يعرض 1 - 5 نتائج من 5 نتيجة بحث عن '"В. М. Ефимов"', وقت الاستعلام: 0.75s تنقيح النتائج
  1. 1
    دورية أكاديمية

    المساهمون: The work was done with the support of the Russian Science Foundation grant No. 21-14-00090. The maintenance of experimental D. melanogaster lines was carried out in the Drosophila collection of the Institute of Cytology and Genetics SB RAS and was supported by BP #FWNR-2022-0019 of the Ministry of Science and Higher Education of the Russian Federation. Acknowledgements. The authors thank Darya Kochetova for the translation of the article.

    المصدر: Vavilov Journal of Genetics and Breeding; Том 28, № 2 (2024); 185-189 ; Вавиловский журнал генетики и селекции; Том 28, № 2 (2024); 185-189 ; 2500-3259 ; 10.18699/vjgb-24-15

    وصف الملف: application/pdf

    العلاقة: https://vavilov.elpub.ru/jour/article/view/4088/1825Test; Adonyeva N.V., Menshanov P.N., Gruntenko N. A link between atmospheric pressure and fertility of Drosophila laboratory strains. Insects. 2021;12(10):947. DOI 10.3390/insects12100947; Altaratz M., Applebaum Sh.W., Richard D.S., Gilbert L.I., Segal D. Regulation of juvenile hormone synthethis in wild-type and apterous mutant Drosophila. Mol. Cell. Endocrinol. 1991; 81(1-3):205-216. DOI 10.1016/0303-7207(91)90219-i; Berger E.M., Dubrovsky E.B. Juvenile hormone molecular actions and interactions during develop ment of Drosophila melanogaster. Vitam. Horm. 2005;73:175-215. DOI 10.1016/S0083-6729(05)73006-5; Burdina E.V., Gruntenko N.E. Physiological aspects of Wolbachia pipientis–Drosophila melanogaster relationship. J. Evol. Biochem. Phys. 2022;58(2):303-317. DOI 10.1134/S002209 3022020016; Detcharoen M., Schilling M.P., Arthofer W., Schlick-Steiner B.C., Steiner F.M. Differential gene expression in Drosophila melanogaster and D. nigrosparsa infected with the same Wolbachia strain. Sci. Rep. 2021;11(1):11336. DOI 10.1038/s41598-021-90857-5; Flatt T., Tu M.P., Tatar M. Hormonal pleiotropy and the juvenile hormone regulation of Droso phila development and life history. Bio-Essays. 2005;27(10):999-1010. DOI 10.1002/bies.20290; Gruntenko N.E., Rauschenbach I.Y. Interplay of JH, 20E and biogenic amines under normal and stress conditions and its effects on reproduction. J. Insect Physiol. 2008;54(6):902-908. DOI 10.1016/j.jinsphys.2008.04.004; Gruntenko N.E., Khlebodarova T.M., Vasenkova I.A., Sukhanova M.J., Wilson T.G., Rauschenbach I.Y. Stress-reactivity of a Drosophila melanogaster strain with impaired juvenile hormone action. J. Insect Physiol. 2000;46(4):451-456. DOI 10.1016/s0022-1910(99)00131-6; Gruntenko N.E., Bownes M., Terashima J., Sukhanova M.Zh., Raushenbach I.Y. Heat stress affects oogenesis differently in wild-type Drosophila virilis and a mutant with altered juvenile hormone and 20-hydroxyecdysone levels. Insect. Mol. Biol. 2003a;12(4):393-404. DOI 10.1046/j.1365-2583.2003.00424.x; Gruntenko N.E., Chentsova N.A., Andreenkova E.V., Bownes M., Segal D., Adonyeva N.V., Rauschenbach I.Y. Stress response in a juvenile hormone-deficient Drosophila melanogaster mutant apterous56f. Insect Mol. Biol. 2003b;12(4):353-363. DOI 10.1046/j.1365-2583.2003.00419.x; Gruntenko N.E., Karpova E.K., Adonyeva N.V., Andreenkova O.V., Burdina E.V., Ilinsky Y.Y., Bykov R.A., Menshanov P.N., Rauschenbach I.Y. Drosophila female fertility and juvenile hormone metabolism depends on the type of Wolbachia infection. J. Exp. Biol. 2019; 222(Pt. 4):jeb195347. DOI 10.1242/jeb.195347; Guio L., Barron M.G., Gonzalez J. The transposable element Bari-Jheh mediates oxidative stress response in Drosophila. Mol. Ecol. 2014; 23(8):2020-2030. DOI 10.1111/mec.12711; Ilinsky Y.Y. Coevolution of Drosophila melanogaster mtDNA and Wolbachia genotypes. PLoS One. 2013;8(1):e54373. DOI 10.1371/journal.pone.0054373; Jindra M., Bellés X., Shinoda T. Molecular basis of juvenile hormone signaling. Curr. Opin. Insect Sci. 2015;11:39-46. DOI 10.1016/j.cois.2015.08.004; Kendall M.G., Stuart A. The Advanced Theory of Statistics. Vol. 2. Inference and Relationship. London: Charles Griffin, 1961; Korenskaia A.E., Shishkina O.D., Klimenko A.I., Andreenkova O.V., Bobrovskikh M.A., Shatskaya N.V., Vasiliev G.V., Gruntenko N.E. New Wolbachia pipientis genotype increasing heat stress resistance of Drosophila melanogaster host is char-acterized by a large chromosomal inversion. Int. J. Mol. Sci. 2022;23(24):16212. DOI 10.3390/ijms232416212; Lindsey A.R.I., Bhattacharya T., Hardy R.W., Newton I.L.G. Wolbachia and virus alter the host transcriptome at the interface of nucleotide metabolism pathways. mBio. 2021;12(1):e03472-20. DOI 10.1128/mBio.03472-20; Livak K.J., Schmittgen T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods. 2001;25(4):402-408. DOI 10.1006/meth.2001.1262; Luo W., Veeran S., Wang J., Li S., Li K., Liu S.N. Dual roles of juvenile hormone signaling during early oogenesis in Drosophila. Insect Sci. 2020;27(4):665-674. DOI 10.1111/1744-7917.12698; Meiselman M., Lee S.S., Tran R.T., Dai H., Ding Y., Rivera-Perez C., Wijesekera T.P., Dauwalder B., Noriega F.G., Adams M.E. Endocrine network essential for reproductive success in Drosophila melanogaster. Proc. Natl. Acad. Sci. USA. 2017;114(19):E3849-E3858. DOI 10.1073/pnas.1620760114; Narkevich A.N., Vinogradov K.A., Grjibovski A.M. Multiple comparisons in biomedical research: the problem and its solutions. Ekologiya Cheloveka = Human Ecology. 2020;27(10):55-64. DOI 10.33396/1728-0869-2020-10-55-64 (in Russian); Niwa R., Niimi T., Honda N., Yoshiyama M., Itoyama K., Kataoka H., Shinoda T. Juvenile hormone acid O-methyltransferase in Drosophila melanogaster. Insect Biochem. Mol. Biol. 2008;38(7):714-720. DOI 10.1016/j.ibmb.2008.04.003; Qu Z., Bendena W.G., Nong W., Siggens K.W., Noriega F.G., Kai Z.P., Zang Y.Y., Koon A.C., Chan H.Y.E., Chan T.F., Chu K.H., Lam H.M., Akam M., Tobe S.S., Lam Hui J.H. MicroRNAs regulate the sesquiterpenoid hormonal pathway in Drosophila and other arthropods. Proc. Biol. Sci. 2017;284(1869):20171827. DOI 10.1098/rspb.2017.1827; Richard D.S., Jones J.M., Barbarito M.R., Cerula S., Detweiler J.P., Fisher S.J., Brannigan D.M., Scheswohl D.M. Vitellogenesis in diapausing and mutant Drosophila melanogaster: further evidence for the relative roles of ecdysteroids and juvenile hormones. J. Insect Physiol. 2001;47(8):905-913. DOI 10.1016/S0022-1910(01)00063-4; Roy S., Saha T.T., Zou Z., Raikhel A.S. Regulatory pathways controlling female insect reproduction. Annu. Rev. Entomol. 2018;63:489511. DOI 10.1146/annurev-ento-020117-043258; Terashima J., Takaki K., Sakurai S., Bownes M. Nutritional status affects 20-hydroxyecdysone concentration and progression of oogenesis in Drosophila melanogaster. J. Endocrinol. 2005;187(1):69-79. DOI 10.1677/joe.1.06220; Truman J.W., Riddiford L.M. The morphostatic actions of juvenile hormone. Insect Biochem. Mol. Biol. 2007;37(8):761-770. DOI 10.1016/j.ibmb.2007.05.011; Werren J.H., Baldo L., Clarkm M.E. Wolbachia: master manipulators of invertebrate biology. Nat. Rev. Microbiol. 2008;6(10):741-751. DOI 10.1038/nrmicro1969; Wu Z., Yang L., He Q., Zhou S. Regulatory mechanisms of vitellogenesis in insects. Front. Cell Dev. Biol. 2021;8:593613. DOI 10.3389/fcell.2020.593613; Yamamoto R., Bai H., Dolezal A.G., Amdam G., Tatar M. Juvenile hormone regulation of Drosophila aging. BMC Biol. 2013;11:85. DOI 10.1186/1741-7007-11-85; https://vavilov.elpub.ru/jour/article/view/4088Test

