يعرض 1 - 10 نتائج من 2,036 نتيجة بحث عن '"ГЕНОТИП"', وقت الاستعلام: 0.85s تنقيح النتائج
  1. 1
    دورية أكاديمية
  2. 2
    دورية أكاديمية
  3. 3
    دورية أكاديمية
  4. 4
    دورية أكاديمية

    المساهمون: The work was carried out within the framework of the State Assignment of the Vector State Scientific Centre of Virology and Biotechnology of Rospotrebnadzor, Работа выполнена в рамках выполнения Государственного задания ФБУН ГНЦ ВБ Вектор Роспотребнадзора

    المصدر: South of Russia: ecology, development; Том 18, № 4 (2023); 114-124 ; Юг России: экология, развитие; Том 18, № 4 (2023); 114-124 ; 2413-0958 ; 1992-1098

    وصف الملف: application/pdf

    العلاقة: https://ecodag.elpub.ru/ugro/article/view/2998/1388Test; NAHMS‐USDA Bovine Leukosis Virus on U.S. // Dairy Operations. 2007.; Enzootic bovine leucosis // World Organisation for Animal Health. URL: https://www.woah.org/en/disease/enzootic-bovine-leukosisTest/ (дата обращения: 16. 11. 2023); Gulyukin M.I., et al. Control and trends in the epizootic situation of bovine leukemia in 2000–2016 // Russian Journal of Agricultural and Socio‐Economic Sciences. 2017. V. 71. N 11. P. 530–537. doi:10.18551/rjoas.2017-11.70; Nuotio L., et al. Eradication of enzootic bovine leukosis from Finland // Preventive Veterinary Medicine. 2003. V. 59. N 1–2. P. 43–49. doi:10.1016/s0167-5877(03)00057-6; Thompson K.G., Johnstone A.C., Hilbink F. Enzootic bovine leukosis in New Zealand ‐ a case report and update // New Zealand Veterinary Journal. 1993. V. 41. N 4. P. 190–194. doi:10.1080/00480169.1993.35767; Bartlett P.C., et al. Current Developments in the Epidemiology and Control of Enzootic Bovine Leukosis as Caused by Bovine Leukemia Virus // Pathogens. V. 9. Iss. 12. doi:10.3390/pathogens9121058; Yang Y., et al. Bovine leukemia virus infection in cattle of China: Association with reduced milk production and increased somatic cell score // Journal of Dairy Science. 2016. V. 99. N 5. P. 3688–3697. doi:10.3168/jds.2015-10580; Murakami K., et al. The recent prevalence of bovine leukemia virus (BLV) infection among Japanese cattle // Vet Microbiol. 2011. V. 148. N 1. P. 84–88. doi:10.1016/j.vetmic.2010.08.001; Lee E., et al. Sequencing and phylogenetic analysis of the gp51 gene from Korean bovine leukemia virus isolates // Virol J. 2015. V. 12. N 1. doi:10.1186/s12985-015-0286-4; Kuzmin V., et al. Spread Dynamics of Leucosis in Cattle in Livestock Farms of the Russian Federation for 2000–2018 // KnE Life Sciences. 2019. P. 666–673. doi:10.18502/kls.v4i14.5655; Budulov N.R., et al. Bovine leukemia virus occurrence in Dagestan // Veterinary Science Today. 2023. V. 12. N 2. P. 111–118. doi:10.29326/2304-196X-2023-12-2-111-118; Gao A., Kouznetsova V.L., Tsigelny I.F. Bovine leukemia virus relation to human breast cancer: Meta‐analysis // Microb. Pathog. 2020. V. 149. P. 104417. doi:10.1016/j.micpath.2020.104417; Schwingel D., et al. Bovine leukemia virus DNA associated with breast cancer in women from South Brazil // Scientific Reports. 2019. V. 9. N 1. P. 1–7. doi:10.1038/s41598-019-39834-7; Buehring G.C., et al. Bovine leukemia virus linked to breast cancer in Australian women and identified before breast cancer development // PLoS One. 2017. V. 12. N 6. doi:10.1371/journal.pone.0179367; Зиннатов Ф.Ф, Гибадулина И.Р., Хазипов Н.З., Тюрикова Р.П., Камалов Б.В. Детекция и типизация вируса лейкоза крупного рогатого скота // Вятский медицинский вестник. 2007. N 4. С. 48–50.; Крюков В.И., Шалимова О.А., Друшляк Н.Г., Пикунова А.В. ДНК‐диагностика в селекции крупного рогатого скота // Вестник ОрелГАУ: Научное обеспечение животноводства. 2012. N 1. С. 62–68.; Чижова Л.Н., Белов Д.Е. Использование полимеразной цепной реакции в диагностике лейкоза КРС // Сборник научных трудов Ставропольского научно‐исследовательского института животноводства и кормопроизводства. 2004. Т. 2. N 2–2. С. 65–69.; Бабошко Д.А., Гашникова Н.М., Тотменин А.В., Нефедова А.А., Осипова И.П., Екушов В.Е., Рожков О.А., Кузьмин А.И., Флеер М.В. Генетическое разнообразие ВЛКРС, распространенных на территории Коченевского района Новосибирской области // Ветеринария и кормление. N 7. C. 51–53. URL: https://elibrary.ru/item.asp?id=47444643&ysclid=lr6e05h43950789258Test; https://ecodag.elpub.ru/ugro/article/view/2998Test

