يعرض 1 - 10 نتائج من 13 نتيجة بحث عن '"А. Л. Куренков"', وقت الاستعلام: 0.98s تنقيح النتائج
  1. 1
    دورية أكاديمية

    المصدر: Neurology, Neuropsychiatry, Psychosomatics; Vol 16, No 1 (2024); 94-101 ; Неврология, нейропсихиатрия, психосоматика; Vol 16, No 1 (2024); 94-101 ; 2310-1342 ; 2074-2711 ; 10.14412/2074-2711-2024-1

    وصف الملف: application/pdf

    العلاقة: https://nnp.ima-press.net/nnp/article/view/2189/1635Test; Bax M, Goldstein M, Rosenbaum P, et al; Executive Committee for the Definition of Cerebral Palsy. Proposed definition and classification of cerebral palsy, April 2005. Dev Med Child Neurol. 2005 Aug;47(8):571-6. doi:10.1017/s001216220500112x; Graham HK, Rosenbaum P, Paneth N, et al. Cerebral palsy. Nat Rev Dis Primers. 2016 Jan 7;2:15082. doi:10.1038/nrdp.2015.82; Ostojic K, Paget SP, Morrow AM. Management of pain in children and adolescents with cerebral palsy: a systematic review. Dev Med Child Neurol. 2019 Mar;61(3):315-21. doi:10.1111/dmcn.14088. Epub 2018 Oct 31.; Badia M, Riquelme I, Orgaz B, et al. Pain, motor function and health-related quality of life in children with cerebral palsy as reported by their physiotherapists. BMC Pediatr. 2014 Jul 27;14:192. doi:10.1186/1471-2431-14-192; McCormick A. Quality of life. In: Panteliadis CP, ed. Cerebral palsy: Multidisciplinary approach. 3rd ed. Cham: Springer; 2018. P.335-42.; Mckinnon CT, Meehan EM, Harvey AR, et al. Prevalence and characteristics of pain in children and young adults with cerebral palsy: a systematic review. Dev Med Child Neurol. 2019 Mar;61(3):305-14. doi:10.1111/dmcn.14111. Epub 2018 Dec 3.; Penner M, Xie WY, Binepal N, et al. Characteristics of pain in children and youth with cerebral palsy. Pediatrics. 2013 Aug;132(2):e407-13. doi:10.1542/peds.2013-0224. Epub 2013 Jul 15.; Eriksson E, Hägglund G, Alriksson-Schmidt AI. Pain in children and adolescents with cerebral palsy – a crosssectional register study of 3545 individuals. BMC Neurol. 2020 Jan 11;20(1):15. doi:10.1186/s12883-019-1597-7; Ostergaard CS, Pedersen NSA, Thomasen A, et al. Pain is frequent in children with cerebral palsy and negatively affects physical activity and participation. Acta Paediatr. 2021 Jan;110(1):301-6. doi:10.1111/apa.15341. Epub 2020 May 26.; Sultan T, Wong C. Presence and grade of undertreatment of pain in children with cerebral palsy. Scand J Pain. 2023 Jun 2;23(3):546-52. doi:10.1515/sjpain-2022-0124; Parkinson KN, Dickinson HO, Arnaud C, et al; SPARCLE group. Pain in young people aged 13 to 17 years with cerebral palsy: crosssectional, multicentre European study. Arch Dis Child. 2013 Jun;98(6):434-40. doi:10.1136/archdischild-2012-303482. Epub 2013 Apr 20.; Westbom L, Rimstedt A, Nordmark E. Assessments of pain in children and adolescents with cerebral palsy: a retrospective populationbased registry study. Dev Med Child Neurol. 2017 Aug;59(8):858-63. doi:10.1111/dmcn.13459. Epub 2017 May 16.; Ostojic K, Paget S, Kyriagis M, Morrow A. Acute and Chronic Pain in Children and Adolescents With Cerebral Palsy: Prevalence, Interference, and Management. Arch Phys Med Rehabil. 2020 Feb;101(2):213-9. doi:10.1016/j.apmr.2019.08.475. Epub 2019 Sep 12.; Hareb F, Bertoncelli CM, Rosello O, et al. Botulinum Toxin in Children with Cerebral Palsy: An Update. Neuropediatrics. 2020 Feb;51(1):1-5. doi:10.1055/s-0039-1694988. Epub 2019 Sep 4.; Novak I, Morgan C, Fahey M, et al. State of the Evidence Traffic Lights 2019: Systematic Review of Interventions for Preventing and Treating Children with Cerebral Palsy. Curr Neurol Neurosci Rep. 2020 Feb 21;20(2):3. doi:10.1007/s11910-020-1022-z; Heinen F, Kanovsky P, Schroeder AS, et al. IncobotulinumtoxinA for the treatment of lower-limb spasticity in children and adolescents with cerebral palsy: A phase 3 study. J Pediatr Rehabil Med. 2021;14(2):183-97. doi:10.3233/PRM-210040. Erratum in: J Pediatr Rehabil Med. 2022;15(2):407-9.; Tilton A, Russman B, Aydin R, et al. AbobotulinumtoxinA (Dysport®) Improves Function According to Goal Attainment in Children With Dynamic Equinus Due to Cerebral Palsy. J Child Neurol. 2017 Apr;32(5):482-7. doi:10.1177/0883073816686910. Epub 2017 Jan 9.; Kanovsky P, Heinen F, Schroeder AS, et al. Safety and efficacy of repeat long-term incobotulinumtoxinA treatment for lower limb or combined upper/lower limb spasticity in children with cerebral palsy. J Pediatr Rehabil Med. 2022;15(1):113-27. doi:10.3233/PRM210041; Roscigno CI. Addressing spasticity-related pain in children with spastic cerebral palsy. J Neurosci Nurs. 2002 Jun;34(3):123-33. doi:10.1097/01376517-200206000-00005; Almina S, Karile Y, Audrone P, Indre B. Analgesic effect of botulinum toxin in children with cerebral palsy: A systematic review. Toxicon. 2021 Aug;199:60-7. doi:10.1016/j.toxicon.2021.05.012. Epub 2021 Jun 1.; Sandahl Michelsen J, Normann G, Wong C. Analgesic Effects of Botulinum Toxin in Children with CP. Toxins (Basel). 2018 Apr 19;10(4):162. doi:10.3390/toxins10040162; Dabrowski E, Chambers HG, Gaebler-Spira D, et al. Incobotulinumtoxin A Efficacy/Safety in Upper-Limb Spasticity in Pediatric Cerebral Palsy: Randomized Controlled Trial. Pediatr Neurol. 2021 Oct;123:10-20. doi:10.1016/j.pediatrneurol.2021.05.014. Epub 2021 May 21.; Geister TL, Quintanar-Solares M, Martin M, et al. Qualitative development of the 'Questionnaire on Pain caused by Spasticity (QPS),' a pediatric patient-reported outcome for spasticity-related pain in cerebral palsy. Qual Life Res. 2014 Apr;23(3):887-96. doi:10.1007/s11136-013-0526-2. Epub 2013 Sep 24.; Geister TL, Bushnell DM, Yang J, et al. Initial psychometric validation of the questionnaire on pain caused by spasticity (QPS). Health Qual Life Outcomes. 2017 Nov 28;15(1):229. doi:10.1186/s12955-017-0804-8; Heinen F, Bonfert M, Kanovsky P, et al. Spasticity-related pain in children/adolescents with cerebral palsy. Part 1: Prevalence and clinical characteristics from a pooled analysis. J Pediatr Rehabil Med. 2022;15(1):129-43. doi:10.3233/PRM-220011; Bonfert M, Heinen F, Kanovsky P, et al. Spasticity-related pain in children/adolescents with cerebral palsy. Part 2: IncobotulinumtoxinA efficacy results from a pooled analysis. J Pediatr Rehabil Med. 2023;16(1):83-98. doi:10.3233/PRM-220020; https://nnp.ima-press.net/nnp/article/view/2189Test

  2. 2
    دورية أكاديمية

    المؤلفون: Inga V. Anisimova, Svetlana B. Artemyeva, Elena D. Belousova, Nato D. Vashakmadze, Dmitriy V. Vlodavets, Tatiana A. Gremyakova, Olga S. Groznova, Valentina I. Guzeva, Elena V. Gusakova, Lyudmila M. Kuzenkova, Alexey L. Kurenkov, Sergey I. Kutsev, Svetlana V. Mikhaylova, Lyudmila P. Nazarenko, Sergey S. Nikitin, Artem Yu. Novikov, Tatiana V. Podkletnova, Elena V. Polevichenko, Alexander V. Polyakov, Gennady G. Prokopyev, Dmitry I. Rudenko, Svetlana A. Repina, Evgeniia V. Romanenko, Sergey O. Ryabykh, Gul’zhan E. Sakbaeva, Elena Yu. Sapego, Liliia R. Selimzyanova, Andrey A. Stepanov, Dmitry M. Subbotin, Vasiliy M. Suslov, Elena V. Tozliyan, Dmirty A. Feklistov, Nadezhda I. Shakhovskaya, Ekaterina V. Shreder, И. В. Анисимова, С. Б. Артемьева, Е. Д. Белоусова, Н. Д. Вашакмадзе, Д. В. Влодавец, Т. А. Гремякова, О. С. Грознова, В. И. Гузева, Е. В. Гусакова, Л. М. Кузенкова, А. Л. Куренков, С. И. Куцев, С. В. Михайлова, Л. П. Назаренко, С. С. Никитин, А. Ю. Новиков, Т. В. Подклетнова, Е. В. Полевиченко, А. В. Поляков, Г. Г. Прокопьев, Д. И. Руденко, С. А. Репина, Е. В. Романенко, С. О. Рябых, Г. Е. Сакбаева, Е. Ю. Сапего, Л. Р. Селимзянова, А. А. Степанов, Д. М. Субботин, В. М. Суслов, Е. В. Тозлиян, Д. А. Феклистов, Н. И. Шаховская, Е. В. Шредер

    المساهمون: Not specified, Отсутствует

    المصدر: Pediatric pharmacology; Том 20, № 5 (2023); 427-453 ; Педиатрическая фармакология; Том 20, № 5 (2023); 427-453 ; 2500-3089 ; 1727-5776

