يعرض 1 - 8 نتائج من 8 نتيجة بحث عن '"А. Н. Поляков"', وقت الاستعلام: 1.05s تنقيح النتائج
  1. 1
    دورية أكاديمية

    المصدر: Meditsinskiy sovet = Medical Council; № 22 (2023); 64-72 ; Медицинский Совет; № 22 (2023); 64-72 ; 2658-5790 ; 2079-701X

    وصف الملف: application/pdf

    العلاقة: https://www.med-sovet.pro/jour/article/view/7992/7080Test; European Association for the Study of the Liver. EASL Clinical Practice Guidelines: Management of hepatocellular carcinoma. J Hepatol. 2018;69(1):182–236. https://doi.org/10.1016/j.jhep.2018.03.019Test.; Каприн АД, Старинский ВВ, Петрова ГВ (ред.). Злокачественные новооб­ разования в России в 2018 г. (заболеваемость и смертность). М.: МНИОИ им. П.А. Герцена – филиал ФГБУ «НМИЦ радиологии» Минздрава России; 2019. 250 с. Режим доступа: https://glavonco.ru/cancer_registerTest/Забол_2018_Электр.pdf.; Finn RS, Qin S, Ikeda M, Galle PR, Ducreux M, Kim TY et al. Atezolizumab plus Bevacizumab in Unresectable Hepatocellular Carcinoma. N Engl J Med. 2020;382(20):1894–1905. https://doi.org/10.1056/NEJMoa1915745Test.; Abou-Alfa GK, Chan SL, Kudo M, Lau G, Kelley RK, Furuse J et al. Phase 3 randomized, open-label, multicenter study of tremelimumab (T) and durvalumab (D) as first-line therapy in patients (pts) with unresectable hepatocellular carcinoma (uHCC): HIMALAYA. J Clin Oncol. 2022;40(Suppl. 4):379. https://doi.org/10.1200/JCO.2022.40.4_suppl.379Test.; Bismuth H, Chiche L, Adam R, Castaing D, Diamond T, Dennison A. Liver resection versus transplantation for hepatocellular carcinoma in cirrhotic patients. Ann Surg. 1993;218(2):145–151. https://doi.org/10.1097/00000658-199308000-00005Test.; Brown RS Jr, Russo MW, Lai M, Shiffman ML, Richardson MC, Everhart JE, Hoofnagle JH. A survey of liver transplantation from living adult donors in the United States. N Engl J Med. 2003;348(9):818–825. https://doi.org/10.1056/NEJMsa021345Test.; Llovet JM, Ricci S, Mazzaferro V, Hilgard P, Gane E, Blanc JF et al. Sorafenib in advanced hepatocellular carcinoma. N Engl J Med. 2008;359(4):378–390. https://doi.org/10.1056/NEJMoa0708857Test.; Cheng AL, Kang YK, Chen Z, Tsao CJ, Qin S, Kim JS et al. Efficacy and safety of sorafenib in patients in the Asia-Pacific region with advanced hepatocellular carcinoma: a phase III randomised, double-blind, placebo-controlled trial. Lancet Oncol. 2009;10(1):25–34. https://doi.org/10.1016/S1470-2045Test(08)70285-7.; Reig M, Torres F, Rodriguez-Lope C, Forner A, LLarch N, Rimola J et al. Early dermatologic adverse events predict better outcome in HCC patients treated with sorafenib. J Hepatol. 2014;61(2):318–324. https://doi.org/10.1016/j.jhep.2014.03.030Test.; Stjepanovic N, Capdevila J. Multikinase inhibitors in the treatment of thyroid cancer: specific role of lenvatinib. Biologics. 2014;8:129–139. https://doi.org/10.2147/BTT.S39381Test.; Cheng AL, Finn RS, Qin S, Han KH, Ikeda K, Piscaglia F et al. Phase III trial of lenvatinib (LEN) vs sorafenib (SOR) in first-line treatment of patients (pts) with unresectable hepatocellular carcinoma (uHCC). J Clin Oncol. 2017;35(Suppl. 15):4001. https://doi.org/10.1200/JCO.2017.35.15_suppl.4001Test.; Kudo M, Finn RS, Qin S, Han KH, Ikeda K, Piscaglia F et al. Lenvatinib versus sorafenib in first-line treatment of patients with unresectable hepatocellular carcinoma: a randomised phase 3 non-inferiority trial. Lancet. 2018;391(10126):1163–1173. https://doi.org/10.1016/S0140-6736Test(18)30207-1.; Morse MA, Sun W, Kim R, He AR, Abada PB, Mynderse M, Finn RS. The Role of Angiogenesis in Hepatocellular Carcinoma. Clin Cancer Res. 2019;25(3):912–920. https://doi.org/10.1158/1078-0432.CCR-18-1254Test.; Calderaro J, Rousseau B, Amaddeo G, Mercey M, Charpy C, Costentin C et al. Programmed death ligand 1 expression in hepatocellular carcinoma: Relationship With clinical and pathological features. Hepatology. 2016;64(6):2038–2046. https://doi.org/10.1002/hep.28710Test.; Hegde PS, Wallin JJ, Mancao C. Predictive markers of anti-VEGF and emerging role of angiogenesis inhibitors as immunotherapeutics. Semin Cancer Biol. 2018;52(Pt 2):117–124. https://doi.org/10.1016/j.semcancer.2017.12.002Test.; Wattenberg MM, Damjanov N, Kaplan DE. Utility of bevacizumab in advanced hepatocellular carcinoma: A veterans affairs experience. Cancer Med. 2019;8(4):1442–1446. https://doi.org/10.1002/cam4.2015Test.; Finn RS, Ryoo BY, Merle P, Kudo M, Bouattour M, Lim HY et al. Results of KEYNOTE-240: phase 3 study of pembrolizumab (Pembro) vs best supportive care (BSC) for second line therapy in advanced hepatocellular carcinoma (HCC). J Clin Oncol. 2019;37(Suppl. 15):4004. https://doi.org/10.1200/JCO.2019.37.15_suppl.4004Test.; Reck M, Mok TSK, Nishio M, Jotte RM, Cappuzzo F, Orlandi F et al. Atezolizumab plus bevacizumab and chemotherapy in non-small-cell lung cancer (IMpower150): key subgroup analyses of patients with EGFR mutations or baseline liver metastases in a randomised, open-label phase 3 trial. Lancet Respir Med. 2019;7(5):387–401. https://doi.org/10.1016/S2213-2600Test(19)30084-0.; Wallin JJ, Bendell JC, Funke R, Sznol M, Korski K, Jones S et al. Atezolizumab in combination with bevacizumab enhances antigen-specific T-cell migration in metastatic renal cell carcinoma. Nat Commun. 