  5. 5
  6. 6
  7. 7
    دورية أكاديمية
  8. 8
    دورية أكاديمية
  9. 9
    دورية أكاديمية
  10. 10
    دورية أكاديمية

    المساهمون: We are thankful for the support of this work provided by the Centre of Collective Use, the owner of Genetic Collection of Rare and Endangered Breeds of Chickens. This work was financially supported by the Ministry of Science and Higher Education of the Russian Federation, Grant No. 075-15-2021-1037 (Internal No. 15.BRK.21.0001).

    المصدر: Vavilov Journal of Genetics and Breeding; Том 28, № 1 (2024); 108-116 ; Вавиловский журнал генетики и селекции; Том 28, № 1 (2024); 108-116 ; 2500-3259

    وصف الملف: application/pdf

    العلاقة: https://vavilov.elpub.ru/jour/article/view/4061/1816Test; Alexander D.H., Novembre J., Lange K. Fast model­based estimation of ancestryin unrelated individuals. Genome Res. 2009;19(9):1655-1664. DOI 10.1101/gr.094052.109; Anderson C., Pettersson F., Clarke G., Cardon L.R., Morris A.P., Zondervan K.T. Data quality control in genetic case­control association studies. Nat. Protoc. 2010;5:1564-­1573. DOI 10.1038/nprot.2010.116; Biscarini F., Cozzi P., Orozco­ter Wengel P. Lessons learnt on the analysis of large sequence data in animal genomics. Anim. Genet. 2018;49(3):147-­158. DOI 10.1111/age.12655; Bryant D., Moulton V. Neighbor­net: an agglomerative method for the construction of phylogenetic networks. Mol. Biol. Evol. 2004;21(2): 255­-265. DOI.10.1093/molbev/msh018; Dementeva N.V., Romanov M.N., Kudinov A.A., Mitrofanova O.V., Stanishevskaya O.I., Terletsky V.P., Fedorova E.S., Nikitkina E.V., Plemyashov K.V. Studying the structure of a gene pool population of the Russian White chicken breed by genome­wide SNP scan. Selskokhozyaystvennaya Biologiya = Agricultural Biology. 2017; 52(6):1166-­1174. DOI 10.15389/agrobiology.2017.6.1166eng; Dementieva N.V., Kudinov A.A., Larkina T.A., Mitrofanova O.V., Dysin A.P., Terletsky V.P., Tyshchenko V.I., Griffin D.K., Romanov M.N. Genetic variability in local and imported germplasm chicken populations as revealed by analyzing runs of homozygosity. Animals (Basel). 2020;10(10):1887. DOI 10.3390/ani10101887; Dementieva N.V., Mitrofanova O.V., Dysin A.P., Kudinov A.A., Stanishevskaya O.I., Larkina T.A., Plemyashov K.V., Griffin D.K., Romanov M.N., Smaragdov M.G. Assessing the effects of rare alleles and linkage disequilibrium on estimates of genetic diversity in the chicken populations. Animal. 2021;15(3):100-171. DOI 10.1016/j.animal.2021.100171; Fedorova E.S., Dementieva N.V., Shcherbakov Y.S., Stanishevskaya O.I. Identification of key candidate genes in runs of homozygosity of the genome of two chicken breeds, associated with cold adaptation. Biology (Basel). 2022;11(4):547. DOI 10.3390/biology11040547; Ferenčaković M., Sölkner J., Curik I. Estimating autozygosity from high­throughput information: effects of SNP density and genotyping errors. Genet. Sel. Evol. 2013;45:42. DOI 10.1186/1297­-9686-45-42; Fisinin V.I., Selionova M.I., Shinkarenko L.A., Shcherbakova N.G. Study of microsatellites in the Russian breeds of turkey. Selskokhozyaystvennaya Biologiya = Agricultural Biology. 2017;52(4):739-748. DOI 10.15389/agrobiology.2017.4.739eng; Francis R.M. Pophelper: an R package and web app to analyse and visualize population structure. Mol. Ecol. Resour. 2017;17(1):27­32. DOI 10.1111/1755­0998.12509; Guo H.W., Li C., Wang X.N., Li Z.J., Sun G.R., Li G.X., Liu X.J., Kang X.T., Han R.L. Genetic diversity of mtDNA D­loop sequences in four native Chinese chicken breeds. Br. Poult. Sci. 2017;58(5): 490­-497. DOI 10.1080/00071668.2017.1332403; Guo Y., Gu X., Sheng Z., Wang Y., Luo C., Liu R., Qu H., Shu D., Wen J., Crooijmans R.P., Carlborg Ö., Zhao Y., Hu X., Li N. A complex structural variation on chromosome 27 leads to the ectopic expression of HOXB8 and the muffs and beard phenotype in chickens. PLoS Genet. 