    وصف الملف: application/pdf

    العلاقة: https://www.pedpharma.ru/jour/article/view/2348/1529Test; Bushby K, Finkel R, Birnkrant DJ, et al. Diagnosis and management of Duchenne muscular dystrophy, part 1: diagnosis, and pharmacological and psychosocial management. Lancet Neurol. 2010;9(1):77–93. doi: https://doi.org/10.1016/S1474-4422Test(09)70271-6; Birnkrant DJ, Bushby K, Bann CM, et al. Diagnosis and management of Duchenne muscular dystrophy, part 1: diagnosis, and neuromuscular, rehabilitation, endocrine, and gastrointestinal and nutritional management. Lancet Neurol. 2018;17(3):251–267. doi: https://doi.org/10.1016/S1474-4422Test(18)30024-3; Emery AEH, Muntoni F, Quinlivan R. Duchenne Muscular Dystrophy. 4th ed. Oxford, UK: Oxford University Press; 2015.; Song TJ, Lee KA, Kang SW, et al. Three cases of manifesting female carriers in patients with Duchenne muscular dystrophy. Yonsei Med J. 2011;52(1):192–195. doi: https://doi.org/10.3349/ymj.2011.52.1.192Test; Ferlini A, Neri M, Gualandi F. The medical genetics of dystrophinopathies: molecular genetic diagnosis and its impact on clinical practice. Neuromuscul Disord. 2013;23(1):4–14. doi: https://doi.org/10.1016/j.nmd.2012.09.002Test; Blake DJ, Weir A, Newey SE, Davies KE. Function and genetics of dystrophin and dystrophin-related proteins in muscle. Physiol Rev. 2002;82(2):291–329. doi: https://doi.org/10.1152/physrev.00028.2001Test; Doorenweerd N, Mahfouz A, van Putten M, et al. Timing and localization of human dystrophin isoform expression provide insights into the cognitive phenotype of Duchenne muscular dystrophy. Sci Rep. 2017;7(1):12575. doi: https://doi.org/10.1038/s41598-017-12981-5Test; Jones H, De Vivo DC, Darras BT. Neuromuscular disorders of infancy, childhood and adolescence. A clinician’s approach. Oxford: Butterworth-Heinemann; 2003.; Romitti PA, Zhu Y, Puzhankara S, et al. Prevalence of Duchenne and Becker muscular dystrophies in the United States. Pediatrics. 2015;135(3):513–521. doi: https://doi.org/10.1542/peds.2014-2044Test; Mah JK, Korngut L, Dykeman J, et al. A systematic review and meta-analysis on the epidemiology of Duchenne and Becker muscular dystrophy. Neuromuscul Disord. 2014;24(6):482–491. doi: https://doi.org/10.1016/j.nmd.2014.03.008Test; Moat SJ, Bradley DM, Salmon R, et al. Newborn bloodspot screening for Duchenne muscular dystrophy: 21 years experience in Wales (UK). Eur J Hum Genet. 2013;21(10):1049–1053. doi: https://doi.org/10.1038/ejhg.2012.301Test; Gloss D, Moxley RT 3rd, Ashwal S, Oskoui M. Practice guideline update summary: Corticosteroid treatment of Duchenne muscular dystrophy: Report of the Guideline Development Subcommittee of the American Academy of Neurology. Neurology. 2016;86(5):465–472. doi: https://doi.org/10.1212/WNL.0000000000002337Test; Baydur A, Gilgoff I, Prentice W, et al. Decline in respiratory function and experience with long-term assisted ventilation in advanced Duchenne’s muscular dystrophy. Chest. 1990;97(4):884–889. doi: https://doi.org/10.1378/chest.97.4.884Test; Fayssoil A, Abasse S, Silverston K. Cardiac Involvement Classification and Therapeutic Management in Patients with Duchenne Muscular Dystrophy. J Neuromuscul Dis. 2017;4(1):17–23. doi: https://doi.org/10.3233/JND-160194Test; Feingold B, Mahle WT, Auerbach S, et al. Management of Cardiac Involvement Associated With Neuromuscular Diseases: A Scientific Statement From the American Heart Association. Circulation. 2017;136(13):e200–e231. doi: https://doi.org/10.1161/CIR.0000000000000526Test; Грознова О.С., Влодавец Д.В., Артемьева С.Б. Поражение сердечно-сосудистой системы при прогрессирующей мышечной дистрофии Дюшенна: особенности диагностики, наблюдения и лечения // Педиатрия. Журнал им. Г.Н. Сперанского. — 2020. — Т. 99. — №3. — С. 95–102.; McNally EM, Kaltman JR, Benson DW, et al. Contemporary cardiac issues in Duchenne muscular dystrophy. Working Group of the National Heart, Lung, and Blood Institute in collaboration with Parent Project Muscular Dystrophy. Circulation. 2015;131(18):1590–1598. doi: https://doi.org/10.1161/CIRCULATIONAHA.114.015151Test; Грознова О.С., Чечуро В.В. Лечение кардиомиопатий у больных прогрессирующими мышечными дистрофиями // Российский вестник перинатологии и педиатрии. — 2011. — Т. 56. — № 2. — С. 58–62.; Matsumura T. Beta-blockers in Children with Duchenne Cardiomyopathy. Rev Recent Clin Trials. 2014;9(2):76–81. doi: https://doi.org/10.2174/1574887109666140908123856Test; Mavrogeni SI, Markousis-Mavrogenis G, Papavasiliou A, et al. Cardiac Involvement in Duchenne Muscular Dystrophy and Related Dystrophinopathies. Methods Mol Biol. 2018;1687:31–42. doi: https://doi.org/10.1007/978-1-4939-7374-3_3Test; Thomas TO, Morgan TM, Burnette WB, Markham LW. Correlation of heart rate and cardiac dysfunction in Duchenne muscular dystrophy. Pediatr Cardiol. 2012;33(7):1175–1179. doi: https://doi.org/10.1007/s00246-012-0281-0Test; Ponikowski P, Voors AA, Anker SD, et al. 2016 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure: The Task Force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC)Developed with the special contribution of the Heart Failure Association (HFA) of the ESC. Eur Heart J. 2016;37(27):2129–2200. doi: https://doi.org/10.1093/eurheartj/ehw128Test; Raman SV, Hor KN, Mazur W, et al. Eplerenone for early cardiomyopathy in Duchenne muscular dystrophy: a randomised, double-blind, placebo-controlled trial. Lancet Neurol. 2015;14(2):153–161. doi: https://doi.org/10.1016/S1474-4422Test(14)70318-7; Hunt SA, Abraham WT, Chin MH, et al. ACC/AHA 2005 guideline update for the diagnosis and management of chronic heart failure in the adult: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Writing Committee to Update the 2001 Guidelines for the Evaluation and Management of Heart Failure): developed in collaboration with the American College of Chest Physicians and the International Society for Heart and Lung Transplantation: endorsed by the Heart Rhythm Society. Circulation. 2005;112(12):e154–235. doi: https://doi.org/10.1161/CIRCULATIONAHA.105.167586Test; Грознова О.С., Тренева М.С. Применение ингибитора ангиотензинпревращающего фермента и -блокатора у больных миопатией Дюшенна в длительном катамнезе // Российский вестник перинатологии и педиатрии. — 2012. — Т. 57. — № 4-1. — С. 87–89.; Tay SK, Ong HT, Low PS. Transaminitis in Duchenne’s muscular dystrophy. Ann Acad Med Singap. 2000;29(6):719–722.; Perloff JK. Cardiac rhythm and conduction in Duchenne’s muscular dystrophy: a prospective study of 20 patients. J Am Coll Cardiol. 1984;3(5):1263–1268. doi: https://doi.org/10.1016/s0735-1097Test(84)80186-2; Chenard AA, Becane HM, Tertrain F, et al. Ventricular arrhythmia in Duchenne muscular dystrophy: prevalence, significance and prognosis. Neuromuscul Disord. 1993;3(3):201–206. doi: https://doi.org/10.1016/0960-8966Test(93)90060-w; Suresh S, Wales P, Dakin C, et al. Sleep-related breathing disorder in Duchenne muscular dystrophy: disease spectrum in the paediatric population. J Paediatr Child Health. 2005;41(9-10):500–503. doi: https://doi.org/10.1111/j.1440-1754.2005.00691.xTest; Leibowitz D, Dubowitz V. Intellect and behaviour in Duchenne muscular dystrophy. Dev Med Child Neurol. 1981;23(5):577–590. doi: https://doi.org/10.1111/j.1469-8749.1981.tb02039.xTest; Anderson JL, Head SI, Rae C, Morley JW. Brain function in Duchenne muscular dystrophy. Brain. 2002;125(Pt 1):4–13. doi: https://doi.org/10.1093/brain/awf012Test; McDonald DG, Kinali M, Gallagher AC, et al. Fracture prevalence in Duchenne muscular dystrophy. Dev Med Child Neurol. 2002;44(10):695–698. doi: https://doi.org/10.1017/s0012162201002778Test; Larson CM, Henderson RC. Bone mineral density and fractures in boys with Duchenne muscular dystrophy. J Pediatr Orthop. 2000;20(1):71–74.; Rutkove SB, Kapur K, Zaidman CM, et al. Electrical impedance myography for assessment of Duchenne muscular dystrophy. Ann Neurol. 2017;81(5):622–632. doi: https://doi.org/10.1002/ana.24874Test; Куренков А.Л., Кузенкова Л.М., Пак Л.А. и др. Дифференциальный диагноз мышечной дистрофии Дюшенна // Неврологический журнал имени Л.О. Бадаляна. — 2021. — Т. 2. — № 3. — С. 159–166. — doi: https://doi.org/10.46563/2686-8997-2021-2-3-159-166Test; Birnkrant DJ, Bushby K, Bann CM, et al. Diagnosis and management of Duchenne muscular dystrophy, part 2: respiratory, cardiac, bone health, and orthopaedic management. Lancet Neurol. 2018;17(4):347–361. doi: https://doi.org/10.1016/S1474-4422Test(18)30025-5; Sansović I, Barišić I, Dumić K. Improved detection of deletions and duplications in the DMD gene using the multiplex ligationdependent probe amplification (MLPA) method. Biochem Genet. 2013;51(3-4):189–201. doi: https://doi.org/10.1007/s10528-012-9554-9Test; Deconinck N, Goemans N. Management of Neuromuscular Disorders in Children: A Multidisciplinary Approach to Management. 1st ed. Mac Keith Press; 2019. pp. 166–187.; Ciafaloni E, Fox DJ, Pandya S, et al. Delayed diagnosis in Duchenne muscular dystrophy: data from the Muscular Dystrophy Surveillance, Tracking, and Research Network (MD STARnet). J Pediatr. 2009;155(3):380–385. doi: https://doi.org/10.1016/j.jpeds.2009.02.007Test; Ankala A, da Silva C, Gualandi F, et al. A comprehensive genomic approach for neuromuscular diseases gives a high diagnostic yield. Ann Neurol. 2015;77(2):206–214. doi: https://doi.org/10.1002/ana.24303Test; Wonkam-Tingang E, Nguefack S, Esterhuizen AI, et al. DMD-related muscular dystrophy in Cameroon: Clinical and genetic profiles. Mol Genet Genomic Med. 2020;8(8):e1362. doi: https://doi.org/10.1002/mgg3.1362Test; Karaiev T, Tkachenko O, Kononets O, Lichman L. A family history of Duchenne muscular dystrophy. Georgian Med News. 2020;(303):79–85.; Kononets O, Karaiev T, Tkachenko O, Lichman L. Renal, hepatic and immune function indices in patients with Duchenne muscular dystrophy. Georgian Med News. 2020;(309):64–71.; Rosales XQ, Chu ML, Shilling C, et al. Fidelity of gammaglutamyl transferase (GGT) in differentiating skeletal muscle from liver damage. J Child Neurol. 2008;23(7):748–751. doi: https://doi.org/10.1177/0883073808314365Test; Matsumura T, Takahashi M, Nakamori M, et al. Erythrocyte from Duchenne muscular dystrophy is fragile. Rinsho Shinkeigaku. 