يعرض 1 - 10 نتائج من 795 نتيجة بحث عن '"ВИРУСНЫЕ ИНФЕКЦИИ"', وقت الاستعلام: 1.16s تنقيح النتائج
  1. 1
    دورية أكاديمية

    المصدر: AMALIY VA TIBBIYOT FANLARI ILMIY JURNALI; Vol. 3 No. 2 (2024): AMALIY VA TIBBIYOT FANLARI ILMIY JURNALI; 303-307 ; НАУЧНЫЙ ЖУРНАЛ ПРИКЛАДНЫХ И МЕДИЦИНСКИХ НАУК; Том 3 № 2 (2024): AMALIY VA TIBBIYOT FANLARI ILMIY JURNALI; 303-307 ; 2181-3469

    وصف الملف: application/pdf

  2. 2
    دورية أكاديمية
  3. 3
    دورية أكاديمية

    المساهمون: The study was supported by the Russian Science Foundation grant No. 23‐24‐00492, Исследование выполнено при поддержке гранта РНФ № 23‐24‐00492

    المصدر: South of Russia: ecology, development; Том 18, № 4 (2023); 173-181 ; Юг России: экология, развитие; Том 18, № 4 (2023); 173-181 ; 2413-0958 ; 1992-1098

    وصف الملف: application/pdf

    العلاقة: https://ecodag.elpub.ru/ugro/article/view/3010/1393Test; Simmonds P., Gorbalenya A.E., Harvala H., Hovi T., Knowles N.J., Lindberg A.M., Oberste M.S., Palmenberg A.C., Reuter G., Skern T., Tapparel C., Wolthers K.C., Woo P.C.Y., Zell R. Recommendations for the nomenclature of enteroviruses and rhinoviruses // Archives of Virology. 2020. N 165. C. 793–797. doi:10.1007/s00705-019-04520-6; Royston L., Tapparel C. Rhinoviruses and respiratory enteroviruses: not as simple as ABC // Viruses. 2016. N 8. P. 151–156. doi:10.3390/v8010016; Fine J., Bray‐Aschenbrenner A., Williams H, Buchanan P., Werner J. The Resource Burden of Infections with Rhinovirus/Enterovirus, Influenza, and Respiratory Syncytial Virus in Children // Clin. Pediatr. 2018. N 58. C. 177–184.; Marjomäki V., Kalander K., Hellman M., Permi P. Enteroviruses and coronaviruses: similarities and therapeutict argets // Expert Opinion on Therapeutic Targets. 2021. V. 11. N 1. P. 23–27. doi:10.1080/14728222.2021.1952985; Tapparel C., Siegrist F., Petty T.J., Kaiser L. Picornavirus and enterovirus diversity with associated human diseases // Infection, Genetics and Evolution. 2013. N 14. P. 282–293. doi:10.1016/j.meegid.2012.10.016; Hayes A., Nguyen D., Andersson M., et al. A European multicentre evaluation of detection and typing methods for human enteroviruses and parechoviruses using RNA transcripts. Journal of Medical Virology. 2020. V. 92. P. 1065–1074. doi:10.1002/jmv.25659; Harvala H., Jasir A., Penttinen P., et al. Surveillance and laboratory detection for non‐polio enteroviruses in the European Union/European Economic Area, 2016 // Euro Surveill. 2017. V. 22. P. 233–236. doi:10.2807/1560-7917.ES.2017.22.45.16-00807; Holm‐Hansen C.C., Midgley S.E., Fischer T.K. Global emergence of enterovirus D68 : a systematic review // The Lancet Infectious Diseases. 2016. V. 16. N 5. P. 64–75. doi:10.1016/S1473-3099(15)00543-5; Poelman R., Schuffenecker I., Van Leer‐Buter C., Josset L., Niesters H.G., Lina B. European surveillance for enterovirus D68 during the emerging North‐American outbreak in 2014 // Journal of Clinical Virology. 2015. V. 71. P. 1–9. doi:10.1016/j.jcv.2015.07.296; Harvala H., Broberg E., Benschop K., Berginc N., Ladhani Sh., Susi P., Christiansen Claus., McKenna J., Allen D., Makiello Ph., McAllister G., Carmen M., Zakikhany K., Dyrdak R., Nielsen Xiaohui, Madsen T., Paul J., Moore C., Karin von Eije, Piralla A., Fischer Thea K. Recommendations for enterovirus diagnostics and characterisation within and beyond Europe // Journal of Clinical Virology. 2018. V. 101. P. 11–17. doi:10.1016/j.jcv.2018.01.008; Fillatre A., François C., Segard C., et al. Epidemiology and seasonality of acute respiratory infections in hospitalized children over four consecutive years (2012– 2016) // Journal of Clinical Virology. 2018. T. 102. C. 27–31. doi:10.1016/j.jcv.2018.02.010; Kurskaya O., Ryabichenko T., Leonova N., Shi W., Bi H., Sharshov K., Kazachkova E., Sobolev I., Prokopyeva E., Kartseva T., et al. Viral etiology of Acute Respiratory Infections in Hospitalized Children in Novosibirsk City, Russia (2013–2017) // PLoS ONE. 2018. V. 13. N 9. doi:10.1371/journal.pone.0200117; Kurskaya O.G., Prokopyeva E.A., Sobolev I.A., Solomatina M.V., Saroyan T.A., Dubovitskiy N.A., Derko A.A., Nokhova A.R., Anoshina A.V., Leonova N.V., et al. Changes in the Etiology of Acute Respiratory Infections among Children in Novosibirsk, Russia, between 2019 and 2022: The Impact of the SARS‐CoV‐2 Virus // Viruses. 2023. V. 15. P. 4. doi:10.3390/v15040934; Baertl S., Pietsch C., Maier M., Hönemann M., Bergs S., Liebert U.G. Enteroviruses in Respiratory Samples from Paediatric Patients of a Tertiary Care Hospital in Germany // Viruses. 2021. V. 13. P. 5. doi:10.3390/v13050882; Poelman R., Schölvinck E.H., Borger R., Niesters H.G., Van Leer‐Buter C. The emergence of enterovirus D68 in a Dutch University Medical Center and the necessity for routinely screening for respiratory viruses // Journal of Clinical Virology. 2015. V. 62. P. 1–5.; Andrés C., Vila J., Gimferrer L., Piñana M., Esperalba J., Codina M.G., Barnés M., Martín M.C., Fuentes F., Rubio S., et al. Surveillance of enteroviruses from paediatric patients attended at a tertiary hospital in Catalonia from 2014 to 2017 // Journal of Clinical Virology. 2019. V. 110. P. 29–35.; Kiseleva I., Grigorieva E., Larionova N., Al Farroukh M, Rudenko L. COVID‐19 in Light of Seasonal Respiratory Infections // Biology. 2020. N 9. 240. DOI:10.3390/biology9090240; Kiseleva I., Ksenafontov A. COVID‐19 Shuts Doors to Flu but Keeps Them Open to Rhinoviruses // Biology. 2021. V. 10. P. 8. doi:10.3390/biology10080733; Cai X., Wang Q., Lin G., et al. Respiratory virus infections among children in South China // Journal of Medical Virology. 2014. V. 86. P. 1249–1255.; Tabatabai J., Ihling C.M., Manuel B., Rehbein R.M., Schnee S.V., Hoos J., Pfeil J., Grulich‐Henn J., Schnitzler P. Viral Etiology and Clinical Characteristics of Acute Respiratory Tract Infections in Hospitalized Children in Southern Germany (2014–2018) // Open Forum Infectious Diseases. 2023. V. 10. N 3. DOI:10.1093/ofid/ofad110; Fine J., Bray‐Aschenbrenner A., Williams H., Buchanan P., Werner J. The Resource Burden of Infections With Rhinovirus/Enterovirus, Influenza, and Respiratory Syncytial Virus in Children // Clinical Pediatrics (Phila). 2019. V. 58. Ed. 2. P. 177–184. DOI:10.1177/0009922818809483.; https://ecodag.elpub.ru/ugro/article/view/3010Test