2016;12(6):e1006071. DOI 10.1371/journal.pgen.1006071; Huson D., Bryant D. Application of phylogenetic networks in evolutionary studies. Mol. Biol. Evol. 2006;23(2):254-­267. DOI 10.1093/molbev/msj030; Keenan K., McGinnity P., Cross T.F., Crozier W.W., Prodöhl P.A. diveRsity: an R package for the estimation and exploration of population genetics parameters and their associated errors. Methods Ecol. Evol. 2013;4(8):782-­788. DOI 10.1111/2041­210X.12067; Krivoruchko A.Y., Skokova A.V., Yatsyk O.A., Kanibolotskaya A.A. Modern approaches to the genetic identification of farm animal breeds (review). Agrarnaya Nauka Evro-Severo-Vostoka = Agricultural Science Euro-North-East. 2021;22(3):317-­328. DOI 10.30766/2072­-9081.2021.22.3.317-­328 (in Russian); Lawal R.A., Hanotte O. Domestic chicken diversity: origin, distribution, and adaptation. Anim. Genet. 2021;52(4):385­-394. DOI 10.1111/age.13091; Letunic I., Bork P. Interactive Tree Of Life (iTOL) v5: an online tool for phylogenetic tree display and annotation. Nucleic Acids Res. 2021; 49(W1):W293-­W296. DOI 10.1093/nar/gkab301; Malomane D.K., Simianer H., Weigend A., Reimer C., Schmitt A.O., Weigend S. The SYNBREED chicken diversity panel: a global resource to assess chicken diversity at high genomic resolution. BMC Genomics. 2019;20(1):345. DOI 10.1186/s12864-­019­5727­-9; Mulim H.A., Brito L.F., Pinto L.F.B., Ferraz J.B.S., Grigoletto L., Silva M.R., Pedrosa V.B. Characterization of runs of homozygosity, heterozygosity-enriched regions, and population structure in cattle populations selected for different breeding goals. BMC Genomics. 2022;23(1):209. DOI 10.1186/s12864­-022­-08384-­0; Paronyan I.A., Jurchenko O.P., Vakhrameev A.B., Makarova A.V. Breeding of indigenous and rare breeds of chickens. Genetika i Razvedenie Životnyh = Animal Genetics and Breeding. 2016;4:62-66 (in Russian); Pembleton L.W., Cogan N.O., Forster J.W. StAMPP: an R package for calculation of genetic differentiation and structure of mixed­ploidy level populations. Mol. Ecol. Resour. 2013;13(5):946-­952. DOI 10.1111/1755-­0998.12129; Price A.L., Patterson N.J., Plenge R.M., Weinblatt M.E., Shadick N.A., Reich D. Principal components analysis corrects for stratification in genome-wide association studies. Nat. Genet. 2006;38(8):904­-909. DOI 10.1038/ng1847; Purfield D.C., Berry D.P., McParland S., Bradley D.G. Runs of homozygosity and population history in cattle. BMC Genet. 2012;13:70. DOI 10.1186/1471-­2156­-13­-70; Restoux G., Rognon X., Vieaud A., Guemene D., Petitjean F., Rouger R., Brard­Fudulea S., Lubac­Paye S., Chiron G., Tixier­Boichard M. Managing genetic diversity in breeding programs of small populations: the case of French local chicken breeds. Genet. Sel. Evol. 2022;54:56. DOI 10.1186/s12711-­022-­00746-­2; Strillacci G., Cozzi M.C., Gorla E., Mosca F., Schiavini F., Román-Ponce S.I., Ruiz López F.J., Schiavone A., Marzoni M., Cerolini S., Bagnato A. Genomic and genetic variability of six chicken populations using single nucleotide polymorphism and copy number variants as markers. Animal. 2017;11(5):737­-745. DOI 10.1017/S1751731116002135; Yang K.X., Zhou H., Ding J.M., He C., Niu Q., Gu C.J., Zhou Z.X., Meng H., Huang Q.Z. Copy number variation in HOXB7 and HOXB8 involves in the formation of beard trait in chickens. Anim. Genet. 2020;51(6):958­-963. DOI 10.1111/age.13011; Yuan J., Li S., Sheng Z., Zhang M., Liu X., Yuan Z., Yang N., Chen J. Genome-wide run of homozygosity analysis reveals candidate genomic regions associated with environmental adaptations of Tibetan native chickens. BMC Genomics. 2022;23(1):91. DOI 10.1186/s12864-­021-­08280­-z; https://vavilov.elpub.ru/jour/article/view/4061Test