يعرض 1 - 3 نتائج من 3 نتيجة بحث عن '"В. Салмин В."', وقت الاستعلام: 1.00s تنقيح النتائج
  1. 1
    دورية أكاديمية

    المصدر: Bulletin of Siberian Medicine; Том 19, № 4 (2020); 226-234 ; Бюллетень сибирской медицины; Том 19, № 4 (2020); 226-234 ; 1819-3684 ; 1682-0363 ; 10.20538/1682-0363-2020-19-4

    وصف الملف: application/pdf

    العلاقة: https://bulletin.tomsk.ru/jour/article/view/4172/2891Test; https://bulletin.tomsk.ru/jour/article/view/4172/2924Test; Вахлюева О.Г. Клинико-диагностические критерии пищевода Барретта и аденокарциномы пищевода. Бюллетень медицинских интернет-конференций. 2013; 3 (3): 517−519.; Ahmad J., Arthur K., Maxwell P., Kennedy A., Johnston B.T., Murray L., McManus D.T. A cross sectional study of p504s, CD133, and Twist expression in the esophageal metaplasia dysplasia adenocarcinoma sequence. Dis. Esophagus. 2015; 28 (3): 276−282. DOI:10.1111/dote.12181.; Пирогов С.С., Карселадзе А.И. Молекулярно-генетические исследования в диагностике и оценке неопластической прогрессии пищевода Барретта (обзор). Сибирский онкологический журнал. 2008; 1: 85−94.; Тер-Ованесов М.Д. Пищевод Барретта: этиология, патогенез, современные подходы к лечению (обзор). Медицинский альманах. 2011; 5: 41−48.; Zali M.R., Zadeh-Esmaeel M.M., Rezaei-Tavirani M., Tabatabaei S.E., Ahmadi A.N. Barrett’s esophagus transits to a cancer condition via potential biomarkers. Gastroenterol. Hepatol. Bed. Bench. 2018; 11 (Suppl. 1): S80−S84.; Коломацкая П.Б. Пищевод Барретта. Эпидемиология, экология, патогенез, морфологическая характеристика, возможности эндоскопической диагностики. Литературный обзор. Вестник Российского научного центра рентгенорадиологии Минздрава России. 2011; 11 (4): 212−229.; Wu J., Ding J., Yang J., Guo X., Zheng Y. MicroRNA roles in the nuclear factor kappa B signaling pathway in cancer. Front. Immunol. 2018; 9: 546. DOI:10.3389/fimmu.2018.00546.; Reid B.J., Li X., Galipeau P.C., Vaughan T.L. Barrett’s oesophagus and oesophageal adenocarcinoma: time for a new synthesis. Nat. Rev. Cancer. 2010; 10 (2): 87−101. DOI:10.1038/nrc2773.; Götzel K., Chemnitzer O., Maurer L., Dietrich A., Eichfeld U., Lyros O., Moulla Y., Niebisch S., Mehdorn M., Jansen-Winkeln B., Vieth M., Hoffmeister A., Gockel I., Thieme R. Indepth characterization of the Wnt-signaling/β-catenin pathway in an in vitro model of Barrett’s sequence. BMC Gastroenterol. 2019; 19 (1): 38. DOI:10.1186/s12876-019-0957-5.; Hashimoto N. Expression of COX2 and p53 in rat esophageal cancer induced by reflux of duodenal contents. ISRN Gastroenterol. 