  2. 2
    دورية أكاديمية

    المساهمون: This study was supported by the Russian Science Foundation (project No. 22-16-20026) and the Government of the Novosibirsk Region.

    المصدر: Vavilov Journal of Genetics and Breeding; Том 28, № 2 (2024); 155-165 ; Вавиловский журнал генетики и селекции; Том 28, № 2 (2024); 155-165 ; 2500-3259 ; 10.18699/vjgb-24-15

    وصف الملف: application/pdf

    العلاقة: https://vavilov.elpub.ru/jour/article/view/4085/1822Test; Atkinson M.D., Kettlewell P.S., Poulton P.R., Hollins P.D. Grain qua lity in the broadbalk wheat experiment and the winter north atlantic oscillation. J. Agric. Sci. 2008;146(5):541-549. DOI 10.1017/S0021859608007958; Baltzoi P., Fotia K., Kyrkas D., Nikolaou K., Paraskevopoulou A.T., Accogli A.R., Karras G. Low water-demand plants for landscaping and agricultural cultivations – A review regarding local species of Epirus/Greece and Apulia/Italy. Agric. Agric. Sci. Procedia. 2015;4:250-260. DOI 10.1016/j.aaspro.2015.03.029; Barash S.I. History of Crop Failures and Weather in Europe. Leningrad: Gidrometeoizdat Publ., 1989 (in Russian); Biswas A., Karak B.B., Usoskin I., Weisshaar E. Long-term modulation of solar cycles. Space Sci. Rev. 2023;219(3):19. DOI 10.1007/s11214-023-00968-w; Ceccarelli S., Grando S., Maatougui M., Michael M., Slash M., Haghparast R., Rahmanian M., Taheri A., Al-Yassin A., Benbelkacem A., Labdi M., Mimoun H., Nachit M. Plant breeding and climate changes. J. Agric. Sci. 2010;148(6):627-637. DOI 10.1017/S0021859610000651; Clette F., Svalgaard L., Vaquero J.M., Cliver E.W. Revisiting the sunspot number: A 400-year perspective on the solar cycle. Space Sci. Rev. 2014;186:35-103. DOI 10.1007/s11214-014-0074-2; Cooper M., Messina C.D. Breeding crops for drought-affected environments and improved climate resilience. Plant Cell. 2023;35(1):162-186. DOI 10.1093/plcell/koac321; Eastwood R.J., Tambam B.B., Aboagye L.M., Akparov Z.I., Aladele S.E., Allen R., Amri A., … Tapia Toll J., Vu D.T., Vu T.D., Way M.J., Yazbek M., Zorrilla C., Kilian B. Adap ting agriculture to climate change: A synopsis of coordinated National Crop Wild Relative Seed Collecting Programs across five continents. Plants. 2022;11(14):1840. DOI 10.3390/plants11141840; Eckardt N.A., Ainsworth E.A., Bahuguna R.N., Broadley M.R., Busch W., Carpita N.C., … Rim E.Y., Ronald P.C., Salt D.E., Shigenaga A.M., Wang E., Wolfe M., Zhang X. Climate change challenges, plant science solutions. Plant Cell. 2023;35(1): 24-66. DOI 10.1093/plcell/koac303; Efimov V.M., Goncharov N.P. Weather extremes and crop failures in Europe. In: Abstracts from the Tenth Siberian Meeting on Climate-Ecological Monitoring. Tomsk, October 14-17, 2013. Tomsk: Agraf-Press Publ., 2013;53 (in Russian); Efimov V.M., Galaktionov Yu.K., Shushpanova N.F. Analysis and Forecast of Time Series by the Principal Component Method. Novosibirsk: Nauka Publ., 1988 (in Russian); Efimov V.M., Efimov K.V., Polunin D.A., Kovaleva V.Y. New possibilities of the PCA-Seq method in the analysis of time series (on the example of solar activity). J. Phys. Conf. Ser. 2021; 2099(1):012034. DOI 10.1088/1742-6596/2099/1/012034; Goncharov N.P. Plant domestication. Vavilovskii Zhurnal Genetiki i Selektsii = Vavilov Journal of Genetics and Breeding. 2013; 17(4/2):884-899 (in Russian); Goncharov N.P., Chikida N.N. Genetics of the growth habit in Aegilops squarrosa L. Genetika (Moscow). 1995;31(3):343-346; Gower J.C. Some distance properties of latent root and vector methods used in multivariate analysis. Biometrika. 1966; 53(3-4): 325-338. DOI 10.1093/biomet/53.3-4.325; Gupta A. Origin of agriculture and domestication of plants and animals linked to early Holocene climate amelioration. Curr. Sci. 2004;87(1):54-59; Gurova T.A., Osipova G.M. The problem of combined stress resistance of plants under climate change in Siberia. Sibirskiy Vestnik Sel’skokhozyaystvennoy Nauki = Siberian Herald of Agricultural Science. 2018;48(2):81-92. DOI 10.26898/0370-8799-2018-2-11 (in Russian); Hendry R.M. On the structure of the deep Gulf Stream. J. Mar. Res. 1982;40(1):119-142; Hogg N.G. On the transport of the Gulf Stream between Cape Hatteras and the Grand Banks. Deep-Sea Res. 1992;39(7-8): 1231-1246. DOI 10.1016/0198-0149(92)90066-3; Hogg N.G., Johns W.E. Western boundary currents. Rev. Geophys. 1995;33(S2):1311-1334. DOI 10.1029/95RG00491; Jatayev S., Sukhikh I., Vavilova V., Smolenskaya S.E., Goncharov N.P., Kurishbayev A., Zotova L., Absattarova A., Serikbay D., Hu Y.-G., Borisjuk N., Gupta N.P., Jacobs B., de Groot S., Koekemoer F., Alharthi B., Lethola K., Cu D., Schramm C., Anderson P., Jenkins C., Soole K.L., Shavrukov Y., Langridge P. Green revolution ‘stumbles’ in a dry environment: Dwarf wheat plants with Rht genes fail to produce higher yield than taller geno types under drought. Plant Cell Environ. 2020;43(10):2355-2364. DOI 10.1111/pce.13819; Kamran A., Iqbal M., Spaner D. Flowering time in wheat (Triticum aestivum L.): A key factor for global adaptabi lity. Euphytica. 2014; 197:1-26. DOI 10.1007/s10681-014-1075-7; Karhunen K. Über lineare Methoden in der Wahrscheinlichkeitsrechnung. Ann. Acad. Sci. Fennicae. Ser. A. I. Math.-Phys. 1947; 37:1-79.; Kattsov V.M., Meleshko V.P., Khlebnikova E.I., Shkolnik I.M. Assessment of climate impacts on agriculture in Russia over the first half of the XXI century: current opportunities provided by numerical modeling. Agrofizika = Agrophysica. 2011;(3):22-30 (in Russian); Leigh F.J., Wright T.I., Horsnell R.A., Dyer S., Bentley A.R. Progenitor species hold untapped diversity for potential climateresponsive traits for use in wheat breeding and crop improvement. Heredity. 2022;128(5):291-303. DOI 10.1038/s41437-022-00527-z; Liang Y., Tian F. Plant genetics: Mechanisms of wild soybean adaptation. Curr. Biol. 2023;33(2):R82-R84. DOI 10.1016/j.cub.2022.12.009; Liu Z., Hu Z., Lai X., Cao J., Zhang J., Ma X., Zhang X., Wang X., Ji W., Xu S. Multi-environmental population phenotyping suggests the higher risks of wheat Rht-B1b and Rht-D1b cultivars in global warming scenarios. bioRxiv. 