  4. 4
    دورية أكاديمية

    المصدر: Rossiyskiy Vestnik Perinatologii i Pediatrii (Russian Bulletin of Perinatology and Pediatrics); Том 69, № 1 (2024); 66-73 ; Российский вестник перинатологии и педиатрии; Том 69, № 1 (2024); 66-73 ; 2500-2228 ; 1027-4065

    وصف الملف: application/pdf

    العلاقة: https://www.ped-perinatology.ru/jour/article/view/1940/1460Test; Довнар-Запольская О.Н. Лихорадка неясного генеза у детей: этиология, выбор оптимальной жаропонижающей терапии. Педиатрия. Восточная Европа 2018; 6(3): 496–501; Таточенко В.К., Бакрадзе М.Д. Лихорадка неясной этиологии у детей. Инфекционные болезни 2008; 6(2): 78–81; Antoon J.W., Peritz D.C., Parsons M.R., Skinner A.C., Lohr J.A. Etiology and Resource Use of Fever of Unknown Origin in Hospitalized Children. Hosp Pediatr 2018; 8 (3): 135–140. DOI:10.1542/hpeds.2017–0098; Tolan R.W. Fever of unknown origin: a diagnostic approach to this vexing problem. Clin Pediatr (Phila) 2010; 49 (3): 207–213. DOI:10.1177/0009922809347799; Пикуза О.И., Сулейманова З.Я., Закирова А.М., Пикуза А.В., Рашитов Л.Ф. Синдром лихорадки неясного генеза в педиатрической практике. Современные проблемы науки и образования 2018; 6: 90; Michael G.C. Fever of Unknown Origin in Childhood. Pediatr Clin North Am 2017; 64 (1): 205–230. DOI:10.1016/j.pcl.2016.08.014; Ильмухина Л.В., Галявин А.В., Свешникова М.А. Лихорадка неясного генеза в клинике инфекционных болезней. Ульяновский медико-биологический журнал 2013; 3: 34–39; Cunha A.B., Hage J.E., Nouri Y. Recurrent fever of unknown origin (FUO): aseptic meningitis, hepatosplenomegaly, pericarditis and a double quotidian fever due to juvenile rheumatoid arthritis (JRA). Heart Lung 2012; 41 (2): 177–80. DOI:10.1016/j.hrtlng.2011.01.002; Rajeshwar D., Dipti A. Fever in Children and Fever of Unknown Origin. Indian J Pediatr 2016; 83 (1): 38–43. DOI:10.1007/s12098–015–1724–4; Rigante D., Esposito S. A roadmap for fever of unknown origin in children. Int J Immunopathol Pharmacol 2013; 26 (2): 315–26. DOI:10.1177/039463201302600205; Близнякова Д.С., Григорчук В.А. Тактика ведения детей с лихорадкой неясного генеза в амбулаторных условиях. Forcipe 2021; 4(S1): 344; Дворецкий Л.И. Лихорадка неясного генеза: реальна ли расшифровка? Медицинский вестник Северного Кавказа 2018; Т. 13(2): 422–425; Мухин Н.А. Лихорадка неясного генеза. Фарматека 2011; 19(232): 9–14; Мешкова О.И., Мельников В.Л., Гербель М.Н. Лихорадка неясного генеза у детей в практике инфекциониста. Вестник Пензенского Государственного университета 2020; 1(29): 90–95; Fusco F.M., Pisapia R., Nardiello S., Cicala S.D., Gaeta G.B., Brancaccio G. Fever of unknown origin (FUO): which are the factors influencing the final diagnosis? A 2005–2015 systematic review. BMC Infect Dis 2019; 19 (1): 653. DOI:10.1186/s12879–019–4285–8; Муковозова Л.А., Токарева А.З., Алиев Б.А., Левашова Л.Г., Сибиряков А.К., Сутормина А.В., Байтулеуова Н.Ж. Лихорадка неясного генеза. Наука и здравоохранение 2013; 3: 27–28; Dhodapkar R., Mugunthan M., Thangaveli K., Sivaraji M., Veerappan K., Gunalan A. Epstein-Barr Virus: An Infrequent Pathogen of Acute Undifferentiated Febrile Illness From a Tertiary Care Hospital in Southern India. Cureus 2021; 13 (9): 18207. DOI:10.7759/cureus.18207; Chien Y.L., Huang F. L., Huang Ch. M., Chen P. Y. Clinical approach to fever of unknown origin in children. J Microbiol Immunol Infect 2017; 50 (6): 893–898. DOI:10.1016/j.jmii.2015.08.007; Bing H., Tian-Ming Ch., Shu-Ping L., Hui-Li H., Ling-Yun G., He-Ying Ch., Shao-Ying L., Gang L. Fever of unknown origin (FUO) in children: a single-centre experience from Beijing, China. BMJ Open 2022; 12(3): 049840. DOI:10.1136/bmjopen-2021–049840; Cho Ch.Yi. , Chou-Cheng Li, Lee M.L., Hsu Ch.L. Chen Ch.J., Chang L.Y., Lo Ch.W., Chiang Sh.F., Wu K.G. Clinical analysis of fever of unknown origin in children: A 10-year experience in a northern Taiwan medical center. J Microbiol Immunol Infect 2017; 50 (1): 40–45. DOI:10.1016/j.jmii.2015.01.001; https://www.ped-perinatology.ru/jour/article/view/1940Test