2012; 2012: 914824. DOI:10.5402/2012/914824.; Dzinic S.H., Mahdi Z., Bernardo M.M., Vranic S., Beydoun H., Nahra N., Alijagic A., Harajli D., Pang A., Saliganan D.M., Rahman A.M., Skenderi F., Hasanbegovic B., Dyson G., Beydoun R., Sheng S. Maspin differential expression patterns as a potential marker for targeted screening of esophageal adenocarcinoma/gastroesophageal junction adenocarcinoma. PloS One. 2019; 14 (4): e0215089. DOI:10.1371/journal.pone.0215089.; Zhou Z., Lu H., Zhu S., Gomaa A., Chen Z., Yan J., Washington K., El-Rifai W., Dang C., Peng D. Activation of EGFRDNA-PKcs pathway by IGFBP2 protects esophageal adenocarcinoma cells from acidic bile salts-induced DNA damage. J. Exp. Clin. Cancer Res. 2019; 38 (1): 13. DOI:10.1186/s13046-018-1021-y.; Goodarzi M., Correa A.M., Ajani J.A., Swisher S.G., Hofstetter W.L., Guha S., Deavers M.T., Rashid A., Maru D.M. Anti-phosphorylated histone H3 expression in Barrett’s; esophagus, low-grade dysplasia, high-grade dysplasia, and adenocarcinoma. Mod. Pathol. 2009; 22 (12): 1612−1621. DOI:10.1038/modpathol.2009.133.; Gan W., Zhang C., Siu K.Y., Satoh A., Tanner J.A., Yu S. ULK1 phosphorylates Sec23A and mediates autophagy-induced inhibition of ER-to-Golgi traffic. BMC Cell Biol. 2017; 18 (1): 22. DOI:10.1186/s12860-017-0138-8.; Keown J.R., Black M.M., Ferron A., Yap M., Barnett M.J., Pearce F.G., Stoye J.P., Goldstone D.C. A helical LC3-interacting region mediates the interaction between the retroviral restriction factor Trim5α and mammalian autophagy-related ATG8 proteins. J. Biol. Chem. 2018; 293 (47): 18378−18386. DOI:10.1074/jbc.RA118.004202.; Li S., Jang G.B., Quach C., Liang C. Darkening with UVRAG. Autophagy. 2019; 15 (2): 366−367. DOI:10.1080/15548627.2018.1522911.; Agarwal A., Polineni R., Hussein Z., Vigoda I., Bhagat T.D., Bhattacharyya S., Maitra A., Verma A. Role of epigenetic alterations in the pathogenesis of Barrett’s esophagus and esophageal adenocarcinoma. Int. J. Clin. Exp. Pathol. 2012; 5 (5): 382−396.; Kaz A.M., Grady W.M., Stachler M.D., Bass .A.J. Genetic and epigenetic alterations in Barrett’s esophagus and esophageal adenocarcinoma. Gastroenterol. Clin. North Am. 2015; 44 (2): 473−489. DOI:10.1016/j.gtc.2015.02.015.; Luebeck E.G., Curtius K., Hazelton W.D., Maden S., Yu M., Thota P.N., Patil D.T., Chak A., Willis J.E., Grady W.M. Identification of a key role of widespread epigenetic drift in Barrett’s esophagus and esophageal adenocarcinoma. Clin. Epigenetics. 2017; 9 (1): 113. DOI:10.1186/s13148-017- 0409-4.; Nieto T., Tomlinson C.L., Dretzke J., Bayliss S., Price M.J., Dilworth M., Beggs A.D., Tucker O. A systematic review of epigenetic biomarkers in progression from non-dysplastic Barrett’s oesophagus to oesophageal adenocarcinoma. BMJ Open. 2018; 8 (6): e020427. DOI:10.1136/bmjopen-2017-020427.; Butt M.A., Pye H., Haidry R.J., Oukrif D., Khan S.U., Puccio I., Gandy M., Reinert H.W., Bloom E., Rashid M., Yahioglu G., Deonarain M.P., Hamoudi R., Rodriguez-Justo M., Novelli M.R., Lovat L.B. Upregulation of mucin glycoprotein MUC1 in the progression to esophageal adenocarcinoma and therapeutic potential with a targeted photoactive antibody-drug conjugate. Oncotarget. 