2016;7:12624. https://doi.org/10.1038/ncomms12624Test.; McDermott DF, Sosman JA, Sznol M, Massard C, Gordon MS, Hamid O et al. Atezolizumab, an Anti-Programmed Death-Ligand 1 Antibody, in Metastatic Renal Cell Carcinoma: Long-Term Safety, Clinical Activity, and Immune Correlates From a Phase Ia Study. J Clin Oncol. 2016;34(8):833–842. https://doi.org/10.1200/JCO.2015.63.7421Test.; El-Khoueiry A. Atezolizumab and Bevacizumab Combination Therapy for Hepatocellular Carcinoma. Gastroenterol Hepatol (N Y). 2020;16(3):145–148. Available at: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8132702Test/.; Kelley RK, Rimassa L, Cheng AL, Kaseb A, Qin S, Zhu AX et al. Cabozantinib plus atezolizumab versus sorafenib for advanced hepatocellular carcinoma (COSMIC-312): a multicentre, open-label, randomised, phase 3 trial. Lancet Oncol. 2022;23(8):995–1008. https://doi.org/10.1016/S1470-2045Test(22)00326-6.; Qin S, Chan LS, Gu S, Bai Y, Ren Z, Lin X et al. LBA35 Camrelizumab (C) plus rivoceranib (R) vs. sorafenib (S) as first-line therapy for unresectable hepatocellular carcinoma (uHCC): A randomized, phase III trial. Ann Oncol. 2022;33(Suppl. 7):S1401–S1402. https://doi.org/10.1016/j.annonc.2022.08.032Test.; De Castria TB, Khalil DN, Harding JJ, O’Reilly EM, Abou-Alfa GK. Tremelimumab and durvalumab in the treatment of unresectable, advanced hepatocellular carcinoma. Future Oncol. 2022;18(33):3769–3782. https://doi.org/10.2217/fon-2022-0652Test.; Pfister D, Núñez NG, Pinyol R, Govaere O, Pinter M, Szydlowska M et al. NASH limits anti-tumour surveillance in immunotherapy-treated HCC. Nature. 2021;592(7854):450–456. https://doi.org/10.1038/s41586-021-03362-0Test.; Powell EE, Wong VW, Rinella M. Non-alcoholic fatty liver disease. Lancet. 2021;397(10290):2212–2224. https://doi.org/10.1016/S0140-6736Test(20)32511-3.; Finn RS, Ryoo BY, Merle P, Kudo M, Bouattour M, Lim HY et al. Pembrolizumab As Second-Line Therapy in Patients With Advanced Hepatocellular Carcinoma in KEYNOTE-240: A Randomized, Double-Blind, Phase III Trial. J Clin Oncol. 2020;38(3):193–202. https://doi.org/10.1200/JCO.19.01307Test.; Rimini M, Kudo M, Tada T, Shigeo S, Kang W, Suda G et al. Nonalcoholic steatohepatitis in hepatocarcinoma: new insights about its prognostic role in patients treated with lenvatinib. ESMO Open. 2021;6(6):100330. https://doi.org/10.1016/j.esmoop.2021.100330Test.; Rimini M, Rimassa L, Ueshima K, Burgio V, Shigeo S, Tada T et al. Atezolizumab plus bevacizumab versus lenvatinib or sorafenib in non-viral unresectable hepatocellular carcinoma: an international propensity score matching analysis. ESMO Open. 2022;7(6):100591. https://doi.org/10.1016/j.esmoop.2022.100591Test.; Nebhan CA, Cortellini A, Ma W, Ganta T, Song H, Ye F et al. Clinical Outcomes and Toxic Effects of Single-Agent Immune Checkpoint Inhibitors Among Patients Aged 80 Years or Older With Cancer: A Multicenter International Cohort Study. JAMA Oncol. 2021;7(12):1856–1861. https://doi.org/10.1001/jamaoncol.2021.4960Test.; Xie E, Yeo YH, Scheiner B, Zhang Y, Hiraoka A, Tantai X et al. Immune Checkpoint Inhibitors for Child-Pugh Class B Advanced Hepatocellular Carcinoma: A Systematic Review and Meta-Analysis. JAMA Oncol. 2023;9(10):1423–1431. https://doi.org/10.1001/jamaoncol.2023.3284Test.; Lencioni R, Kudo M, Ye SL, Bronowicki JP, Chen XP, Dagher L et al. First interim analysis of the GIDEON (Global Investigation of therapeutic decisions in hepatocellular carcinoma and of its treatment with sorafeNib) non-interventional study. Int J Clin Pract. 2012;66(7):675–683. https://doi.org/10.1111/j.1742-1241.2012.02940.xTest.; D’Alessio A, Fulgenzi CAM, Nishida N, Schönlein M, von Felden J, Schulze K et al. Preliminary evidence of safety and tolerability of atezolizumab plus bevacizumab in patients with hepatocellular carcinoma and Child-Pugh A and B cirrhosis: A real-world study. Hepatology. 2022;76(4):1000–1012. https://doi.org/10.1002/hep.32468Test.; Raoul JL, Bruix J, Greten TF, Sherman M, Mazzaferro V, Hilgard P et al. Relationship between baseline hepatic status and outcome, and effect of sorafenib on liver function: SHARP trial subanalyses. J Hepatol. 2012;56(5):1080–1088. https://doi.org/10.1016/j.jhep.2011.12.009Test.; McNamara MG, Slagter AE, Nuttall C, Frizziero M, Pihlak R, Lamarca A et al. Sorafenib as first-line therapy in patients with advanced Child-Pugh B hepatocellular carcinoma-a meta-analysis. Eur J Cancer. 2018;105:1–9. https://doi.org/10.1016/j.ejca.2018.09.031Test.; Yau T, Kang YK, Kim TY, El-Khoueiry AB, Santoro A, Sangro B et al. Efficacy and Safety of Nivolumab Plus Ipilimumab in Patients With Advanced Hepatocellular Carcinoma Previously Treated With Sorafenib: The CheckMate 040 Randomized Clinical Trial. JAMA Oncol. 2020;6(11):e204564. https://doi.org/10.1001/jamaoncol.2020.4564Test.; https://www.med-sovet.pro/jour/article/view/7992Test