2004;44(10):695–698.; Braat E, Hoste L, De Waele L, et al. Renal function in children and adolescents with Duchenne muscular dystrophy. Neuromuscul Disord. 2015;25(5):381387. doi: https://doi.org/10.1016/j.nmd.2015.01.005Test; Phillips MF, Quinlivan RC, Edwards RH, Calverley PM. Changes in spirometry over time as a prognostic marker in patients with Duchenne muscular dystrophy. Am J Respir Crit Care Med. 2001;164(12):2191–2194. doi: https://doi.org/10.1164/ajrccm.164.12.2103052Test; Rideau Y, Jankowski LW, Grellet J. Respiratory function in the muscular dystrophies. Muscle Nerve. 1981;4(2):155–164. doi: https://doi.org/10.1002/mus.880040213Test; Inkley SR, Oldenburg FC, Vignos PJ Jr. Pulmonary function in Duchenne muscular dystrophy related to stage of disease. Am J Med. 1974;56(3):297–306. doi: https://doi.org/10.1016/0002-9343Test(74)90611-1; Birnkrant DJ, Bushby K, Bann CM, et al. Diagnosis and management of Duchenne muscular dystrophy, part 3: primary care, emergency management, psychosocial care, and transitions of care across the lifespan. Lancet Neurol. 2018;17(5):445–455. doi: https://doi.org/10.1016/S1474-4422Test(18)30026-7; Birnkrant DJ, Bushby KM, Amin RS, et al. The respiratory management of patients with Duchenne muscular dystrophy: a DMD care considerations working group specialty article. Pediatr Pulmonol. 2010;45(8):739–748. doi: https://doi.org/10.1002/ppul.21254Test; Finder JD, Birnkrant D, Carl J, et al. Respiratory care of the patient with Duchenne muscular dystrophy: ATS consensus statement. Am J Respir Crit Care Med. 2004;170(4):456–465. doi: https://doi.org/10.1164/rccm.200307-885STTest; Polavarapu K, Manjunath M, Preethish-Kumar V, et al. Muscle MRI in Duchenne muscular dystrophy: Evidence of a distinctive pattern. Neuromuscul Disord. 2016;26(11):768–774. doi: https://doi.org/10.1016/j.nmd.2016.09.002Test; Руденко Д.И., Поздняков А.В., Суслов В.М. Методы визуализации мышечной дистрофии Дюшенна (литературный обзор) // Международный неврологический журнал. — 2017. — № 2. — С. 84–92. — doi: https://doi.org/10.22141/2224-0713.2.88.2017.100199Test; Sbrocchi AM. Dietary Reference Intakes for Calcium and Vitamin D. Institute of Medicine (US) Committee to Review Dietary Reference Intakes for Vitamin D and Calcium; Ross AC, Taylor CL, Yaktine AL, Del Valle HB, eds. Washington (DC): National Academies Press (US); 2011.; Sbrocchi AM, Rauch F, Jacob P, et al. The use of intravenous bisphosphonate therapy to treat vertebral fractures due to osteoporosis among boys with Duchenne muscular dystrophy. Osteoporos Int. 2012;23(11):2703–2711. doi: https://doi.org/10.1007/s00198-012-1911-3Test; Stücker R, Stücker S, Mladenov K. Spinal deformity in Duchenne muscular dystrophy. Orthopade. 2021;50(8):638–642. doi: https://doi.org/10.1007/s00132-021-04127-3Test; Waldrop MA, Flanigan KM. Update in Duchenne and Becker muscular dystrophy. Curr Opin Neurol. 2019;32(5):722–727. doi: https://doi.org/10.1097/WCO.0000000000000739Test; Lee JS, Kim K, Jeon YK, et al. Effects of Traction on Interpretation of Lumbar Bone Mineral Density in Patients with Duchenne Muscular Dystrophy: A New Measurement Method and Diagnostic Criteria Based on Comparison of Dual-Energy X-Ray Absorptiometry and Quantitative Computed Tomography. J Clin Densitom. 2020;23(1):53–62. doi: https://doi.org/10.1016/j.jocd.2018.07.006Test; Leroy-Willig A, Willig TN, Henry-Feugeas MC, et al. Body composition determined with MR in patients with Duchenne muscular dystrophy, spinal muscular atrophy, and normal subjects. Magn Reson Imaging. 1997;15(7):737–744. doi: https://doi.org/10.1016/s0730-725xTest(97)00046-5; McDonald CM, Campbell C, Torricelli RE, et al. Ataluren in patients with nonsense mutation Duchenne muscular dystrophy (ACT DMD): a multicentre, randomised, double-blind, placebo-controlled, phase 3 trial. Lancet. 2017;390(10101):1489–1498. doi: https://doi.org/10.1016/S0140-6736Test(17)31611-2; Gordon KE, Dooley JM, Sheppard KM, et al. Impact of bisphosphonates on survival for patients with Duchenne muscular dystrophy. Pediatrics. 2011;127(2):e353–e358. doi: https://doi.org/10.1542/peds.2010-1666Test; Janisch M, Buchholtz SN, Haden MV. Pediatric palliative care of Duchenne muscular dystrophy in Germany. Neuropediatrics. 2018;49(S 02):S1–S69. doi: https://doi.org/10.1055/s-0038-1675922Test; Sadasivan A, Warrier MG, Polavarapu K, et al. Palliative care in Duchenne muscular dystrophy: A study on parents’ understanding. Indian J Palliat Care. 2021;27(1):146–151. doi: https://doi.org/10.4103/IJPC.IJPC_259_20Test; Engel JM, Kartin D, Carter GT, et al. Pain in youths with neiromuscular disease. Am J Hosp Palliat Care. 2009;26(5):405–412. doi: https://doi.org/10.1177/1049909109346165Test; McDonald CM, Henricson EK, Han JJ, et al. The 6-minute walk test as a new outcome measure in Duchenne muscular dystrophy. Muscle Nerve. 2010;41(4):500–510. doi: https://doi.org/10.1002/mus.21544Test; McDonald CM. Timed function tests have withstood the test of time as clinically meaningful and responsive endpoints in Duchenne muscular dystrophy. Muscle Nerve. 2018;58(5):614–617. doi: https://doi.org/10.1002/mus.26334Test; Henricson E, Abresch R, Han JJ, et al. The 6-Minute Walk Test and Person-Reported Outcomes in Boys with Duchenne Muscular Dystrophy and Typically Developing Controls: Longitudinal Comparisons and Clinically-Meaningful Changes Over One Year. PLoS Curr. 2013;5:ecurrents.md.9e17658b007eb79fcd6f723089f79e06. doi: https://doi.org/10.1371/currents.md.9e17658b007eb79fcd6f723089f79e06Test; McDonald CM, Henricson EK, Abresch RT, et al. The 6-minute walk test and other endpoints in Duchenne muscular dystrophy: longitudinal natural history observations over 48 weeks from a multicenter study. Muscle Nerve. 2013;48(3):343–356. doi: https://doi.org/10.1002/mus.23902Test; McDonald CM, Henricson EK, Han JJ, et al. The 6-minute walk test in Duchenne/Becker muscular dystrophy: longitudinal observations. Muscle Nerve. 2010;42(6):966–974. doi: https://doi.org/10.1002/mus.21808Test; Pandya S, Florence JM, King WM, et al. Reliability of goniometric measurements in patients with Duchenne muscular dystrophy. Phys Ther. 1985;65(9):1339–1342. doi: https://doi.org/10.1093/ptj/65.9.1339Test; Bushby K, Finkel R, Birnkrant DJ, et al. Diagnosis and management of Duchenne muscular dystrophy, part 2: implementation of multidisciplinary care. Lancet Neurol. 2010;9(2):177–189. doi: https://doi.org/10.1016/S1474-4422Test(09)70272-8; Mercuri E, Muntoni F, Osorio AN, et al. Safety and effectiveness of ataluren: comparison of results from the STRIDE Registry and CINRG DMD Natural History Study. J Comp Eff Res. 2020;9(5):341–360. doi: https://doi.org/10.2217/cer-2019-0171Test; Finkel RS, Flanigan KM, Wong B, et al. Phase 2a study of atalurenmediated dystrophin production in patients with nonsense mutation Duchenne muscular dystrophy. PLoS One. 2013;8(12):e81302. doi: https://doi.org/10.1371/journal.pone.0081302Test; Трансларна®: инструкция по применению. Регистрационное удостоверение № ЛП-006596. Дата регистрации: 24.11.2020 // Государственный реестр лекарственных средств: официальный сайт. Доступно по: https://grls.rosminzdrav.ru/Grls_View_v2.aspx?routingGuid=0a1cb70a-0f00-4d41-b4b2-9ac96aac4ccaTest. Ссылка активна на 17.08.2023.; Kinnett K, Noritz G. The PJ Nicholoff Steroid Protocol for Duchenne and Becker Muscular Dystrophy and Adrenal Suppression. PLoS Curr. 2017;9:ecurrents.md.d18deef7dac96ed135e0dc8739917b6e. doi: https://doi.org/10.1371/currents.md.d18deef7dac96ed135e0dc8739917b6eTest; Mercuri E, Muntoni F, Buccella F, et al. Age at loss of ambulation in patients with DMD from the STRIDE Registry and the CINRG Duchenne Natural History Study: a matched cohort analysis. Neuromuscular Disorders. 2022;32(Suppl 1):S52. doi: https://doi.org/10.1016/j.nmd.2022.07.045Test; Manzur AY, Kuntzer T, Pike M, Swan A. Glucocorticoid corticosteroids for Duchenne muscular dystrophy. Cochrane Database Syst Rev. 2008;(1):CD003725. doi: https://doi.org/10.1002/14651858.CD003725.pub3Test; Moxley RT 3rd, Ashwal S, Pandya S, et al. Practice parameter: corticosteroid treatment of Duchenne dystrophy: report of the Quality Standards Subcommittee of the American Academy of Neurology and the Practice Committee of the Child Neurology Society. Neurology. 2005;64(1):13–20. doi: https://doi.org/10.1212/01.WNL.0000148485.00049.B7Test; Marden JR, Freimark J, Yao Z, et al. Real-world outcomes of long-term prednisone and deflazacort use in patients with Duchenne muscular dystrophy: experience at a single, large care center. J Comp Eff Res. 2020;9(3):177–189. doi: https://doi.org/10.2217/cer-2019-0170Test; Angelini C, Peterle E. Old and new therapeutic developments in steroid treatment in Duchenne muscular dystrophy. Acta Myol. 2012;31(1):9–15.; Гремякова Т.А., Суслов В.М., Сакбаева Г.Е., Степанов А.А. Витамин D в профилактике и терапии коморбидных состояний при мышечной дистрофии Дюшенна // Неврологический журнал им. Л.О. Бадаляна. — 2021. — Т. 2. — № 1. — С. 38–50. — doi: https://doi.org/10.46563/2686-8997-2021-2-1-38-50Test; Allington N, Vivegnis D, Gerard P. Cyclic administration of pamidronate to treat osteoporosis in children with cerebral palsy or a neuromuscular disorder: a clinical study. Acta Orthop Belg. 2005;71(1):91–97.; Wood CL, Cheetham TD, Guglieri M, et al. Testosterone Treatment of Pubertal Delay in Duchenne Muscular Dystrophy. Neuropediatrics. 2015;46(6):371–376. doi: https://doi.org/10.1055/s-0035-1563696Test; Bhasin S, Cunningham GR, Hayes FJ, et al. Testosterone therapy in men with androgen deficiency syndromes: an Endocrine Society clinical practice guideline. J Clin Endocrinol Metab. 2010;95(6):2536–2559. doi: https://doi.org/10.1210/jc.2009-2354Test; Wood CL, Straub V, Guglieri M, et al. Short stature and pubertal delay in Duchenne muscular dystrophy. Arch Dis Child. 2016;101(1):101–106. doi: https://doi.org/10.1136/archdischild-2015-308654Test; Bianchi ML, Biggar D, Bushby K, et al. Endocrine aspects of Duchenne muscular dystrophy. Neuromuscul Disord. 2011;21(4):298–303. doi: https://doi.org/10.1016/j.nmd.2011.02.006Test; Martigne L, Seguy D, Pellegrini N, et al. Efficacy and tolerance of gastrostomy feeding in Duchenne muscular dystrophy. Clin Nutr. 2010;29(1):60–64. doi: https://doi.org/10.1016/j.clnu.2009.06.009Test; McKim DA, Katz SL, Barrowman N, et al. Lung volume recruitment slows pulmonary function decline in Duchenne muscular dystrophy. Arch Phys Med Rehabil. 