  5. 5
    دورية أكاديمية

    المصدر: Meditsinskiy sovet = Medical Council; № 1 (2024); 72–81 ; Медицинский Совет; № 1 (2024); 72–81 ; 2658-5790 ; 2079-701X

    وصف الملف: application/pdf

    العلاقة: https://www.med-sovet.pro/jour/article/view/8081/7141Test; Principi N, Daleno C, Esposito S. Human rhinoviruses and severe respiratory infections: Is it possible to identify at-risk patients early? Expert Rev Anti Infect Ther. 2014;12(4):423–430. https://doi.org/10.1586/14787210.2014.890048Test.; Kenmoe S, Bowo-Ngandji A, Kengne-Nde C, Ebogo-Belobo JT, Mbaga DS, Mahamat G et al. Association between early viral LRTI and subsequent wheezing development, a meta-analysis and sensitivity analyses for studies comparable for confounding factors. PLoS ONE. 2021;16:e0249831. https://doi.org/10.1371/journal.pone.0249831Test.; Jensen ME, Mailhot G, Alos N, Rousseau E, White JH, Khamessan A, Ducharme FM. Vitamin D intervention in preschoolers with viral-i nduced asthma (DIVA): a pilot randomised controlled trial. Trials. 2016;17(1):353. https://doi.org/10.1186/s13063-016-1483-1Test.; Blanken MO, Rovers MM, Molenaar JM, Winkler-Seinstra PL, Meijer A, Kimpen JL, Bont L. Dutch RSV Neonatal Network. Respiratory syncytial virus and recurrent wheeze in healthy preterm infants. N Engl J Med. 2013;368(19):1791–1799. https://doi.org/10.1056/NEJMoa1211917Test.; Tibrewal C, Modi NS, Bajoria PS, Dave PA, Rohit RK, Patel P et al. Therapeutic Potential of Vitamin D in Management of Asthma: A Literature Review. Cureus. 2023;15(7):e41956. https://doi.org/10.7759/cureus.41956Test.; Jat KR, Khairwa A. Vitamin D and asthma in children: A systematic review and meta-analysis of observational studies. Lung India. 2017;34(4):355–363. https://doi.org/10.4103/0970-2113.209227Test.; Liu J, Dong YQ, Yin J, Yao J, Shen J, Sheng GJ et al. Meta-analysis of vitamin D and lung function in patients with asthma. Respir Res. 2019;20(1):161. https://doi.org/10.1186/s12931-019-1072-4Test.; Tareke AA, Hadgu AA, Ayana AM, Zerfu TA. Prenatal vitamin D supplementation and child respiratory health: A systematic review and meta-analysis of randomized controlled trials. World Allergy Organ J. 2020;13(12):100486. https://doi.org/10.1016/j.waojou.2020.100486Test.; Esposito S, Ballarini S, Argentiero A, Ruggiero L, Rossi GA, Principi N. Microbiota profiles in pre-school children with respiratory infections: Modifications induced by the oral bacterial lysate OM-85. Front Cell Infect Microbiol. 2022;12:789436. https://doi.org/10.3389/fcimb.2022.789436Test.; White JH. Emerging Roles of Vitamin D-Induced Antimicrobial Peptides in Antiviral Innate Immunity. Nutrients. 2022;14(2):284. https://doi.org/10.3390/nu14020284Test.; Захарова ИН, Мальцев СВ, Заплатников АЛ, Климов ЛЯ, Пампура АН, Курьянинова ВА и др. Влияние витамина D на иммунный ответ организма. Педиатрия. Consilium Medicum. 2020;(2):29–37. https://doi.org/10.26442/26586630.2020.2.200238Test.; Harrison SR, Li D, Jeffery LE, Raza K, Hewison M. Vitamin D. Autoimmune Disease and Rheumatoid Arthritis. Calcif Tissue Int. 2020;106(1):58–75. https://doi.org/10.1007/s00223-019-00577-2Test.; Kawasaki T, Kawai T. Toll-like receptor signaling pathways. Front Immunol. 2014;5:461. https://doi.org/10.3389/fimmu.2014.00461Test.; Chow KT, Gale M Jr, Loo YM. RIG-I and Other RNA Sensors in Antiviral Immunity. Annu Rev Immunol. 2018;36:667–694. https://doi.org/10.1146/annurev-immunol-042617-053309Test.; Ghaseminejad-Raeini A, Ghaderi A, Sharafi A, Nematollahi-Sani B, Moossavi M, Derakhshani A, Sarab GA. Immunomodulatory actions of vitamin D in various immune-related disorders: a comprehensive review. Front Immunol. 2023;14:950465. https://doi.org/10.3389/fimmu.2023.950465Test.; Greiller CL, Martineau AR. Modulation of the immune response to respiratory viruses by vitamin D. Nutrients. 2015;7(6):4240–4270. https://doi.org/10.3390/nu7064240Test.; Климов ЛЯ, Курьянинова ВА, Захарова ИН, Долбня СВ, Касьянова АН, Анисимов ГС и др. Роль антимикробных пептидов и витамина D в формировании противоинфекционной защиты. Педиатрия. Журнал имени Г.Н. Сперанского. 2017;96(4):171–179. https://doi.org/10.24110/0031403X-2017-96-4-171-179Test.; Barlow PG, Svoboda P, Mackellar A, Nash AA, York IA, Pohl J et al. Antiviral activity and increased host defense against influenza infection elicited by the human cathelicidin LL-37. PLoS ONE. 2011;6(10):e25333. https://doi.org/10.1371/journal.pone.0025333Test.; Singh D, Vaughan R, Kao CC. LL-37 peptide enhancement of signal transduction by Toll-like receptor 3 is regulated by pH: identification of a peptide antagonist of LL-37. J Biol Chem. 2014;289(40):27614–27624. https://doi.org/10.1074/jbc.M114.582973Test.; Scheenstra MR, van Harten RM, Veldhuizen EJA, Haagsman HP, Coorens M. Cathelicidins Modulate TLR-Activation and Inflammation. Front Immunol. 2020;11:1137. https://doi.org/10.3389/fimmu.2020.01137Test.; Gombart AF. The vitamin D-antimicrobial peptide pathway and its role in protection against infection. Future Microbiol. 