  2. 2
    دورية أكاديمية

    المصدر: Science & Technique; Том 22, № 2 (2023); 103-112 ; НАУКА и ТЕХНИКА; Том 22, № 2 (2023); 103-112 ; 2414-0392 ; 2227-1031 ; 10.21122/2227-1031-2023-22-2

    وصف الملف: application/pdf

    العلاقة: https://sat.bntu.by/jour/article/view/2648/2249Test; Viswanathan V., Katiyar N. K., Goel G., Matthews A., Goel S. (2021) Role of Thermal Spray in Combating Climate Change. Emergent Materials, 4 (6), 1515–1529. https://doi.org/10.1007/s42247-021-00307-1Test.; Bielyi A. V., Kalinitchenko A. S., Devoino O. G., Kukareko V. A. (2017) Surface Engineering of Structural Materials with Using of Plasma and Beam Technologies. Minsk, Belorusskaya Nauka Publ. 457 (in Russian).; Ilyushchenko A. F., Shevtsov A. I., Okovity V. A. (2011) The Formation of Thermal Coatings and their Modeling. Minsk, Belaruskaya Navuka Publ. 357 (in Russian).; Devoino O. G., Gorbunov A. V., Gorbunova V. A., Volod’ko A. S., Koval V. A., Yatskevich O. K., Halinouski A. A. (2021) Characterization of Opportunity for Upgrading of the System Based on Arc Plasma Torch for Thermal Spaying of Ceramic Materials, by Means of Use of Fuel Vortex Intensifier. Part I: Thermodynamic Modeling of the System Efficiency Parameters. Vestsi Natsyyanal’nai Akademii Navuk Belarusi. Seryya Fizika-Technichnych Navuk = Proceedings of the National Academy of Sciences of Belarus. Physical-Technical Series, 66 (4), 399–410. https://doi.org/10.29235/1561-8358-2021-66-4-399-410Test.; Devoino O. G., Gorbunov A. V., Volod’ko A. S., Yatskevich O. K., Gorbunova V. A. (2022) Characterization of Opportunity for Upgrading of the System Based on Arc Plasma Torch for Thermal Spaying of Ceramic Materials, by Means of Use of Fuel Vortex Intensifier. Part II. Thermal Engineering Estimation and Experimental Testing. Vestsi Natsyyanal’nai Akademii Navuk Belarusi. Seryya Fizika-Technichnych Navuk = Proceedings of the National Academy of Sciences of Belarus. Physical-Technical Series, 67 (1), 7–16. https://doi.org/10.29235/1561-8358-2022-67-1-7-16Test.; Gorbunov A. V., Devoino O. G., Gorbunova V. A., Yatskevitch O. K., Koval V. A. (2021) Thermodynamic Estimation of the Parameters for C–H–O–N–Me-Systems as Operating Fluid Simulants for New Processes of Powder Thermal Spraying and Spheroidizing. Nauka i Tekhnika = Science and Technique, 20 (5), 390–398. https://doi.org/10.21122/2227-1031-2021-20-5-390-398Test.; Pawlowski L. (2008) The Science and Engineering of Thermal Spray Coatings. Hoboken, John Wiley Sons Publ. 647. https://doi.org/10.1002/9780470754085Test.; Kuzmin V., Gulyaev I., Sergachev D., Vashchenko S., Kovalev O., Kornienko E., Tuezov A., Palagushkin B. (2019) Supersonic DC Plasma Torch for Deposition of High-Density Wear-Resistant Coatings. Materials Today: Proceedings, 19 (6), 2152–2156. https://doi.org/10.1016/j.matpr.2019.07.230Test.; Pershin L., Chen L., Mostaghimi J. (2008) Plasma Spraying of Metal Coatings Using CO2-Based Gas Mixtures. Journal of Thermal Spray Technology, 17 (5–6), 608–611. https://doi.org/10.1007/s11666-008-9265-2Test.; Salimijazi H., Hosseini M., Mostaghimi J., Pershin L., Coyle T. W., Samadi H., Shafyei A. (2012) Plasma Sprayed Coating Using Mullite and Mixed Alumina/Silica Powders. Journal of Thermal Spray Technology, 21 (5), 825–830. https://doi.org/10.1007/s11666-012-9766-xTest.; Pershin L., Mitrasinovic A., Mostaghimi J. (2013) Treatment of Refractory Powders by a Novel, High Enthalpy DC Plasma. Journal of Physics D: Applied Physics, 46 (22), 224019. https://doi.org/10.1088/0022-3727/46/22/224019Test.; Korzhik V. N., Borisova A. L., Popov V. V., Kolomiitsev M. V., Chaika A. A., Tkachuk V. I., Vigilyanskaya N. V. (2014) Cermet Coatings of Chromium Carbide-Nichrome System Produced by Supersonic Plasma Gas Air Spraying. The Paton Welding Journal, (12), 19–24. https://doi.org/10.15407/tpwj2014.12.05Test.; Yugeswaran S., Amarnath P., Ananthapadmanabhan P. V., Pershin L., Mostaghimi J., Chandra S., Coyle T. W. (2021) Thermal Conductivity and Oxidation Behavior of Porous Inconel 625 Coating Interface Prepared by Dual-Injection Plasma Spraying. Surface and Coating Technology, 411, 126990. https://doi.org/10.1016/j.surfcoat.2021.126990Test.; Borrell A., Carpio P., Salvador M. D., Mataix D. B., Carnicer V., Orts Tarí M. J. (2021) Modification of the Properties of Al2O3/TZ-3YS Thermal Barrier Coating by the Addition of Silicon Carbide Particles and Fructose. Coatings, 11 (4), 387. https://doi.org/10.3390/coatings11040387Test.; Kornienko E. E., Mul’ D. O., Rubtsova O. A., Vaschenko S. P., Kuzmin V. I., Gulyaev I. P., Sergachev D. V. (2016) Effect of Plasma Spraying Regimes on Structure and Properties of Ni3Al Coatings. Thermophysics and Aeromechanics, 23 (6), 919–928. https://doi.org/10.1134/S0869864316060147Test.; Kuzmin V., Gulyaev I., Sergachev D., Vaschenko S., Kornienko E., Tokarev A. (2017) Equipment and Technologies of Air-Plasma Spraying of Functional Coatings. MATEC Web of Conferences, 129, 01052. https://doi.org/10.1051/matecconf/201712901052Test.; Mostaghimi J., Pershin L., Salimijazi H., Nejad M., Ringuette M. (2021) Thermal Spray Copper Alloy Coatings as Potent Biocidal and Virucidal Surfaces. Journal of Thermal Spray Technology, 30 (1–2), 1–15. https://doiTest. org/10.1007/s11666-021-01161-7.; Yatskevitch O. K. (2019) Technique for Formation of Wear-Resistant Ceramic Coatings by Plasma Spray of Alumina Powders Doped with Molybdenum and Boron. Minsk, BNTU. 176 (in Russian).; Halinouski A. A., Gorbunov A. V., Mosse A. L. (2007) Thermophysical and Power Parameters of DC Electric Arc Plasma Torches with 200 kW Power for Reactors of Pyrolysis and Oxidation Pyrolysis of Hydrocarbons. Minsk, A. V. Luikov Heat and Mass Transfer Institute of the National Academy of Sciences of Belarus. 42 (in Russian).; Dolatabadi A., Mostaghimi J., Pershin V. (2002) Effect of a Cylindrical Shroud on Particle Conditions in High Velocity Oxy-Fuel Spray Process. Science and Technology of Advanced Materials, 137 (3), 245–255. https://doi.org/10.1016Test/ S1468-6996(02)00023-2.; Chen M. J., Zhang P., Li Q. (2018) Design and Heat Transfer Analysis of a Compound Multi-Layer Insulations for Use in High Temperature Cylinder Thermal Protection Systems. Science China Technological Sciences, 61 (7), 994–1002. https://doi.org/10.1007/s11431-017-9250-xTest.; Barykin G., Parco M. (2009) The Oxy-Fuel Ionisation (OFI) Spray Process. Available at: https://www.researchgate.net/publication/267306937_The_Oxy-Fuel_Ionisation_OFI_Test Spray_Process.; Martinez B., Mariaux G., Vardelle A., Barykin G., Parco M. (2009) Numerical Investigation of a Hybrid HVOF-Plasma Spraying Process. Journal of Thermal Spray Technology, 18 (5–6), 909–920. https://doi.org/10.1007/s11Test 666-009-9398-y.; Gorokhovski M., Karpenko E. I., Lockwood F. C., Messerle V. E., Trusov B. G., Ustimenko A. B. (2005) Plasma Technologies for Solid Fuels: Experiment and Theory. Journal of the Energy Institute, 78 (4), 157–171. https://doi.org/10.1179/174602205x68261Test.; Barbin N. M., Terentiev D. I., Alexeev S. G., Barbina T. M. (2015) Thermodynamic Analysis of Radionuclides Behaviour in Products of Vapour Phase Hydrothermal Oxidation of Radioactive Graphite. Journal of Radioanalytical and Nuclear Chemistry, 307 (2), 1459–1470. https://doi.org/10.1007/s10967-015-4587-2Test.; Mourao R., Marquesi A. R., Gorbunov A. V., Filho G. P., Halinouski A. A., Otani C. (2015). Thermochemical Assessment of Gasification Process Efficiency of Biofuels Industry Waste with Different Plasma Oxidants. IEEE Transactions on Plasma Science, 43 (10), 3760–3767. https://doi.org/10.1109/TPS.2015.2416129Test.; Wrona A., Bilewska K., Lis M., Kamińska M., Olszewski T., Pajzderski P., Więcław G., Jaśkiewicz M., Kamysz W. (2017) Antimicrobial Properties of Protective Coatings Produced by Plasma. Surface and Coating Technology, 318, 332–340. https://doi.org/10.1016/j.surfcoatTest. 2017.01.101.; Luzan S. A., Kyriienko M. M., (2015) Solutions to Problems of Increasing Resource Details for Tractors by Plasma Spraying with a View to Ensuring the Fire Explosion Safety Technology. Bulletin of the Petro Vasylenko Kharkiv National Technical University of Agriculture, 156, 581–587 (in Russian).; Antimicrobial Properties of Copper Surfaces. Available at: https://stormoff.ru/mediacenter/articles/article_43Test (in Russian).; Benefits of Copper and BIO-C29: Technology that Eliminates up to 99.9 % of Fungi. Available at: https://decor.design/preimushhestva-medi-i-bio-c29-tehnologiya-ustranyayushhaya-do-999-gribkovTest (in Russian).; Meleshko A. A., Afinogenova A. G., Afinogenov G. E., Spiridonova A. A., Tolstoy V. (2020) Antibacterial Inorganic Agents: Efficiency of Using Multicomponent Systems. Russian Journal of Infection and Immunity, 10 (4), 639–654. https://doi.org/10.15789/2220-7619-AIA-1512Test (in Russian).; https://sat.bntu.by/jour/article/view/2648Test

