يعرض 1 - 10 نتائج من 22 نتيجة بحث عن '"В. Н. Павлов"', وقت الاستعلام: 0.92s تنقيح النتائج
  1. 1
    دورية أكاديمية

    المصدر: Андрология и генитальная хирургия, Vol 14, Iss 1, Pp 40-43 (2014)

    وصف الملف: electronic resource

  2. 2
    دورية أكاديمية

    المصدر: Creative surgery and oncology; Том 14, № 1 (2024); 5-12 ; Креативная хирургия и онкология; Том 14, № 1 (2024); 5-12 ; 2076-3093 ; 2307-0501

    وصف الملف: application/pdf

    العلاقة: https://www.surgonco.ru/jour/article/view/910/585Test; Richters A., Aben K.K.H., Kiemeney L.A.L.M. Th e global burden of urinary bladder cancer: an update. World J Urol. 2020;38(8):1895–904. DOI:10.1007/s00345-019-02984-4; Lenis A.T., Lec P.M., Chamie K., Mshs M.D. Bladder cancer: a review. JAMA. 2020;324(19):1980–91. DOI:10.1001/jama.2020.17598; Chang S.S., Bochner B.H., Chou R., Dreicer R., Kamat A.M., Lerner S.P., et al. Treatment of nonmetastatic muscle-invasive bladder cancer: American urological association/American society of clinical oncology/American society for radiation oncology/Society of urologic oncology clinical practice guideline summary. J Oncol Pract. 2017;13(9):621–5. DOI:10.1200/JOP.2017.024919; Tan W.S., Lamb B.W., Tan M.Y., Ahmad I., Sridhar A., Nathan S., et al. In-depth critical analysis of complications following robot-assisted radical cystectomy with intracorporeal urinary diversion. Eur Urol Focus. 2017;3(2–3):273–9. DOI:10.1016/j.euf.2016.06.002; van Hemelrijck M., Th orstenson A., Smith P., Adolfsson J., Akre O. Risk of in-hospital complications aft er radical cystectomy for urinary bladder carcinoma: population-based follow-up study of 7608 patients. BJU Int. 2013;112(8):1113–20. DOI:10.1111/bju.12239; Alfred Witjes J., Lebret T., Compérat E.M., Cowan N.C., De Santis M., Bruins H.M., et al. Updated 2016 EAU Guidelines on muscle-invasive and metastatic bladder cancer. Eur Urol. 2017;71(3):462–75. DOI:10.1016/j.eururo.2016.06.020; Parekh D.J., Reis I.M., Castle E.P., Gonzalgo M.L., Woods M.E., Svatek R.S., et al. Robot-assisted radical cystectomy versus open radical cystectomy in patients with bladder cancer (RAZOR): an open-label, randomised, phase 3, non-inferiority trial. Lancet. 2018;391(10139):2525–36. DOI:10.1016/S0140-6736(18)30996-6; Menon M., Hemal A.K., Tewari A., Shrivastava A., Shoma A.M., El-Tabey N.A., et al. Nerve-sparing robot-assisted radical cystoprostatectomy and urinary diversion. BJU Int. 2003;92(3):232–6. DOI:10.1046/j.1464-410x.2003.04329.x; Mitra A.P., Cai J., Miranda G., Bhanvadia S., Quinn D.I., Schuckman A.K., et al. Management trends and outcomes of patients undergoing radical cystectomy for urothelial carcinoma of the bladder: evolution of the university of Southern California experience over 3,347 cases. J Urol. 2022;207(2):302–13. DOI:10.1097/JU.0000000000002242; Tamhankar A.S., Th urtle D., Hampson A., El-Taji O., Th urairaja R., Kelly J.D., et al. Radical cystectomy in England from 2013 to 2019 on 12,644 patients: an analysis of national trends and comparison of surgical approaches using Hospital Episode Statistics data. BJUI Compass. 2021;2(5):338–47. DOI:10.1002/bco2.79; Liu H., Zhou Z., Yao H., Mao Q., Chu Y., Cui Y., et al. Robot-assisted radical cystectomy vs open radical cystectomy in patients with bladder cancer: a systematic review and meta-analysis of randomized controlled trials. World J Surg Oncol. 2023;21(1):240. DOI:10.1186/s12957-023-03132-4; Riveros C., Ranganathan S., Nipper C., Lim K., Brooks M., Dursun F., et al. Open vs. robot-assisted radical cystectomy with extracorporeal or intracorporeal urinary diversion for bladder cancer A pairwise metaanalysis of outcomes and a network meta-analysis of complications. Can Urol Assoc J. 2023;17(3):E75–85. DOI:10.5489/cuaj.8096; Tyritzis S.I., Collins J.W., Wiklund N.P. Th e current status of robotassisted cystectomy. Indian J Urol. 2018;34(2):101–9. DOI:10.4103/iju.IJU_355_17; Wijburg C.J., Hannink G., Michels C.T.J., Weijerman P.C., Issa R., Tay A., et al. Learning curve analysis for intracorporeal robot-assisted radical cystectomy: results from the EAU Robotic urology section scientifi c working group. Eur Urol Open Sci. 2022;39:55–61. DOI:10.1016/j.euros.2022.03.004; Hussein A.A., May P.R., Jing Z., Ahmed Y.E., Wijburg C.J., Canda A.E., et al. Outcomes of intracorporeal urinary diversion aft er robotassisted radical cystectomy: results from the International robotic cystectomy consortium. J Urol. 2018;199(5):1302–11. DOI:10.1016/j.juro.2017.12.045; Han J.H., Ku J.H. Robot-assisted radical cystectomy: Where we are in 2023. Investig Clin Urol. 2023;64(2):107–17. DOI:10.4111/icu.20220384; Martin A.S., Corcoran A.T. Contemporary techniques and outcomes of robotic assisted radical cystectomy with intracorporeal urinary diversion. Transl Androl Urol. 2021;10(5):2216–32. DOI:10.21037/tau.2019.09.45; Павлов В.Н., Урманцев М.Ф., Бакеев М.Р. Успехи роботассистированной цистэктомии в лечении мышечно-инвазивного рака мочевого пузыря. Онкоурология. 2022;18(2):123–8. DOI:10.17650/1726-9776-2022-18-2-123-128; Cacciamani G.E., Medina L., Lin-Brande M., Tafuri A., Lee R.S., Ghodoussipour S., et al. Timing, patterns and predictors of 90-day readmission rate aft er robotic radical cystectomy. J Urol. 2021;205(2):491–9. DOI:10.1097/JU.0000000000001387; Павлов В.Н., Урманцев М.Ф., Бакеев М.Р. Робот-ассистированная радикальная цистэктомия с интракорпоральным формированием гетеротопического неоцистиса: опыт осложнений одного центра. Вестник урологии. 2023;11(2):92–8. DOI:10.21886/2308-6424-2023-11-2-92-98; Maibom S.L., Joensen U.N., Poulsen A.M., Kehlet H., Brasso K., Røder M.A. Short-term morbidity and mortality following radical cystectomy: a systematic review. BMJ Open. 2021;11(4):e043266. DOI:10.1136/bmjopen-2020-043266; Feng D., Liu S., Tang Y., Yang Y., Wei W., Han P. Comparison of perioperative and oncologic outcomes between robot-assisted and laparoscopic radical cystectomy for bladder cancer: a systematic review and updated meta-analysis. Int Urol Nephrol. 2020;52(7):1243–54. DOI:10.1007/s11255-020-02406-0; Mortezavi A., Crippa A., Kotopouli M.I., Akre O., Wiklund P., Hosseini A. Association of open vs robot-assisted radical cystectomy with mortality and perioperative outcomes among patients with bladder cancer in Sweden. JAMA Netw Open. 2022;5(4):e228959. DOI:10.1001/jamanetworkopen.2022.8959; Yuh B., Wilson T., Bochner B., Chan K., Palou J., Stenzl A., et al. Systematic review and cumulative analysis of oncologic and functional outcomes aft er robot-assisted radical cystectomy. Eur Urol. 2015;67(3):402–22. DOI:10.1016/j.eururo.2014.12.008; Hussein A.A., Elsayed A.S., Aldhaam N.A., Jing Z., Osei J., Kaouk J., et al. Ten-year oncologic outcomes following robot-assisted radical cystectomy: results from the International robotic cystectomy consortium. J Urol. 2019;202(5):927–35. DOI:10.1097/JU.0000000000000386; Venkatramani V., Reis I.M., Castle E.P., Gonzalgo M.L., Woods M.E., Svatek R.S., et al. Predictors of recurrence, and progression-free and overall survival following open versus robotic radical cystectomy: analysis from the RAZOR Trial with a 3-year followup. J Urol. 2020;203(3):522–9. DOI:10.1097/JU.0000000000000565; https://www.surgonco.ru/jour/article/view/910Test

  3. 3
    دورية أكاديمية

    المساهمون: The study was not sponsored, Исследование не имело спонсорской поддержки

    المصدر: Urology Herald; Том 11, № 2 (2023); 92-98 ; Вестник урологии; Том 11, № 2 (2023); 92-98 ; 2308-6424 ; 10.21886/2308-6424-2023-11-2