2022;07:500398. DOI 10.1101/2022.07.18.500398; Lobell D.B., Gourdji S.M. The influence of climate change on global crop productivity. Plant Physiol. 2012;160(4):1686-1697. DOI 10.1104/pp.112.208298; Lobkovsky L.I., Baranov A.A., Ramazanov M.M., Vladimirova I.S., Gabsatarov Y.V., Semiletov I.P., Alekseev D.A. Trigger mechanisms of gas hydrate decomposition, methane emissions, and glacier breakups in polar regions as a result of tectonic wave deformation. Geosciences. 2022;12(10):372. DOI 10.3390/geosciences12100372; Loève M. Fonctions Aléatoires de Second Ordre. In: Lévy P. (Ed.). Processus Stochastique et Mouvement Brownien. Paris: Gauthier-Vil lars, 1948;366-420; Manabe S. Role of greenhouse gas in climate change. Tellus A: Dyn. Meteorol. Oceanogr. 2019;71(1):1620078. DOI 10.1080/16000870.2019.1620078; Manabe S. Nobel Lecture: Physical modeling of Earth’s climate. Rev. Mod. Phys. 2023;95(1):010501. DOI 10.1103/RevModPhys.95.010501; Morgounov A., Sonder K., Abugalieva A., Bhadauria V., Cuthbert R.D., Shamanin V., Zelenskiy Yu., DePauw R.M. Effect of climate change on spring wheat yields in North America and Eurasia in 1981-2015 and implications for breeding. PLoS One. 2018;13(10):e0204932. DOI 10.1371/journal.pone.0204932; Nordhaus W. Climate change: The ultimate challenge for economics. Am. Econ. Rev. 2019;109(6):1991-2014. DOI 10.1257/aer.109.6.1991; Oppenheim A.V., Schafer R.W. Digital Signal Processing. New Jersey: Pearson, 1975; Pearson K.L. III. On lines and planes of closest fit to systems of points in space. Philos. Mag. 1901;2(11):559-572; Prentice R. Cultural responses to climate change in the Holocene. Anthós. 2009;1(1):3. DOI 10.15760/anthos.2009.41; Rauner Yu.L. Climate and Crop Productivity. Moscow: Nauka Publ., 1981 (in Russian); Ruddiman W.F., Fuller D.Q., Kutzbach J.E., Tzedakis P.C., Kaplan J.O., Ellis E.C., Vavrus S., Roberts J., Fyfe C.N., He R.F., Lemmen C., Woodbridge J. Late Holocene climate: Natural or anthropogenic? Rev. Geophys. 2016;54(1):93-118. DOI 10.1002/2015RG000503; Shnirelman V.A. The Emergence of a Productive Economy: Centers of Ancient Agriculture. Moscow: Librokom Publ., 2012 (in Russian); Sirotenko O.D. Crop modeling: Advances and problems. Agron. J. 2001;93(3):650-653. DOI 10.2134/agronj2001.933650ax; Sleptsov A.M., Klimenko V.V. Generalization of paleoclimatic data and reconstruction of the climate of Eastern Europe for the last 2000 years. Istoriya i Sovremennost’ = History and Modernity. 2005;(1):118-135 (in Russian); Smolenskaya S.E., Goncharov N.P. Allelic diversity of the Vrn genes and the control of growth habit and earliness in wheat. Vavilovskii Zhurnal Genetiki i Selektsii = Vavilov Journal of Genetics and Breeding. 2023;27(8):933-946. DOI 10.18699/VJGB-23-108 (in Russian); Smolenskaya S.E., Efimov V.М., Kruchinina Yu.V., Nemtsev B.F., Chepurnov G.Yu., Ovchnnikova Е.S., Belan I.А., Zuev Е.V., Zhou Chenxi, Piskarev V.V., Goncharov N.P. Earliness and morphotypes of common wheat cultivars of Western and Eastern Siberia. Vavilovskii Zhurnal Genetiki i Selektsii = Vavilov Journal of Ge netics and Breeding. 2022;26(7):662-674. DOI 10.18699/VJGB-22-81 (in Russian); Solanki S.K., Usoskin I.G., Kromer B., Schüssler M., Beer J. An unusually active Sun during recent decades compared to the previous 11,000 years. Nature. 2004;431(7012):1084-1087. DOI 10.1038/nature02995; Solomon S., Qin D., Manning M., Chen Z., Marquis M., Averyt K., Tignor M., Miller H. Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Chang. Cambridge: Cambridge University Press, 2007; Sukhikh I.S., Vavilova V.Y., Blinov A.G., Goncharov N.P. Diversity and phenotypical effect of the allelic variants of Rht dwarfing genes in wheat. Russ. J. Genet. 2021;57(2):127-138. DOI 10.1134/S1022795421020101; Takens F. Detecting strange attractors in turbulence. In: Rand D., Young L.S. (Eds). Dynamical Systems and Turbulence. Warwick 1980. Lecture Notes in Mathematics. Vol. 898. Berlin: Springer, 1981;366-381. DOI 10.1007/BFb0091924; Toynbee A.J. A Study of History. London: Oxford University Press, 1954; Trifonov V.G., Karakhanyan A.S. Geodynamics and History of Civilizations. Moscow: Nauka Publ., 2004 (in Russian); Trifonova A.A., Dedova L.V., Zuev E.V., Goncharov N.P., Kudryav tsev A.M. Comparative analysis of the gene pool structure of Triticum aethiopicum wheat accessions conserved ex situ and recollected in field after 85 year later. Biodivers. Conserv. 2021; 30(2):329-342. DOI 10.1007/s10531-020-02091-6; Usoskin I.G., Hulot G., Gallet Y., Roth R., Licht A., Joos F., Koval tsov G.A., Thebault E., Khokhlov A. Evidence for distinct modes of solar activity. Astron. Astrophys. 2014;562(1):L10. DOI 10.1051/0004-6361/201423391; Wu C.J., Usoskin I.G., Krivova N., Kovaltsov G.A., Baroni M.; Bard E., Solanki S.K. Solar activity over nine millennia: A consistent multi-proxy reconstruction. Astron. Astrophys. 2018; 615: A93. DOI 10.1051/0004-6361/201731892; Zolotokrylin A.N., Cherenkova E.A., Titkova T.B. Aridization of drylands in the European part of Russia: Secular trends and links to droughts. Izvestiya Rossiiskoi Akademii Nauk. Seriya Geograficheskaya = Bulletin of the RAS. Geographic Series. 2020;84(2): 207-217. DOI 10.31857/S258755662002017X (in Russian); Zotova L., Shamambaeva N., Lethola K., Alharthi B., Vavilova V., Smolenskaya S.E., Goncharov N.P., Jatayev S., Kurishbayev A., Gupta N.K., Gupta S., Schramm C., Anderson P., Jenkins C.L.D., Soole K.L., Shavrukov Yu. TaDrAp1 and TaDrAp2, Partner genes of a transcription repressor, coordinate plant development and drought tolerance in spelt and bread wheat. Int. J. Mol. Sci. 2020;21(21):8296. DOI 10.3390/ijms21218296; https://vavilov.elpub.ru/jour/article/view/4085Test