2012;93(7):1117–1122. doi: https://doi.org/10.1016/j.apmr.2012.02.024Test; Stehling F, Bouikidis A, Schara U, Mellies U. Mechanical insufflation/exsufflation improves vital capacity in neuromuscular disorders. Chron Respir Dis. 2015;12(1):31–35. doi: https://doi.org/10.1177/1479972314562209Test; Chiou M, Bach JR, Jethani L, Gallagher MF. Active lung volume recruitment to preserve vital capacity in Duchenne muscular dystrophy. J Rehabil Med. 2017;49(1):49–53. doi: https://doi.org/10.2340/16501977-2144Test; Archer JE, Gardner AC, Roper HP, et al. Duchenne muscular dystrophy: the management of scoliosis. J Spine Surg. 2016;2(3):185–194. doi: https://doi.org/10.21037/jss.2016.08.05Test; Alexander WM, Smith M, Freeman BJ, et al. The effect of posterior spinal fusion on respiratory function in Duchenne muscular dystrophy. Eur Spine J. 2013;22(2):411–416. doi: https://doi.org/10.1007/s00586-012-2585-4Test; Takaso M, Nakazawa T, Imura T, et al. Surgical management of severe scoliosis with high risk pulmonary dysfunction in Duchenne muscular dystrophy: patient function, quality of life and satisfaction. Int Orthop. 2010;34(5):695–702. doi: https://doi.org/10.1007/s00264-010-0957-0Test; Cullom C, Vo V, McCabe MD. Orthotopic Heart Transplantation in Manifesting Carrier of Duchenne Muscular Dystrophy. J Cardiothorac Vasc Anesth. 2022;36(8 Pt A):2593–2599. doi: https://doi.org/10.1053/j.jvca.2021.09.047Test; Hayes J, Veyckemans F, Bissonnette B. Duchenne muscular dystrophy: an old anesthesia problem revisited. Paediatr Anaesth. 2008;18(2):100–106. doi: https://doi.org/10.1111/j.1460-9592.2007.02302.xTest; Sepulveda C, Marlin A, Yoshida T, Ullrich A. Palliative care: the World Health Organization’s global perspective. J Pain Symptom Manage. 2002;24(2):91–96. doi: https://doi.org/10.1016/s0885-3924Test(02)00440-2; Pastrana T, Junger S, Ostgathe C, et al. A matter of definition — key elements identified in a discourse analysis of definitions of palliative care. Palliat Med. 2008;22(3):222–232. doi: https://doi.org/10.1177/0269216308089803Test; Жданова Л.В., Лебедева О.А., Колмакова В.В., Русинова Т.А. Развитие амбулаторной паллиативной помощи детям и подросткам в Республике Бурятия // Вестник Бурятского государственного университета. Медицина и фармация. — 2019. — Вып. 1. — С. 39–43. — doi: https://doi.org/10.18101/2306-1995-2019-1-39-43Test; Минаева Н.В., Исламова Р.И., Баженова М.И. Выездная патронажная паллиативная медицинская помощь детям: двухлетний опыт работы некоммерческой благотворительной организации // Вопросы современной педиатрии. — 2020. — Т. 9. — № 1. — С. 46–56. — doi: https://doi.org/10.15690/vsp.v19i1.2085Test; Соколова М.Г., Никишина О.А. Использование искусственной вентиляции легких у тяжелобольных детей в домашних условиях // Здоровье — основа человеческого потенциала: проблемы и пути их решения. — 2013. — Т. 8. — № 1. — С. 262–263.; Rehabilitation & physical therapy. In: Parent Project Muscular Dystrophy: Official website. Available online: https://www.parent-projectmd.org/care/care-guidelines/by-area/physical-therapy-and-stretchingTest. Accessed on August 18, 2023.; Gianola S, Castellini G, Pecoraro V, et al. Effect of Muscular Exercise on Patients With Muscular Dystrophy: A Systematic Review and Meta-Analysis of the Literature. Front Neurol. 2020;11:958. doi: https://doi.org/10.3389/fneur.2020.00958Test; Sacks D, Baxter B, Campbell BCV, et al. Multisociety Consensus Quality Improvement Revised Consensus Statement for Endovascular Therapy of Acute Ischemic Stroke. Int J Stroke. 2018;13(6):612–632. doi: https://doi.org/10.1177/1747493018778713Test; Case LE, Apkon SD, Eagle M, et al. Rehabilitation Management of the Patient With Duchenne Muscular Dystrophy. Pediatrics. 2018;142(Suppl 2):S17–S33. doi: https://doi.org/10.1542/peds.2018-0333DTest; Association of Paediatric Chartered Physiotherapists. Guidance for Paediatric Physiotherapists Managing Neuromuscular Disorders. Published: March 2017. Review: March 2020. Available online: https://apcp.csp.org.uk/system/files/guidance_for_paediatric_physiotherapists_managing_neuromuscular_disorders_-_2017.pdfTest. Accessed on August 18, 2023.; Uttley L, Carlton J, Woods HB, Brazier J. A review of quality of life themes in Duchenne muscular dystrophy for patients and carers. Health Qual Life Outcomes. 2018;16(1):237. doi: https://doi.org/10.1186/s12955-018-1062-0Test; Pandya S, Andrews J, Campbell K, Meaney FJ. Rehabilitative technology use among individuals with Duchenne/Becker muscular dystrophy. J Pediatr Rehabil Med. 2016;9(1):45–53. doi: https://doi.org/10.3233/PRM-160356Test; Pardo AC, Do T, Ryder T, et al. Combination of steroids and ischial weight-bearing knee ankle foot orthoses in Duchenne’s muscular dystrophy prolongs ambulation past 20 years of age — a case report. Neuromuscul Disord. 2011;21(11):800–802. doi: https://doi.org/10.1016/j.nmd.2011.06.006Test; Garralda ME, Muntoni F, Cunniff A, Caneja AD. Knee-ankle-foot orthosis in children with Duchenne muscular dystrophy: user views and adjustment. Eur J Paediatr Neurol. 2006;10(4):186–191. doi: https://doi.org/10.1016/j.ejpn.2006.07.002Test; Aydin Yağcioğlu G, Alemdaroğlu Gürbüz İ, Karaduman A, et al. Kinesiology Taping in Duchenne Muscular Dystrophy: Acute Effects on Performance, Gait Characteristics, and Balance. Dev Neurorehabil. 2021;24(3):199–204. doi: https://doi.org/10.1080/17518423.2020.1839805Test; Abresch RT, Carter GT, Han JJ, McDonald CM. Exercise in neuromuscular diseases. Phys Med Rehabil Clin N Am. 2012;23(3):653–673. doi: https://doi.org/10.1016/j.pmr.2012.06.001Test; Alemdaroğlu I, Karaduman A, Yilmaz ÖT, Topaloğlu H. Different types of upper extremity exercise training in Duchenne muscular dystrophy: effects on functional performance, strength, endurance, and ambulation. Muscle Nerve. 2015;51(5):697–705. doi: https://doi.org/10.1002/mus.24451Test; Hind D, Parkin J, Whitworth V, et al. Aquatic therapy for children with Duchenne muscular dystrophy: a pilot feasibility randomised controlled trial and mixed-methods process evaluation. Health Technol Assess. 2017;21(27):1–120. doi: https://doi.org/10.3310/hta21270Test; Bulut N, Karaduman A, Alemdaroğlu-Gürbüz İ, et al. The effect of aerobic training on motor function and muscle architecture in children with Duchenne muscular dystrophy: A randomized controlled study. Clin Rehabil. 2022;36(8):1062–1071. doi: https://doi.org/10.1177/02692155221095491Test; Jansen M, van Alfen N, Geurts AC, de Groot IJ. Assisted bicycle training delays functional deterioration in boys with Duchenne muscular dystrophy: the randomized controlled trial “no use is disuse”. Neurorehabil Neural Repair. 2013;27(9):816–827. doi: https://doi.org/10.1177/1545968313496326Test; Darmahkasih AJ, Rybalsky I, Tian C, et al. Neurodevelopmental, Behavioral, and Emotional Symptoms Common in Duchenne Muscular Dystrophy. Muscle Nerve. 2020;61(4):466–474. doi: https://doi.org/10.1002/mus.26803Test; Araujo APQC, Nardes F, Fortes CPDD, et al. Brazilian consensus on Duchenne muscular dystrophy. Part 2: rehabilitation and systemic care. Arq Neuropsiquiatr. 2018;76(7):481–489. doi: https://doi.org/10.1590/0004-282X20180062Test; Chen H. A Mini-Review on The Rehabilitation of Duchenne Muscular Dystrophy. EPMR. 2021;3(2):000560. doi: https://doi.org/10.31031/EPMR.2021.03.000560Test; Richardson M, Frank AO. Electric powered wheelchairs for those with muscular dystrophy: problems of posture, pain and deformity. Disabil Rehabil Assist Technol. 2009;4(3):181–188. doi: https://doi.org/10.1080/17483100802543114Test; Pedlow K, McDonough S, Lennon S, et al. Assisted standing for Duchenne muscular dystrophy. Cochrane Database Syst Rev. 2019;10(10):CD011550. doi: https://doi.org/10.1002/14651858.CD011550.pub2Test; Saito T, Ohfuji S, Matsumura T, et al. Safety of a Pandemic Influenza Vaccine and the Immune Response in Patients with Duchenne Muscular Dystrophy. Intern Med. 2015;54(10):1199–1205. doi: https://doi.org/10.2169/internalmedicine.54.1186Test; Vaccination recommendations. In: Parent Project Muscular Dystrophy: Official website. Available online: https://www.parentpro-jectmd.org/site/PageServer?pagename=Care_area_vaccinationsTest. Accessed on August 18, 2023.; Mochizuki H, Okahashi S, Ugawa Y, et al. Heart rate variability and hypercapnia in Duchenne muscular dystrophy. Intern Med. 2008;47(21):1893–1897. doi: https://doi.org/10.2169/internalmedicine.47.1118Test; Takasugi T, Ishihara T, Kawamura J, et al. Blood gas changes in Duchenne type muscular dystrophy. Nihon Kyobu Shikkan Gakkai Zasshi. 1995;33(1):17–22.; West NA, Yang ML, Weitzenkamp DA, et al. Patterns of growth in ambulatory males with Duchenne muscular dystrophy. J Pediatr. 2013;163(6):1759–1763.e1. doi: https://doi.org/10.1016/j.jpeds.2013.08.004Test; Lohman TG, Roche AF, Martorell R. Anthropometric standardization reference manual. Champaign, IL: Human Kinetic Books; 1988.; van Bockel EA, Lind JS, Zijlstra JG, et al. Cardiac assessment of patients with late stage Duchenne muscular dystrophy. Neth Heart J. 2009;17(6):232–237. doi: https://doi.org/10.1007/BF03086253Test; Martins E, Silva-Cardoso J, Silveira F, et al. Left ventricular function in adults with muscular dystrophies: genotype-phenotype correlations. Rev Port Cardiol. 2005;24(1):23–35.; Cummings EA, Ma J, Fernandez CV, et al. Incident Vertebral Fractures in Children With Leukemia During the Four Years Following Diagnosis. J Clin Endocrinol Metab. 2015;100(9):3408–3417. doi: https://doi.org/10.1210/JC.2015-2176Test; Christiansen BA, Bouxsein ML. Biomechanics of vertebral fractures and the vertebral fracture cascade. Curr Osteoporos Rep. 2010;8(4):198–204. doi: https://doi.org/10.1007/s11914-010-0031-2Test; Janisch M, Boehme K, Thiele S, et al. Tasks and interfaces in primary and specialized palliative care for Duchenne muscular dystrophy — A patients’ perspective. Neuromuscul Disord. 2020;30(12):975–985. doi: https://doi.org/10.1016/j.nmd.2020.09.031Test; Arias R, Andrews J, Pandya S, et al. Palliative care services in families of males with Duchenne muscular dystrophy. Muscle Nerve. 2011;44(1):93–101. doi: https://doi.org/10.1002/mus.22005Test; https://www.pedpharma.ru/jour/article/view/2348Test