2009;4(9):1151–1165. https://doi.org/10.2217/fmb.09.87Test.; Xu H, Soruri A, Gieseler RK, Peters JH. 1,25-Dihydroxyvitamin D3 exerts opposing effects to IL-4 on MHC class-II antigen expression, accessory activity, and phagocytosis of human monocytes. Scand J Immunol. 1993;38(6):535–540. https://doi.org/10.1111/j.1365-3083.1993.tb03237.xTest.; Strengert M, Jennings R, Davanture S, Hayes P, Gabriel G, Knaus UG. Mucosal reactive oxygen species are required for antiviral response: role of Duox in influenza a virus infection. Antioxid Redox Signal. 2014;20(17):2695–2709. https://doi.org/10.1089/ars.2013.5353Test.; Lee YH, Lai CL, Hsieh SH, Shieh CC, Huang LM, Wu-Hsieh BA. Influenza A virus induction of oxidative stress and MMP-9 is associated with severe lung pathology in a mouse model. Virus Res. 2013;178(2):411–422. https://doi.org/10.1016/j.virusres.2013.09.011Test.; Bryson KJ, Nash AA, Norval M. Does vitamin D protect against respiratory viral infections? Epidemiol Infect. 2014;142(9):1789–1801. https://doi.org/10.1017/S0950268814000193Test.; Zhou L, Lin Q, Sonnenberg GF. Metabolic control of innate lymphoid cells in health and disease. Nat Metab. 2022;4(12):1650–1659. https://doi.org/10.1038/s42255-022-00685-8Test.; Greiller CL, Suri R, Jolliffe DA, Kebadze T, Hirsman AG, Griffiths CJ et al. Vitamin D attenuates rhinovirus-induced expression of intercellular adhesion molecule-1 (ICAM-1) and platelet-activating factor receptor (PAFR) in respiratory epithelial cells. J Steroid Biochem Mol Biol. 2019;187:152–159. https://doi.org/10.1016/j.jsbmb.2018.11.013Test.; Nicolae M, Mihai CM, Chisnoiu T, Balasa AL, Frecus CE, Mihai L et al. Immunomodulatory Effects of Vitamin D in Respiratory Tract Infections and COVID-19 in Children. Nutrients. 2023;15(15):3430. https://doi.org/10.3390/nu15153430Test.; de Jong MD, Simmons CP, Thanh TT, Hien VM, Smith GJ, Chau TN et al. Fatal outcome of human influenza A (H5N1) is associated with high viral load and hypercytokinemia. Nat Med. 2006;12(10):1203–1207. https://doi.org/10.1038/nm1477Test.; Khare D, Godbole NM, Pawar SD, Mohan V, Pandey G, Gupta S et al. Calcitriol [1, 25[OH]2 D3] pre- and post-treatment suppresses inflammatory response to influenza A (H1N1) infection in human lung A549 epithelial cells. Eur J Nutr. 2013;52(4):1405–1415. https://doi.org/10.1007/s00394-012-0449-7Test.; Khoo AL, Chai LY, Koenen HJ, Sweep FC, Joosten I, Netea MG, van der Ven AJ. Regulation of cytokine responses by seasonality of vitamin D status in healthy individuals. Clin Exp Immunol. 2011;164(1):72–79. https://doi.org/10.1111/j.1365-2249.2010.04315.xTest.; Pant A, Yao X, Lavedrine A, Viret C, Dockterman J, Chauhan S et al. Interactions of Autophagy and the Immune System in Health and Diseases. Autophagy Rep. 2022;1(1):438–515. https://doi.org/10.1080/27694127.2022.2119743Test.; Richetta C, Faure M. Autophagy in antiviral innate immunity. Cell Microbiol. 2013;15(3):368–376. https://doi.org/10.1111/cmi.12043Test.; Mrad MF, El Ayoubi NK, Esmerian MO, Kazan JM, Khoury SJ. Effect of vitamin D replacement on immunological biomarkers in patients with multiple sclerosis. Clin Immunol. 2017;181:9–15. https://doi.org/10.1016/j.clim.2017.05.017Test.; Balla M, Merugu GP, Konala VM, Sangani V, Kondakindi H, Pokal M et al. Back to basics: re-view on vitamin D and respiratory viral infections including COVID-19. J Community Hosp Intern Med Perspect. 2020;10(6):529–536. https://doi.org/10.1080/20009666.2020.1811074Test.; Konijeti GG, Arora P, Boylan MR, Song Y, Huang S, Harrell F et al. Vitamin D supplementation modulates T cell-mediated immunity in humans: results from a randomized control trial. J Clin Endocrinol Metab. 2016;101(2):533–538. https://doi.org/10.1210/jc.2015-3599Test.; Sarkar S, Hewison M, Studzinski GP, Li YC, Kalia V. Role of vitamin D in cytotoxic T lymphocyte immunity to pathogens and cancer. Crit Rev Clin Lab Sci. 2016;53(2):132–145. https://doi.org/10.3109/10408363.2015.1094443Test.; Zdrenghea MT, Makrinioti H, Bagacean C, Bush A, Johnston SL, Stanciu LA. Vitamin D modulation of innate immune responses to respiratory viral infections. Rev Med Virol. 2017;27(1). https://doi.org/10.1002/rmv.1909Test.; Pfeffer PE, Hawrylowicz CM. Vitamin D in asthma: mechanisms of action and considerations for clinical trials. Chest. 2018;153(5):1229–1239. https://doi.org/10.1016/j.chest.2017.09.005Test.; Chambers ES, Hawrylowicz CM. The impact of vitamin D on regulatory T cells. Curr Allergy Asthma Rep. 2011;11(1):29–36. https://doi.org/10.1007/s11882-010-0161-8Test.; Cantorna MT. Mechanisms underlying the effect of vitamin D on the immune system. Proc Nutr Soc. 2010;69(3):286–289. https://doi.org/10.1017/S0029665110001722Test.; Chung C, Silwal P, Kim I, Modlin RL, Jo EK. Vitamin D-cathelicidin axis: at the crossroads between protective immunity and pathological inflammation during infection. Immune Netw. 2020;20(2):e12. https://doi.org/10.4110/in.2020.20.e12Test; Kreindler JL, Steele C, Nguyen N, Chan YR, Pilewski JM, Alcorn JF et al. Vitamin D3 attenuates Th2 responses to Aspergillus fumigatus mounted by CD4+ T cells from cystic fibrosis patients with allergic bronchopulmonary aspergillosis. J Clin Invest. 