  3. 3
    دورية أكاديمية

    المساهمون: The study was supported by the Russian Science Fundation (project No. 22-16-20026) and the Government of Novosibirsk region. Sequence analysis was performed at the “Genomika” Center for Collective Use of the Siberian Branch of the Russian Academy of Sciences (http://sequest.niboch.nsc.ruTest/). The authors thank Full Member of the RAS V.A. Zykin (Omsk Agricultural Research Center) for providing a collection of local cultivars of Western Siberia

    المصدر: Vavilov Journal of Genetics and Breeding; Том 26, № 7 (2022); 662-674 ; Вавиловский журнал генетики и селекции; Том 26, № 7 (2022); 662-674 ; 2500-3259 ; 2500-0462 ; 10.18699/VJGB-22-72

    وصف الملف: application/pdf

    العلاقة: https://vavilov.elpub.ru/jour/article/view/3536/1657Test; Balashova I., Fait V. Allele frequencies of Ppd-D1a, Ppd-B1a, and Ppd-B1c of photoperiodic sensitivity genes in spring bread wheat varieties (Triticum aestivum L.) of various origin. Agric. Sci. Pract. 2021;8(1):3-13. DOI:10.15407/agrisp8.01.003.; Beales J., Turner A., Griffiths S., Snape J.W., Laurie D.A. A pseudoresponse regulator is misexpressed in the photoperiod insensitive Ppd- D1a mutant of wheat (Triticum aestivum L.). Theor. Appl. Genet. 2007;115(5):721-733. DOI:10.1007/s00122-007-0603-4.; Belan I.A., Rosseeva L.P., Blokhina N.P., Grigoriev Y.P., Mukhina Y.V., Trubacheeva N.V., Pershina L.A. The resource potential of soft spring wheat varieties in West Siberia and the Omsk region (analytical review). Agrarnaya Nauka Evro-Severo-Vostoka = Agricultural Science Euro-North-East. 2021;22(4):449-465. DOI:10.30766/2072-9081.2021.22.4.449-465. (in Russian); Berezhnaya A., Kiseleva A., Leonova I., Salina E. Allelic variation analysis at the vernalization response and photoperiod genes in Russian wheat varieties identified two novel alleles of Vrn-B3. Biomolecules. 2021;11(12):1897. DOI:10.3390/biom11121897.; Bespalova L.A., Borovik A.N., Kolesnikov F.A., Miroshnichenko T.Yu. Stages and results of breeding of shpaerococcum triticale (T. sphaerococcum Perc.) in Krasnodar RIA after P.P. Lukyanenko. Zernovoe Khozjaistvo Rossii = Grain Economy of Russia. 2015;2:85-93. (in Russian); Catalog of Varieties of Agricultural Crops Produced by Scientists of Siberia and Included in the State Register of the Russian Federation (zoned) in 1929–2008. (Compiled by P.L. Goncharov et al.). Novosibirsk, 2009. (in Russian); Catalogue of Varieties of Spring Soft Wheat by Genotypes of the Vrn Loci System (Sensitivity to Vernalization). Odessa: Plant Breeding and Genetics Institute, 1987. (in Russian); Cho E., Kang C.-S., Yoon Y.M., Park C.S. The relationship between allelic variations of Vrn-1 and Ppd-1 and agronomic traits in Korean wheat cultivars. Indian J. Genet. 2015;75(3):294-300. DOI:10.5958/0975-6906.2015.00046.2.; Diaz A., Zikhali M., Turner A.S., Isaac P., Laurie D.A. Copy number variation affecting the Photoperiod-B1 and Vernalization-A1 genes is associated with altered flowering time in wheat (Triticum aestivum). PloS One. 2012;7(3):e33234. DOI:10.1371/journal.pone.0033234.; Dorofeev V.F., Filatenko A.A., Migushova E.F., Udachin R.A., Yakubtsiner M.M. Flora of Cultivated Plants of USSR. Vol. 1. Wheat. Leningrad: Kolos Publ., 1979. (in Russian); Dragovich A.Y., Yankovskaya A.A., Fisenko A.V. Vernalization (VRN) and photoperiod (PPD) genes in spring hexaploid wheat landraces. Russ. J. Genet. 2021;57(3):329-340. DOI:10.1134/S1022795421030066.; Dzhalpakova K.D., Bersimbaev R.I., Goncharov N.P. Genetic control of growth habit in common wheat cultivars from Kazakhstan. Genetika (Moscow). 1996;32(1):62-66.; Dzhalpakova K.D., Goncharov N.P., Bersimbaev R.I. Genetics of growth habit and earliness in Kazakhstan and West Siberian durum wheat. Russ. Agr. Sci. 1995;3:6-10.; Efremova T.T., Chumanova E.V., Trubacheeva N.V., Arbuzova V.S., Pershina L.A., Belan I.A. Prevalence of VRN1 locus alleles among spring common wheat cultivars cultivated in Western Siberia. Russ. J. Genet. 2016;52(2):146-153. DOI:10.1134/S102279541601004X.; Fait V.I., Stelmakh A.F. Genetic control of the habit and rate of spring wheat development in West Siberia. Part I. Identification of dominant alleles of development type genes. Sibirskiy Vestnik Sel’skokhozyaystvennoy Nauki = Siberian Herald of Agricultural Sciences. 1993;2:32-36. (in Russian); Fomenko M.A., Grabovets A.I. A new generation of winter wheat varieties breeding Don SNIISH. Zernobobovye i Krupyanye Kul’tury = Legumes and Groat Crops. 2016;4(20):85-90. (in Russian); Garcia M., Eckermann P., Haefele S., Satija S., Sznajder B., Timmins A., Baumann U., Wolters P., Mather D.E., Fleury D. Genome-wide association mapping of grain yield in a diverse collection of spring wheat (Triticum aestivum L.) evaluated in southern Australia. PLoS One. 2019;14(2):e0211730. DOI:10.1371/journal.pone.0211730.; Genotypes of Accessions of Spring Soft Wheat by Genes Controlling the Habit of Development. Catalog of the World Collection of VIR. Iss. 427. Leningrad: VNIIR, 1985. (in Russian); Golovnina K.A., Kondratenko E.Ya., Blinov A.G., Goncharov N.P. Molecular characterization of vernalization loci VRN1 in wild and cultivated wheats. BMC Plant Biol. 2010;10:168. DOI:10.1186/1471-2229-10-168.; Gomez D., Vanzetti L., Helguera M., Lombardo L., Fraschina J., Miralles D.J. Effect of Vrn-1, Ppd-1 genes and earliness per se on heading time in Argentinean bread wheat cultivars. Field Crops Res. 2014;158:73-81. DOI:10.1016/j.fcr.2013.12.023.; Goncharov N.P. Genetic resources of wheat related species: The Vrn genes controlling growth habit (spring vs. winter). Euphytica. 1998;100:371-376. DOI:10.1023/A:1018323600077.; Goncharov N.P. Genetics of growth habit (spring vs. winter) in common wheat: confirmation of the existence of dominant gene Vrn4. Theor. Appl. Genet. 2003;107(4):768-772. DOI:10.1007/s00122-003-1317-x.; Goncharov N.P. Genus Triticum L. taxonomy: the present and the future. Plant Syst. Evol. 2011;295:1-11. DOI:10.1007/s00606-011-0480-9.; Goncharov N.P. Comparative Genetics of Wheats and their Related Species. 2nd edn. Novosibirsk: Acad. Publ. House “Geo”, 2012. (in Russian); Goncharov N.P., Chikida N.N. Genetics of the growth habit in Aegilops squarrosa L. Genetika (Moscow). 1995;31(3):343-346.; Goncharov N.P., Efimov V.M. The principal components of the duration of the shoots–heading period trait in common wheat. In: Characteristics of the Genomes of Some Species of Agricultural Plants. Novosibirsk: ICG Publ., 1990;75-86. (in Russian); Goncharov N.P., Goncharov P.L. Methodical Bases of Plant Breeding. 