    وصف الملف: application/pdf

    العلاقة: https://www.urovest.ru/jour/article/view/724/470Test; World Health Organization. International Agency for Research on Cancer. The Global Cancer Observatory. (December, 2020). Bladder Source: Globocan 2020. Accessed on June, 6, 2023. https://gco.iarc.fr/today/data/factsheets/cancers/30-Bladder-fact-sheet.pdfTest; Alfred Witjes J, Lebret T, Compérat EM, Cowan NC, De Santis M, Bruins HM, Hernández V, Espinós EL, Dunn J, Rouanne M, Neuzillet Y, Veskimäe E, van der Heijden AG, Gakis G, Ribal MJ. Updated 2016 EAU Guidelines on Muscle-invasive and Metastatic Bladder Cancer. Eur Urol. 2017;71(3):462-475. DOI:10.1016/j.eururo.2016.06.020; Bochner BH, Dalbagni G, Sjoberg DD, Silberstein J, Keren Paz GE, Donat SM, Coleman JA, Mathew S, Vickers A, Schnorr GC, Feuerstein MA, Rapkin B, Parra RO, Herr HW, Laudone VP. Comparing Open Radical Cystectomy and Robot-assisted Laparoscopic Radical Cystectomy: A Randomized Clinical Trial. Eur Urol. 2015;67(6):1042-1050. DOI:10.1016/j.eururo.2014.11.043; Bochner BH, Sjoberg DD, Laudone VP; Memorial Sloan Kettering Cancer Center Bladder Cancer Surgical Trials Group. A randomized trial of robot-assisted laparoscopic radical cystectomy. N Engl J Med. 2014;371(4):389-90. DOI:10.1056/NEJMc1405213; Павлов В.Н., Урманцев М.Ф., Юдина Ю.В., Бакеев М.Р. Место робот-ассистированной цистэктомии в лечении мышечно-инвазивного рака мочевого пузыря. Урология. 2021;6:141–144. DOI:10.18565/urology.2021.6.141-144; Павлов В.Н., Урманцев М.Ф., Бакеев М.Р. Успехи робот-ассистированной цистэктомии в лечении мышечно-инвазивного рака мочевого пузыря. Онкоурология. 2022;18(2):123-128. DOI:10.17650/1726-9776-2022-18-2-123-128; Bochner BH, Dalbagni G, Marzouk KH, Sjoberg DD, Lee J, Donat SM, Coleman JA, Vickers A, Herr HW, Laudone VP. Randomized Trial Comparing Open Radical Cystectomy and Robot-assisted Laparoscopic Radical Cystectomy: Oncologic Outcomes. Eur Urol. 2018;74(4):465-471. DOI:10.1016/j.eururo.2018.04.030; Zamboni S, Soria F, Mathieu R, Xylinas E, Abufaraj M, D Andrea D, Tan WS, Kelly JD, Simone G, Gallucci M, Meraney A, Krishna S, Konety BR, Antonelli A, Simeone C, Baumeister P, Mattei A, Briganti A, Gallina A, Montorsi F, Rink M, Aziz A, Karakiewicz PI, Rouprêt M, Koupparis A, Scherr DS, Ploussard G, Sooriakumaran P, Shariat SF, Moschini M; European Association of Urology - Young Academic Urologists (EAU-YAU), Urothelial carcinoma working group. Differences in trends in the use of robot-assisted and open radical cystectomy and changes over time in peri-operative outcomes among selected centres in North America and Europe: an international multicentre collaboration. BJU Int. 2019;124(4):656-664. DOI:10.1111/bju.14791; International Bladder Cancer Nomogram Consortium; Bochner BH, Kattan MW, Vora KC. Postoperative nomogram predicting risk of recurrence after radical cystectomy for bladder cancer. J Clin Oncol. 2006;24(24):3967-72. Erratum in: J Clin Oncol. 2007;25(11):1457. DOI:10.1200/JCO.2005.05.3884; Shabsigh A, Korets R, Vora KC, Brooks CM, Cronin AM, Savage C, Raj G, Bochner BH, Dalbagni G, Herr HW, Donat SM. Defining early morbidity of radical cystectomy for patients with bladder cancer using a standardized reporting methodology. Eur Urol. 2009;55(1):164-74. DOI:10.1016/j.eururo.2008.07.031; Tan WS, Lamb BW, Tan MY, Ahmad I, Sridhar A, Nathan S, Hines J, Shaw G, Briggs TP, Kelly JD. In-depth Critical Analysis of Complications Following Robot-assisted Radical Cystectomy with Intracorporeal Urinary Diversion. Eur Urol Focus. 2017;3(2-3):273-279. DOI:10.1016/j.euf.2016.06.002; Johar RS, Hayn MH, Stegemann AP, Ahmed K, Agarwal P, Balbay MD, Hemal A, Kibel AS, Muhletaler F, Nepple K, Pattaras JG, Peabody JO, Palou Redorta J, Rha KH, Richstone L, Saar M, Schanne F, Scherr DS, Siemer S, Stökle M, Weizer A, Wiklund P, Wilson T, Woods M, Yuh B, Guru KA. Complications after robot-assisted radical cystectomy: results from the International Robotic Cystectomy Consortium. Eur Urol. 2013;64(1):52-7. DOI:10.1016/j.eururo.2013.01.010; Nazmy M, Yuh B, Kawachi M, Lau CS, Linehan J, Ruel NH, Torrey RR, Yamzon J, Wilson TG, Chan KG. Early and late complications of robot-assisted radical cystectomy: a standardized analysis by urinary diversion type. J Urol. 2014;191(3):681-7. DOI:10.1016/j.juro.2013.10.022; https://www.urovest.ru/jour/article/view/724Test

  4. 4
    دورية أكاديمية

    المصدر: Malignant tumours; Том 13, № 1 (2023); 17-23 ; Злокачественные опухоли; Том 13, № 1 (2023); 17-23 ; 2587-6813 ; 2224-5057