2010;120(9):3242–3254. https://doi.org/10.1172/JCI42388Test.; Arshi S, Fallahpour M, Nabavi M, Bemanian MH, Javad-Mousavi SA, Nojomi M et al. The effects of vitamin D supplementation on airway functions in mild to moderate persistent asthma. Ann Allergy Asthma Immunol. 2014;113(4):404–409. https://doi.org/10.1016/j.anai.2014.07.005Test.; Staeva-Vieira TP, Freedman LP. 1,25-dihydroxyvitamin D3 inhibits IFN-gamma and IL-4 levels during in vitro polarization of primary murine CD4+ T cells. J Immunol. 2002;168(3):1181–1189. https://doi.org/10.4049/jimmunol.168.3.1181Test.; Terrier B, Derian N, Schoindre Y, Chaara W, Geri G, Zahr N et al. Restoration of regulatory and effector T cell balance and B cell homeostasis in systemic lupus erythematosus patients through vitamin D supplementation. Arthritis Res Ther. 2012;14(5):R221. https://doi.org/10.1186/ar4060Test.; He W, Deng Y, Luo X. Bibliometric analysis of the global research status and trends of the association between Vitamin D and infections from 2001 to 2021. Front Public Health. 2022;10:934106. https://doi.org/10.3389/fpubh.2022.934106Test.; Chirumbolo S, Bjørklund G, Sboarina A, Vella A. The role of vitamin D in the immune system as a pro-survival molecule. Clin Ther. 2017;39(5):894–916. https://doi.org/10.1016/j.clinthera.2017.03.021Test.; Souto Filho JTD, de Andrade AS, Ribeiro FM, Alves PAS, Simonini VRF. Impact of vitamin D deficiency on increased blood eosinophil counts. Hematol Oncol Stem Cell Ther. 2018;11(1):25–29. https://doi.org/10.1016/j.hemonc.2017.06.003Test.; Slack MA, Ogbogu PU, Phillips G, Platts-Mills TA, Erwin EA. Serum vitamin D levels in a cohort of adult and pediatric patients with eosinophilic esophagitis. Ann Allergy Asthma Immunol. 2015;115(1):45–50. https://doi.org/10.1016/j.anai.2015.04.016Test.; Murdaca G, Allegra A, Tonacci A, Musolino C, Ricciardi L, Gangemi S. Mast cells and vitamin D status: a clinical and biological link in the onset of allergy and bone diseases. Biomedicines. 2022;10(8):1877. https://doi.org/10.3390/biomedicines10081877Test.; Hall SC, Fischer KD, Agrawal DK. The impact of vitamin D on asthmatic human airway smooth muscle. Expert Rev Respir Med. 2016;10(2):127–135. https://doi.org/10.1586/17476348.2016.1128326Test.; Szymczak I, Pawliczak R. The active metabolite of vitamin D3 as a potential immunomodulator. Scand J Immunol. 2016;83(2):83–91. https://doi.org/10.1111/sji.12403Test.; Cantorna MT, Snyder L, Lin YD, Yang L. Vitamin D and 1,25(OH)2D regulation of T cells. Nutrients. 2015;7(4):3011–3021. https://doi.org/10.3390/nu7043011Test.; Jolliffe DA, Greenberg L, Hooper RL, Griffiths CJ, Camargo CA Jr, Kerley CP et al. Vitamin D supplementation to prevent asthma exacerbations: a systematic review and meta-analysis of individual participant data. Lancet Respir Med. 2017;5(11):881–890. https://doi.org/10.1016/S22132600Test(17)30306-5.; Bishop E, Ismailova A, Dimeloe S, Hewison M, White JH. Vitamin D and immune regulation: antibacterial, antiviral, anti-inflammatory. JBMR Plus. 2020;5(1):e10405. https://doi.org/10.1002/jbm4.10405Test.; Hartmann B, Heine G, Babina M, Steinmeyer A, Zügel U, Radbruch A, Worm M. Targeting the vitamin D receptor inhibits the B cell-dependent allergic immune response. Allergy. 2011;66(4):540–548. https://doi.org/10.1111/j.1398-9995.2010.02513.xTest.; Rosser FJ, Han YY, Forno E, Bacharier LB, Phipatanakul W, Guilbert TW et al. Effect of vitamin D supplementation on total and allergen-s pecific IgE in children with asthma and low vitamin D levels. J Allergy Clin Immunol. 2022;149(1):440–444.e2. https://doi.org/10.1016/j.jaci.2021.05.037Test.; Ali NS, Nanji K. A Review on the role of vitamin D in asthma. Cureus. 2017;9(5):e1288. https://doi.org/10.7759/cureus.1288Test.; Mailhot G, White JH. Vitamin D and immunity in infants and children. Nutrients. 2020;12(5):1233. https://doi.org/10.3390/nu12051233Test.; Feng L, Meng T, Qi Y, Athari SS, Chen X. Study effect of vitamin D on the immunopathology responses of the bronchi in murine model of asthma. Iran J Allergy Asthma Immunol. 2021;20(5):509–519. https://doi.org/10.18502/ijaai.v20i5.7399Test.; Banerjee A, Panettieri R Jr. Vitamin D modulates airway smooth muscle function in COPD. Curr Opin Pharmacol. 2012;12(3):266–274. https://doi.org/10.1016/j.coph.2012.01.014Test.; Gupta A, Sjoukes A, Richards D, Banya W, Hawrylowicz C, Bush A, Saglani S. Relationship between serum vitamin D, disease severity, and airway remodeling in children with asthma. Am J Respir Crit Care Med. 2011;184(12):1342–1349. https://doi.org/10.1164/rccm.201107-1239OCTest.; Lai G, Wu C, Hong J, Song Y. 1,25-Dihydroxyvitamin D3 (1,25-(OH)(2) D(3)) attenuates airway remodeling in a murine model of chronic asthma. J Asthma. 2013;50(2):133–140. https://doi.org/10.3109/02770903.2012.738269Test.; Johnson LA, Sauder KL, Rodansky ES, Simpson RU, Higgins PD. CARD-024, a vitamin D analog, attenuates the pro-fibrotic response to substrate stiffness in colonic myofibroblasts. Exp Mol Pathol. 2012;93(1):91–98. https://doi.org/10.1016/j.yexmp.2012.04.014Test.; Berraies A, Hamzaoui K, Hamzaoui A. Link between vitamin D and airway remodeling. J Asthma Allergy. 