3rd edn. Novosibirsk: Acad. Publ. House “Geo”, 2018. (in Russian); Goncharov N.P., Kondratenko E.Ja., Bannikova S.V., KonovalovA.A., Golovnina K.A. Comparative genetic analysis of diploid naked wheat Triticum sinskajae and the progenitor T. monococcum accession. Russ. J. Genet. 2007;43(11):1248-1256. DOI:10.1134/S1022795407110075.; Goncharov N.P., Kosolapov V.M. Plant breeding is the food security basis in the Russian Federation. Vavilovskii Zhurnal Genetiki i Selektsii = Vavilov Journal of Genetics and Breeding. 2021;25(4): 361-366. DOI:10.18699/VJ21.039. (in Russian); Goncharov N.P., Rechkin D.V. Geographical variability of the growing season of agricultural crops and models of their rational distribution. Sibirskiy Vestnik Selskokhozyaystvennoy Nauki = Siberian Herald of Agricultural Sciences. 1993;2:42-48. (in Russian)]; Goncharov N.P., Shitova I.P. The inheritance of growth habit in old local varieties and landraces of hexaploid wheat. Russ. J. Genet. 1999;35(4):386-392.; Gower J.C. Some distance properties of latent root and vector methods used in multivariate analysis. Biometrika. 1966;53(3-4): 325-338. DOI:10.2307/2333639.; Guidelines for the Testing of Breeding Varieties of the Most Important Field Crops of the RSFSR. Iss. 1. Wheat. Leningrad, 1928. (in Russian); Guidelines for the Testing of Agricultural Crops. In 4 vols. Vol. 1. Cereal Crops. Moscow; Leningrad: Selkhozgiz Publ., 1937. (in Russian); Kippes N., Zhu J., Chen A., Vanzetti L., Lukaszewski A., Nishida H., Kato K., Dvorak J., Dubcovsky J. Fine mapping and epistatic interactions of the vernalization gene VRN-D4 in hexaploid wheat. Mol. Genet. Genomics. 2014;289(1):47-62. DOI:10.1007/s00438-013-0788-y.; Kiseleva A.A., Salina E.A. Genetic regulation of common wheat heading time. Russ. J. Genet. 2018;54(4):375-388. DOI:10.1134/S1022795418030067.; Konopatskaia I., Vavilova V., Kondratenko E.Y., Blinov A., Goncharov N.P. VRN1 genes variability in tetraploid wheat species with a spring growth habit. BMC Plant Biol. 2016;16(3):93-106. DOI:10.1186/s12870-016-0924-z.; Koval S.F., Goncharov N.P. Multiple allelism at VRN1 locus of common wheat. Acta Agron. Hung. 1998;46(2):113-119.; Kuz’min O.G., Chursin A.S., Morgоunov A.I., Shepelev S.S., Pozherukova V.E. Breeding assessment of varieties of the 18th Kazakhstan-Siberian nursery under the conditions of the southern foreststeppe of the Omsk region. Vestnik Omskogo Gosudarstvennogo Agrarnogo Universiteta = Herald of Omsk Agrarian State University. 2019;1:11-21. (in Russian); Kuznetsova E.S. Geographical variability of the vegetation period of cultivated plants (according to the data of geographical crops in 1923–1929). Trudy po Prikladnoy Botanike i Selektsii = Proceedings on Applied Botany and Breeding. 1929;21(1):321-446. (in Russian); Likhenko I.E., Stasyuk A.I., Shcherban’ A.B., Zyryanova A.F., Likhenko N.I., Salina E.A. Analysis of the allelic variation of the Vrn-1 and Ppd-1 genes in Siberian early and medium early varieties of spring wheat. Vavilov Journal Genetics and Breeding = Vavilov Journal of Genetics and Breeding. 2014;18(4/1):691-703. (in Russian); Lozada D.N., Carter A.H., Mason R.E. Unlocking the yield potential of wheat: influence of major growth habit and adaptation genes. Crop Breed. Genet. Genom. 2021;3(2):e210004. DOI:10.20900/CBGG20210004.; Lysenko N.S., Kiseleva A.A., Mitrofanova O.P., Potokina E.K. Catalog of the world collection of VIR. Iss. 815. Common wheat. Molecular Testing of Vrn- and Ppd Gene Alleles in Breeding Varieties Authorized for Use in the Russian Federation. St. Petersburg, 2014. (in Russian); Melnikova O.V., Torikov V.E., Nikiforov V.M., Tishchenko E.V. Correlation dependence of grain yield of common spring wheat on indicators of nature and 1000 grain weight. In: Agroecological Aspects of the Sustainable Development of the Agroindustrial Complex. Bryansk: Bryansk State Agrarian University, 2020; 703-712. (in Russian); Meng L.Z., Liu H.W., Yang L., Mai C.Y., Yu L.Q., Li H.J., Zhang H.J., Zhou Y. Effects of the Vrn-D1b allele associated with facultative growth habit on agronomic traits in common wheat. Euphytica. 2016;211(1):113-122. DOI:10.1007/s10681-016-1747-6.; Moiseeva E.A., Goncharov N.P. Genetic control of the spring habit in old local cultivars and landraces of common wheat from Siberia. Russ. J. Genet. 2007;43(4):369-375. DOI:10.1134/S1022795407040035.; Morgounov A., Sonder K., Abugalieva A., Bhadauria V., Cuthbert R.D., Shamanin V., Zelenskiy Y., DePauw R.M. Effect of climate change on spring wheat yields in North America and Eurasia in 1981–2015 and implications for breeding. PloS One. 2018;13(10):e0204932. DOI:10.1371/journal.pone.0204932.; Moskalenko V.M. Variation and inheritance of productivity elements of the ear and plant in ecologically distant hybrids of spring common wheat under the conditions of West Siberia and North Kazakhstan. Sibirskiy Vestnik Selskokhozyaystvennoy Nauki = Siberian Herald of Agricultural Sciences. 2007;6:111-113. (in Russian); Nishimura K., Moriyama R., Katsura K., Saito H., Takisawa R., Kitajima A., Nakazaki T. The early flowering trait of an emmer wheat accession (Triticum turgidum L. ssp. dicoccum) is associated with the cis-element of the Vrn-A3 locus. Theor. Appl. Genet. 2018; 131(10):2037-2053. DOI:10.1007/s00122-018-3131-5.; Pisarev V.E. Early ripening wheat of Eastern Siberia. Trudy po Prikladnoy Botanike i Selektsii = Proceedings on Applied Botany and Breeding. 1925;14(1):112-135. (in Russian); Piskarev V.V., Zuev E.V., Brykova A.N. Sources for the breeding of soft spring wheat in the conditions of Novosibirsk region. Vavilovskii Zhurnal Genetiki i Selektsii = Vavilov Journal of Genetics and Breeding. 2018;22(7):784-794. DOI:10.18699/VJ18.422. (in Russian); Plotnikov N.Ya., Talanova V.V., Priyma D.Ya. Wheat: Characteristics of the crop and description of traits. In: Crop Approbation Guide. Vol. 1. Cereal Crops. Leningrad: Selkhozgiz Publ., 1937;7-15. (in Russian); Pototskaya I.V., Shamanin V.P., Shepelev S.S., Pozherukova V.E., Morgunov A.I. Synthetic wheat as a source of grain quality in wheat breeding. Vestnik Kurskoy Gosudarstvennoy Selskokhozyaystvennoy Akademii = Bulletin of the Kursk State Agricultural Academy. 2019; 2:56-63. (in Russian); Rechkin D.V., Goncharov N.P. Spatial models of the rational placement of agricultural plants: the duration of the vegetative period. Sibirskiy Vestnik Selskokhozyaystvennoy Nauki = Siberian Herald of Agricultural Sciences. 1993;4:7-15. (in Russian); Rigin B.V., Letifova M.S., Repina T.S. Comparative genetics of maturation rate of plant species of genus Triticum L. Genetika (Mosсow). 