2017; 8 (15): 25080−25096. DOI:10.18632/oncotarget.15340.; Sobecki M., Mrouj K., Camasses A., Parisis N., Nicolas E., Llères D., Gerbe F., Prieto S., Krasinska L., David A., Eguren M., Birling M.C., Urbach S., Hem S., Déjardin J., Malumbres M., Jay P., Dulic V., Lafontaine D.Lj., Feil R., Fisher D. The cell proliferation antigen Ki-67 organises heterochromatin. Elife. 2016; 5: e13722. DOI:10.7554/eLife.13722.; Sun X., Bizhanova A., Matheson T.D., Yu J., Zhu L.J., Kaufman P.D. Ki-67 contributes to normal cell cycle progression and inactive X heterochromatin in p21 checkpoint-proficient human cells. Mol. Cell. Biol. 2017; 37 (17): e00569-16. DOI:10.1128/MCB.00569-16.; Roy J., Putt K.S., Coppola D., Leon M.E., Khalil F.K., Centeno B.A., Clark N., Stark V.E., Morse D.L., Low P.S. Assessment of cholecystokinin 2 receptor (CCK2R) in neoplastic tissue. Oncotarget. 2016; 7 (12): 14605−14615. DOI:10.18632/oncotarget.7522.; Jin E.H., Lee S.I., Kim J., Seo E.Y., Lee S.Y., Hur G.M., Shin S., Hong J.H. Association between promoter polymorphisms of TFF1, TFF2, and TFF3 and the risk of gastric and diffuse gastric cancers in a Korean population. J. Korean Med. Sci. 2015; 30 (8): 1035−1041. DOI:10.3346/jkms.2015.30.8.1035.; Grzanka D., Kowalczyk A.E., Izdebska M., Klimaszewska-Wisniewska A., Gagat M. The interactions between SATB1 and F-actin are important for mechanisms of active cell death. Folia Histochem. Cytobiol. 2015; 53 (2): 152−161. DOI:10.5603/fhc.a2015.0018.; Sunkara K.P., Gupta G., Hansbro P.M., Dua K., Bebawy M. Functional relevance of SATB1 in immune regulation and tumorigenesis. Biomed. Pharmacother. 2018; 104: 87−93. DOI:10.1016/j.biopha.2018.05.045.; Wang S., Zeng J., Xiao R., Xu G., Liu G., Xiong D., Ye Y., Chen B., Wang H., Luo Q., Huang Z. Poor prognosis and SATB1 overexpression in solid tumors: a meta-analysis. Cancer Manag Res. 2018; 10: 1471−1478. DOI:10.2147/CMAR.S165497.; Grady W.M., Yu M. Molecular evolution of metaplasia to adenocarcinoma in the esophagus. Dig. Dis. Sci. 2018; 63 (8): 2059−2069. DOI:10.1007/s10620-018-5090-8.; Duits L.C., Lao-Sirieix P., Wolf W.A., O’Donovan M., Galeano-Dalmau N., Meijer S.L., Offerhaus G.J.A., Redman J., Crawte J., Zeki S., Pouw R.E., Chak A., Shaheen N.J., Bergman J.J.G.H.M., Fitzgerald R.C. A biomarker panel predicts progression of Barrett’s esophagus to esophageal adenocarcinoma. Dis. Esophagus. 2018; 32 (1): 102. DOI:10.1093/dote/doy102.; Clemons N.J., Phillips W.A., Lord R.V. Signaling pathways in the molecular pathogenesis of adenocarcinomas of the esophagus and gastroesophageal junction. Cancer Biol. Ther. 2013; 14 (9): 782−795. DOI:10.4161/cbt.25362.; Gauthé M., Richard-Molard M., Rigault E., Buecher B., Mariani P., Bellet D., Cacheux W., Lièvre A. Prognostic value of serum CYFRA 21-1 1 in patients with anal canal squamous cell carcinoma treated with radio (chemo) therapy. BMC Cancer. 