    وصف الملف: application/pdf

    العلاقة: https://www.malignanttumors.org/jour/article/view/1100/777Test; Witjes J.A., Compérat E., Cowan N.C., De Santis M., Gakis G., Lebret T., et al. EAU guidelines on muscle-invasive and metastatic bladder cancer : summary of the 2013 guidelines. Eur Urol. 2014; 65 (4) : 778–792.; Mehlen P., Puisieux A., Metastasis : a question of life or death. Nat Rev Cancer 2006; 6 : 449–58.; Nguyen D.X., Bos P.D., Massagué J. Metastasis : from dis semination to organ-specific colonization. Nat Rev Cancer 2009; 9 : 274–84.; Pini G., Matin S.F., Suardi N., Desai M., Gill I., Porter J., et al. Robot assisted lymphadenectomy in urology : pelvic, retroperitoneal and inguinal. Minerva Urol Nefrol 2017; 69 : 38–55.; Polom W., Markuszewski M., Cytawa W., Czapiewski P., Lass P., Matuszewski M. Fluorescent Versus Radioguided Lymph Node Mapping in Bladder Cancer. Clin Genitourin Cancer. 2017; 15 (3) : e405-e409.; Leissner J., Ghoneim M.A., Abol-Enein H., Thüroff J.W., Franzaring L., Fisch M., et al. Extended radical lymphadenectomy in patients with urothelial bladder cancer : results of a prospective multicenter study. J Urol 2004; 171 : 139–44.; Inoue S., Shiina H., Mitsui Y., Yasumoto H., Matsubara A., Igawa M. Identification of lymphatic pathway involved in the spread of bladder cancer : Evidence obtained from fluorescence navigation with intraoperatively injected indocyanine green. Can Urol Assoc J. 2013; 7 (5–6) : E322-E328.; Polom K., Murawa D., Rho Y.S., Nowaczyk P., Hünerbein M., Murawa P. Current trends and emerging future of indocyanine green usage in surgery and oncology : a literature review. Cancer 2011; 117 : 4812–22.; Xiong L., Gazyakan E., Yang W., Engel H., Hünerbein M., Kneser U., et al. Indocyanine green fluorescence-guided sentinel node biopsy : a meta-analysis on detection rate and diagnostic performance. Eur J Surg Oncol 2014; 40 : 843–9.; Абоян И.А., Пакус Д.И., Пакус С.М., Грачев С.В., Березин К.В. Робот-ассистированная тазовая лимфаденэктомия с использованием ICG-диагностики у пациентов с раком предстательной железы. Онкоурология 2018; 14 (3) : 51–7.; Imboden S., Papadia A., Nauwerk M., McKinnon B., Kollmann Z., Mohr S., et al. A Comparison of Radiocolloid and Indocyanine Green Fluorescence Imaging, Sentinel Lymph Node Mapping in Patients with Cervical Cancer Undergoing Laparoscopic Surgery. Ann Surg Oncol. 2015; 22 (13) : 4198–4203.; Papadia A., Imboden S., Siegenthaler F., Gasparri M.L., Mohr S., Lanz S., et al. Laparoscopic Indocyanine Green Sentinel Lymph Node Mapping in Endometrial Cancer. Ann Surg Oncol. 2016; 23 (7) : 2206–2211.; Hachey K.J., Gilmore D.M., Armstrong K.W., Harris S.E., Hornick J.L., Colson Y.L., et al. Safety and feasibility of near-infrared image-guided lymphatic mapping of regional lymph nodes in esophageal cancer. J Thorac Cardiovasc Surg. 2016; 152 : 546–554.; Kinami S., Oonishi T., Fujita J., Tomita Y., Funaki H., Fujita H., et al. Optimal settings and accuracy of indocyanine green fluorescence imaging for sentinel node biopsy in early gastric cancer. Oncol Lett. 2016; 11 : 4055–4062.; Currie A.C., Brigic A., Thomas-Gibson S., Suzuki N., Moorghen M., Jenkins J.T., et al. A pilot study to assess near infrared laparoscopy with indocyanine green (ICG) for intraoperative sentinel lymph node mapping in early colon cancer. Eur J Surg Oncol. 2017; 43 (11) : 2044–2051.; Pathak R.A., Hemal A.K. Intraoperative ICG-fluorescence imaging for robotic-assisted urologic surgery : current status and review of literature. Int Urol Nephrol. 2019; 51 (5) : 765–771.; Schaafsma B.E., Mieog J.S., Hutteman M., van der Vorst J.R., Kuppen P.J., Löwik C.W., et al. The clinical use of indocyanine green as a near-infrared fluorescent contrast agent for image-guided oncologic surgery. J Surg Oncol. 2011; 104 (3) : 323–332.; Schols R.M., Bouvy N.D., van Dam R.M., Stassen L.P. Advanced intraoperative imaging methods for laparoscopic anatomy navigation : an overview. Surg endosc 2013; 27 (6) : 1851–9.; Chennamsetty A., Zhumkhawala A., Tobis S.B., Ruel N., Lau C.S., Yamzon J., et al. Lymph node fluorescence during robot-assisted radical prostatectomy with indocyanine green : prospective dosing analysis. Clin Genitourin Cancer. 2017; 15 : e529-e534.; Buda A., Bussi B., Di Martino G., Di Lorenzo P., Palazzi S., Grassi T., et al. Sentinel lymph node mapping with near-infrared fluorescent imaging using indocyanine green : a new tool for laparoscopic platform in patients with endometrial and cervical cancer. J Minim Invasive Gynecol. 2016; 23 : 265–269.; Buda A., Dell’Anna T., Vecchione F., Verri D., Di Martino G., Milani R. Near-infrared sentinel lymph node mapping with indocyanine green using the VITOM II ICG exoscope for open surgery for gynecologic malignancies. J Minim Invasive Gynecol. 2016; 23 : 628–632.; Buda A., Passoni P., Corrado G., Bussi B., Cutillo G., Magni S., et al. Near-infrared fluorescence-guided sentinel node mapping of the ovary with indocyanine green in a minimally invasive setting : a feasible study. J Minim Invasive Gynecol. 2017; 24 : 165–170.; van Manen L., Handgraaf H.J.M., Diana M., Dijkstra J., Ishizawa T., Vahrmeijer A.L., et al. A practical guide for the use of indocyanine green and methylene blue in fluorescence-guided abdominal surgery. J Surg Oncol. 2018; 118 (2) : 283–300.; Ishizawa T., Masuda K., Urano Y., Kawaguchi Y., Satou S., Kaneko J., et al. Mechanistic background and clinical applications of indocyanine green fluorescence imaging of hepatocellular carcinoma. Ann Surg Oncol. 2014; 21 : 440–448.; Aoki T., Yasuda D., Shimizu Y., Odaira M., Niiya T., Kusano T., et al. Image-guided liver mapping using fluorescence navigation system with indocyanine green for anatomical hepatic resection. World J Surg. 2008; 32 : 1763–1767.; Boogerd L.S., Handgraaf H.J., Lam H.D., Huurman V.A., Farina-Sarasqueta A., Frangioni J.V., et al. Laparoscopic detection and resection of occult liver tumors of multiple cancer types using real-time near-infrared fluorescence guidance. Surg Endosc. 2017; 31 : 952–961.; Peloso A., Franchi E., Canepa M.C., Barbieri L., Briani L., Ferrario J., et al. Combined use of intraoperative ultrasound and indocyanine green fluorescence imaging to detect liver metastases from colorectal cancer. HPB. 2013; 15 : 928–934.; Abo T., Nanashima A., Tobinaga S., Hidaka S., Taura N., Takagi K., et al. Usefulness of intraoperative diagnosis of hepatic tumors located at the liver surface and hepatic segmental visualization using indocyanine green-photodynamic eye imaging. Eur J Surg Oncol. 2015; 41 : 257–264.; DeLong J.C., Chakedis J.M., Hosseini A., Kelly K.J., Horgan S., Bouvet M. Indocyanine green (ICG) fluorescence-guided laparoscopic adrenalectomy. J Surg Oncol. 2015; 112 : 650–653.; Sound S., Okoh A.K., Bucak E., Yigitbas H., Dural C., Berber E. Intraoperative tumor localization and tissue distinction during robotic adrenalectomy using indocyanine green fluorescence imaging : a feasibility study. Surg Endosc. 2016; 30 : 657–662.; Manny T.B., Pompeo A.S., Hemal A.K. Robotic partial adrenalectomy using indocyanine green dye with near-infrared imaging : the initial clinical experience. Urology. 2013; 82 : 738–742.; Dip F., Roy M., Lo Menzo E., Simpfendorfer C., Szomstein S., Rosenthal R.J. Routine use of fluorescent incisionless cholangiography as a new imaging modality during laparoscopic cholecystectomy. Surg Endosc. 2015; 29 : 1621–1626.; Dip F.D., Asbun D., Rosales-Velderrain A., Lo Menzo E., Simpfendorfer C.H., Szomstein S., et al. Cost analysis and effectiveness comparing the routine use of intraoperative fluorescent cholangiography with fluoroscopic cholangiogram in patients undergoing laparoscopic cholecystectomy. Surg Endosc. 2014; 28 : 1838–1843.; Siddighi S., Yune J.J., Hardesty J. Indocyanine green for intraoperative localization of ureter. Am J Obstet Gynecol. 2014; 211 : 436e431–436e432.; Lee Z., Moore B., Giusto L., Eun DD. Use of indocyanine green during robot-assisted ureteral reconstructions. Eur Urol. 2015; 67 : 291–298.; Kumagai Y., Ishiguro T., Haga N., Kuwabara K., Kawano T., Ishida H. Hemodynamics of the reconstructed gastric tube during esophagectomy : assessment of outcomes with indocyanine green fluorescence. World J Surg. 2014; 38 : 138–143.; Koyanagi K., Ozawa S., Oguma J., Kazuno A., Yamazaki Y., Ninomiya Y., et al. Blood flow speed of the gastric conduit assessed by indocyanine green f luorescence : new predictive evaluation of anastomotic leakage after esophagectomy. Medicine. 2016; 95 : e4386.; Watanabe J., Ota M., Suwa Y., Suzuki S., Suwa H., Momiyama M., et al. Evaluation of the intestinal blood flow near the rectosigmoid junction using the indocyanine green fluorescence method in a colorectal cancer surgery. Int J Colorectal Dis. 2015; 30 : 329–335.; Kin C., Vo H., Welton L., Welton M. Equivocal effect of intraoperative fluorescence angiography on colorectal anastomotic leaks. Dis Colon Rectum. 2015; 58 : 582–587.; Inoue Y., Arita J., Sakamoto T., Ono Y., Takahashi M., Takahashi Y., et al. Anatomical liver resections guided by 3-dimensional parenchymal staining using fusion indocyanine green fluorescence imaging. Ann Surg. 2015; 262 : 105–111.; Kawaguchi Y., Nomura Y., Nagai M., Koike D., Sakuraoka Y., Ishida T., et al. Liver transection using indocyanine green fluorescence imaging and hepatic vein clamping. Br J Surg. 2017; 104 : 898–906.; Котов С.В., Простомолотов А.О. Симптоматические лимфатические кисты после онкоурологических операций на органах малого таза и влияние их анатомической локализации на клиническую картину. Вестник урологии. 2020; 8 (4) : 72–79.; Hurle R., Naspro R. Pelvic lymphadenectomy during radical cystectomy : a review of the literature. Surg Oncol. 2010; 19 : 208–220.; Schaafsma B.E., Verbeek F.P., Elzevier H.W., Tummers Q.R., van der Vorst J.R., Frangioni J.V., et al. Optimization of sentinel lymph node mapping in bladder cancer using near-infrared fluorescence imaging. J Surg Oncol. 2014; 110 (7) : 845–850.; Manny T.B., Hemal A.K. Fluorescence-enhanced robotic radical cystectomy using unconjugated indocyanine green for pelvic lymphangiography, tumor marking, and mesenteric angiography : the initial clinical experience. Urology. 2014; 83 (4) : 824–829.; Patel M.N., Hemal A.K. Molecular Targeted Fluorescence-Guided Intraoperative Imaging of Bladder Cancer Nodal Drainage Using Indocyanine Green During Radical and Partial Cystectomy. Curr Urol Rep. 2016; 17 (10) : 74.; Roth B., Wissmeyer M.P., Zehnder P., Birkhäuser F.D., Thalmann G.N., Krause T.M. et al. A new multimodality technique accurately maps the primary lymphatic landing sites of the bladder. Eur Urol. 2010 Feb; 57 (2) : 205–11. doi:10.1016/j.eururo.2009.10.026.; https://www.malignanttumors.org/jour/article/view/1100Test

  5. 5
    دورية أكاديمية

    المساهمون: This work was supported by the Bashkir State Medical University Strategic Academic Leadership Program (PRIORITY-2030)., Работа выполнена за счет средств Программы стратегического академического лидерства Башкирского государственного медицинского университета (ПРИОРИТЕТ-2030).

    المصدر: Creative surgery and oncology; Том 13, № 4 (2023); 311-319 ; Креативная хирургия и онкология; Том 13, № 4 (2023); 311-319 ; 2076-3093 ; 2307-0501