  3. 3
    دورية أكاديمية

    المصدر: Neurology, Neuropsychiatry, Psychosomatics; Vol 14, No 2 (2022); 117-125 ; Неврология, нейропсихиатрия, психосоматика; Vol 14, No 2 (2022); 117-125 ; 2310-1342 ; 2074-2711 ; 10.14412/2074-2711-2022-2

    وصف الملف: application/pdf

    العلاقة: https://nnp.ima-press.net/nnp/article/view/1795/1401Test; https://nnp.ima-press.net/nnp/article/view/1795/1404Test; Sadowska M, Sarecka-Hujar B, Kopyta I. Cerebral palsy: current opinions on definition, epidemiology, risk factors, classification and treatment options. Neuropsychiatr Dis Treat. 2020 Jun 12;16:1505-1518. doi:10.2147/NDT.S235165; Graham HK, Rosenbaum P, Paneth N, et al. Cerebralpalsy. Nat Rev Dis Primers. 2016 Jan 7;2:15082. doi:10.1038/nrdp.2015.82; Heinen F, Desloovere K, Schroeder AS, et al. The updated European Consensus 2009 on the use of Botulinum toxin for children with cerebral palsy. Eur J Paediatr Neurol. 2010 Jan;14(1):45-66. doi:10.1016/j.ejpn.2009.09.005. Epub 2009 Nov 14.; Novak I, Morgan C, Fahey M, et al. State of the Evidence Traffic Lights 2019: Systematic Review of Interventions for Preventing and Treating Children with Cerebral Palsy. Curr Neurol Neurosci Rep. 2020 Feb 21;20(2):3. doi:10.1007/s11910-020-1022-z; Delgado MR, Bonikowski M, Carranza J, et al. Safety and efficacy of repeat open-label abobotulinumtoxinA treatment in pediatric cerebral palsy. J Child Neurol. 2017 Nov;32(13):1058-64. doi:10.1177/0883073817729918. Epub 2017 Sep 15.; Heinen F, Kanovsky P, Schroeder AS, et al. IncobotulinumtoxinA for the treatment of lowerlimb spasticity in children and adolescents with cerebral palsy: A phase 3 study. J Pediatr Rehabil Med. 2021;14(2):183-97. doi:10.3233/PRM-210040; Kanovsky P, Heinen F, Schroeder AS, et al. Safety and efficacy of repeat long-term incobotulinumtoxinA treatment for lower limb or combined upper/lower limb spasticity in children with cerebralpalsy. J Pediatr Rehabil Med. 2021 Dec; Куренков АЛ, Клочкова ОА, Кузенкова ЛМ и др. Многоуровневая ботулинотерапия при спастических формах детского церебрального паралича с тяжелыми двигательными нарушениями (GMFCS IV–V). Журнал неврологии и пси- хиатрии им. С.С. Корсакова. 2020;120(12):57-66. doi:10.17116/jnevro202012012157; Molenaers G, Desloovere K, Fabry G, De Cock P. The effects of quantitative gait assessment and botulinum toxin a on musculoskeletal surgery in children with cerebral palsy. J Bone Joint Surg Am. 2006 Jan;88(1):161-70. doi:10.2106/JBJS.C.01497; Кенис ВМ. Ортопедическое лечение деформаций стоп у детей с церебральным параличом: Автореф. дисс. … докт. мед. наук. Санкт-Петербург; 2014. 45 с.; Змановская ВА, Левитина ЕВ, Попков ДА и др. Длительное применение препарата ботулинического токсина типа А: Диспорт в комплексной реабилитации детей со спастическими формами церебрального паралича. Журнал неврологии и психиатрии им. С.С. Корса- кова. 2014;114(7):33-6.; Rowe FJ, Noonan CP. Botulinum toxin for the treatment of strabismus. Cochrane Database Syst Rev. 2017 Mar 2;3(3):CD006499. doi:10.1002/14651858.CD006499.pub4; Berweck S, Bonikowski M, Kim H, et al. Placebo-controlled clinical trial of incobotulinumtoxinA for sialorrhea in children: SIPEXI. Neurology. 2021 Aug 2;97(14):e1425-e1436. doi:10.1212/WNL.0000000000012573. Online ahead of print.; Jost WH, Steffen A, Berweck S. A critical review of incobotulinumtoxinA in the treatment of chronic sialorrhea in pediatric patients. Expert Rev Neurother. 2021 Oct;21(10):1059-68. doi:10.1080/14737175.2021.1979959. Epub 2021 Oct 4.; Love SC, Novak I, Kentish M, et al.; Cerebral Palsy Institute. Botulinum toxin assessment, intervention and after-care for lower limb spasticity in children with cerebral palsy: international consensus statement. Eur J Neurol. 2010 Aug;17 Suppl 2:9-37. doi:10.1111/j.1468-1331.2010.03126.x; Spasticity in children and young people with non-progressive brain disorders. London: Published by the RCOG Press at the Royal College of Obstetricians and Gynaecologists; 2012. 298 p.; Куренков АЛ, Клочкова ОА, Бурсагова БИ и др. Эффективность и безопасность применения ботулинического токсина типа А при лечении детского церебрального паралича. Журнал неврологии и психиатрии. 2017;117(11):44-51.; Carraro E, Trevisi E, Martinuzzi A. Safety profile of incobotulinum toxin A [Xeomin®] in gastrocnemious muscles injections in children with cerebral palsy: Randomized double-blind clinical trial. Eur J Paediatr Neurol. 2016;20(4):532-7.; Leon-Valenzuela A, Palacios JS, Del Pino Algarrada R. IncobotulinumtoxinA for the treatment of spasticity in children with cerebral palsy – a retrospective case series focusing on dosing and tolerability. BMC Neurol. 2020 Apr 8;20(1):126. doi:10.1186/s12883-020-01702-7; Dabrowski E, Chambers HG, Gaebler-Spira D, et al. IncobotulinumtoxinA efficacy/safety in upper-limb spasticity in pediatric cerebral palsy: randomized controlled trial. Pediatr Neurol. 2021 Oct;123:10-20. doi:10.1016/j.pediatrneurol. 2021.05.014. Epub 2021 May 21.; Куренков АЛ, Кузенкова ЛМ, Черников ВВ и др. Применение IncobotulinumtoxinA для лечения сиалореи у пациентов с детским церебральным параличом. Неврология, нейропсихиатрия, психосоматика. 2021;13(4):52-9. doi:10.14412/2074- 2711-2021-4-52-59; Куренков АЛ, Агранович ОВ, Кузенкова ЛМ и др. Выбор дозы препарата IncobotulinumtoxinA для лечения спастичности и сиалореи при детском церебральном параличе: результаты ретроспективного многоцентрового исследования. Неврологический журнал им. Л.О. Бадаляна. 2021;2(4):189-202. doi:10.46563/2686-8997-2021-2-4-189-202; Almina S, Karile Y, Audrone P, Indre B. Analgesic effect of botulinum toxin in children with cerebral palsy: A systematic review. Toxicon. 2021 Aug;199:60-67. doi:10.1016/j.toxicon.2021.05.012. Epub 2021 Jun 1.; Хачатрян ЛГ, Лялина АА, Зотова НС и др. Эффективность применения препарата ботулинического токсина типа А в лечении мышечной дистонии у детей. Вопросы практической педиатрии. 2019;14(3):58-67. doi:10.20953/1817-7646-2019-3-58-67; https://nnp.ima-press.net/nnp/article/view/1795Test

  4. 4
    دورية أكاديمية

    المساهمون: Not specified., Не указан.