2014;7:23–30. https://doi.org/10.2147/JAA.S46944Test.; Salmanpour F, Kian N, Samieefar N, Khazeei Tabari MA, Rezaei N. Asthma and vitamin D deficiency: occurrence, immune mechanisms, and new perspectives. J Immunol Res. 2022;2022:6735900. https://doi.org/10.1155/2022/6735900Test.; Telcian AG, Zdrenghea MT, Edwards MR, Laza-Stanca V, Mallia P, Johnston SL, Stanciu LA. Vitamin D increases the antiviral activity of bronchial epithelial cells in vitro. Antiviral Res. 2017;137:93–101. https://doi.org/10.1016/j.antiviral.2016.11.004Test.; Schögler A, Muster RJ, Kieninger E, Casaulta C, Tapparel C, Jung A et al. Vitamin D represses rhinovirus replication in cystic fibrosis cells by inducing LL-37. Eur Respir J. 2016;47(2):520–530. https://doi.org/10.1183/13993003.00665-2015Test.; Hansdottir S, Monick MM, Hinde SL, Lovan N, Look DC, Hunninghake GW. Respiratory epithelial cells convert inactive vitamin D to its active form: potential effects on host defense. J Immunol. 2008;181(10):7090–7099. https://doi.org/10.4049/jimmunol.181.10.7090Test.; Hansdottir S, Monick MM, Lovan N, Powers L, Gerke A, Hunninghake GW. Vitamin D decreases respiratory syncytial virus induction of NF-kappaBlinked chemokines and cytokines in airway epithelium while maintaining the antiviral state. J Immunol. 2010;184(2):965–974. https://doi.org/10.4049/jimmunol.0902840Test.; Stoppelenburg AJ, von Hegedus JH, Huis in’t Veld R, Bont L, Boes M. Defective control of vitamin D receptor-mediated epithelial STAT1 signalling predisposes to severe respiratory syncytial virus bronchiolitis. J Pathol. 2014;232(1):57–64. https://doi.org/10.1002/path.4267Test.; Cantorna MT. Vitamin D and lung infection. Infect Immun. 2016;84(11): 3094–3096. https://doi.org/10.1128/IAI.00679-16Test.; Brockman-Schneider RA, Pickles RJ, Gern JE. Effects of vitamin D on airway epithelial cell morphology and rhinovirus replication. PLoS ONE. 2014;9(1):e86755. https://doi.org/10.1371/journal.pone.0086755Test.; Fitch N, Becker AB, HayGlass KT. Vitamin D [1,25(OH)2D3] differentially regulates human innate cytokine responses to bacterial versus viral pattern recognition receptor stimuli. J Immunol. 2016;196(7):2965–2972. https://doi.org/10.4049/jimmunol.1500460Test.; Maxwell CS, Carbone ET, Wood RJ. Better newborn vitamin D status lowers RSV-associated bronchiolitis in infants. Nutr Rev. 2012;70:548–552. https://doi.org/10.1111/j.1753-4887.2012.00517.xTest.; Grant CC, Kaur S, Waymouth E, Mitchell EA, Scragg R, Ekeroma A et al. Reduced primary care respiratory infection visits following pregnancy and infancy vitamin D supplementation: a randomised controlled trial. Acta Paediatrica. 2015;104(4):396–404. https://doi.org/10.1111/apa.12819Test.; Karatekin G, Kaya A, Salihoğlu O, Balci H, Nuhoğlu A. Association of subclinical vitamin D deficiency in newborns with acute lower respiratory infection and their mothers. Eur J Clin Nutr. 2009;63(4):473–477. https://doi.org/10.1038/sj.ejcn.1602960Test.; Bodin J, Mihret A, Holm-Hansen C, Dembinski JL, Trieu MC, Tessema B et al. Vitamin D deficiency is associated with increased use of antimicrobials among preschool girls in Ethiopia. Nutrients. 2019;11(3):575. https://doi.org/10.3390/nu11030575Test.; Захарова ИН, Цуцаева АН, Курьянинова ВА, Климов ЛЯ, Долбня СВ, Заплатников АЛ и др. Влияние комплаенса приема холекальциферола на частоту респираторных инфекций у детей раннего возраста. Медицинский совет. 2020;(18):142–150. https://doi.org/10.21518/2079701X-2020-18-142-150Test.; Захарова ИН, Климов ЛЯ, Долбня СВ, Курьянинова ВА, Мальцев СВ, Малявская СИ и др. Пролонгированный прием холекальциферола – основа эффективной профилактики гиповитаминоза D в раннем возрасте. Медицинский совет. 2020;(10):16–26. https://doi.org/10.21518/2079-701X-2020-10-16-26Test.; Hurwitz JL, Jones BG, Penkert RR, Gansebom S, Sun Y, Tang L et al. Low retinol-binding protein and vitamin D levels are associated with severe outcomes in children hospitalized with lower respiratory tract infection and respiratory syncytial virus or human metapneumovirus detection. J Pediatr. 2017;187:323–327. https://doi.org/10.1016/j.jpeds.2017.04.061Test.; Brett NR, Lavery P, Agellon S, Vanstone CA, Goruk S, Field CJ, Weiler HA. Vitamin D status and immune health outcomes in a cross-s ectional study and a randomized trial of healthy young children. Nutrients. 2018;10(6):680. https://doi.org/10.3390/nu10060680Test.; Saraf R, Jensen BP, Camargo CA, Morton SMB, Jing M, Sies CW, Grant CC. Vitamin D status at birth and acute respiratory infection hospitalisation during infancy. Paediatr Perinat Epidemiol. 2021;35(5):540–548. https://doi.org/10.1111/ppe.12755Test.; Urashima M, Segawa T, Okazaki M, Kurihara M, Wada Y, Ida H. Randomized trial of vitamin D supplementation to prevent seasonal influenza A in schoolchildren. Am J Clin Nutr. 2010;91(5):1255–1260. https://doi.org/10.3945/ajcn.2009.29094Test.; Martineau AR, Jolliffe DA, Hooper RL, Greenberg L, Aloia JF, Bergman P et al. Vitamin D supplementation to prevent acute respiratory tract infections: Systematic review and meta-analysis of individual participant data. BMJ. 2017;356:i6583. https://doi.org/10.1136/bmj.i6583Test.; Jolliffe DA, Camargo CA Jr, Sluyter JD, Aglipay M, Aloia JF, Ganmaa D et al. Vitamin D supplementation to prevent acute respiratory infections: a systematic review and meta-analysis of aggregate data from randomised controlled trials. Lancet Diabetes Endocrinol. 