    وصف الملف: application/pdf

    العلاقة: https://www.surgonco.ru/jour/article/view/863/574Test; Fabre K., Berridge B., Proctor W.R., Ralston S., Will Y., Baran S.W., et al. Introduction to a manuscript series on the characterization and use of microphysiological systems (MPS) in pharmaceutical safety and ADME applications. Lab Chip. 2020;20(6):1049–57. DOI:10.1039/c9lc01168d; Park S.M., Eom S., Hong H., Yoon J., Lee S.J., Kim B.Ch., et al. Reconstruction of in vivo-like in vitro model: enabling technologies of microfluidic systems for dynamic biochemical/mechanical stimuli. Microelectron Eng. 2019;203–204:6–24. DOI:10.1016/j.mee.2018.10.010; Wu Q., Liu J., Wang X., Feng L., Wu J., Zhu X., et al. Organ-on-a-chip: recent breakthroughs and future prospects. Biomed Eng Online. 2020;19(1):9. DOI:10.1186/s12938-020-0752-0; Sun W., Luo Z., Lee J., Kim H., Lee K., Tebon P., et al. Organ-on-achip for cancer and immune organs modeling. Adv Healthc Mater. 2019;8:1801363. DOI:10.1002/adhm.201801363; Trujillo-de Santiago G., Flores-Garza B.G., Tavares-Negrete J.A., LaraMayorga I.M., González-Gamboa I., Zhang Y.S., et al. The Tumor-onChip: recent advances in the development of microfluidic systems to recapitulate the physiology of solid tumors. Materials. 2019;12:2945. DOI:10.3390/ma12182945; Vormann M.K., Gijzen L., Hutter S., Boot L., Nicolas A., van den Heuvel A., et al. Nephrotoxicity and kidney transport assessment on 3D perfused proximal tubules. AAPS J. 2018;20:90. DOI:10.1208/s12248-018-0248-z; Kramlinger V.M., Dalvie D., Heck C.J.S., Kalgutkar A.S., O’Neill J., Su D., et al. Future of biotransformation science in the pharmaceutical industry. Drug Metab Dispos. 2022;50(3):258–67. DOI:10.1124/dmd.121.000658; Lee S.J., Lee H.A. Trends in the development of human stem cellbased non-animal drug testing models. Korean J Physiol Pharmacol. 2020;24(6):441–52. DOI:10.4196/kjpp.2020.24.6.441; Andersen M.L., Winter L.M.F. Animal models in biological and biomedical research — experimental and ethical concerns. An Acad Bras Cienc. 2019;91(suppl 1):e20170238. DOI:10.1590/0001-3765201720170238; European Parliament [Internet]. [cited 2022 Feb 25]. Available from: https://www.Europarl.Europa.Eu/Plenary/En/Vod.Html?Mode=chapter&vodLanguage=EN&vodId=6ea360e5-0dd3-Decd-2a72-642c028c0a34&date=20210708Test#; Ma C., Peng Y., Li H., Chen W. Organ-on-a-Chip: a new paradigm for drug development. Trends Pharmacol Sci. 2021;42(2):119–33. DOI:10.1016/j.tips.2020.11.009; Liu X., Fang J., Huang S., Wu X., Xie X., Wang J., et al. Tumor-on-aChip: from bioinspired design to biomedical application. Microsyst Nanoeng. 2021;7:50. DOI:10.1038/s41378-021-00277-8; Ingber D.E. Developmentally inspired human “Organs on Chips”. Development. 2018;145(16):dev156125. DOI:10.1242/dev.156125; Huh D., Matthews B.D., Mammoto A., Montoya-Zavala M., Hsin H.Y., Ingber D.E. Reconstituting organ-level lung functions on a chip. Science. 2010;328(5986):1662–8. DOI:10.1126/science.1188302; Paloschi V., Sabater-Lleal M., Middelkamp H., Vivas A., Johansson S., van der Meer A., et al. Organ-on-a-chip technology: a novel approach to investigate cardiovascular diseases. Cardiovasc Res. 2021;117(14):2742–54. DOI:10.1093/cvr/cvab088; Ma L.-D., Wang Y.-T., Wang J.-R., Wu J.-L., Meng X.-S., Hu P., et al. Design and fabrication of a liver-on-a-chip platform for convenient, highly efficient, and safe in situ perfusion culture of 3D hepatic spheroids. Lab Chip. 2018;18:2547–62. DOI:10.1039/c8lc00333e; Marrero D., Pujol-Vila F., Vera D., Gabriel G., Illa X., Elizalde-Torrent A., et al. Gut-on-a-chip: Mimicking and monitoring the human intestine. Biosens Bioelectron. 2021;181:113156. DOI:10.1016/j.bios.2021.113156; Chou D.B., Frismantas V., Milton Y., David R., Pop-Damkov P., Ferguson D., et al. On-chip recapitulation of clinical bone marrow toxicities and patient-specific pathophysiology. Nat Biomed Eng. 2020;4(4):394–406. DOI:10.1038/s41551-019-0495-z; Soo J.Y.-C., Jansen J., Masereeuw R., Little M.H. Advances in predictive in vitro models of drug-induced nephrotoxicity. Nat Rev Nephrol. 2018;14:378–93. DOI:10.1038/s41581-018-0003-9; Lee J., Kim S. Kidney-on-a-Chip: a new technology for predicting drug efficacy, interactions, and drug-induced nephrotoxicity. Curr Drug Metab. 2018;19(7):577–83. DOI:10.2174/1389200219666180309101844; Homan K.A., Kolesky D.B., Skylar-Scott M.A., Herrmann J., Obuobi H., Moisan A., et al. Bioprinting of 3D convoluted renal proximal tubules on perfusable chips. Sci Rep. 2016;6:34845. DOI:10.1038/srep34845; Lin N.Y.C., Homan K.A., Robinson S.S., Kolesky D.B., Duarte N., Moisan A., et al. Renal reabsorption in 3D vascularized proximal tubule models. Proc Natl Acad Sci U S A. 2019;116(12):5399–404. DOI:10.1073/pnas.1815208116; Wang J., Wang C., Xu N., Liu Z.F., Pang D.W., Zhang Z.L. A virusinduced kidney disease model based on organ-on-a-chip: Pathogenesis exploration of virus-related renal dysfunctions. Biomaterials. 2019;219:119367. DOI:10.1016/j.biomaterials.2019.119367; Ross E.J., Gordon E.R., Sothers H., Darji R., Baron O., Haithcock D., et al. Three dimensional modeling of biologically relevant fluid shear stress in human renal tubule cells mimics in vivo transcriptional profiles. Sci Rep. 2021;11:14053. DOI:10.1038/s41598-021-93570-5; Musah S., Mammoto A., Ferrante T.C., Jeanty S.S.F., Hirano-Kobayashi M., Mammoto T., et al. Mature induced-pluripotent-stem-cell-derived human podocytes reconstitute kidney glomerular-capillary-wall function on a chip. Nat Biomed Eng. 2017;1:0069. DOI:10.1038/s41551-017-0069; Roye Y., Bhattacharya R., Mou X., Zhou Y., Burt M.A., Musah S. A personalized glomerulus chip engineered from stem cell-derived epithelium and vascular endothelium. Micromachines (Basel). 2021;12(8):967. DOI:10.3390/mi12080967; Tiong H.Y., Huang P., Xiong S., Li Y., Vathsala A., Zink D. Druginduced nephrotoxicity: clinical impact and preclinical in vitro models. Mol Pharm. 2014;11:1933–48. DOI:10.1021/mp400720w; Petrosyan A., Cravedi P., Villani V., Angeletti A., Manrique J., Renieri A., et al. A glomerulus-on-a-chip to recapitulate the human glomerular filtration barrier. Nat Commun. 2019;10: 3656. DOI:10.1038/s41467-019-11577-z; Sekhoacha M., Riet K., Motloung P., Gumenku L., Adegoke A., Mashele S. Prostate cancer review: genetics, diagnosis, treatment options, and alternative approaches. Molecules. 2022;27(17):5730. DOI:10.3390/molecules27175730; Pomerantz M.M., Qiu X., Zhu Y., Takeda D.Y., Pan W., Baca S.C., et al. Prostate cancer reactivates developmental epigenomic programs during metastatic progression. Nat Genet. 2020;52:790–9. DOI:10.1038/s41588-020-0664-8; Lamb L.E., Knudsen B.S., Miranti C.K. E-cadherin-mediated survival of androgen-receptor-expressing secretory prostate epithelial cells derived from a stratified in vitro differentiation model. J Cell Sci. 2010;123:266–76. DOI:10.1242/jcs.054502; Al-Samadi A., Poor B., Tuomainen K., Liu V., Hyytiäinen A., Suleymanova I., et al. In vitro humanized 3D microfluidic chip for testing personalized immunotherapeutics for head and neck cancer patients. Exp Cell Res. 2019;383(2):111508. DOI:10.1016/j.yexcr.2019.111508; Jiang L., Ivich F., Tahsin S., Tran M., Frank S.B., Miranti C.K., et al. Human stroma and epithelium co-culture in a microfluidic model of a human prostate gland. Biomicrofluidics. 2019;13(6):064116. DOI:10.1063/1.5126714; Wagenlehner F.M.E., Bjerklund Johansen T.E., Cai T., Koves B., Kranz J., Pilatz A., et al. Epidemiology, definition and treatment of complicated urinary tract infections. Nat Rev Urol. 2020;17(10):586–600. DOI:10.1038/s41585-020-0362-4; Del Piccolo N., Shirure V.S., Bi Y., Goedegebuure S.P., Gholami S., Hughes C.C.W., et al. Tumor-on-chip modeling of organ-specific cancer and metastasis. Adv Drug Deliv Rev. 2021;175:113798. DOI:10.1016/j.addr.2021.05.008; Sharma K., Dhar N., Thacker V.V., Simonet T.M., Signorino-Gelo F., Knott G.W., et al. Dynamic persistence of UPEC intracellular bacterial communities in a human bladder-chip model of urinary tract infection. Elife. 2021;10:e66481. DOI:10.7554/eLife.66481; Galateanu B., Hudita A., Biru E.I., Iovu H., Zaharia C., Simsensohn E., et al. Applications of polymers for organ-on-chip technology in urology. Polymers (Basel). 2022;14(9):1668. DOI:10.3390/polym14091668; Sung H., Ferlay J., Siegel R.L., Laversanne M., Soerjomataram I., Jemal A., et al. Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2021;71:209–49. DOI:10.3322/caac.21660; Zhu S., Zhu Z., Ma A.-H., Sonpavde G.P., Cheng F., Pan C. Preclinical models for bladder cancer research. Hematol Clin. 2021;35:613–32. DOI:10.1016/j.hoc.2021.02.007; Fan W., Xiong Q., Ge Y., Liu T., Zeng S., Zhao J. Identifying the grade of bladder cancer cells using microfluidic chips based on impedance. Analyst. 2022;147(8):1722–9. DOI:10.1039/d2an00026a; Liu P.F., Cao Y.W., Zhang S.D., Zhao Y., Liu X.G., Shi H.Q., et al. A bladder cancer microenvironment simulation system based on a microfluidic co-culture model. Oncotarget. 2015;6(35):37695–705. DOI:10.18632/oncotarget.6070; Xu X.-D., Shao S.-X., Cao Y.-W., Yang X.-C., Shi H.-Q., Wang Y.-L., et al. The study of energy metabolism in bladder cancer cells in co-culture conditions using a microfluidic chip. Int J Clin Exp Med. 2015;8:12327. PMID: 26550142; Imparato G., Urciuolo F., Netti P.A. Organ on chip technology to model cancer growth and metastasis. Bioengineering (Basel). 2022;9(1):28. DOI:10.3390/bioengineering9010028; Shourabi A.Y., Kashaninejad N., Saidi M.S. An integrated microfluidic concentration gradient generator for mechanical stimulation and drug delivery. J Sci Adv Mater Devices. 2021;6:280–90. DOI:10.1016/j.jsamd.2021.02.009; https://www.surgonco.ru/jour/article/view/863Test

  6. 6
    دورية أكاديمية

    المساهمون: This work was supported by the Bashkir State Medical University Strategic Academic Leadership Program (PRIORITY-2030)., Работа выполнена за счет средств Программы стратегического академического лидерства Башкирского государственного медицинского университета (ПРИОРИТЕТ-2030).