1994;30(10):1148-1154.; Rigin B.V., Zuev E.V., Andreeva A.S., Matvienko I.I., Pyzhenkova Z.S. Comparative analysis of the inheritance of a high development rate in the Rimax and Rico lines of spring bread wheat (Triticum aestivum L.). Trudy po Prikladnoy Botanike, Genetike i Selektsii = Proceedings on Applied Botany, Genetics, and Breeding. 2021а;182(2):81-88. DOI:10.30901/2227-8834-2021-2-81-88. (in Russian); Rigin B.V., Zuev E.V., Andreeva A.S., Pyzhenkova Z.S., Matvienko I.I. The line Rico is the earliest maturing accession in the VIR collection of spring bread wheat. Trudy po Prikladnoy Botanike, Genetike i Selektsii = Proceedings on Applied Botany, Genetics, and Breeding. 2019;180(4):94-98. DOI:10.30901/2227-8834-2019-4-94-98. (in Russian); Rigin B.V., Zuev E.V., Matvienko I.I., Andreeva A.S. Molecular labeling of Vrn, Ppd genes and vernalization response of the ultra-early lines of spring bread wheat Triticum aestivum L. Biotekhnologiya i Selektsiya Rasteniy = Plant Biotechnology and Breeding. 2021b;4(3):26-36. DOI:10.30901/2658-6266-2021-3-o2. (in Russian); Rigin B.V., Zuev E.V., Tyunin V.A., Schreider E.R., Pyzhenkova Z.S., Matvienko I.I. Breeding and genetic aspects of creating productive forms of fast-developing spring bread wheat. Trudy po Prikladnoy Botanike, Genetike i Selektsii = Proceedings on Applied Botany, Genetics, and Breeding. 2018;179(3):194-202. DOI:10.30901/2227-8834-2018-3. (in Russian); Rivelli G.M., Fernández Long M.E., Abeledo L.G., Calderini D.F., Miralles D.J., Rondanini D.P. Assessment of heat stress and cloudiness probabilities in post-flowering of spring wheat and canola in the Southern Cone of South America. Theor. Appl. Climatol. 2021;145(3):1485-1502. DOI:10.1007/s00704-021-03694-x.; Royo C., Dreisigacker S., Ammar K., Villegas D. Agronomic performance of durum wheat landraces and modern cultivars and its association with genotypic variation in vernalization response (Vrn-1) and photoperiod sensitivity (Ppd-1) genes. Eur. J. Agron. 2020;120: 126129. DOI:10.1016/j.eja.2020.126129.; Shcherban A.B., Börner A., Salina E.A. Effect of VRN-1 and PPD-D1 genes on heading time in European bread wheat cultivars. Plant Breed. 2015;134(1):49-55. DOI:10.1111/pbr.12223.; Shcherban A.B., Efremova T.T., Salina E.A. Identification of a new Vrn-B1 allele using two near-isogenic wheat lines with difference in heading time. Mol. Breed. 2012a;29(3):675-685. DOI:10.1007/s11032-011-9581-y.; Shcherban A.B., Emtseva M.V., Efremova T.T. Molecular genetical characterization of vernalization genes Vrn-A1, Vrn-B1 and Vrn-D1 in spring wheat germplasm from Russia and adjacent regions. Cereal Res. Commun. 2012b;40(3):425-435. DOI:10.1556/CRC.40.2012.3.4.; Sidorov A.N. Breeding of Spring Wheat in the Krasnoyarsk Kray. Krasnoyarsk, 2018. (in Russian); Smiryaev A.V., Martynov S.P., Kilchevsky A.V. Biometrics in Plant Genetics and Breeding. M.: MSHA, 1992. (in Russian); State Register for Selection Achievements Admitted for Usage (National List). Vol. 1. Plant Varieties (official publication). Moscow: Rosinformagrotekh Publ., 2021. (in Russian); Stelmakh A.F. Genetics of the habit of development and duration of the growing season of bread wheats. Selektsiya i Semenovodstvo = Breeding and Seed Production (Kyiv).1981;48:8-15. (in Russian); Stelmakh A.F., Avsenin V.I. Alien introgressions of spring habit dominant genes into bread wheat genomes. Euphytica. 1996;89: 65-68. DOI:10.1007/BF00015720.; Tan C., Yan L. Duplicated, deleted and translocated VRN2 genes in hexaploid wheat. Euphytica. 2016;208(2):277-284. DOI:10.1007/s10681-015-1589-7.; Temirbekova S.K., Begeulov M.Sh., Afanaseva Yu.V., Kulikov I.M., Ionova N.E. Adaptive capacity of einkorn huskless in the second, third and seventh Russian Federation regions. Vestnik Rossiyskoy Sel’skokhozyajstvennoy Nauki = Vestnik of Russian Agricultural Science. 2020;1:34-38. DOI:10.30850/vrsn/2020/1/34-38. (in Russian); Vavilov N.I. Geographical variability of plants. Nauchnoe Slovo = Scientific Word. 1928;1:23-33. (in Russian); Vedrov N.G. Bread and Morality. Krasnoyarsk: Krasnoyarsk State Agrarian University Publ., 2006. (in Russian); Vedrov N.G., Chalipsky A.N. Comparative estimation of spring wheat cultivars bred in West and East Siberia. Vestnik KrasGAU = Bulletin of the Krasnoyarsk State Agrarian University. 2009;7: 95-102. (in Russian); Welsh J.R., Keim D.L., Pirasteh B., Richards R.D. Genetic control of photoperiod response in wheat. In: Proceedings of the Fourth International Wheat Genetics Symposium, Held at the University of Missouri, Columbia, Missouri, USA, August 6-11. Missouri: University of Missouri, 1973;879-884.; Whittal A., Kaviani M., Graf R., Humphreys G., Navabi A. Allelic variation of vernalization and photoperiod response genes in a diverse set of North American high latitude winter wheat genotypes. PLoS One. 2018;13(8):e0203068. DOI:10.1371/journal.pone.0203068.; Yan L., Fu D., Li C., Blechl A., Tranquilli G., Bonafede M., Sanchez A., Valarik M., Yasuda S., Dubcovsky J. The wheat and barley vernalization gene VRN3 is an orthologue of FT. Proc. Natl. Acad. Sci. USA. 2006;103(51):19581-19586. DOI:10.1073_pnas.0607142103.; Yan L., Loukoianov A., Blechl A., Tranquilli G., Ramakrishna W., SanMiguel P., Bennetzen J.L., Echenique V., Dubcovsky J. The wheat VRN2 gene is a flowering repressor down-regulated by vernalization. Science. 2004;303(5664):1640-1644. DOI:10.1126/science.1094305.; Yan L., Loukoianov A., Tranquilli G., Helguera M., Fahima T., Dubcovsky J. Positional cloning of the wheat vernalization gene VRN1. Proc. Natl. Acad. Sci. USA. 2003;100(10):6263-6268. DOI:10.1073_pnas.0937399100.; Zhang X.K., Xiao Y.G., Zhang Y., Xia X.C., Dubcovsky J., He Z.H. Allelic variation at the vernalization genes Vrn-A1, Vrn-B1, Vrn-D1, and Vrn-B3 in Chinese wheat cultivars and their association with growth habit. Crop Sci. 2008;48(2):458-470. DOI:10.2135/cropsci 2007.06.0355.; Zheng B., Biddulph B., Li D., Kuchel H., Chapman S. Quantification of the effects of VRN1 and Ppd-D1 to predict spring wheat (Triticum aestivum) heading time across diverse environments. J. Exp. Bot. 2013;64(12):3747-3761. DOI:10.1093/jxb/ert209.; Zotova L., Kurishbayev A., Jatayev S., Goncharov N.P., Shamambayeva N., Kashapov A., Nuralov A., Otemissova A., Sereda S., Shvidchenko V., Lopato S., Schramm C., Jenkins C., Soole K., Langridge P., Shavrukov Y. General transcription repressor gene, TaDr1, mediates expressions of TaVrn1 and TaFT1 controlling flowering in bread wheat under drought and slowly dehydration. Front. Genet. 2019;10:63. DOI:10.3389/fgene.2019.00063.; https://vavilov.elpub.ru/jour/article/view/3536Test