  3. 3
    دورية أكاديمية

    المصدر: Research and Practical Medicine Journal; Том 10, № 1 (2023); 57-67 ; Research'n Practical Medicine Journal; Том 10, № 1 (2023); 57-67 ; 2410-1893 ; 10.17709/2410-1893-2023-10-1

    وصف الملف: application/pdf

    العلاقة: https://www.rpmj.ru/rpmj/article/view/860/538Test; https://www.rpmj.ru/rpmj/article/view/860/546Test; https://www.rpmj.ru/rpmj/article/downloadSuppFile/860/707Test; https://www.rpmj.ru/rpmj/article/downloadSuppFile/860/708Test; https://www.rpmj.ru/rpmj/article/downloadSuppFile/860/709Test; https://www.rpmj.ru/rpmj/article/downloadSuppFile/860/710Test; https://www.rpmj.ru/rpmj/article/downloadSuppFile/860/711Test; Primrose JN, Fox RP, Palmer DH, Malik HZ, Prasad R, Mirza D, et al.; BILCAP study group. Capecitabine compared with observation in resected biliary tract cancer (BILCAP): a randomised, controlled, multicentre, phase 3 study. Lancet Oncol. 2019 May;20(5):663–673. https://doi.org/10.1016/s1470Test‑2045(18)30915‑x Erratum in: Lancet Oncol. 2019 Apr 2.; Yadav S, Xie H, Bin‑Riaz I, Sharma P, Durani U, Goyal G, et al. Neoadjuvant vs. adjuvant chemotherapy for cholangiocarcinoma: propensity score matched analysis. Eur J Surg Oncol. 2019 Aug;45(8):1432–1438. https://doi.org/10.1016/j.ejso.2019.03.023Test; Tsilimigras DI, Sahara K, Wu L, Moris D, Bagante F, Guglielmi A, et al. Very Early Recurrence After Liver Resection for Intrahepatic Cholangiocarcinoma: Considering Alternative Treatment Approaches. JAMA Surg. 2020 Sep 1;155(9):823–831. https://doi.org/10.1001/jamasurg.2020.1973Test; Rizzo A, Brandi G. Neoadjuvant therapy for cholangiocarcinoma: A comprehensive literature review. Cancer Treat Res Commun. 2021;27:100354. https://doi.org/10.1016/j.ctarc.2021.100354Test; Zhang XF, Beal EW, Bagante F, Chakedis J, Weiss M, Popescu I, et al. Early versus late recurrence of intrahepatic cholangiocarcinoma after resection with curative intent. Br J Surg. 2018 Jun;105(7):848–856. https://doi.org/10.1002/bjs.10676Test; Valle J, Wasan H, Palmer DH, Cunningham D, Anthoney A, Maraveyas A, et al.; ABC‑02 Trial Investigators. Cisplatin plus gemcitabine versus gemcitabine for biliary tract cancer. N Engl J Med. 2010 Apr 8;362(14):1273–1281. https://doi.org/10.1056/nejmoa0908721Test; Rizzo A, Brandi G. First‑line Chemotherapy in Advanced Biliary Tract Cancer Ten Years After the ABC‑02 Trial: “And Yet It Moves!”. Cancer Treat Res Commun. 2021;27:100335. https://doi.org/10.1016/j.ctarc.2021.100335Test; Cho Y, Kim TH, Seong J. Improved oncologic outcome with chemoradiotherapy followed by surgery in unresectable intrahepatic cholangiocarcinoma. Strahlenther Onkol. 2017 Aug;193(8):620–629. https://doi.org/10.1007/s00066Test‑017‑1128‑7; Kato A, Shimizu H, Ohtsuka M, Yoshidome H, Yoshitomi H, Furukawa K, et al. Surgical resection after downsizing chemotherapy for initially unresectable locally advanced biliary tract cancer: a retrospective single‑center study. Ann Surg Oncol. 2013 Jan;20(1):318–324. https://doi.org/10.1245/s10434Test‑012‑2312‑8; Shroff RT, Javle MM, Xiao L, Kaseb AO, Varadhachary GR, Wolff RA, et al. Gemcitabine, Cisplatin, and nab‑Paclitaxel for the Treatment of Advanced Biliary Tract Cancers: A Phase 2 Clinical Trial. JAMA Oncol. 2019 Jun 1;5(6):824–830. https://doi.org/10.1001/jamaoncol.2019.0270Test; Ray CE Jr, Edwards A, Smith MT, Leong S, Kondo K, Gipson M, et al. Metaanalysis of survival, complications, and imaging response following chemotherapy‑based transarterial therapy in patients with unresectable intrahepatic cholangiocarcinoma. J Vasc Interv Radiol. 2013 Aug;24(8):1218–1226. https://doi.org/10.1016/j.jvir.2013.03.019Test; Holster JJ, El Hassnaoui M, Franssen S, IJzermans JNM, de Jonge J, Mostert B, et al. Hepatic Arterial Infusion Pump Chemotherapy for Unresectable Intrahepatic Cholangiocarcinoma: A Systematic Review and Meta‑Analysis. Ann Surg Oncol. 2022 Sep;29(9):5528–5538. https://doi.org/10.1245/s10434Test‑022‑11439‑x; https://www.rpmj.ru/rpmj/article/view/860Test