    المصدر: Current Pediatrics; Том 19, № 2 (2020); 107-115 ; Вопросы современной педиатрии; Том 19, № 2 (2020); 107-115 ; 1682-5535 ; 1682-5527

    وصف الملف: application/pdf

    العلاقة: https://vsp.spr-journal.ru/jour/article/view/2376/933Test; Bax M, Goldstein M, Rosenbaum P, et al. Proposed definition and classification of cerebral palsy. Dev Med Child Neurol. 2005;47(8):571-576. doi:10.1017/s001216220500112x.; Rosenbaum P, Paneth N, Leviton A, et al. A report: the definition and classification of cerebral palsy April 2006. Dev Med Child Neurol Suppl. 2007;49(6):480. doi:10.1111/j.1469-8749.2007.tb12610.x.; Palisano R, Rosenbaum P, Walter S, et al. Development and reliability of a system to classify gross motor function in children with cerebral palsy. Dev Med Child Neurol. 1997;39(4):214-223. doi:10.1111/j.1469-8749.1997.tb07414.x.; Hanna SE, Rosenbaum PL, Bartlett DJ, et al. Stability and decline in gross motor function among children and youth with cerebral palsy aged 2 to 21 years. Dev Med Child Neurol. 2009;51(4):295-302. doi:10.1111/j.1469-8749.2008.03196.x.; Bottos M, Feliciangeli A, Sciuto L, et al. Functional status of adults with cerebral palsy and implications for treatment of children. Dev Med Child Neurol. 2001;43(8):516-528. doi:10.1017/s0012162201000950.; Morgan P, McGinley J. Gait function and decline in adults with cerebral palsy: a systematic review. Disabil Rehabil. 2014;36(1): 1-9. doi:10.3109/09638288.2013.775359.; Day SM, Wu YW, Strauss DJ, et al. Change in ambulatory ability of adolescents and young adults with cerebral palsy. Dev Med Child Neurol. 2007;49(9):647-653. doi:10.1111/j.1469-8749.2007.00647.x.; Ando N, Ueda S. Functional deterioration in adults with cerebral palsy. Clin Rehabil. 2000;14(3):300-306. doi:10.1191/026921500672826716.; Strauss D, Ojdana K, Shavelle R, Rosenbloom L. Decline in function and life expectancy of older persons with cerebral palsy. Neuro Rehabilitation. 2004;19(1):69-78. doi:10.3233/nre-2004-19108.; Morrell DS, Pearson JM, Sauser DD. Progressive bone and joint abnormalities of the spine and lower extremities in cerebral palsy. Radiographics. 2002;22(2):257-268. doi:10.1148/radiographics.22.2.g02mr19257.; Graham HK, Rosenbaum P, Paneth N, et al. Cerebral palsy. Nat Rev Dis Primers. 2016;2:15082. doi:10.1038/nrdp.2015.82.; Verschuren O, Smorenburg AR, Luiking Y, et al. Determinants of muscle preservation in individuals with cerebral palsy across the lifespan: a narrative review of the literature. J Cachexia Sarcopenia Muscle. 2018;9(3):453-464. doi:10.1002/jcsm.12287.; Heinen F, Desloovere K, Schroeder AS, et al. The updated European Consensus 2009 on the use of Botulinum toxin for children with cerebral palsy. Eur J Paediatr Neurol. 2010;14(1):45-66. doi:10.1016/j.ejpn.2009.09.005.; Ross SA, Engsberg JR. Relation between spasticity and strength in individuals with spastic diplegic cerebral palsy. Dev Med Child Neurol. 2002;44(3):148-157. doi:10.1017/s0012162201001852.; Mockford M, Caulton JM. The pathophysiological basis of weakness in children with cerebral palsy. Pediatr Phys Ther. 2010; 22(2):222-233. doi:10.1097/PEP.0b013e3181dbaf96.; Multani I, Manji J, Tang MJ, et al. Sarcopenia, cerebral palsy, and botulinum toxin Type A. JBJS Rev. 2019;7(8):e4. doi:10.2106/JBJS.RVW.18.00153.; Blair E, Langdon K, McIntyre S, et al. Survival and mortality in cerebral palsy: observations to the sixth decade from a data linkage study of a total population register and national death index. BMC Neurol. 2019;19(1):111. doi:10.1186/s12883-019-1343-1.; Tarsuslu T, Livanelioglu A. Relationship between quality of life and functional status of young adults and adults with cerebral palsy. Disabil Rehabil. 2010;32(20):1658-1665. doi:10.3109/09638281003649904.; Bakheit AM. Management of muscle spasticity. Crit Rev Phy Rehabil Med. 1996;8(3):235-252. doi:10.1615/critrevphysreha-bilmed.v8.i3.50.; Бер М., Фротшер М. Топический диагноз в неврологии по Петеру Дуусу: анатомия, физиология, клиника / Пер. с англ. под ред. З.А. Суслиной. 4-е изд. — М.: Практическая медицина, 2009. — С. 58.; Einspieler C, Marschik PB. Early markers for cerebral palsy. In: Cerebral palsy: a multidisciplinary approach (Ed. C.P. Panteliadis). Cham: Springer; 2018. Рр. 69-74. doi:10.1007/978-3-319-67858-0_9.; Фундаментальная и клиническая физиология: Учебник для студентов высших учебных заведений / Под ред. А.Г. Камкина, А.А. Каменского. — М.: Академия, 2004. — C. 307-346.; Damiano DL, Dodd K, Taylor NF. Should we be testing and training muscle strength in cerebral palsy? Dev Med Child Neurol. 2002;44(1):68-72. doi:10.1017/s0012162201001682.; Damiano DL, Quinlivan J, Owen BF, et al. Spasticity versus strength in cerebral palsy: relationships among involuntary resistance, voluntary torque, and motor function. Eur J Neurol. 2001; 8 Suppl 5:40-49. doi:10.1046/j.1468-1331.2001.00037.x.; Engsberg J, Olree K, Ross S, et al. Maximum active resultant knee joint torques in children with cerebral palsy. J Appl Biomech. 1998;14(1):52-61. doi:10.1123/jab.14.1.52.; Rose J, McGill KC. The motor unit in cerebral palsy. Dev Med Child Neurol. 1998;40(4):270-277. doi:10.1111/j.1469-8749.1998.tb15461.x.; Stackhouse SK, Binder-Macleod SA, Lee SC. Voluntary muscle activation, contractile properties, and fatigability in children with and without cerebral palsy. Muscle Nerve. 2005;31(5):594-601. doi:10.1002/mus.20302.; Eng JJ. Strength training in individuals with stroke. Physiother Can. 2004;56(4):189-201. doi:10.2310/6640.2004.00025.; Tammik K, Matlep M, Ereline J, et al. Quadriceps femoris muscle voluntary force and relaxation capacity in children with spastic diplegic cerebral palsy. Pediatr Exerc Sci. 2008;20(1):18-28. doi:10.1123/pes.20.1.18.; Mirbagheri MM, Barbeau H, Ladouceur M, Kearney RE. Intrinsic and reflex stiffness in normal and spastic, spinal cord injured subjects. Exp Brain Res. 2001;141(4):446-459. doi:10.1007/s00221-001-0901-z.; Скворцов И.А. Иллюстрированная неврология развития. — М.: МЕДпресс-информ, 2014. — 351 с.; Баранов А.А., Клочкова О.А., Куренков А.Л., и др. Роль пластичности головного мозга в функциональной адаптации организма при детском церебральном параличе с поражением рук // Педиатрическая фармакология. — 2012. — Т. 9. — № 6. — С. 24-32. doi:10.15690/pf.v9i6.515.; Staudt M. Reorganization after pre- and perinatal brain lesions. J Anat. 2010;217(4):469-474. doi:10.1111/j.1469-7580.2010.01262.x.; Vandermeeren Y, Sebire G, Grandin CB, et al. Functional reorganization of brain in children affected with congenital hemiplegia: fMRI study. Neuroimage. 2003;20(1):289-301. doi:10.1016/s1053-8119(03)00262-3.; Schiaffino S, Reggiani C. Molecular diversity of myofibrillar proteins: gene regulation and functional significance. Physiol Rev. 1996;76(2):371-423. doi:10.1152/physrev.1996.76.2.371.; Lieber RL, Roberts TJ, Blemker SS, et al. Skeletal muscle mechanics, energetics and plasticity. J Neuroeng Rehabil. 2017;14(1):108. doi:10.1186/s12984-017-0318-y.; Moore GE, Goldspink G. The effect of reduced activity on the enzymatic development of phasic and tonic muscles in the chicken. J Dev Physiol. 1985;7(6):381-386.; Baldwin KM, Haddad F. Skeletal muscle plasticity: cellular and molecular responses to altered physical activity paradigms. Am J Phys Med Rehabil. 2002;81(11 Suppl):S40-51. doi:10.1097/01.PHM.0000029723.36419.0D.; Jones D, Round J, de Haan A. Skeletal muscle from molecules to movement. London: Churchhill Livingstone; 2004. doi:10.1016/b978-0-443-07427-1.x5001-8.; Booth FW, Kelso JR. Effect of hind-limb immobilization on contractile and histochemical properties of skeletal muscle. Pflugers Arch. 1973;342(3):231-238. doi:10.1007/bf00591371.; Roy RR, Bello MA, Bouissou P, Edgerton VR. Size and metabolic properties of fibers in rat fasttwitch muscles after hindlimb suspension. J Appl Physiol. 1987;62(6):2348-2357. doi:10.1152/jappl.1987.62.6.2348.; Salmons S, Sreter FA. Significance of impulse activity in the transformation of skeletal muscle type. Nature. 1976;263(5572): 30-34. doi:10.1038/263030a0.; Eisenberg B, Salmons S. The reorganization of subcellular structure in muscle undergoing fast-to-slow type transformation. Cell Tissue Res. 1981;220(3):449-471. doi:10.1007/bf00216750.; Ito JI, Araki A, Tanaka H, et al. Muscle histopathology in spastic cerebral palsy. Brain Dev. 1996;18(4):299-303. doi:10.1016/0387-7604(96)00006-x.; Marbini A, Ferrari A, Cioni G, et al. Immunohistochemical study of muscle biopsy in children with cerebral palsy. Brain Dev. 2002; 24(2):63-66. doi:10.1016/s0387-7604(01)00394-1.; Sjostrom M, Fugl-Meyer AR, Nordin G, Wahlby L. Post-stroke hemiplegia; crural muscle strength and structure. Scand J Rehabil Med Suppl. 1980;7:53-67.; Castle ME, Reyman TA, Schneider M. Pathology of spastic muscle in cerebral palsy. Clin Orthop Relat Res. 1979;(142):223-232. doi:10.1097/00003086-197907000-00036.; Romanini L, Villani C, Meloni C, et al. Histological and morphological aspects of muscle in infantile cerebral palsy. Ital J Orthop Traumatol. 1989;15(1):87-93.; Berry MM, Standring SM, Bannister LM. The nervous system. In: Williams PL, Bannister LH, Berry MM, editors. Gray's Anatomy. 38th ed. London: Churchill Livingstone; 1995. Рр. 901-1398.; Middleton LT. Disorders of the neuromuscular junction. In: Schapira AH, Griggs RC, eds. Muscle Diseases. Boston: Butterworth Heinemann; 1999. Рр. 251-298.; Lieber RL, Friden J. Functional and clinical significance of skeletal muscle architecture. Muscle Nerve. 2000;23(11):1647-1666. doi:10.1002/1097-4598(200011)23:113.0.co;2-m.; Noble J, Charles-Edwards GD, Keevil SF, et al. Intramuscular fat in ambulant young adults with bilateral spastic cerebral palsy. BMC Musculoskelet Disord. 2014;15:236. doi:10.1186/1471-247415-236.; Johnson DL, Miller F, Subramanian P, Modlesky CM. Adipose tissue infiltration of skeletal muscle in children with cerebral palsy. J Pediatr. 2009;154:715-720. doi:10.1016/j.jpeds.2008.10.046.; Obst SJ, Boyd R, Read F, Barber L. Quantitative 3-D ultrasound of the medial gastrocnemius muscle in children with unilateral spastic cerebral palsy. Ultrasound Med Biol. 2017;43(12):2814-2823. doi:10.1016/j.ultrasmedbio.2017.08.929.; Foran J, Steinman S, Barash I, et al. Structural and mechanical alterations in spastic skeletal muscle. Dev Med Child Neurol. 2005;47:713-717. doi:10.1111/j.1469-8749.2005.tb01063.x.; Booth CM, Cortina-Borja MJ, Theologis TN. Collagen accumulation in muscles of children with cerebral palsy and correlation with severity of spasticity. Dev Med Child Neurol. 