2021;9(5):276–292. https://doi.org/10.1016/S2213-8587Test(21)00051-6.; Majak P, Olszowiec-Chlebna M, Smejda K, Stelmach I. Vitamin D supplementation in children may prevent asthma exacerbation triggered by acute respiratory infection. J Allergy Clin Immunol. 2011;127(5):1294–1296. https://doi.org/10.1016/j.jaci.2010.12.016Test.; Jartti T, Ruuskanen O, Mansbach JM, Vuorinen T, Camargo CA. Low serum 25-hydroxyvitamin D levels are associated with increased risk of viral coinfections in wheezing children. J Allergy Clin Immunol. 2010;126(5):1074-1076.e4. https://doi.org/10.1016/j.jaci.2010.09.004Test.; Camargo CA, Rifas-Shiman SL, Litonjua AA, Rich-Edwards JW, Weiss ST, Gold DR et al. Maternal intake of vitamin D during pregnancy and risk of recurrent wheeze in children at 3 y of age. Am J Clin Nutr. 2007;85(3):788–795. https://doi.org/10.1093/ajcn/85.3.788Test.; Anderson LN, Chen Y, Omand JA, Birken CS, Parkin PC, To T, Maguire JL. Vitamin D exposure during pregnancy, but not early childhood, is associated with risk of childhood wheezing. J Dev Orig Health Dis. 2015;6(4):308–316. https://doi.org/10.1017/S2040174415001063Test.; Wei Z, Zhang J, Yu X. Maternal vitamin D status and childhood asthma, wheeze, and eczema: A systematic review and meta-analysis. Pediatr Allergy Immunol. 2016;27(60):612–619. https://doi.org/10.1111/pai.12593Test.; Christensen N, Sondergaard J, Fisker N, Christesen HT. Infant respiratory tract infections or wheeze and maternal vitamin D in pregnancy: a systematic review. Pediatr Infect Dis J. 2017;36(4):384–391. https://doi.org/10.1097/INF.0000000000001452Test.; Pacheco-Gonzalez RM, Garcia-Marcos L, Morales E. Prenatal vitamin D status and respiratory and allergic outcomes in childhood: a metaanalysis of observational studies. Pediatr Allergy Immunol. 2018;29(3):243–253. https://doi.org/10.1111/pai.12876Test.; Shen SY, Xiao WQ, Lu JH, Yuan MY, He JR, Xia HM et al. Early life vitamin D status and asthma and wheeze: a systematic review and meta-analysis. BMC Pulm Med. 2018;18(1):120. https://doi.org/10.1186/s12890-018-0679-4Test.; Toivonen L, Hasegawa K, Ajami NJ, Celedón JC, Mansbach JM, Petrosino JF, Camargo CA Jr. Circulating 25-hydroxyvitamin D, nasopharyngeal microbiota, and bronchiolitis severity. Pediatr Allergy Immunol. 2018;29(8):877–880. https://doi.org/10.1111/pai.12977Test.; Balan KV, Babu US, Godar DE, Calvo MS. Vitamin D and respiratory infections in infants and toddlers: a nutri-shine perspective. In: Watson RR (ed.). Handbook of vitamin D in human health. Wageningen: Wageningen Academic Publishers; 2013, pp. 276–297. Available at: https://link.springer.com/chapter/10.3920/978-90-8686-7653_16#Abs00161Test.; Aglipay M, Birken CS, Parkin PC, Loeb MB, Thorpe K, Chen Y et al. TARGet Kids! Collaboration. Effect of high-dose vs standard-dose wintertime vitamin D supplementation on viral upper respiratory tract infections in young healthy children. JAMA. 2017;318(3):245–254. https://doi.org/10.1001/jama.2017.8708Test.; Pham H, Waterhouse M, Baxter C, Duarte Romero B, McLeod DSA, Armstrong BK et al. The effect of vitamin D supplementation on acute respiratory tract infection in older Australian adults: an analysis of data from the D-Health Trial. Lancet Diabetes Endocrinol. 2021;9(2):69–81. https://doi.org/10.1016/S2213-8587Test(20)30380-6.; Camargo CA, Sluyter J, Stewart AW, Khaw KT, Lawes CMM, Toop L et al. Effect of monthly high-dose vitamin D supplementation on acute respiratory infections in older adults: a randomized controlled trial. Clin Infect Dis. 2020;71(2):311–317. https://doi.org/10.1093/cid/ciz801Test.; Ganmaa D, Uyanga B, Zhou X, Gantsetseg G, Delgerekh B, Enkhmaa D et al. Vitamin D supplements for prevention of tuberculosis infection and disease. N Engl J Med. 2020;383(4):359–368. https://doi.org/10.1056/NEJMoa1915176Test.; Lee MD, Lin CH, Lei WT, Chang HY, Lee HC, Yeung CY et al. Does Vitamin D Deficiency Affect the Immunogenic Responses to Influenza Vaccination? A systematic review and meta-analysis. Nutrients. 2018;10(4):409. https://doi.org/10.3390/nu10040409Test.; Yakoob MY, Salam RA, Khan FR, Bhutta ZA. Vitamin D supplementation for preventing infections in children under five years of age. Cochrane Database Syst Rev. 2016;11(11):CD008824. https://doi.org/10.1002/14651858.CD008824.pub2Test.; Beigelman A, Castro M, Schweiger TL, Wilson BS, Zheng J, Yin-DeClue H et al. Vitamin D Levels Are Unrelated to the Severity of Respiratory Syncytial Virus Bronchiolitis Among Hospitalized Infants. J Pediatric Infect Dis Soc. 2015;4(3):182–188. https://doi.org/10.1093/jpids/piu042Test.; Myint A, Sauk JS, Limketkai BN. The role of vitamin D in inflammatory bowel disease: A guide for clinical practice. Expert Rev Gastroenterol Hepatol. 2020;14(7):539–552. https://doi.org/10.1080/17474124.2020.1775580Test.; https://www.med-sovet.pro/jour/article/view/8081Test