  4. 4
    دورية أكاديمية

    المساهمون: The consumables for electroporation were provided by REEPL., Расходные материалы для электропорации предоставлены фирмой REEPL («РИПЛ»).

    المصدر: Pelvic Surgery and Oncology; Том 13, № 1 (2023); 45-53 ; Тазовая хирургия и онкология; Том 13, № 1 (2023); 45-53 ; 2686-7435

    وصف الملف: application/pdf

    العلاقة: https://ok.abvpress.ru/jour/article/view/596/414Test; Heestand G.M., Murphy J.D., Lowy A.M. Approach to patients with pancreatic cancer without detectable metastases. J Clin Oncol 2015;1;33(16):1770–8. PMID: 25918279. DOI:10.1200/JCO.2014.59.7930; Suker M., Beumer B.R., Sadot E. et al. Folfirinox for locally advanced pancreatic cancer: a systematic review and patient-level meta-analysis. Lancet Oncol 2016;17:801–10. PMID: 27160474. DOI:10.1016/S1470-2045(16)00172-8; Narayanan G., Daye D., Wilson N.M. et al. Ablation in Pancreatic Cancer: Past, Present and Future. Cancers (Basel) 2021;13(11):2511. PMID: 34063784. DOI:10.3390/cancers13112511; Edd J.F., Horowitz L., Davalos R.V. et al. In vivo results of a new focal tissue ablation technique: irreversible electroporation. IEEE Trans Biomed Eng 2006;53(7):1409–15. PMID: 16830945. DOI:10.1109/TBME.2006.873745; Narayanan G., Hosein P.J., Arora G. et al. Percutaneous irreversible electroporation for downstaging and control of unresectable pancreatic adenocarcinoma. J Vasc Interv Radiol 2012;23(12):1613–21. PMID: 23177107. DOI:10.1016/j.jvir.2012.09.012; Saad A.M., Turk T., Al-Husseini M.J., Abdel-Rahman O. Trends in pancreatic adenocarcinoma incidence and mortality in the United States in the last four decades; a SEER-based study. BMC Cancer 2018;18(1):688. PMID: 29940910. DOI:10.1186/s12885-018-4610-4; Balaban E.P., Mangu P.B., Khorana A.A. et al. Locally Advanced, Unresectable Pancreatic Cancer: American Society of Clinical Oncology Clinical Practice Guideline. J Clin Oncol 2016;34(22):2654–68. PMID: 27247216. DOI:10.1200/JCO.2016.67.5561; Spiliopoulos S., Zurlo M.T., Casella A. et al. Current status of non-surgical treatment of locally advanced pancreatic cancer. World J Gastrointest Oncol 2021;13(12):2064–75. PMID: 35070042. DOI:10.4251/wjgo.v13.i12.2064; Hammel P., Huguet F., van Laethem J.L. et al. Effect of Chemoradiotherapy vs Chemotherapy on Survival in Patients With Locally Advanced Pancreatic Cancer Controlled After 4 Months of Gemcitabine With or Without Erlotinib: The LAP07 Randomized Clinical Trial. JAMA 2016;315(17): 1844–53. PMID: 27139057. DOI:10.1001/jama.2016.4324; Herman J.M., Chang D.T., Goodman K.A. et al. Phase 2 multi-institutional trial evaluating gemcitabine and stereotactic body radiotherapy for patients with locally advanced unresectable pancreatic adenocarcinoma. Cancer 2015;121(7):1128–37. PMID: 25538019. DOI:10.1002/cncr.29161; Reyngold M., O’Reilly E.M., Varghese A.M. et al. Association of Ablative Radiation Therapy With Survival Among Patients With Inoperable Pancreatic Cancer. JAMA Oncol 2021;7(5):735–8. PMID: 33704353. DOI:10.1001/jamaoncol.2021.0057; Zeng X.L., Wang H.H., Meng M.B. et al. Stereotactic body radiation therapy for patients with recurrent pancreatic adenocarcinoma at the abdominal lymph nodes or postoperative stump including pancreatic stump and other stump. Onco Targets Ther 2016;9:3985–92. PMID: 27418841. DOI:10.2147/OTT.S102784; Al-Sakere B., Andre F., Bernat C. et al. Tumor ablation with irreversible electroporation. PloSone 2007;2(11):e1135. PMID: 17989772. DOI:10.1371/journal.pone.0001135; Edelblute C.M., Hornef J., Burcus N.I. et al. Controllable Moderate Heating Enhances the Therapeutic Efficacy of Irreversible Electroporation for Pancreatic Cancer. Sci Rep 2017;7(1): 11767. PMID: 28924200. DOI:10.1038/s41598-017-12227-4; Москвичева Л.И., Петров Л.О., Сидоров Д.В. Возможности современных методов абляции при нерезектабельном местнораспространенном раке поджелудочной железы. Исследования и практика в медицине 2018;5(2):86–99. DOI:10.17709/2409-2231-2018-5-2-10; Wendler J.J., Fischbach K., Ricke J. et al. Irreversible Electroporation (IRE): Standardization of Terminology and Reporting Criteria for Analysis and Comparison. Pol J Radiol 2016;81:54–64. PMID: 26966472. DOI:10.12659/PJR.896034; Martin R.C. 2nd , Kwon D., Chalikonda S. et al. Treatment of 200 locally advanced (stage III) pancreatic adenocarcinoma patients with irreversible electroporation: safety and efficacy. Ann Surg 2015;262(3):486–94. PMID: 26258317. DOI:10.1097/SLA.0000000000001441; Vogel J.A., Rombouts S.J., de Rooij T. et al. Induction Chemotherapy Followed by Resection or Irreversible Electroporation in Locally Advanced Pancreatic Cancer (IMPALA): A Prospective Cohort Study. Ann Surg Oncol 2017;24(9):2734–43. PMID: 28560601. DOI:10.1245/s10434-017-5900-9; Астахов Д.А., Панченков Д.Н., Иванов Ю.В и др. Необратимая электропорация при местно-распространенном раке поджелудочной железы. Анналы хирургической гепатологии 2018;23(2):59–68. DOI:10.16931/1995-5464.2018259-68; Ruarus A.H., Vroomen L.G.P.H., Geboers B. et al. Percutaneous Irreversible Electroporation in Locally Advanced and Recurrent Pancreatic Cancer (PANFIRE-2): A Multicenter, Prospective, Single-Arm, Phase II Study. Radiology 2020;294(1):212–20. PMID: 31687922. DOI:10.1148/radiol.2019191109; Yang P.C., Huang K.W., Pua U. et al. Prognostic factor analysis of irreversible electroporation for locally advanced pancreatic cancer – A multi-institutional clinical study in Asia. Eur J Surg Oncol 2020;46(5):811–7. PMID: 31839436. DOI:10.1016/j.ejso.2019.12.006; Mansson C., Brahmstaedt R., Nilsson A. et al. Percutaneous irreversible electroporation for treatment of locally advanced pancreatic cancer following chemotherapy or radiochemotherapy. Eur J Surg Oncol 2016;42(9):1401–6. PMID: 26906114. DOI:10.1016/j.ejso.2016.01.024; Lafranceschina S., Brunetti O., Delvecchio A. et al. Systematic Review of Irreversible Electroporation Role in Management of Locally Advanced Pancreatic Cancer. Cancers (Basel) 2019;11(11):1718. PMID: 31684186. DOI:10.3390/cancers11111718; Moris D., Machairas N., Tsilimigras D.I. et al. Systematic Review of Surgical and Percutaneous Irreversible Electroporation in the Treatment of Locally Advanced Pancreatic Cancer. Ann Surg Oncol 2019;26(6):1657–68. PMID: 30843163. DOI:10.1245/s10434-019-07261-7; https://ok.abvpress.ru/jour/article/view/596Test

