI:10.1007/s00330-016-4653-3.; Sudre CH, Panovska-Griffiths J, Sanverdi E, et al. Machine learning assisted DSC-MRI radiomics as a tool for glioma classification by grade and mutation status. BMC Med Inform Decis Mak. 2020; 20(1):149. DOI:10.1186/s12911-020-01163-5.; Kickingereder P, Sahm F, Radbruch A, et al. IDH mutation status is associated with a distinct hypoxia/ angiogenesis transcriptome signature which is noninvasively predictable with rCBV imaging in human glioma. Sci Rep. 2015; 5:16238. DOI:10.1038/srep16238.; Brendle C, Hempel JM, Schittenhelm J, et al. Glioma Grading and Determination of IDH Mutation Status and ATRX loss by DCE and ASL Perfusion. Clin Neuroradiol. 2018; 28(3):421–428. DOI:10.1007/s00062-017-0590-z.; Lu HT, Xing W, Zhang YW, et al. The value of DCE-MRI in predicting IDH gene mutation of high-grade gliomas. Zhonghua Yi Xue Za Zhi. 2019; 99(39):3105–3109. In Chinese. DOI:10.3760/cma.j.issn.0376-2491.2019.39.013.; Alis D, Bagcilar O, Senli YD, et al. Machine learning-based quantitative texture analysis of conventional MRI combined with ADC maps for assessment of IDH1 mutation in high-grade gliomas. Jpn J Radiol. 2020; 38(2):135–143. DOI:10.1007/s11604-019-00902-7.; Bisdas S, Shen H, Thust S, et al. Texture analysis- and support vector machine-assisted diffusional kurtosis imaging may allow in vivo gliomas grading and IDH-mutation status prediction: a preliminary study. Sci Rep. 2018; 8(1):6108. DOI:10.1038/s41598-018-24438-4.; Abdalla G, Mancini L, Sanverdi SE, et al. Diffusion kurtosis imaging identifies the IDH-mutation status of gliomas. Neuro Oncol. 2018; 20(Suppl 5):v351. DOI:10.1093/neuonc/noy129.031.; Zhao J, Wang YL, Li XB, et al. Comparative analysis of the diffusion kurtosis imaging and diffusion tensor imaging in grading gliomas, predicting tumour cell proliferation and IDH-1 gene mutation status. J Neurooncol. 2019; 141(1):195–203. DOI:10.1007/s11060-018-03025-7.; Zhao J, Huang Y, Song Y, et al. Diagnostic accuracy and potential covariates for machine learning to identify IDH mutations in glioma patients: evidence from a meta-analysis. Eur Radiol. 2020; 30(8):4664–4674. DOI:10.1007/s00330-020-06717-9; Taha B, Boley D, Sun J, et al. State of Radiomics in Glioblastoma. Neurosurgery. 2021; 89(2):177–184. DOI:10.1093/neuros/nyab124.; Li L, Mu W, Wang Y, et al. A Non-invasive Radiomic Method Using 18F-FDG PET Predicts Isocitrate Dehydrogenase Genotype and Prognosis in Patients With Glioma. Front Oncol. 2019; 9:1183. DOI:10.3389/fonc.2019.01183.; Zhao K, Yu P, Xue Z, et al. 11C-Methionine Integrated PET/MRI-Based Texture Analysis Features May Have a Potential Ability to Distinguish Oligodendroglioma (IDH-Mutant and 1p/19q-Codeleted) From Varied Gliomas. Acad Radiol. 2020; 27(7):e159-e167. DOI:10.1016/j.acra.2019.09.013.; Lohmann P, Lerche C, Bauer EK, et al. Predicting IDH genotype in gliomas using FET PET radiomics. Sci Rep. 2018; 8(1):13328. DOI:10.1038/s41598-018-31806-7.; Bø HK, Solheim O, Kvistad KA, et al. Intraoperative 3D ultrasound-guided resection of diffuse low-grade gliomas: radiological and clinical results. J Neurosurg. 2019; 132(2):518–529. DOI:10.3171/2018.10.JNS181290.; Kim Y, Cho HH, Kim ST, et al. Radiomics features to distinguish glioblastoma from primary central nervous system lymphoma on multi-parametric MRI. Neuroradiology. 2018; 60(12):1297–1305. DOI:10.1007/s00234-018-2091-4.; Chen C, Ou X, Wang J, et al. Radiomics-Based Machine Learning in Differentiation Between Glioblastoma and Metastatic Brain Tumors. Front Oncol. 2019; 9:806. DOI:10.3389/fonc.2019.00806.; Tian Q, Yan LF, Zhang X, et al. Radiomics strategy for glioma grading using texture features from multiparametric MRI. J Magn Reson Imaging. 2018; 48(6):1518–1528. DOI:10.1002/jmri.26010.; Cho HH, Lee SH, Kim J, et al. Classification of the glioma grading using radiomics analysis. PeerJ. 2018; 6:e5982. DOI:10.7717/peerj.5982.; Dong F, Zeng Q, Jiang B, et al. Predicting epidermal growth factor receptor gene amplification status in glioblastoma multiforme by quantitative enhancement and necrosis features deriving from conventional magnetic resonance imaging. Medicine (Baltimore). 2018; 97(21):e10833. DOI:10.1097/MD.0000000000010833.; https://transmed.almazovcentre.ru/jour/article/view/650Test