  6. 6
    دورية أكاديمية

    المصدر: Acta Biomedica Scientifica; Том 8, № 6 (2023); 31-40 ; 2587-9596 ; 2541-9420

    وصف الملف: application/pdf

    العلاقة: https://www.actabiomedica.ru/jour/article/view/4491/2679Test; Biron CA. Innate immunity. In: Katze MG, Korth MJ, Law GL, Nathenson N (eds). Viral pathogenesis – From basics to systems biology. London: Academic Press; 2016: 41-55.; Bourdon M, Manet K, Montagutelli X. Host genetic susceptibility to viral infections: The role of type I interferon induction. Genes Immun. 2020; 21: 365-379. doi:10.1038/s41435-020-00116-2; Sun L, Wang X, Saredy J, Yuan Z, Yang X, Wang H. Innate-adaptive immunity interplay and redox regulation in immune response. Redox Biol. 2020; 37: 101759. doi:10.1016/j.redox.2020.101759; Rungelrath V, Kobayashi SD, DeLeo FR. Neutrophils in innate immunity and systems biology-level approaches. Wiley Interdiscip Rev Syst Biol Med. 2020; 12(1): e1458. doi:10.1002/wsbm.1458; Chen Y, Lu D, Churov A, Fu R. Research progress on NK cell receptors and their signaling pathways. Mediators Inflamm. 2020; 2020: 6437057. doi:10.1155/2020/6437057; Bojang E, Ghuman H, Kumwenda P, Hall RA. Immune sensing of Candida albicans. J Fungi (Basel). 2021; 7(2): 119. doi:10.3390/jof7020119; Huang Y, Huaiu D, Ke R. Principles of effective and robust innate immune response to viral infections: A multiplex network analysis. Front Immunol. 2019; 10: 1736. doi:10.3389/fimmu.2019.01736; Silin DS, Lyubomska OV, Ershov FI, Frolov VM, Kutsyna GA. Synthetic and natural immunomodulators acting as interferon inducers. Curr Pharmaceut Design. 2009; 15(11): 1238-1247. doi:10.2174/138161209787846847; Gonzalez-Navajas JM, Lee J, David M, Raz E. Immunomodulatory functions of type I interferons. Nat Rev Immunol. 2012; 12: 125-135. doi:10.1038/nri3133; Chiale C, Greene TT, Zuniga EI. Interferon induction, evasion, and paradoxical roles during SARS-CoV-2 I. Immunol Rev. 2022; 309(1): 12-24. doi:10.1111/imr.13113; Made CI, Simons A, Schuurs-Hoeijmakers J. Presence of genetic variants among young men with severe COVID-19. JAMA. 2020; 324: 663-673. doi:10.1001/jama.2020.13719; Rebl A, Goldammer T. Under control: The innate immunity of fish from the inhibitors’ perspective. Fish Shellfish Immunol. 2018; 77: 328-349. doi:10.1016/j.fsi.2018.04.016; Mifsud EJ, Kuba M, Barr IG. Innate immune responses to influenza virus infections in the upper respiratory tract. Viruses. 2021; 13: 2009. doi:10.3390/v13102090; Цыган В.Н., Новик А.А., Дулатова Н.Х., Жоголев К.Д., Козлов В.К., Зубов Н.Н. Синдром хронической усталости и иммунной дисфункции. СПб.: Издательство ВМА; 2001.; Арцимович Н.Г., Глушина Т.С. Синдром хронической усталости. М.: Научный мир; 2002.; Chen X, Shen Y, Wu M, Zhao J. IRF3 from mandarin fish thymus initiates interferon transcription. Fish Physiol Biochem. 2019; 45: 133-144. doi:10.1007/s10695-018-0543-8; Pandey R, Dikhit MR, Kumar A, Dehury B, Pandey K, Topno RK, et al. Evaluating the immunomodulatory responses of LdODC-derived MHC Class-II restricted peptides against VL. Parazite Immunol. 2020; 42(4): e12699. doi:10.1007/s10695-018-0543-8; Смирнов В.С., Селиванов А.А. Биорегуляторы в профилактике и лечении гриппа. СПб.: Наука; 1996.; Шульдяков А.А., Ляпина Е.П., Соболева Л.А., Романцов М.Г., Перминова Т.А., Кузнецов В.И., и др. Использование индукторов интерферона в клинике инфекционных болезней. Антибиотики и химиопрофилактика. 2016; 63: 3-4.; Ленева И.А., Смирнов В.С., Кудрявцева Т.А., Файзулоев Е.Б., Грачева А.В., Карташова Н.П., и др. Местная противовирусная активность препарата «Тимоген®», спрей назальный дозированный, в отношении коронавируса SARS-CoV-2 in vitro. Антибиотики и Химиотерапия. 2021; 66(5-6): 11-16. doi:10.37489/0235-2990-2021-66-5-6-11-16; Смирнов В.С., Зарубаев В.В., Петленко С.В. Биология возбудителей и контроль гриппа и ОРВИ. СПб.: Гиппократ; 2020.; Родионов А.Н., Хавинсон В.Х., Барбинов В.В. Иммунокорригирующая терапия пиодермий, обусловленных стафилококками, полирезистентными к антибиотикам. Вестник дерматологии и венерологии. 1990; 1: 42-45.; Пинелис И.С., Кузник Б.И., Пинелис Ю.И. Особенности биорегулирующей терапии стоматологических заболеваний. Забайкальский медицинский вестник. 2019; 1: 173-186.; https://www.actabiomedica.ru/jour/article/view/4491Test

  7. 7
  8. 8
  9. 9
    دورية أكاديمية

    المصدر: Сборник статей

    وصف الملف: application/pdf

    العلاقة: Актуальные вопросы современной медицинской науки и здравоохранения: сборник статей VIII Международной научно-практической конференции молодых учёных и студентов, Екатеринбург, 19-20 апреля 2023 г.; Анализ отказов в приемном отделении стационара пациентам, доставленным бригадами скорой медицинской помощи в период распространения острых, респираторных вирусных инфекций / С. А. Кузнецова, Е. А. Говейно, Д. Ф. Хусаинова [и др.]. – Текст электронный. // Актуальные вопросы современной медицинской науки и здравоохранения: сборник статей VIII Международной научно-практической конференции молодых учёных и студентов, Екатеринбург, 19-20 апреля 2023 г. – Екатеринбург : УГМУ, 2023. – C. 183-188.; http://elib.usma.ru/handle/usma/13270Test

  10. 10
    دورية أكاديمية

    المؤلفون: Мэн Жу, Meng Ru

    وصف الملف: application/pdf

    العلاقة: Политическая лингвистика. 2022. № 5 (95); Мэн Жу. Полимодальная метафора в российской карикатуре в контексте теории концептуальной интеграции : (на примере темы эпидемии COVID-19) / Мэн Жу // Политическая лингвистика. — 2022. — № 5 (95). — С. 230-236.; http://elar.uspu.ru/handle/uspu/17680Test