  5. 5
    دورية أكاديمية

    المصدر: Research and Practical Medicine Journal; Том 9, № 4 (2022); 114-122 ; Research'n Practical Medicine Journal; Том 9, № 4 (2022); 114-122 ; 2410-1893 ; 10.17709/2410-1893-2022-9-4

    وصف الملف: application/pdf

    العلاقة: https://www.rpmj.ru/rpmj/article/view/838/517Test; https://www.rpmj.ru/rpmj/article/downloadSuppFile/838/692Test; https://www.rpmj.ru/rpmj/article/downloadSuppFile/838/693Test; https://www.rpmj.ru/rpmj/article/downloadSuppFile/838/694Test; https://www.rpmj.ru/rpmj/article/downloadSuppFile/838/695Test; https://www.rpmj.ru/rpmj/article/downloadSuppFile/838/696Test; https://www.rpmj.ru/rpmj/article/downloadSuppFile/838/697Test; Bray F, Ferlay J, Soerjomataram I, Siegel R, Torre L, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68(6):394–424. https://doi.org/10.3322/caac.21492Test; Balaban EP, Mangu PB, Khorana AA, Shah MA, Mukherjee S, Crane CH, Javle MM, Eads JR, Allen P, Ko AH, Engebretson A, Herman JM, Strickler JH, Benson AB 3rd, Urba S, Yee NS. Locally Advanced, Unresectable Pancreatic Cancer: American Society of Clinical Oncology Clinical Practice Guideline. J Clin Oncol. 2016 Aug 1;34(22):2654–2668. https://doi.org/10.1200/JCO.2016.67.5561Test; Gong J, Tuli R, Shinde A, Hendifar AE. Meta-analyses of treatment standards for pancreatic cancer. Mol. Clin. Oncol. 2016;4:315– 325. https://doi.org/10.3892/mco.2015.716Test; Vogel JA, van Veldhuisen E, Agnass P, Crezee J, Dijk F, Verheij J, et al. Time-dependent impact of irreversible electroporation on pancreas, liver, blood vessels and nerves: a systematic review of experimental studies. PLoS ONE. 2016;11(11):e0166987. https://doi.org/10.1371/journal.pone.0166987Test; Martin RC 2nd, Kwon D, Chalikonda S, Sellers M, Kotz E, Scoggins C, et al. Treatment of 200 Locally Advanced (Stage III) Pancreatic Adenocarcinoma Patients With Irreversible Electroporation Safety and Efficacy. Ann Surg 2015;262:486–494. https://doi.org/10.1097/SLA.0000000000001441Test; Астахов Д. А., Панченков Д. Н., Иванов Ю. В., Шабловский О. Р., Кедрова А. Г., Соловьев Н. А. и др. Необратимая электропорация при местнораспространенном раке поджелудочной железы. Анналы хирургической гепатологии. 2018;23(2):59–68. https://doi.org/10.16931/1995-5464.2018259-68Test; Von Hoff DD, Ervin T, Arena FP, Chiorean EG, Infante J, Moore M, et al. Increased Survival in Pancreatic Cancer with nab-Paclitaxel plus Gemcitabine. N Engl J Med 2013;369:1691–1703. https://doi.org/10.1056/NEJMoa1304369Test; Conroy T, Desseigne F, Ychou M, Bouché O, Guimbaud R, Bécouarn Y, et al. FOLFIRINOX versus Gemcitabine for Metastatic Pancreatic Cancer N Engl J Med 2011;364:1817–1825. https://doi.org/10.1056/NEJMoa1011923Test; Chiorean EG, Cheung WY, Giordano G, Kim G, Al-Batran SE. Real-world comparative effectiveness of nab-paclitaxel plus gemcitabine versus FOLFIRINOX in advanced pancreatic cancer: a systematic review. Ther Adv Med Oncol. 2019 May 19;11:1758835919850367. https://doi.org/10.1177/1758835919850367Test; Hammel P, Huguet F, van Laethem JL, Goldstein D, Glimelius B, Artru P, et al. Effect of Chemoradiotherapy vs Chemotherapy on Survival in Patients With Locally Advanced Pancreatic Cancer Controlled After 4 Months of Gemcitabine With or Without Erlotinib: The LAP07 Randomized Clinical Trial. JAMA. 2016;315(17):1844–1853. https://doi.org/10.1001/jama.2016.4324Test; Ионкин Д. А., Карельская Н. А., Степанова Ю. А., Земсков В. М., Козлова М. Н., Жаворонкова О. А. и др. Криодеструкция при местнораспространенном раке поджелудочной железы. Анналы хирургической гепатологии. 2018;23(2):37–49. https://doi.org/10.16931/1995-5464.2018237-49Test; Edd JF, Horowitz L, Davalos RV, Mir LM, Rubinsky B. In vivo results of a new focal tissue ablation technique: irreversible electroporation. IEEE Transactions on Bio-medical Engineering 2006;53:1409–1415. https://doi.org/10.1109/TBME.2006.873745Test; Narayanan G, Hosein PJ, Arora G, Barbery KJ, Froud T, Livingstone AS, et al. Percutaneous Irreversible Electroporation for Downstaging and Control of Unresectable Pancreatic Adenocarcinoma. J Vasc Interv Radiol 2012;23:1613–1621. https://doi.org/10.1016/j.jvir.2012.09.012Test; https://www.rpmj.ru/rpmj/article/view/838Test