    المصدر: Creative surgery and oncology; Том 13, № 3 (2023); 191-197 ; Креативная хирургия и онкология; Том 13, № 3 (2023); 191-197 ; 2076-3093 ; 2307-0501

    وصف الملف: application/pdf

    العلاقة: https://www.surgonco.ru/jour/article/view/826/554Test; https://www.surgonco.ru/jour/article/downloadSuppFile/826/205Test; Чикинев Ю.В., Дробязгин Е.А., Беркасова И.В., Коробейников А.В., Кутепов А.В. Лечение рубцовых послеожоговых сужений пищевода. Сибирский медицинский журнал. 2009;24(4-1):94–100.; Гасанов А.М. Алиев Н.А., Даниелян Ш.Н. Ахалазия кардии. Хирургия. Журнал им. Н.И. Пирогова. 2019;2:72–7. DOI:10.17116/hirurgia201902172; Чепик Д.А. Современные направления пластики пищевода у больных с послеожоговыми рубцовыми стриктурами пищевода. Новости хирургии. 2009;17(3):154–67.; Nayar R., Varshney V.K., Goel A.D. Outcomes of gastric conduit in corrosive esophageal stricture: a systematic review and meta-analysis. J Gastrointest Surg. 2022;26(1):224–34. DOI:10.1007/s11605-021-05124-9; Andreollo N.A., Lopes L.R., Inogutti R., Brandalise N.A., Leonardi L.S. Conservative treatment of benign esophageal strictures using dilation. Analysis of 500 cases. Rev Assoc Med Bras. 2001;47(3):236–43. DOI:10.1590/s0104-42302001000300036; Черкасов М.Ф., Старцев Ю.М., Черкасов Д.М. Неопухолевые заболевания пищевода. В кн.: Национальное руководство по абдоминальной хирургии. М.: ГЭОТАР-Медиа; 2017. С. 399–403.; Белевич В.Л., Овчинников Д.В. Лечение доброкачественных стриктур пищевода. Вестник хирургии им. И.И. Грекова. 2013;172(5):111–4. DOI:10.24884/0042-4625-2013-172-5-111-114; Ивашкин В.Т., Трухманов А.С. Болезни пищевода. М.: Триада-Х; 2000. 179 с.; Булганина Н.А., Годжелло Э.А., Хрусталева М.В., Дехтяр М.А. Троекратные интрамуральные инъекции дексаметазона повышают эффективность эндоскопического бужирования рестенозов и анастомозов пищевода. Экспериментальная и клиническая гастроэнтерология. 2021;1(5):31–8. DOI:10.31146/1682-8658-ecg-189-5-31-38; Pross M., Manger T., Wolff S., Kahl S., Lippert H. Th oracoscopic enucleation of benign tumors of the esophagus under simultaneous fl exible esophagoscopy. Surg Endoscopy. 2000;14(12):1146–8. DOI:10.1007/s004640000258; Grimminger P.P., Hadzijusufovic E., Lang H. Robotic-assisted Ivor Lewis esophagectomy (RAMIE) with a standardized intrathoracic circular end-to-side stapled anastomosis and a team of two (surgeon and assistant only). Th orac Cardiovasc Surg. 2018;66(5):404–6. DOI:10.1055/s-0037-1606198; Chouliaras K., Hochwald S., Kukar M. Robotic-assisted Ivor Lewis esophagectomy, a review of the technique. Updates Surg. 2021;73(3):831–8. DOI:10.1007/s13304-021-01000-y; Huscher C.G.S., Cobellis F., Lazzarin G. Intrathoracic Robotic-sewn anastomosis during Ivor Lewis esophagectomy for cancer: back to basics. J Gastrointest Surg. 2023;27(5):1034–41. DOI:10.1007/s11605-023-05616-w; Zhang H., Wang Z., Zheng Y., Geng Y., Wang F., Chen L.Q., et al. Robotic side-to-side and end-to-side stapled esophagogastric anastomosis of Ivor Lewis esophagectomy for cancer. World J Surg. 2019;43(12):3074–82. DOI:10.1007/s00268-019-05133-5; Plat V.D., Stam W.T., Schoonmade L.J., Heineman D.J., van der Peet D.L., Daams F. Implementation of robot-assisted Ivor Lewis procedure: Robotic hand-sewn, linear or circular technique? Am J Surg. 2020;220(1):62–8. DOI:10.1016/j.amjsurg.2019.11.031; Chen B., Xia P., Tang W., Huang S. Which anastomotic techniques is the best choice for cervical esophagogastric anastomosis in esophagectomy a bayesian network meta-analysis. J Gastrointest Surg. 2023;27(2):422–32. DOI:10.1007/s11605-022-05482-y; Kandagatla P., Ghandour A.H., Amro A., Popoff A., Hammoud Z. Long-term outcomes aft er robotic-assisted Ivor Lewis esophagectomy. J Robot Surg. 2022;16(1):119–25. DOI:10.1007/s11701-021-01219-2; Ojima T., Hayata K., Yamaue H. Robotic Ivor Lewis esophagectomy for gastroesophageal junction cancer. J Visc Surg. 2022;159(2):171–2. DOI:10.1016/j.jviscsurg.2021.11.004; Хатьков И.Е., Домрачев С.А., Шестаков А.Л., Израилов Р.Е., Васнев О.С., Тарасова И.А. и др. Минимально инвазивная эзофагэктомия при доброкачественных заболеваниях пищевода: результаты двухцентрового исследования. Хирургия. Журнал им. Н.И. Пирогова. 2022;7:5–11. DOI:10.17116/hirurgia20220715; Шестаков А.Л., Тарасова И.А., Цховребов А.Т., Боева И.А., Битаров Т.Т., Безалтынных А.А. и др. Реконструктивная хирургия пищевода в эпоху fast track. Хирургия. Журнал им. Н.И. Пирогова. 2021;(6-2):73–83. DOI:10.17116/hirurgia202106273; Eddahchouri Y. European consensus on essential steps of minimally invasive Ivor Lewis and McKeown esophagectomy through Delphi methodology. Surg Endosc. 2022;36:446–60. DOI:10.1007/s00464-021-08304-5; Grimminger P.P. Change from hybrid to fully minimally invasive and robotic esophagectomy is possible without compromises. Thorac Cardiovasc Surg. 2019;67(7):589–96. DOI:10.1055/s-0038-1670664; Sabra M.J. Ivor Lewis vs Mckeown esophagectomy: analysis of operative outcomes from the ACS NSQIP database. Gen Thorac Cardiovasc Surg. 2020;68:370–9. DOI:10.1007/s11748-020-01290-w; https://www.surgonco.ru/jour/article/view/826Test

  7. 7
    دورية أكاديمية

    المساهمون: This work was supported by the Bashkir State Medical University Strategic Academic Leadership Program (PRIORITY-2030), Работа выполнена за счет средств Программы стратегического академического лидерства Башкирского государственного медицинского университета (ПРИОРИТЕТ-2030)

    المصدر: Creative surgery and oncology; Том 13, № 2 (2023); 97-104 ; Креативная хирургия и онкология; Том 13, № 2 (2023); 97-104 ; 2076-3093 ; 2307-0501

    وصف الملف: application/pdf

    العلاقة: https://www.surgonco.ru/jour/article/view/805/542Test; Chang S. S., Bochner B. H., Chou R., Dreicer R., Kamat A. M., Lerner S. P., et al. Treatment of Non-Metastatic Muscle-Invasive Bladder Cancer: AUA/ASCO/ASTRO/SUO Guideline. J Urol. 2017; 198 (3): 552–9. DOI:10.1016/j.juro.2017.04.086; Yu J., Lee J., Ha S., Baek J. W., Kim C. S., Park J. Y., et al. Impact of chart-derived frailty index on 1-year mortality aft er radical cystectomy in 1004 patients with bladder cancer. Ann Surg Oncol. 2023; DOI:10.1245/s10434-023-13565-6; Lu X., Jiang H., Wang D., Wang Y., Chen Q., Chen S., et al. Early warning models to predict the 90-day urinary tract infection risk aft er radical cystectomy and urinary diversion for patients with bladder cancer. Front Surg. 2022; 8: 782029. DOI:10.3389/fsurg.2021.782029; Liu Z., Zheng B., Hu Y., Li H., Qin X., Hu X., et al. Th e cause analysis of benign uretero-ileal anastomotic stricture aft er radical cystectomy and urinary diversion. Front Oncol. 2022; 12: 1070141. DOI:10.3389/fonc.2022.1070141; Gaya J. M., Territo A., Basile G., Gallioli A., Martínez C., Turco M., et al. Optimizing decision-making process of benign uretero-enteric anastomotic stricture treatment aft er radical cystectomy. World J Urol. 2023; 41 (3): 733–8. DOI:10.1007/s00345-023-04298-y; Carrion A., Hussein A. A., Eun D., Hosseini A., Gaya J. M., Abaza R., et al. Perioperative and functional outcomes of robot-assisted ureteroenteric reimplantation: a multicenter study of Seven Referral Institutions. Eur Urol Open Sci. 2022; 35: 47–53. DOI:10.1016/j.euros.2021.11.005; Pathak R. A., Hemal A. K. Intraoperative ICG-fluorescence imaging for robotic-assisted urologic surgery : current status and review of literature. Int Urol Nephrol. 2019; 51 (5): 765–71. DOI:10.1007/s11255-019-02126-0; Ramírez Backhaus M., Calatrava-Fons A., Gómez-Ferrer Á., Collado Serra A., Domínguez-Escrig J. L., Bertolo R., et al. ICG lymphography and fluorescence in pelvic lymphadenectomy for bladder and prostate cancer. Arch Esp Urol. 2019; 72 (8): 831–41. PMID: 31579042.; Chopra S., de Castro Abreu A. L., Berger A. K., Sehgal S., Gill I., Aron M., et al. Evolution of robot-assisted orthotopic ileal neobladder formation: a step-by-step update to the University of Southern California (USC) technique. BJU Int. 2017; 119 (1): 185–91. DOI:10.1111/bju.13611; Anderson C. B., Morgan T. M., Kappa S., Moore D., Clark P. E., Davis R., et al. Ureteroenteric anastomotic strictures aft er radical cystectomy-does operative approach matter? J Urol. 2013; 189 (2): 541–7. DOI:10.1016/j.juro.2012.09.034; Zeng S., Xing S., Xing W., Bai Z., Zhang J., Li Y., et al. Application of indocyanine green in combination with Da Vinci Xi robot in surgeries on the upper urinary tract: a case series study. J Clin Med. 2023; 12 (5): 1980. DOI:10.3390/jcm12051980; Tobis S., Knopf J., Silvers C., Yao J., Rashid H., Wu G., et al. Near infrared fluorescence imaging with robotic assisted laparoscopic partial nephrectomy: initial clinical experience for renal cortical tumors. J Urol. 2011; 186 (1): 47–52. DOI:10.1016/j.juro.2011.02.2701; Puliatti S., Eissa A., Checcucci E., Piazza P., Amato M., Ferretti S., et al. New imaging technologies for robotic kidney cancer surgery. Asian J Urol. 2022; 9 (3): 253–62. DOI:10.1016/j.ajur.2022.03.008; Yang Y. K., Hsieh M. L., Chen S. Y., Liu C. Y., Lin P. H., Kan H. C., et al. Clinical benefits of indocyanine green fluorescence in robot-assisted partial nephrectomy. Cancers (Basel). 2022; 14 (12): 3032. DOI:10.3390/cancers14123032; Xie D., Gu D., Lei M., Cai C., Zhong W., Qi D.,et al. Th e application of indocyanine green in guiding prostate cancer treatment. Asian J Urol. 2023; 10 (1): 1–8. DOI:10.1016/j.ajur.2021.07.004; Павлов В. Н., Урманцев М. Ф., Бакеев М. Р. Возможности ICG-флуоресцентной визуализации лимфатических узлов при радикальной цистэктомии у пациентов с раком мочевого пузыря. Современная онкология. 2022; 24 (4): 454–7. DOI:10.26442/18151434.2022.4.201874; Павлов В. Н., Урманцев М. Ф., Бакеев М. Р. Метод интраоперационной ICG-флуоресцентной визуализации лимфатических узлов при робот-ассистированной радикальной цистэктомии у пациентов с раком мочевого пузыря. Креативная хирургия и онкология. 2023; 13 (1): 5–12. DOI:10.24060/2076-3093-2023-13-1-5-12; Lee M., Lee Z., Houston N., Strauss D., Lee R., Asghar A. M., et al. Collaborative of Reconstructive Robotic Ureteral Surgery (CORRUS). Robotic ureteral reconstruction for recurrent strictures aft er prior failed management. BJUI Compass. 2023; 4 (3): 298–304. DOI:10.1002/bco2.224; Chopra S., Hussain F., Abreu A., Ahmadi N., Berger A., Gill I. et al. PD67-04 Early and late complications of robotic radical cystectomy and intracorporeal urinary diversion. J Urol. 2017; 197 (4s): e1277. DOI:10.1016/j.juro.2017.02.2980; https://www.surgonco.ru/jour/article/view/805Test