  4. 4
    دورية أكاديمية

    المساهمون: Supported by Russian Foundation for Basic Research (# 19-07-00658). The authors are grateful to D.A. Afonnikov, P.N. Menshanov and two anonymous reviewers for useful discussion and constructive comments.

    المصدر: Vavilov Journal of Genetics and Breeding; Том 23, № 8 (2019); 1032-1036 ; Вавиловский журнал генетики и селекции; Том 23, № 8 (2019); 1032-1036 ; 2500-3259 ; 2500-0462

    وصف الملف: application/pdf

    العلاقة: https://vavilov.elpub.ru/jour/article/view/2395/1327Test; Efimov V.M., Galaktionov Y.K. On the possibility of predicting cyclic changes in the abundance of mammals. Zhurnal Obshchey Biologii = Journal of General Biology. 1983;3:343-352. (in Russian); Efimov V.M., Galaktionov Y.K., Galaktionova T.A. Reconstruction and prognosis of water vole population dynamics on the basis of tularemia morbidity among Novosibirsk oblast residents. Doklady. Biological Sciences. 2003;388(1/6):59-61.; Efimov V.M., Galaktionov Y.K., Shushpanova N.F. Analysis and Prediction of Time Series by the Principal Component Method. Novosibirsk: Nauka Publ., 1988. (in Russian); Efimov V.M., Kovaleva V.Y., Efimov K.V. Principal Component Analysis for any type Sequences (PCA-Seq). In: Mathematical Modeling and High-Performance Computing in Bioinformatics, Biomedicine and Biotechnology (MM-HPC-BBB-2018): Proc. of the 3rd Int. Symp. Novosibirsk, 21–24 Aug 2018. Novosibirsk, 2018;20.; Efimov V.M., Melchakova M.A., Kovaleva V.Y. Geometric properties of evolutionary distances. Vavilovskii Zhurnal Genetiki i Selektsii = Vavilov Journal of Genetics and Breeding. 2013;17(4/1):714-723. (in Russian); Golyandina N., Korobeynikov A., Zhigljavsky A. Singular Spectrum Analysis with R. (Ser. Use R!) Berlin; Heidelberg: Springer Verlag, 2018.; Golyandina N., Nekrutkin V., Zhigljavsky A.A. Analysis of Time Series Structure: SSA and Related Techniques. Chapman and Hall/CRC, 2001.; Golyandina N., Zhigljavsky A. Singular Spectrum Analysis for Time Series. Springer Science & Business Media, 2013.; Gower J.C. Some distance properties of latent root and vector methods used in multivariate analysis. Biometrika. 1966;53(3/4):325-338.; Jolliffe I.T., Cadima J. Principal component analysis: a review and recent developments. Phil. Trans. R. Soc. A. 2016;374:20150202.; Karhunen K. Über lineare methoden in der wahrscheinlich-keitsrechnung. Ann. Acad. Sci. Fennicea. 1947;Ser. A137.; Loève M. Fonctions Aléatoires de second order. In: Lévy P. (Ed.). Processus Stochastiques et Movement Brownien. Paris: Hermann, 1948.; Polunin D.A., Shtaiger I.A., Efimov V.M. Development of software system JACOBI 4 for multivariate analysis of microarray data. Vestnik Novosibirskogo Gosudarstvennogo Universiteta. Seriya Informatsyonnye Tekhnologii = Vestnik NSU. Information Technology. 2014;12(2):90-98. (in Russian); Takens F. Detecting strange attractors in turbulence. In: Dynamical Systems and Turbulence. Warwick, 1980. Berlin; Heidelberg: Springer, 1981;366-381.; https://vavilov.elpub.ru/jour/article/view/2395Test

  5. 5
    دورية أكاديمية

    المساهمون: СО РАН, РФФИ

    المصدر: Vavilov Journal of Genetics and Breeding; Том 20, № 6 (2016); 816-822 ; Вавиловский журнал генетики и селекции; Том 20, № 6 (2016); 816-822 ; 2500-3259 ; 2500-0462