  6. 6
    دورية أكاديمية

    المصدر: Pelvic Surgery and Oncology; Том 11, № 3-4 (2021); 18-22 ; Тазовая хирургия и онкология; Том 11, № 3-4 (2021); 18-22 ; 2686-7435

    وصف الملف: application/pdf

    العلاقة: https://ok.abvpress.ru/jour/article/view/519/372Test; Ehrhardt O. Ueber Resektionen am Pancreas. Dtsch med Wochenschr 1908;34:595–7.; Beger H.G., Poch B., Mayer B., Siech M. New onset of diabetes and pancreatic exocrine insufficiency after pancreaticoduodenectomy for benign and malignant tumors: a systematic review and metaanalysis of long-term results. Ann Surg 2018;267(2):259–70. DOI:10.1097/SLA.0000000000002422.; Regmi P., Yang Q., Hu H.-J. et al. Overall postoperative morbidity and pancreatic fistula are relatively higher after central pancreatectomy than distal pancreatic resection: a systematic review and metaanalysis. Biomed Res Int 2020;2020:7038907. DOI:10.1155/2020/7038907.; Clavien P.A., Barkun J., de Oliveiraet M. et al. The Clavien–Dindo classification of surgical complications: five-year experience. Ann Surg 2009;250(2):187–96. DOI:10.1097/SLA.0b013e3181b13ca2.; Bassi C., Marchegiani G., Derveniset Ch. et al. The 2016 update of the International Study Group (ISGPS) definition and grading of postoperative pancreatic fistula: 11 years after. Surgery 2017;161(3):584– 91. DOI:10.1016/j.surg.2016.11.014.; Kimura W., Inoue T., Futakawa N. et al. Spleen-preserving distal pancreatectomy with conservation of the splenic artery and vein. Surgery 1996;120(5):885–90. DOI:10.1016/s0039-6060(96)80099-7.; Xiao W., Zhu J., Peng L. et al. The role of central pancreatectomy in pancreatic surgery: a systematic review and metaanalysis. HPB (Oxford) 2018;20(10):896– 904. DOI:10.1016/j.hpb.2018.05.001.; Dragomir M.P., Sabo A., Petrescuet G. et al. Central pancreatectomy: a comprehensive, up-to-date meta-analysis. Langenbeck’s Arch Surg 2019;404(8): 945–58. DOI:10.1007/s00423-019-01829-3.; https://ok.abvpress.ru/jour/article/view/519Test

  7. 7
    دورية أكاديمية

    المساهمون: The study was supported by the Russian Foundation for Basic Research and Orenburg region according to the research project № 19-48-560001., Исследование выпол-нено при финансовой поддержке РФФИ и Оренбургской области в рамках научного проекта № 19-48-560001

    المصدر: Vysshee Obrazovanie v Rossii = Higher Education in Russia; Том 28, № 7 (2019); 150-159 ; Высшее образование в России (Vysshee obrazovanie v Rossii = Higher Education in Russia); Том 28, № 7 (2019); 150-159 ; 2072-0459 ; 0869-3617