2018; 18 (1): 417. DOI:10.1186/s12885-018-4335-4.; Wang J., Deng L., Huang J., Cai R., Zhu X., Liu F., Wang Q., Zhang J., Zheng Y. High expression of Fibronectin 1 suppresses apoptosis through the NF-κB pathway and is associated with migration in nasopharyngeal carcinoma. Am. J. Transl. Res. 2017; 9 (10): 4502−4511.; Howard J.M., Pidgeon G.P., Reynolds J.V. Лептин и злокачественные опухоли желудочно-кишечного тракта. Ожирение и метаболизм. 2011; 8 (2): 69−70.; Johnson D.R., Abdelbaqui M., Tahmasbi M., Mayer Z., Lee H.W., Malafa M.P., Coppola D. CDX2 protein expression compared to alcian blue staining in the evaluation of esophageal intestinal metaplasia. World J. Gastroenterol. 2015; 21 (9): 2770−2776. DOI:10.3748/wjg.v21.i9.2770.; Rahimi N. VEGFR-1 and VEGFR-2: two non-identical twins with a unique physiognomy. Front. Biosci. 2006; 11: 818−829. DOI:10.2741/1839.; Yang Y., He S., Wang Q., Li F., Kwak M.J., Chen S., O’Connell D., Zhang T., Pirooz S.D., Jeon Y.H., Chimge N.O., Frenkel B., Choi Y., Aldrovandi G.M., Oh B.H., Yuan Z., Liang C. Autophagic UVRAG promotes UV-induced photolesion repair by activation of the CRL4DDB2 E3 ligase. Mol. Cell. 2016; 62 (4): 507−519. DOI:10.1016/j.molcel.2016.04.014.; Jeon P., Park J.H., Jun Y.W., Lee Y.K., Jang D.J., Lee J.A. Development of GABARAP family protein-sensitive LIRbased probes for neuronal autophagy. Mol. Brain. 2019; 12 (1): 33. DOI:10.1186/s13041-019-0458-z.; Kauffman K.J., Yu S., Jin J., Mugo B., Nguyen N., O’Brien A., Nag S., Lystad A.H., Melia T.J. Delipidation of mammalian Atg8-family proteins by each of the four ATG4 proteases. Autophagy. 2018; 14 (6): 992−1010. DOI:10.1080/15548627.2018.1437341.; Simons I.M., Mohrlüder J., Feederle R., Kremmer E., Zobel T., Dobner J., Bleffert N., Hoffmann S., Willbold D. The highly GABARAP specific rat monoclonal antibody 8H5 visualizes GABARAP in immunofluorescence imaging at endogenous levels. Sci. Rep. 2019; 9 (1): 526. DOI:10.1038/s41598-018-36717-1.; Pyo K.E., Kim C.R., Lee M., Kim J.S., Kim K.I., Baek S.H. ULK1 O-GlcNAcylation is crucial for activating VPS34 via ATG14L during autophagy initiation. Cell Rep. 2018; 25 (10): 2878−2890. DOI:10.1016/j.celrep.2018.11.042.; He S., Liang C. Frameshift mutation of UVRAG: Switching a tumor suppressor to an oncogene in colorectal; cancer. Autophagy. 2015; 11 (10): 1939−1940. DOI:10.1080/15548627.2015.1086523.; Kimos M.C., Wang S., Borkowski A., Yang G.Y., Yang C.S., Perry K., Olaru A., Deacu E., Sterian A., Cottrell J., Papadimitriou J., Sisodia L., Selaru F.M., Mori Y., Xu Y., Yin J., Abraham J.M., Meltzer S.J. Esophagin and proliferating cell nuclear antigen (PCNA) are biomarkers of human esophageal neoplastic progression. Int. J. Cancer. 2004; 111 (3): 415−417. DOI:10.1002/ijc.20267.; https://bulletin.tomsk.ru/jour/article/view/4172Test