2001;43:314-320. doi:10.1111/j.1469-8749.2001.tb00211.x.; O'Dwyer NJ, Neilson PD, Nash J. Mechanisms of muscle growth related to muscle contracture in cerebral palsy. Dev Med Child Neurol. 2008;31(4):543-547. doi:10.1111/j.1469-8749.1989.tb04034.x.; Lieber RL, Friden J. Spasticity causes a fundamental rearrangement of muscle-joint interaction. Muscle Nerve. 2002;25(2): 265-270. doi:10.1002/mus.10036.; Labeit S, Kolmerer B. Titins: Giant proteins in charge of muscle ultrastructure and elasticity. Science. 1995;270(5234):293-296. doi:10.1126/science.270.5234.293.; Neagoe C, Kulke M, del Monte F, et al. Titin isoform switch in ischemic human heart disease. Circulation. 2002;106(11): 1333-1341. doi:10.1161/01.cir.0000029803.93022.93.; Lieber RL, Runesson E, Einarsson F, Friden J. Inferior mechanical properties of spastic muscle bundles due to hypertrophic but compromised extracellular matrix material. Muscle Nerve. 2003; 28(4):464-471. doi:10.1002/mus.10446.; Friden J, Lieber RL. Spastic muscle cells are shorter and stiffer than normal cells. Muscle Nerve. 2003;27(2):157-164. doi:10.1002/mus.10247.; Elder G, Kirk J, Stewart G, et al. Contributing factors to muscle weakness in children with cerebral palsy. Dev Med Child Neurol. 2003;45:542-550. doi:10.1111/j.1469-8749.2003.tb00954.x.; Клочкова О.А., Куренков А.Л., Кенис В.М. Формирование контрактур при спастических формах детского церебрального паралича: вопросы патогенеза // Ортопедия, травматология и восстановительная хирургия детского возраста. — 2018. — Т. 6. — № 1. — С. 58-66. doi:10.17816/PTORS6158-66.; Barrett RS, Lichtwark GA. Gross muscle morphology and structure in spastic cerebral palsy: a systematic review. Dev Med Child Neurol. 2010;52(9):794-804. doi:10.1111/j.1469-8749.2010.03686.x.; Herskind A, Ritterband-Rosenbaum A, Willerslev-Olsen M, et al. Muscle growth is reduced in 15-month-old children with cerebral palsy. Dev Med Child Neurol. 2016;58(5):485-491. doi:10.1111/dmcn.12950.; Noble JJ, Fry NR, Lewis AP, et al. Lower limb muscle volumes in bilateral spastic cerebral palsy. Brain Dev. 2014;36(4):294-300. doi:10.1016/j.braindev.2013.05.008.; Malaiya R, McNee AE, Fry NR, et al. The morphology of the medial gastrocnemius in typically developing children and children with spastic hemiplegic cerebral palsy. J Electromyogr Kinesiol. 2007;17(6):657-663. doi:10.1016/j.jelekin.2007.02.009.; Marzetti E, Calvani R, Tosato M, et al. SPRINTT Consortium. Sarcopenia: an overview. Aging Clin Exp Res. 2017;29(1):11-17. doi:10.1007/s40520-016-0704-5.; Shortland A. Muscle deficits in cerebral palsy and early loss of mobility: can we learn something from our elders? Dev Med Child Neurol. 2009;51 Suppl 4:59-63. doi:10.1111/j.1469-8749.2009.03434.x.; Hughes MA, Myers BS, Schenkman ML. The role of strength in rising from a chair in the functionally impaired elderly. J Biomech. 1996;29:1509-1513. doi:10.1016/s0021-9290(96)80001-7.; Janssen I, Heymsfield SB, Ross R. Low relative skeletal muscle mass (sarcopenia) in older persons is associated with functional impairment and physical disability. J Am Geriatr Soc. 2002; 50(5):889-896. doi:10.1046/j.1532-5415.2002.50216.x.; Woo J. Sarcopenia. Clin Geriatr Med. 2017;33(3):305-314. doi:10.1016/j.cger.2017.02.003.; Short KR, Vittone JL, Bigelow ML, et al. Age and aerobic exercise training effects on whole body and muscle protein metabolism. Am J Physiol Endocrinol Metab. 2004;286:E92-E101. doi:10.1152/ajpendo.00366.2003.; Volpi E, Mittendorfer B, Rasmussen BB, Wolfe RR. The response of muscle protein anabolism to combined hyperaminoacidemia and glucose-induced hyperinsulinemia is impaired in the elderly. J Clin Endocrinol Metab. 2000;85:4481-4490. doi:10.1210/jc.85.12.4481.; Boirie Y. Fighting sarcopenia in older frail subjects: protein fuel for strength, exercise for mass. J Am Med Dir Assoc. 2013;14: 140-143. doi:10.1016/j.jamda.2012.10.017.; Franceschi C, Campisi J. Chronic inflammation (inflammaging) and its potential contribution to age-associated diseases. J Gerontol A Biol Sci Med Sci. 2014;69:S4-S9. doi:10.1093/gerona/glu057.; Wolfe RR. The underappreciated role of muscle in health and disease. Am J Clin Nutr. 2006;84:475-482. doi:10.1093/ajcn/84.3.475.; Stein TP, Wade CE. Metabolic consequences of muscle disuse atrophy. J Nutr. 2005;135:1824S-1828S. doi:10.1093/jn/135.7.1824s.; Aycicek A, Iscan A. Oxidative and antioxidative capacity in children with cerebral palsy. Brain Res Bull. 2006;69:666-668. doi:10.1016/j.brainresbull.2006.03.014.; Lexell J, Taylor CC, Sjostrom M. What is the cause of the ageing atrophy? Total number, size and proportion of different fiber types studied in whole vastus lateralis muscle from 15- to 83-year-old men. J Neurol Sci. 1988;84:275-294. doi:10.1016/0022-510x(88)90132-3.; Vandervoort AA. Aging of the human neuromuscular system. Muscle Nerve. 2002;25:17-25. doi:10.1002/mus.1215.; Ryan AS, Nicklas BJ. Age-related changes in fat deposition in mid-thigh muscle in women: relationships with metabolic cardiovascular disease risk factors. Int J Obes Relat Metab Disord. 1999;23:126-132. doi:10.1038/sj.ijo.0800777.; Edstrom E, Altun M, Bergman E, et al. Factors contributing to neuromuscular impairment and sarcopenia during aging. Physiol Behav. 2007;92:129-135. doi:10.1016/j.phys-beh.2007.05.040.; Short KR, Bigelow ML, Kahl J, et al. Decline in skeletal muscle mitochondrial function with aging in humans. Proc Natl Acad Sci U S A. 2005;102:5618-5623. doi:10.1073/pnas.0501559102.; Rooyackers OE, Adey DB, Ades PA, Nair KS. Effect of age on in vivo rates of mitochondrial protein synthesis in human skeletal muscle. Proc Natl Acad Sci U S A. 1996;93:15364-15369. doi:10.1073/pnas.93.26.15364.; Lanza I, Short D, Short K, et al. Endurance exercise as a countermeasure for aging. Diabetes. 2012;61(10):2653-2653. doi:10.2337/db12-er10.; Cruz-Jentoft AJ, Baeyens JP, Bauer JM, et al. Sarcopenia: European consensus on definition and diagnosis: report of the European Working Group on Sarcopenia in Older People. Age Ageing. 2010;39:412-423. doi:10.1093/ageing/afq034.; Sharkey JR, Giuliani C, Haines PS, et al. Summary measure of dietary musculoskeletal nutrient (calcium, vitamin D, magnesium, and phosphorus) intakes is associated with lower-extremity physical performance in homebound elderly men and women. Am J Clin Nutr. 2003;77:847-856. doi:10.1093/ajcn/77.4.847.; Mithal A, Bonjour JP, Boonen S, et al. Impact of nutrition on muscle mass, strength, and performance in older adults. Osteoporos Int. 2013;24(5):1555-1566. doi:10.1007/s00198-012-2236-y.; Robinson S, Cooper C, Aihie Sayer A. Nutrition and sarcopenia: a review of the evidence and implications for preventive strategies. J Aging Res. 2012;2012:510801 doi:10.1201/b19985-3.; Ter Borg S, de Groot LC, Mijnarends DM, et al. Differences in nutrient intake and biochemical nutrient status between sarcope-nic and nonsarcopenic older adults — results from the Maastricht Sarcopenia Study. J Am Med Dir Assoc. 2016;17:393-401. doi:10.1016/j.jamda.2015.12.015.; Verlaan S, Aspray TJ, Bauer JM, et al. Nutritional status, body composition, and quality of life in community-dwelling sarcopenic and non-sarcopenic older adults: a case-control study. Clin Nutr. 2017;36:267-274. doi:10.1016/j.clnu.2015.11.013.; Feart C, Jutand MA, Larrieu S, et al. Energy, macronutrient and fatty acid intake of French elderly community dwellers and association with socio-demographic characteristics: data from the Bordeaux sample of the Three-City Study. Br J Nutr. 2007;98:1046-1057. doi:10.1017/s0007114507756520.; Rousset S, Patureau Mirand P, Brandolini M, et al. Daily protein intakes and eating patterns in young and elderly French. Br J Nutr. 2003;90:1107-1115. doi:10.1079/bjn20031004.; Bollwein J, Diekmann R, Kaiser MJ, et al. Distribution but not amount of protein intake is associated with frailty: a cross-sectional investigation in the region of Nurnberg. Nutr J. 2013;12:109. doi:10.1186/1475-2891-12-109.; Rempel G. The importance of good nutrition in children with cerebral palsy. Phys Med Rehabil Clin N Am. 2015;26:39-56. doi:10.1016/j.pmr.2014.09.001.; Студеникин В.М., Букш А.А. Нарушения нутритивного статуса у детей с церебральным параличом // Лечащий врач. — 2016. — № 11. — С. 68.; Arrowsmith FE, Allen JR, Gaskin KJ, et al. Reduced body protein in children with spastic quadriplegic cerebral palsy. Am J Clin Nutr. 2006;83:613-618. doi:10.1093/ajcn.83.3.613.; Пак Л.А., Макарова С.Г., Чумбадзе Т.Р., Фисенко А.П. Нарушения нутритивного статуса и их коррекция у детей с детским церебральным параличом // Российский педиатрический журнал. — 2019. — Т. 22. — № 1. — С. 23-27. doi:10.18821/1560-9561-201922-1-23-27.; Камалова А.А., Рахмаева Р.Ф., Малиновская Ю.В. Гастроэнтерологические аспекты ведения детей с детским церебральным параличом (обзор литературы) // РМЖ. — 2019. — Т. 27. — № 5. — С. 30-35.; Kalra S, Aggarwal A, Chillar N, Faridi MM. Comparison of micronutrient levels in children with cerebral palsy and neurologically normal controls. Indian J Pediatr. 2015;82:140-144. doi:10.1007/s12098-014-1543-z.; Schoendorfer N, Tinggi U, Sharp N, et al. Protein levels in enteral feeds: do these meet requirements in children with severe cerebral palsy? Br J Nutr. 2012;107:1476-1481. doi:10.1017/S0007114511004533.; Verschuren O, Peterson MD. Nutrition and physical activity in people with cerebral palsy: opposite sides of the same coin. Dev Med Child Neurol. 2016;58:426. doi:10.1111/dmcn.13107.; Hamilton B. Vitamin D and human skeletal muscle. Scand J Med Sci Sports. 2010;20:182-190. doi:10.1111/j.1600-0838.2009.01016.x.; Salles J, Chanet A, Giraudet C, et al. 1,25(OH)2-vitamin D3 enhances the stimulating effect of leucine and insulin on protein synthesis rate through Akt/PKB and mTOR mediated pathways in murine C2C12 skeletal myotubes. Mol Nutr Food Res. 2013;57:2137-2146. doi:10.1002/mnfr.201300074.; Lee SH, Yu J. Risk factors of vitamin D deficiency in children with epilepsy taking anticonvulsants at initial and during follow-up. Ann Pediatr Endocrinol Metab. 2015;20:198-205. doi:10.6065/apem.2015.20.4.198.; Gillett J, Boyd R, Carty C, Barber L. The impact of strength training on skeletal muscle morphology and architecture in children and adolescents with spastic cerebral palsy: a systematic review. Res Dev Disabil. 2016;56:183-196. doi:10.1016/j.ridd.2016.06.003.; Amirmudin NA, Lavelle G, Theologis T, et al. Multilevel surgery for children with cerebral palsy: a meta-analysis. Pediatrics. 2019;143(4). pii: e20183390. doi:10.1542/peds.2018-3390.; https://vsp.spr-journal.ru/jour/article/view/2376Test