    وصف الملف: application/pdf

    العلاقة: https://vovr.elpub.ru/jour/article/view/1820/1352Test; Материалы заседания Совета по стратегическому развитию и приоритетным проектам. URL: http://политикапрезидента.рф/zasedanie-soveta-po-strategicheskomu-razvitiyu-iprioritetnym-proektam; Индикаторы инновационной деятельности 2018: статистический сборник / Н.В. Городникова, Л.М. Гохберг и др.; Нац. исслед. ун-т «Высшая школа экономики». М.: Изд. дом НИУ ВШЭ, 2018. 344 с.; Национальная технологическая инициатива // Агентство стратегических инициатив. URL: http://asi.ru/ntiTest/; Волостнов Б.И. Цифровое машиностроение: принципы создания и перспективы развития интеллектуальных производств // Проблемы машиностроения и автоматизации. 2018. №1. С. 4–37.; Zafoschnig A. Smart Ideas for Engineers – the Impact of Emerging Technologies on Modern Engineering Education. Vysshee obrazovanie v Rossii = Higher Education in Russia. 2018. Vol. 27, no. 6, pp. 66-70.; Иванов В.Г., Сазонова З.С., Сапунов М.Б. Инженерная педагогика: попытка типологии // Высшее образование в России. 2017. № 8−9 (215). С. 32–42.; Kargapoltseva N.A., Kargapoltsev S.M., Dneprov S.A., Gajazova G.A., Ilkevich B.V., Goncharuk A.Ju. Organizational and pedagogical conditions of professional development of employees of education // Man in India. 2017. No. 97 (14). Р. 129–139.; Воробьев А.Е., Мурзаева А.К. Роль кафедр в управлении инновациями в образовательном процессе // Педагогическое образование в России. 2017. № 10. С. 17–22.; Барабанова С.В., Кайбияйнен А.А., Крайсман Н.В. Цифровизация инженерного образования в глобальном контексте (обзор международных конференций) // Высшее образование в России. 2019. Т. 28. №1. С. 94–103.; Belonovskaya I.D., Kryukova N.I., Zakharova A.N., Dulina G.S., Yusupova Z.F., Bogdanova J.N. Didactic features of pedagogical interaction as the basis of university education // Man in India. 2017. Vol. 97. No. 3. Р. 29–41.; Белоновская И.Д., Сердюк А.И., Езерская Е.М., Романенко К.С. Аддитивные технологии в целевом обучении студентов инженерно-технических направлений подготовки: учебное пособие. Оренбург: ОГУ, 2018. 116 с.; Shukhman A., Belonovskaya I., Anischenko V., Barsukova D., Khomyakova N. Approaches to training of engineering program students for innovative activity // Proceedings of 2015 International Conference on Interactive Collaborative Learning, ICL 2015. Р. 950–952.; Polyakov A.N., Goncharov A.N. and Kamenev S.V. Assessing the temperature error in operational machine tools // Russian Engineering Research. 2018. vol. 38. № 5. Рp. 408–410.; Parfenov I.V., Polyakov A.N. Experimental research of kinetic and dynamic characteristics of temperature movements of machines // IOP Conf. Ser.: Mater. Sci. Eng. 2018. Vol. 327. Pp. 042076. URL: https://doi.org/10.1088/1757899X/327/4/042076Test; Белоновская И.Д., Сердюк А.И., Езерская Е.М. Технологии командного взаимодействия в учебно-производственной деятельности студентов инженерно-технических направлений подготовки: учебное пособие / Оренбургский гос. ун-т. Оренбург: ОГУ, 2018. 157 с.; https://vovr.elpub.ru/jour/article/view/1820Test

  8. 8
    دورية أكاديمية

    المصدر: Pelvic Surgery and Oncology; Том 9, № 4 (2019); 21-31 ; Тазовая хирургия и онкология; Том 9, № 4 (2019); 21-31 ; 2686-7435

    وصف الملف: application/pdf

    العلاقة: https://ok.abvpress.ru/jour/article/view/339/284Test; Falcone A., Ricci S., Brunetti I. et al. Phase III trial of infusional fluorouracil, leucovorin, oxaliplatin, and irinotecan (FOLFOXIRI) compared with infusional fluorouracil, leucovorin, and irinotecan (FOLFIRI) as first-line treatment for metastatic colorectal cancer: the Gruppo Oncologico Nord Ovest. J Clin Oncol 2007;25:1670–6.; Loupakis F., Cremolini C., Masi G. et al. Initial therapy with FOLFOXIRI and bevacizumab for metastatic colorectal cancer. N Engl J Med 2014;371:1609–18.; Marques R.P., Duarte G.S., Sterrantino C. et al. Triplet (FOLFOXIRI) versus doublet (FOLFOX or FOLFIRI) backbone chemotherapy as first-line treatment of metastatic colorectal cancer: A systematic review and meta-analysis. Crit Rev Oncol Hematol 2017;118:54–62.; Hurwitz H.I., Tan B.R., Reeves J.A. et al. Phase II randomized trial of sequential or concurrent FOLFOXIRI-bevacizumab versus FOLFOX-bevacizumab for metastatic colorectal cancer (STEAM). Oncologist 2019;24(7):921–32.; Schmoll H.-J., Meinert F.M., Cygon F. et al. “CHARTA”: FOLFOX/bevacizumab vs FOLFOXIRI/bevacizumab in advanced colorectal cancer – final results, prognostic and potentially predictive factors from the randomized phase II trial of the AIO. 2017 ASCO Annual Meeting. Abstr. 3533, presented June 3, 2017.; Sastre J., Vieitez J.M., Gomez-España M.A. et al. Randomized phase III study comparing FOLFOX + bevacizumab versus folfoxiri + bevacizumab (BEV) as 1st line treatment in patients with metastatic colorectal cancer (mCRC) with ≥3 baseline circulating tumor cells (bCTCs). J Clin Oncol 2019;37(Suppl 15):3507.; Engstrand J., Nilsson H., Strömberg C. et al. Colorectal cancer liver metastases – a population-based study on incidence, management and survival. BMC Cancer 2018;18:78.; Folprecht G., Grothey A., Alberts S. et al. Neoadjuvant treatment of unresectable colorectal liver metastases: correlation between tumour response and resection rates. Ann Oncol 2005;16(8):1311–9.; Федянин М.Ю., Владимирова Л.Ю., Абрамова Н.А. и др. Резекция органов с метастазами при применении комбинации химиотерапии и анти-EGFR антител у больных нерезектабельным метастатическим раком толстой кишки: проспективное нерандомизированное многоцентровое исследование II фазы. Тазовая хирургия и онкология 2019;9(1):65–72.; Gruenberger T., Bridgewater J., Chau I. et al. Bevacizumab plus mFOLFOX-6 or FOLFOXIRI in patients with initially unresectable liver metastases from colorectal cancer: the OLIVIA multinational randomised phase II trial. Ann Oncol 2014;26:702–8.; Masi G., Loupakis F., Salvatore L. et al. Bevacizumab with FOLFOXIRI (irinotecan, oxaliplatin, fluorouracil, and folinate) as first-line treatment for metastatic colorectal cancer: a phase 2 trial. Lancet Oncol 2010;11:845–52.; Fornaro L., Lonardi S., Masi G. et al. FOLFOXIRI in combination with panitumumab as first-line treatment in quadruple wild-type (KRAS, NRAS, HRAS, BRAF) metastatic colorectal cancer patients: a phase II trial by the Gruppo Oncologico Nord Ovest (GONO). Ann Oncol 2013;24(8):2062–7.; Geissler M., Riera-Knorrenschild J., Tannapfel A. et al. mFOLFOXIRI + panitumumab versus FOLFOXIRI as first line treatment in patients with RAS wildtype metastatic colorectal cancer m(CRC): a randomized phase II VOLFI trial of the AIO (AIO-KRK0109). J Clin Oncol 2018;36(Suppl 15):3509.; Lopez-Crapez E., Adenis A., Thezenas S. et al. FOLFIRINOX plus cetuximab (CET) or bevacizumab (BEV) in patients (pts) with initially unresectable colorectal liver metastases (CRLM) with BRAF mutated (mut) tumors: a subgroup analysis of the UNICANCER PRODIGE 14-ACCORD 21 (METHEP2) trial. J Clin Oncol 2018;36(Suppl 15):3548–54.; https://ok.abvpress.ru/jour/article/view/339Test