  8. 8
    دورية أكاديمية

    المساهمون: The study was supported by the Bashkir State Medical University Strategic Academic Leadership Program (PRIORITY-2030)., Работа выполнена за счет средств Программы стратегического академического лидерства Башкирского государственного медицинского университета (ПРИОРИТЕТ-2030).

    المصدر: Creative surgery and oncology; Том 13, № 1 (2023); 5-12 ; Креативная хирургия и онкология; Том 13, № 1 (2023); 5-12 ; 2076-3093 ; 2307-0501

    وصف الملف: application/pdf

    العلاقة: https://www.surgonco.ru/jour/article/view/766/531Test; World Health Organization. International Agency for Research on Cancer. The Global Cancer Observatory. (December, 2020). Bladder Source: Globocan 2020; [cited 2022 Dec 18]. Available from: https://gco.iarc.fr/today/data/factsheets/cancers/30-Bladder-fact-sheet.pdfTest; Trifanescu O.G., Gales L.N., Paun M.A., Motas N., Marinescu S.A., Virtosu I., et al. Long-term outcome of patients with stage II and III muscle-invasive urothelial bladder cancer after multimodality approach. Which Is the best option? Medicina (Kaunas). 2022;59(1):50. DOI:10.3390/medicina59010050; Bochner B.H., Dalbagni G., Marzouk K.H., Sjoberg D.D., Lee J., Donat S.M., et al. Randomized trial comparing open radical cystectomy and robot-assisted laparoscopic radical cystectomy: oncologic outcomes. Eur Urol. 2018;74(4):465–71. DOI:10.1016/j.eururo.2018.04.030; Павлов В.Н., Урманцев М.Ф., Бакеев М.Р. Успехи роботассистированной цистэктомии в лечении мышечно-инвазивного рака мочевого пузыря. Онкоурология. 2022;18(2):123–8. DOI:10.17650/1726-9776-202218-2-123-128; Павлов В.Н., Урманцев М.Ф., Юдина Ю.В., Бакеев М.Р. Место робот-ассистированной цистэктомии в лечении мышечно-инвазивного рака мочевого пузыря. Урология. 2021;6:141–4. DOI:10.18565/urology.2021.6.141-144; Zamboni S., Soria F., Mathieu R., Xylinas E., Abufaraj M., Andrea D.D., et al. Differences in trends in the use of robot-assisted and open radical cystectomy and changes over time in peri-operative outcomes among selected centres in North America and Europe: an international multicentre collaboration. BJU Int. 2019;124(4):656–64. DOI:10.1111/bju.14791; Sung H.H., Lerner S.P. Utility of lymphadenectomy in bladder cancer: where do we stand? Curr Opin Urol. 2020;30(3):407–14. DOI:10.1097/ MOU.0000000000000750; Qi W., Zhong M., Jiang N., Zhou Y., Lv G., Li R., et al. Which lymph node dissection template is optimal for radical cystectomy? A systematic review and Bayesian network meta-analysis. Front Oncol. 2022;12:986150. DOI:10.3389/fonc.2022.986150; Małkiewicz B., Kiełb P., Gurwin A., Knecht K., Wilk K., Dobruch J., et al. The usefulness of lymphadenectomy in bladder cancer-current status. Medicina (Kaunas). 2021;57(5):415. DOI:10.3390/medicina57050415; Rietbergen D.D.D., van Gennep E.J., KleinJan G.H., Donswijk M., Valdés Olmos R.A., van Rhijn B.W., et al. Evaluation of the hybrid tracer Indocyanine Green — 99m Tc-nanocolloid for sentinel node biopsy in bladder cancer — a prospective pilot study. Clin Nucl Med. 2022;47(9):774–80. DOI:10.1097/RLU.0000000000004301; Piwkowski C., Gabryel P., Gąsiorowskia L., Zieliński P., Murawa D., Roszak M., et al. Indocyanine green fluorescence in the assessment of the quality of the pedicled intercostal muscle flap: a pilot study. Eur J Cardiothorac Surg. 2013;44(1):e77–81. DOI:10.1093/ejcts/ezt102; Deng J., Hu W., Li Y., Xiong K., Yue T., Lai X., et al. Meta analysis of indocyanine green fluorescence in patients undergoing laparoscopic colorectal cancer surgery. Front Oncol. 2022;12:1010122. DOI:10.3389/fonc.2022.1010122; Mastronardi M., Fracon S., Scomersi S., Fezzi M., Bortul M. Role of qualitative and quantitative indocyanine green angiography to assess mastectomy skin flaps perfusion in nipple/skin-sparing and skinreducing mastectomies with implant-based breast reconstruction. Breast J. 2022;2022:5142100. DOI:10.1155/2022/5142100; Lee Y.J., van den Berg N.S., Orosco R.K., Rosenthal E.L., Sorger J.M. A narrative review of fluorescence imaging in robotic-assisted surgery. Laparosc Surg. 2021;5:31. DOI:10.21037/ls-20-98; Zhu W., Xiong S., Wu Y., Zhang D., Huang C., Hao H., et al. Indocyanine green fluorescence imaging for laparoscopic complex upper urinary tract reconstructions: a comparative study. Transl Androl Urol. 2021;10(3):1071–9. DOI:10.21037/tau-20-1261; Polom W., Migaczewski M., Skokowski J., Swierblewski M., Cwalinski T., Kalinowski L., et al. Multispectral imaging using fluorescent properties of Indocyanine Green and Methylene Blue in colorectal surgery-initial experience. J Clin Med. 2022;11(2):368. DOI:10.3390/jcm11020368; Huang B.W., Wang J., Zhang P., Li Z., Bi S.C., Wang Q., et al. Application of indocyanine green in complex upper urinary tract repair surgery. Beijing Da Xue Xue Bao Yi Xue Ban. 2020;52(4):651–6. [Chinese] DOI:10.19723/j.issn.1671-167X.2020.04.010; Polom W., Markuszewski M., Cytawa W., Czapiewski P., Lass P., Matuszewski M. Fluorescent versus radioguided lymph node mapping in bladder cancer. Clin Genitourin Cancer. 2017;15(3):e405–9. DOI:10.1016/j.clgc.2016.11.007; Sinha A., West A., Hayes J., Teoh J., Decaestecker K., Vasdev N. Methods of sentinel lymph node detection and management in urinary bladder cancer-a narrative review. Curr Oncol. 2022;29(3):1335–48. DOI:10.3390/curroncol29030114; Ramírez Backhaus M., Calatrava-Fons A., Gómez-Ferrer Á., Collado-Serra A., Domínguez-Escrig J.L., Bertolo R., et al. ICG lymphography and fluorescence in pelvic lymphadenectomy for bladder and prostate cancer. Arch Esp Urol. 2019;72(8):831–41. PMID: 31579042; Павлов В.Н., Сафиуллин Р.И., Урманцев М.Ф., Абдрахимов Р.В., Денейко А.С., Имельбаева А.Г.; Башкирский государственный медицинский университет. Способ робот-ассистированной радикальной цистэктомии у больных с раком мочевого пузыря: патент Российская Федерация 2718279 С1 от 30.08.2019.; Roth B., Wissmeyer M.P., Zehnder P., Birkhäuser F.D., Thalmann G.N., Krause T.M., et al. A new multimodality technique accurately maps the primary lymphatic landing sites of the bladder. Eur Urol. 2010;57(2):205–11. DOI:10.1016/j.eururo.2009.10.026; Inoue S., Shiina H., Mitsui Y., Yasumoto H., Matsubara A., Igawa M. Identification of lymphatic pathway involved in the spread of bladder cancer: Evidence obtained from fluorescence navigation with intraoperatively injected indocyanine green. Can Urol Assoc J. 2013;7(5–6):E322–8. DOI:10.5489/cuaj.12096; Schaafsma B.E., Verbeek F.P., Elzevier H.W., Tummers Q.R., van der Vorst J.R., Frangioni J.V., et al. Optimization of sentinel lymph node mapping in bladder cancer using near-infrared fluorescence imaging. J Surg Oncol. 2014;110(7):845–50. DOI:10.1002/jso.23740; Manny T.B., Hemal A.K. Fluorescence-enhanced robotic radical cystectomy using unconjugated indocyanine green for pelvic lymphangiography, tumor marking, and mesenteric angiography: the initial clinical experience. Urology. 2014;83(4):824–9. DOI:10.1016/j.urology.2013.11.042; Ito K., Takahashi T., Kanno T., Okada T., Higashi Y., Yamada H. Indocyanine green fluorescence-guided partial cystectomy and pelvic lymphadenectomy for urachal carcinoma. J Endourol Case Rep. 2020;6(4):275–7. DOI:10.1089/cren.2020.0025; Packiam V.T., Tsivian M., Boorjian S.A. The evolving role of lymphadenectomy for bladder cancer: why, when, and how. Transl Androl Urol. 2020;9(6):3082–93. DOI:10.21037/tau.2019.06.01; van Manen L., Handgraaf H.J.M., Diana M., Dijkstra J., Ishizawa T., Vahrmeijer A.L., et al. A practical guide for the use of indocyanine green and methylene blue in fluorescence-guided abdominal surgery. J Surg Oncol. 2018;118(2):283–300. DOI:10.1002/jso.25105; https://www.surgonco.ru/jour/article/view/766Test