    وصف الملف: application/pdf

    العلاقة: https://vavilov.elpub.ru/jour/article/view/615/674Test; Гречко В.В. Проблемы молекулярной филогенетики на примере отряда чешуйчатых рептилий (отряд SQUAMATA): митохондриальные ДНК-маркеры // Молекулярная биология. 2013;47(1):61-82.; Гречко В.В., Федорова Л.В., Рябинин Д.М. и др. Молекулярные маркеры ядерной ДНК в исследовании видообразования и систематики на примере ящериц комплекса «Lacerta agilis» (SAURIA: LACERTIDAE) // Молекулярная биология. 2006;40(1):61-73.; Дольник А.С., Тамазян Г.С., Першина Е.В. и др. Концепция универсальной таксономической системы бактерий: эволюционное пространство гена 16S-рРНК v. 1.0. // Сельскохозяйственная биология. 2012;12:111-120.; Дэйвисон М. Многомерное шкалирование. М.: Финансы и статистика, 1988;254 с. Davison M. L. Multidimensional scaling. New York: Wiley, 1983;242 p.; Ефимов В.М., Мельчакова М.А., Ковалева В.Ю. Геометрические свойства эволюционных дистанций // Вавиловский журнал генетики и селекции. 2013;17(4/1):714-723.; Ковалева В.Ю., Абрамов С.А., Дупал Т.А. и др. Анализ соответствия и комбинирование молекулярно-генетических и морфологических данных в зоологической систематике // Изв. РАН. Сер. биол. 2012;4:404-414.; Ковалева В.Ю., Литвинов Ю.Н., Ефимов В.М. Землеройки (SORICIDAE, EULIPOTYPHLA) Сибири и Дальнего Востока: комбинирование и поиск конгруэнтности молекулярно-генетических и морфологических данных // Зоологический журнал. 2013;92(11):1383-1398.; Лукашов В.В. Молекулярная эволюция и филогенетический анализ //М.: Бином. Лаборатория знаний. 2009;256 с.; Полунин Д.А., Штайгер И.А., Ефимов В.М. Разработка программного комплекса JACOBI 4 для многомерного анализа микрочиповых данных // Вестн. Новосиб. гос. ун-та. Серия: Информационные технологии. 2014;12(2):90-98.; Abeysundera M., Kenney T., Field C., Gu H. Combining distance matrices on identical taxon sets for multi-gene analysis with singular value decomposition // PLoS ONE. 2014;9(4):e94279. doi:10.1371/journal.pone.0094279; Beaumont M.A., Ibrahim K.M., Boursot P., Bruford M.W. Measuring genetic distance // Molecular tools for screening biodiversity: Plants and Animals / Eds. Karp A., Ingram D.S., Isaac P.G. London: Chapman&Hall, 1998;315-325. doi:10.1007/978-94-009-0019-6_58; Bininda-Emonds O.R.P., Gittleman J.L., Steel M.A. The (super) tree of life: procedures, problems, and prospects // Annu. Rev. Ecol. Syst. 2002;33:265-289. doi:10.1146/annurev.ecolsys.33.010802.150511; Brazil M., Thomas D.A., Nielsen В.K. et al. A novel approach to phylogenetic trees: d-dimensional geometric Steiner trees // Networks. 2009;53(2):104-111.; Brazil M., Graham R.L., Thomas D.A., Zachariasen M. On the history of the euclidean Steiner tree problem // Archive for history of exact sciences. 2014;68:327-354. doi:10.1007/s00407-013-0127-z; Burleigh J.G., Bansal M.S., Eulenstein O. et al. Genome-scale phylogenetics: inferring the plant tree of life from 18,896 gene trees // Systematic Biology. 2011;60(2):117-125. doi:10.1093/sysbio/syq072; Cavalli-Sforza L.L., Edwards A.W. Phylogenetic analysis. Models and estimation procedures // American journal of human genetics. 1967;19(3, Pt 1):233-257.; Criscuolo A., Berry V., Douzery E.J., Gascuel O. SDM: a fast distance & based approach for (super) tree building in phylogenomics // Systematic Biology. 2006;55(5):740-755. doi:10.1080/10635150600969872; Criscuolo A., Michel C.J. Phylogenetic inference with weighted codon evolutionary distances // Journal of molecular evolution. 2009;68(4):377-392. doi:10.1007/s00239-009-9212-y.; Dannelid E. The genus Sorex (Mammalia, Soricidae) – distribution and evolutionary aspects of Eurasian species // Mammal Review. 1991;21(1):1-20. doi:10.1111/j.1365-2907.1991.tb00284.x; Davis J.C. Statistics and data analysis in geology. 3nd. N.Y.: John Wiley & Sons, 2002;621 p.; de Queiroz A., Gatesy J. The supermatrix approach to systematic // Trends in Ecology & Evolution. 2007;22(1):34-41. doi: /10.1016/j.tree.2006. 10.002; Delsuc F., Brinkmann H., Philippe H. Phylogenomics and the reconstruction of the tree of life // Nature Reviews Genetics. 2005;6(5):361-375. doi:10.1038/nrg1603; Dubey S., Michaux J., Brünner H. et al. False phylogenies on wood mice due to cryptic cytochrome-b pseudogene // Molecular phylogenetics and evolution. 2009;50(3):633-641. doi:10.1016/j.ympev.2008.12.008; Esteva, M., Cervantes, F.A., Brant, S.V., Cook, J.A. Molecular phylogeny of long-tailed shrews (genus Sorex) from Mexico and Guatemala // Zootaxa. 2010;2615:47-65.; Fonseca R., Brazil M., Winter P., Zachariasen M. Faster exact algorithms for computing Steiner trees in higher dimensional euclidean spaces // 11th DIMACS Implementation challenge on Steiner tree problems. Providence, Rhode Island: Brown University, 2014. 20 p.; Fumagalli L., Taberlet P., Stewart D.T. et al. Molecular phylogeny and evolution of Sorex shrews (Soricidae: Insectivora) inferred from mitochondrial DNA sequence data // Molecular phylogenetics and evolution. 1999;11(2):222-235. doi:10.1006/mpev.1998.0568; Gadagkar S.R., Rosenberg M.S., Kumar S. Inferring species phylogenies from multiple genes: concatenated sequence tree versus consensus gene tree // Journal of Experimental Zoology Part B: Molecular and Developmental Evolution. 2005;304B(1):64-74. doi:10.1002/jez.b.21026; Gower J.C. Some Distance Properties of Latent Root and Vector Methods Used in Multivariate Analysis // Biometrika, 1966;53(3/4):325-338. doi:10.2307/2333639; Gower J.C., Legendre P. Metric and Euclidean properties of dissimilarity coefficients // Journal of classification. 1986;3(1):5-48. doi:10.1007/bf01896809; Havel T.F., Kuntz I.D., Crippen G.M. The theory and practice of distance geometry // Bulletin of Mathematical Biology. 1983;45(5):665-720. doi:10.1007/bf02460044; Huson D.H., Bryant D. Application of phylogenetic networks in evolutionary studies // Molecular biology and evolution. 2006;23(2):254-267. doi:10.1093/molbev/msj030; Ivanitskaya E.Y. Comparative cytogenetics and systematics of Sorex: a cladistic approach // Advances in the biology of shrews / Eds Merritt J.F., Kirkland G.L. Jr., Rose R.K. Pittsburgh: Carnegie Museum of Natural History, Special Publication, 1994;313-323.; Jeffroy O., Brinkmann H., Delsuc F., Philippe H. Phylogenomics: the beginning of incongruence? // Trends in genetics. 2006;22(4):225-231. doi:10.1016/j.tig.2006.02.003; Kimura M.A simple method for estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequences // Journal of Molecular Evolution. 1980;16:111-120. doi:10.1007/BF01731581; Kitazoe Y., Kishino H., Okabayashi T. et al. Multidimensional vector space representation for convergent evolution and molecular phylogeny // Molecular biology and evolution. 2005;22(3):704-715. doi:10.1093/molbev/msi051; Kitazoe Y., Kurihara Y., Narita Y. et al. A new theory of phylogeny inference through construction of multidimensional vector space // Molecular biology and evolution. 2001;18(5):812-828.; Klingenberg C.P., Ekau W. A combined morphometric and phylogenetic analysis of an ecomorphological trend: pelagization in Antarctic fishes (Perciformes: Nototheniidae) // Biological Journal of the Linnean Society. 1996;59(2):143-177. doi:10.1111/j.1095-8312.1996.tb01459.x; Klingenberg C.P., Gidaszewski N.A. Testing and quantifying phylogenetic signals and homoplasy in morphometric data // Systematic biology. 2010;59(3):245-261. doi:10.1093/sysbio/syp106; Kruscal J.B. Multidimensional scaling by optimizing goodness of fit to a nonmetric hypothesis // Psychometrika. 1964;29(1):1-27. doi:10.1007/BF02289565.; Lee S.H., Hwang K.S., Lee H.R. et al. Embedding operational taxonomic units in threedimensional space for evolutionary distance relationship in phylogenetic analysis // Proc. 5th WSEAS Int. Conf. on circuits, systems, electronics, control and signal processing. USA. 2006;192-196.; Mantel N. The detection of disease clustering and a generalized regression approach // Cancer Research. 1967;27:209-220.; Mantel N., Valand R.S. A technique of nonparametric multivariate analysis. Biometrics. 1970;26:547-558. doi:10.2307/2529108 Nylander J.A.A. MrModeltest v2. Program distributed by the author. Evolutionary Biology Centre, Uppsala University, 2. 2004.; Ohdachi S.D., Hasegawa M., Iwasa M.A. et al. Molecular phylogenetics of soricid shrews (Mammalia) based on mitochondrial cytochrome b gene sequences: with special reference to the Soricinae // Journal of Zoology. 2006;270(1):177-191. doi:10.1111/j.1469-7998.2006.00125.x; Ohdachi S., Masuda R., Abe H. et al. Phylogeny of Eurasian soricine shrews (Insectivora, Mammalia) inferred from the mitochondrial cytochrome b gene sequences // Zoological science. 1997;14(3):527-532.; Pershina E.V., Dolnik A.S., Tamazyan G. et al. An evolutionary space for microbial evolution and community structure analysis // Department of Bioengineering and Bioinformatics of MV Lomonosov Moscow State University. 2011;54(3):40.; Philippe H., Delsuc F., Brinkmann H., Lartillot N. Phylogenomics // Annual Review of Ecology, Evolution, and Systematics. 2005;541-562. doi:10.1146/annurev.ecolsys.35.112202.130205; Planet P.J. Tree disagreement: measuring and testing incongruence in phylogenies // Journal of biomedical informatics. 2006;39(1):86-102. doi:10.1016/j.jbi.2005.08.008; Polly P.D., Lawing A.M., Fabre A.C., Goswami A. Phylogenetic principal components analysis and geometric morphometrics // Hystrix, the Italian Journal of Mammalogy. 2013;24(1):33-41. doi:10.4404/hystrix-24.1-6383; Scippa G.S., Trupiano D., Rocco M., Viscosi V., Di Michele M., D’Andrea A., & Chiatante D. An integrated approach to the characterization of two autochthonous lentil (Lens culinaris) landraces of Molise (south-central Italy). Heredity. 2008;101(2):136-144. doi:10.1038/hdy.2008.39; Torgerson W.S. Multidimensional scaling: I. Theory and method // Psychometrika. 1952;17(4):401-419. doi:10.1007/BF02288916; Wilson D.E., Reeder D.A.M. (ed.). Mammal species of the world: a taxonomic and geographic reference. Baltimore: JHU Press, 2005;12:2142 p.; Wortley A.H., Scotland R.W. The effect of combining molecular and morphological data in published phylogenetic analyses // Systematic Biology. 2006;55(4):677-685. doi:10.1080/10635150600899798; https://vavilov.elpub.ru/jour/article/view/615Test