  2. 2
    دورية أكاديمية

    المصدر: Bulletin of Siberian Medicine; Том 19, № 3 (2020); 6-14 ; Бюллетень сибирской медицины; Том 19, № 3 (2020); 6-14 ; 1819-3684 ; 1682-0363 ; 10.20538/1682-0363-2020-19-3

    وصف الملف: application/pdf

    العلاقة: https://bulletin.tomsk.ru/jour/article/view/3586/2380Test; https://bulletin.tomsk.ru/jour/article/view/3586/2381Test; Castoreno A.B., Ulrike U.S. Small molecule probes of cellular pathways and networks. ACS Chem. Bio. 2010; 6: 86–94. DOI:10.1021/cb1002976.; Hörner M., Weber W. Molecular switches in animal cells. FEBS Lett. 2012; 586 (15): 2084–2096. DOI:10.1016/j.febslet.2012.02.032.; Nelson D.L., Cox M.M. Lehninger principles of biochemistry. 6th ed. New York: W.H. Freeman, 2013: 1158.; Mendes-Mourao J., Halestrap A.P., Crisp D.M., Pogson C.I. The involvement of mitochondrial pyruvate transport in the pathways of gluconeogenesis from serine and alanine in isolated rat and mouse liver cells. FEBS Lett. 1975; 53 (1): 29–32. DOI:10.1016/0014-5793(75)80674-0.; McCommis K.S., Finck B.N. Mitochondrial pyruvate transport: a historical perspective and future research directions. Biochem. J. 2015; 466 (3): 443–454. DOI:10.1042/BJ20141171.; Valvona C., Fillmore H.L., Nunn P.B., Pilkington G. J. The regulation and function of lactate dehydrogenase A: therapeutic potential in brain tumor. Brain Pathology. 2016; 26 (1): 3–17. DOI:10.1111/bpa.12299.; Zhai X., Yang Y., Wan J., Zhu R., Wu Y. Inhibition of LDH-A by oxamate induces G2/M arrest, apoptosis and increases radiosensitivity in nasopharyngeal carcinoma cells. Oncol. Rep. 2013; 30: 2983–2991. DOI:10.3892/or.2013.2735.; Pioli P.A., Hamilton B.J., Connolly J.E., Brewer G., Rigby W.F. Lactate dehydrogenase is an AU-rich element-binding protein that directly interacts with AUF1. J. Biol. Chem. 2002; 277 (38): 35738–35745. DOI:10.1074/jbc.M204002200.; Huang L., Li B., Li W., Guo H., Zou F. ATP-sensitive potassium channels control glioma cells proliferation by regulating ERK activity. Carcinogenesis. 2009; 30 (5): 737–744. DOI:10.1093/carcin/bgp034.; Martin L., Schwarz S., Breitsprecher D. Analyzing thermal unfolding of proteins: the prometheus NT.48. Application note NT-PR-001. NanoTemper technologies GmbH, 2014. URL: https://resources.nanotempertech.com/application-notes/nanotemper-application-note-nt-pr-001-thermal-unfoldingTest.; Crawley M.J. The R book. John Wiley & Sons, Inc., 2007: 940.; Findlay J.W., Dillard R.F. Appropriate calibration curve fitting in ligand binding assays. AAPS J. 2007; 9: 260–267.; Rizzo J.M., Shi S., Li Y., Semple A., Esposito J.J., Yu S. Application of a high-throughput relative chemical stability assay to screen therapeutic protein formulations by assessment of conformational stability and correlation to aggregation propensity. Pharm. Sci. 2015; 104 (5): 1632–1640. DOI:10.1002/jps.24408.; Goshu A.T., Koya P.R. Derivation of inflection points of nonlinear regression curves – implications to statistics. AJTAS. 2013; 2 (6): 268–272. DOI:10.11648/j.ajtas.20130206.25.; Magnusson A.O., Szekrenyi A., Joosten H.J., Finnigan J., Charnock S., Fessner W.D. nanoDSF as screening tool for enzyme libraries and biotechnology development. FEBS J. 2019; 286 (1): 184–204. DOI:10.1111/febs.14696.; Chaudhuri R., Cheng Y., Middaugh C.R., Volkin D.B. High-throughput biophysical analysis of protein therapeutics to examine interrelationships between aggregate formation and conformational stability. AAPS J. 2014; 16 (1): 48–64. DOI:10.1208/s12248-013-9539-6.; https://bulletin.tomsk.ru/jour/article/view/3586Test

  3. 3
    دورية أكاديمية

    المصدر: Управление движением и навигация летательных аппаратов. - Ч. 1

    العلاقة: Управление движением и навигация летательных аппаратов : сб. [науч.] тр. XVIII Всерос. семинара по упр. движением и навигации летат. аппаратов (Самара; RU\НТБ СГАУ\533427; Функционирование системы управления движением малого космического аппарата при неисправностях / А. А. Тюгашев, А. В. Филатов, В. В. Салмин, И. С. Ткаченко, Е. В. Сопченко // Управление движением и навигация летательных аппаратов : сб. [науч.] тр. XVIII Всерос. семинара по упр. движением и навигации летат. аппаратов (Самара, 15-17 июня 2015 г.) / Самар. гос. аэрокосм. ун-т им. С. П. Королева (нац. исслед. ун-т) (СГАУ) [и др.]; науч. ред. сб. В. Л. Балакин. - Самара : Изд-во СНЦ, 2016Ч. 1: Ч. 1. - 2016. - C.132-134.; http://repo.ssau.ru/handle/Upravlenie-dvizheniem-i-navigaciya-LA/Funkcionirovanie-sistemy-upravleniya-dvizheniem-malogo-kosmicheskogo-apparata-pri-neispravnostyah-103311Test