  9. 9
    دورية أكاديمية

    المصدر: Creative surgery and oncology; Том 12, № 4 (2022); 345-349 ; Креативная хирургия и онкология; Том 12, № 4 (2022); 345-349 ; 2076-3093 ; 2307-0501

    وصف الملف: application/pdf

    العلاقة: https://www.surgonco.ru/jour/article/view/742/527Test; HerniaSurge Group International guidelines for groin hernia management. Hernia. 2018;22:1–165. DOI:10.1007/s10029-017-1668-x; Kingsnorth A., LeBlanc K. Hernias: inguinal and incisional. Lancet. 2003;362:1561–71. DOI:10.1016/S0140-6736(03)14746-0; Wu J.J., Way J.A., Eslick G.D., Cox M.R. Transabdominal preperitoneal versus open repair for primary unilateral inguinal hernia: a meta-analysis. World J Surg. 2018;42(5):1304–11. DOI:10.1007/s00268-017-4288-9; Kapiris S.A., Brough W.A., Royston C.M., O’Boyle C., Sedman P.C. Laparoscopic transabdominal preperitoneal (TAPP) hernia repair. A 7-year two-center experience in 3017patients. Surg Endosc. 2001;15(9):972–5. DOI:10.1007/s004640080090; Nakaseko Y., Yoshida M., Kamada T., Na kashima K., Ohdaira H., Suzuki Y. Indocyanine green fluorescent lymphography during open inguinal hernia repair in a patient who developed postoperative ultrasonic hydrocele: A case report. Int J Surg Case Rep. 2022;90:106691. DOI:10.1016/j.ijscr.2021.106691; Chiarenza S.F., Giurin I., Costa L., Alicchio F., Carabaich A., De Pascale T., et al. Blue patent lymphography prevents hydrocele after laparoscopic varicocelectomy: 10 years of experience. J Laparoendosc Adv Surg Tech A. 2012;22(9):930–3. DOI:10.1089/lap.2012.0060; Esposito C., Turrà F., Del Conte F., Izzo S., Gargiulo F., Farina A., et al. Indocyanine green fluorescence lymphography: a new technique to perform lymphatic sparing laparoscopic palomo varicocelectomy in children. J Laparoendosc Adv Surg Tech A. 2019;29(4):564–7. DOI:10.1089/lap.2018.0624; Liang Z., Guo J., Zhang H., Yang C., Pu J., Mei H., et al. Lymphatic sparing versus lymphatic non-sparing laparoscopic varicocelectomy in children and adolescents: a systematic review and meta-analysis. Eur J Pediatr Surg. 2011;21(3):147–53. DOI:10.1055/s-0031-1271733; Lisle R., Mahomed A. Lymphatic sparing laparoscopic palomo varicocelectomy. J Pediatr Surg. 2010;45(1):285. DOI:10.1016/j.jpedsurg.2009.09.034; Tong Q., Zheng L., Tang S., Du Z., Wu Z., Mei H., et al. Lymphatic sparing laparoscopic palomo varicocelectomy for varicoceles in children: intermediate results. J Pediatr Surg. 2009;44(8):1509–13. DOI:10.1016/j.jpedsurg.2008.10.049; Reddy V.M., Sutton C.D., Bloxham L., Garcea G., Ubhi S.S., Robertson G.S. Laparoscopic repair of direct inguinal hernia: a new technique that reduces the development of postoperative seroma. Hernia. 2007;11(5):393–6. DOI:10.1007/s10029-007-0233-4; Ismail M., Garg M., Rajagopal M., Garg P. Impact of closed-suction drain in preperitoneal space on the incidence of seroma formation after laparoscopic total extraperitoneal inguinal hernia repair. Surg Laparosc Endosc Percutan Tech. 2009;19(3):263–6. DOI:10.1097/SLE.0b013e3181a4d0e1; Li J., Zhang W. Closure of a direct inguinal hernia defect in laparoscopic repair with barbed suture: a simple method to prevent seroma formation? Surg Endosc. 2018;32(2):1082–6. DOI:10.1007/s00464-017-5760-1; Zhu Y., Liu M., Li J., Wang M. Closure of direct inguinal hernia defect in laparoscopic hernioplasty to prevent seroma formation: a prospective double-blind randomized controlled trial. Surg Laparosc Endosc Percutan Tech. 2019;29(1):18–21. DOI:10.1097/SLE.0000000000000619; Li J., Gong W., Liu Q. Intraoperative adjunctive techniques to reduce seroma formation in laparoscopic inguinal hernioplasty: a systematic review. Hernia. 2019;23(4):723–31. DOI:10.1007/s10029-019-01903-1; https://www.surgonco.ru/jour/article/view/742Test

  10. 10
    دورية أكاديمية

    المصدر: Advances in Molecular Oncology; Том 9, № 3 (2022); 8-14 ; Успехи молекулярной онкологии; Том 9, № 3 (2022); 8-14 ; 2413-3787 ; 2313-805X ; 10.17650/2313-805X-2022-9-3

    وصف الملف: application/pdf

    العلاقة: https://umo.abvpress.ru/jour/article/view/462/274Test; Antoni S., Ferlay J., Soerjomataram I. et al. Bladder cancer incidence and mortality: a global overview and recent trends. Eur Urol 2017;71(1):96-108. DOI:10.1016/j.eururo.2016.06.010; Ohishi T., Koga F., Migita T. Bladder cancer stem-like cells: their origin and therapeutic perspectives. Int J Mol Sci 2015;17(1):43. DOI:10.3390/ijms17010043; Apodaca G. The uroepithelium: not just a passive barrier. Traffic 2004;5(3):117-28. DOI:10.1046/j.1600-0854.2003.00156.x; Khandelwal P., Abraham S.N., Apodaca G. Cell biology and physiology of the uroepithelium. Am J Physiol Renal Physiol 2009;297(6):F1477-501. DOI:10.1152/ajprenal.00327.2009; Kurzrock E.A., Lieu D.K., Degraffenried L.A. et al. Label-retaining cells of the bladder: candidate urothelial stem cells. Am J Physiol Renal Physiol 2008;294(6):F1415-21. DOI:10.1152/ajprenal.00533.2007; Chulpanova D.S., Kitaeva K.V., Green A.R. et al. Molecular aspects and future perspectives of cytokine-based anti-cancer immunotherapy. Front Cell Dev Biol 2020;8(402):1-24. DOI:10.3389/fcell.2020.00402; Xue Y., Tong L., Liu F. et al. Tumor-infiltrating M2 macrophages driven by specific genomic alterations are associated with prognosis in bladder cancer. Oncol Rep 2019;42(2):581-94. DOI:10.3892/or.2019.7196; Şenbabaoğlu Y., Gejman R.S., Winer A.G. et al. Tumor immune microenvironment characterization in clear cell renal cell carcinoma identifies prognostic and immunotherapeutically relevant messenger RNA signatures. Genome Biol 2016;17:231. DOI:10.1186/s13059-016-1092-z; Wang M., Zhao J., Zhang L. et al. Role of tumor microenvironment in tumorigenesis. J Cancer. 2017;8(5):761-73. DOI:10.7150/jca.17648; Ocana M.C., Martmez-Poveda B., Quesada A.R. et al. Metabolism within the tumor microenvironment and its implication on cancer progression: an ongoing therapeutic target. Med Res Rev 2019;39(1):70-113. DOI:10.1002/med.21511; Hatogai K., Sweis R.F. The tumor microenvironment of bladder cancer. Adv Exp Med Biol 2020;1296:275-90. DOI:10.1007/978-3-030-59038-3_17; Haniffa M., Bigley V., Collin M. Human mononuclear phagocyte system reunited. Semin Cell Dev Biol 2015;41:59-69. DOI:10.1016/j.semcdb.2015.05.004; Locati M., Curtale G., Mantovani A. Diversity, mechanisms, and significance of macrophage plasticity. Annu Rev Pathol 2020;15:123-47. DOI:10.1146/annurev-pathmechdis-012418-012718; Yang L., Zhang Y. Tumor-associated macrophages: from basic research to clinical application. J Hematol Oncol 2017;10(1):58. DOI:10.1186/s13045-017-0430-2; Zhu S., Luo Z., Li X. et al. Tumor-associated macrophages: role in tumorigenesis and immunotherapy implications. J Cancer 2021;12(1):54-64. DOI:10.7150/jca.49692; Morrison C. Immuno-oncologists eye up macrophage targets. Nat Rev Drug Discov 2016;15(6):373-4. DOI:10.1038/nrd.2016.111; Wang N., Liang H., Zen K. Molecular mechanisms that influence the macrophage m1-m2 polarization balance. Front Immunol. 2014;5:614. DOI:10.3389/fimmu.2014.00614; Qian B.Z., Pollard J.W. Macrophage diversity enhances tumor progression and metastasis. Cell 2010;141(1):39-51. DOI:10.1016/j.cell.2010.03.014; Najafi M., Hashemi Goradel N., Farhood B. et al. Macrophage polarity in cancer: a review. J Cell Biochem 2019;120(3):2756-65. DOI:10.1002/jcb.27646; Arnold C.E., Whyte C.S., Gordon P. et al. A critical role for suppressor of cytokine signalling 3 in promoting M1 macrophage activation and function in vitro and in vivo. Immunology 2014;141(1):96-110. DOI:10.1111/imm.12173; Chanmee T., Ontong P., Konno K. et al. Tumor-associated macrophages as major players in the tumor microenvironment. Cancers (Basel) 2014;6(3):1670-90. DOI:10.3390/cancers6031670; Brown J.M., Recht L., Strober S. The promise of targeting macrophages in cancer therapy. Clin Cancer Res 2017;23(13): 3241-50. DOI:10.1158/1078-0432.CCR-16-3122; Zhou J., Tang Z., Gao S. et al. Tumor-associated macrophages: recent insights and therapies. Front Oncol 2020;10:188. DOI:10.3389/fonc.2020.00188; Costa N.L., Valadares M.C., Souza P.P.C. et al. Tumor-associated macrophages and the profile of inflammatory cytokines in oral squamous cell carcinoma. Oral Oncol 2013;49:216-23. DOI:10.1016/j.oraloncology.2012.09.012; Sica A., Mantovani A. Macrophage plasticity and polarization: in vivo veritas. J Clin Invest 2012;122(3):787-95. DOI:10.1172/JCI59643; Hughes R., Qian B.Z., Rowan C. et al. Perivascular M2 macrophages stimulate tumor relapse after chemotherapy. Cancer Res 2015;75(17):3479-91. DOI:10.1158/0008-5472.CAN-14-3587; Zhang W., Wang L., Zhou D. et al. Expression of tumor-associated macrophages and vascular endothelial growth factor correlates with poor prognosis of peripheral T-cell lymphoma, not otherwise specified. Leuk Lymphoma 2011;52(1):46-52. DOI:10.3109/10428194.2010.529204; Fu H., Zhu Y., Wang Y. et al. Identification and validation of stromal immunotype predict survival and benefit from adjuvant chemotherapy in patients with muscle-invasive bladder cancer. Clin Cancer Res 2018;24(13):3069-78. DOI:10.1158/1078-0432.CCR-17-2687; Wang B., Liu H., Dong X. et al. High CD204+ tumor-infiltrating macrophage density predicts a poor prognosis in patients with urothelial cell carcinoma of the bladder. Oncotarget 2015;6(24):20204-14. DOI:10.18632/oncotarget.3887; Zhang H., Ye Y.L., Li M.X. et al. CXCL2/MIF-CXCR2 signaling promotes the recruitment of myeloid-derived suppressor cells and is correlated with prognosis in bladder cancer. Oncogene 2017;36(15):2095-104. DOI:10.1038/onc.2016.367; Qiu S., Deng L., Liao X. et al. Tumor-associated macrophages promote bladder tumor growth through PI3K/AKT signal induced by collagen. Cancer Sci 2019;110(7):2110-8. DOI:10.1111/cas.14078; Leblond M.M., Zdimerova H., Desponds E. et al. Tumor-associated macrophages in bladder cancer: biological role, impact on therapeutic response and perspectives for immunotherapy. Cancers (Basel) 2021;13(18):4712. DOI:10.3390/cancers13184712; Cheah M.T., Chen J.Y., Sahoo D. et al. CD14-expressing cancer cells establish the inflammatory and proliferative tumor microenvironment in bladder cancer. Proc Natl Acad Sci USA. 2015;112(15):4725-30. DOI:10.1073/pnas.1424795112; Martmez V.G., Rubio C., Martinez-Fernandez M. et al. BMP4 induces M2 macrophage polarization and favors tumor progression in bladder cancer. Clin Cancer Res 2017;23(23):7388-99. DOI:10.1158/1078-0432.CCR-17-1004; Prima V., Kaliberova L.N., Kaliberov S. et al. COX2/mPGES1/ PGE2 pathway regulates PD-L1 expression in tumor-associated macrophages and myeloid-derived suppressor cells. Proc Natl Acad Sci USA 2017;114(5):1117-22. DOI:10.1073/pnas.1612920114; Wu A.T.H., Srivastava P., Yadav V.K. et al. Ovatodiolide, isolated from Anisomeles indica, suppresses bladder carcinogenesis through suppression of mTOR/e-catenin/CDK6 and exosomal miR-21 derived from M2 tumor-associated macrophages. Toxicol Appl Pharmacol. 2020;401:115109. DOI:10.1016/j.taap.2020.115109; Wang X., Ni S., Chen Q. et al. Bladder cancer cells induce immunosuppression of T cells by supporting PD-L1 expression in tumour macrophages partially through interleukin 10. Cell Biol Int 2017;41(2):177-86. DOI:10.1002/cbin.10716; Zhao Y., Wang D., Xu T. et al. Bladder cancer cells re-educate TAMs through lactate shuttling in the microfluidic cancer microenvironment. Oncotarget 2015;6(36):39196-210. DOI:10.18632/oncotarget.5538; Reusser N.M., Dalton H.J., Pradeep S. et al. Clodronate inhibits tumor angiogenesis in mouse models of ovarian cancer. Cancer Biol Ther 2014;15(8):1061-7. DOI:10.4161/cbt.29184; Zhang Q., Mao Z., Sun J. NF-kB inhibitor, BAY11-7082, suppresses M2 tumor-associated macrophage induced EMT potential via miR-30a/NF-kB/Snail signaling in bladder cancer cells. Gene 2019;710:91-7. DOI:10.1016/j.gene.2019.04.039; Wu H., Zhang X., Han D. et al. Tumour-associated macrophages mediate the invasion and metastasis of bladder cancer cells through CXCL8. Peer J 2020;8:e8721. DOI:10.7717/peerj.8721; Dominguez-Gutierrez P.R., Kwenda E.P., Donelan W. et al. Hyal2 expression in tumor-associated myeloid cells mediates cancer-related inflammation in bladder cancer. Cancer Res 2021;81(3):648-57. DOI:10.1158/0008-5472.CAN-20-1144; Chen C., He W., Huang J. et al. LNMAT1 promotes lymphatic metastasis of bladder cancer via CCL2 dependent macrophage recruitment. Nat Commun 2018;9(1):3826. DOI:10.1038/s41467-018-06152-x; Huang C.P., Liu L.X., Shyr C.R. Tumor-associated macrophages facilitate bladder cancer progression by increasing cell growth, migration, invasion and cytokine expression. Anticancer Res 2020;40(5):2715-24. DOI:10.21873/anticanres.14243; Lin F., Yin H.B., Li X.Y. et al. Bladder cancer cell-secreted exosomal miR-21 activates the PI3K/AKT pathway in macrophages to promote cancer progression. Int J Oncol 2020;56(1):151-64. DOI:10.3892/ijo.2019.4933; Bohle A., Brandau S. Immune mechanisms in bacillus Calmette-Guerin immunotherapy for superficial bladder cancer. J Urol 2003;170(3):964-9. DOI:10.1097/01.ju.0000073852.24341.4a; Redelman-Sidi G., Glickman M.S., Bochner B.H. The mechanism of action of BCG therapy for bladder cancer - a current perspective. Nat Rev Urol 2014;11(3):153-62. DOI:10.1038/nrurol.2014.15; Ludwig A.T., Moore J.M., Luo Y. et al. Tumor necrosis factor-related apoptosis-inducing ligand: a novel mechanism for Bacillus Calmette-Guerin-induced antitumor activity. Cancer Res 2004;64(10):3386-90. DOI:10.1158/0008-5472.CAN-04-0374; Yang G., Zhang L., Liu M. et al. CD163+ macrophages predict a poor prognosis in patients with primary T1 high-grade urothelial carcinoma of the bladder. World J Urol 2019;37(12):2721-6. DOI:10.1007/s00345-018-02618-1; Bostrom M.M., Irjala H., Mirtti T. et al. Tumor-associated macrophages provide significant prognostic information in urothelial bladder cancer. PLoS One 2015;10(7):e0133552. DOI:10.1371/journal.pone.0133552; Li P., Hao S., Ye Y. et al. Identification of an immune-related risk signature correlates with immunophenotype and predicts anti-PD-L1 efficacy of urothelial cancer. Front Cell Dev Biol 2021;9:646982. DOI:10.3389/fcell.2021.646982; Xu Z., Wang L., Tian J. et al. High expression of B7-H3 and CD163 in cancer tissues indicates malignant clinicopathological status and poor prognosis of patients with urothelial cell carcinoma of the bladder. Oncol Lett 2018;15(5):6519-26. DOI:10.3892/ol.2018.8173; Sjodahl G., Lovgren K., Lauss M. et al. Infiltration of CD3+ and CD68+ cells in bladder cancer is subtype specific and affects the outcome of patients with muscle-invasive tumors. Urol Oncol 2014;32(6):791-7. DOI:10.1016/j.urolonc.2014.02.007; Wu S.Q., Xu R., Li X.F. et al. Prognostic roles of tumor associated macrophages in bladder cancer: a system review and meta-analysis. Oncotarget 2018;9(38):25294-303. DOI:10.18632/oncotarget.25334; Maniecki M.B., Etzerodt A., Ulhoi B.P. et al. Tumor-promoting macrophages induce the expression of the macrophage-specific receptor CD163 in malignant cells. Int J Cancer 2012;131(10):2320-31. DOI:10.1002/ijc.27506; Aljabery F., Olsson H., Gimm O. et al. M2-macrophage infiltration and macrophage traits of tumor cells in urinary bladder cancer. Urol Oncol 2018;36(4):159.e19-159.e26. DOI:10.1016/j.urolonc.2017.11.020; Hanada T., Nakagawa M., Emoto A. et al. Prognostic value of tumor-associated macrophage count in human bladder cancer. Int J Urol 2000;7(7):263-9. DOI:10.1046/j.1442-2042.2000.00190.x; Koga F., Kageyama Y., Kawakami S. et al. Prognostic significance of endothelial Per-Arnt-sim domain protein 1/hypoxia-inducible factor-2alpha expression in a subset of tumor associated macrophages in invasive bladder cancer. J Urol 2004;171(3):1080-4. DOI:10.1097/01.ju.0000110541.62972.08; Asano T., Ohnishi K., Shiota T. et al. CD169-positive sinus macrophages in the lymph nodes determine bladder cancer prognosis. Cancer Sci 2018;109(5):1723-30. DOI:10.1111/cas.13565; https://umo.abvpress.ru/jour/article/view/462Test