  5. 5
    دورية أكاديمية

    المساهمون: 10.15690/vsp.v16i4.1780

    المصدر: Current Pediatrics; Том 16, № 4 (2017); 326-333 ; Вопросы современной педиатрии; Том 16, № 4 (2017); 326-333 ; 1682-5535 ; 1682-5527

    وصف الملف: application/pdf

    العلاقة: https://vsp.spr-journal.ru/jour/article/view/1793/719Test; Говбах И.А. Современные подходы диагностики наследственных мото-сенсорных нейропатий // ScienceRise. — 2015. — Т. 3. — № 4 — С. 43–53. [Govbakh IA. Modern approaches to diagnostics of hereditary motor-sensory neuropathy. ScienceRise. 2015;3(4)43–53. (In Russ).] doi:10.15587/2313-8416.2015.39134; Reilly MM, Murphy SM, Laura M. Charcot-Marie-Tooth disease. J Peripher Nerv Syst. 2011;16(1):1–14. doi:10.1111/j.1529-8027.2011.00324.x.; Saporta ASD, Sottile SL, Miller LJ, et al. Charcot-Marie-Tooth disease subtypes and genetic testing strategies. Ann Neurol. 2011;69(1):22–33. doi:10.1002/ana.22166.; Lassuthova P, Brozkova DS, Krutova M, et al. Mutations in HINT1 are one of the most frequent causes of hereditary neuropathy among Czech patients and neuromyotonia is rather an underdiagnosed symptom. Neurogenetics. 2015;16(1):43–54. doi:10.1007/s10048-014-0427-8.; Pareyson D, Marchesi C. Diagnosis, natural history, and management of Charcot-Marie-Tooth disease. Lancet Neurol. 2009; 8(7):654–667. doi:10.1016/S1474-4422(09)70110-3; Reilly MM, Shy ME. Diagnosis and new treatments in genetic neuropathies. J Neurol Neurosurg Psychiatry. 2009;80(12): 1304–1314. doi:10.1136/jnnp.2008.158295.; Zhao H, Race V, Matthijs G, et al. Exome sequencing reveals HINT1 mutations as a cause of distal hereditary motor neuropathy. Eur J Hum Genet. 2014;22(6):847–850. doi:10.1038/ejhg.2013.231.; Rossor AM, Kalmar B, Greensmith L, Reilly MM. The distal hereditary motor neuropathies. J Neurol Neurosurg Psychiatry. 2012;83(1):6–14. doi:10.1136/jnnp-2011-300952.; Zimon M, Baets J, Almeida-Souza L, et al. Loss-of-function mutations in HINT1 cause axonal neuropathy with neuromyotonia. Nat Genet. 2012;44(10):1080–1083. doi:10.1038/ng.2406.; Aminkeng F. HINT1 mutations define a novel disease entity — autosomal recessive axonal neuropathy with neuromyotonia. Clin Genet. 2013;83(1):31–32. doi:10.1111/cge.12030.; Mertens HG, Zschocke S. [Neuromyotonia. (In German).] Klin Wochenschr. 1965;43(17):917–925. doi:10.1007/BF01712058; Lance JW, Durke D, Pollard J. Neuromyotonia in the spinal form of Charcot-Marie-Tooth disease. Clin Exp Neurol. 1979;16:49–56.; Peeters K, Chamova T, Tournev I, Jordanova A. Axonal neuropathy with neuromyotonia: there is a HINT. Brain. 2017;140:868–877. doi:10.1093/brain/aww301.; Hahn AF, Parkes AW, Bolton CF, Stewart SA. Neuromyotonia in hereditary motor neuropathy. J Neurol Neurosurg Psychiatry. 1991;54(3):230–235. doi:10.1136/jnnp.54.3.230.; Black JT, Garcia-Mullin R, Good E, Brown S. Muscle rigidity in a newborn due to continuous peripheral nerve hyperactivity. Arch Neurol. 1972;27(5):413–425. doi:10.1001/archneur.1972.00490170045007; Auger RG, Daube JR, Gomez MR, Lambert EH. Hereditary form of sustained muscle activity of peripheral nerve origin causing generalized myokymia and muscle stiffness. Ann Neurol. 1984;15(1): 13–21. doi:10.1002/ana.410150104.; Mcguire SA, Tomasovic JJ, Ackerman N. Hereditary Continuous Muscle-Fiber Activity. Arch Neurol. 1984;41(4):395–396. doi:10.1001/archneur.1984.04050160057016; Grund G. [Zur Frage des Vorkommens erworbener Myotonie. (In German).] Dtsch Z Nervenheilkd. 1911;42(1–2):110–127. doi:10.1007/bf01649723.; Grund G. [Uber genetische Beziehungen zwischen Myotonie, Muskelkrampfen und Myokymie. (In German).] Dtsch Z Nervenheilkd. 1938;146(1–2):3–14. doi:10.1007/bf01762426.; Gamstorp I, Wohlfart G. A syndrome characterized by myokymia, myotonia, muscular wasting and increased perspiration. Acta Psychiatr Scand. 1959;34(2):181–194. doi:10.1111/j.1600-0447.1959.tb07573.x.; Vasilescu C, Alexianu M, Dan A. Neuronal type of Charcot-Marie-Tooth Disease with a syndrome of contrinuous motor unit activity. J Neurol Sci. 1984;63(1):11–25. doi:10.1016/0022-510x(84)90105-9.; Zimon M, Battaloglu E, Parman Y, et al. Unraveling the genetic landscape of autosomal recessive Charcot-Marie-Tooth neuropathies using a homozygosity mapping approach. Neurogenetics. 2014;16(1):33–42. doi:10.1007/s10048-014-0422-0.; Мальмберг С.А., Куренков А.Л. Аксональная моторная полиневропатия с гиперактивностью двигательных единиц // Неврологический журнал. — 2002. — Т. 7. — № 6 — С. 28–33. [Mal’mberg SA, Kurenkov AL. Aksonal’naya motornaya polinevropatiya s giperaktivnost’yu dvigatel’nykh edinits. Journal of neurology. 2002;7(6):28–33. (In Russ).]; Никитин С.С., Куренков А.Л. Методические основы транскраниальной магнитной стимуляции в неврологии и психиатрии. — М.: «ИПЦ Маска»; 2006. — С. 160–166. [Nikitin SS, Kurenkov AL. Metodicheskie osnovy transkranial’noi magnitnoi stimulyatsii v nevrologii i psikhiatrii. Moscow: Maska; 2006. p. 160–166. (In Russ).]; Barbier E, Zapata A, Oh E, et al. Supersensitivity to amphetamine in protein kinase-C interacting protein/HINT1 knockout mice. Neuropsychopharmacology. 2007;32(8):1774–1782. doi:10.1038/sj.npp.1301301.; Liu Q, Puche AC, Wang JB. Distribution and expression of protein kinase c interactive protein (PKCI/HINT1) in mouse central nervous system (CNS). Neurochem Res. 2008;33(7):1263–1276. doi:10.1007/s11064-007-9578-4.; Caetano JS, Costa C, Baets J, et al. Autosomal recessive axonal neuropathy with neuromyotonia: a rare entity. Pediatr Neurol. 2014;50(1):104–107. doi:10.1016/j.pediatrneurol. 2013.08.028.; Jerath NU, Shy ME, Grider T, Gutmann L. A case of neuromyotonia and axonal motor neuropathy: a report of a HINT1 mutation in the United States. Muscle Nerve. 2015;52(6):1110-1113. doi:10.1002/mus.24774.; Rauchenzauner M, Fruhwirth M, Hecht M, et al. A novel variant in the HINT1 gene in a girl with autosomal recessive axonal neuropathy with neuromyotonia: thorough neurological examination gives the clue. Neuropediatrics. 2016;47(2):119–122. doi:10.1055/s-0035-1570493.; Boaretto F, Cacciavillani M, Mostacciuolo ML, et al. Novel loss-of-function mutation of the HINT1 gene in a patient with distal motor axonal neuropathy without neuromyotonia. Muscle Nerve. 2015;52(4):688–689. doi:10.1002/mus.24720.; Вавилов М.А., Бландинский В.Ф., Громов И.В. и др. Артродезирующие операции у детей старше 10 лет с деформациями стоп различной этиологии // Гений ортопедии. — 2016. — № 3 — С. 35–38. [Vavilov MA, Blandinskii VF, Gromov IV, et al. Arthrodesing surgeries in children above 10 years of age with feet deformities of various etiologies. Genij ortopedii. 2016;(3):35–38. (In Russ).] doi:10.18019/1028-4427-2016-3-35-38.; https://vsp.spr-journal.ru/jour/article/view/1793Test

  6. 6
    دورية أكاديمية

    المصدر: Pediatric pharmacology; Том 13, № 3 (2016); 259-269 ; Педиатрическая фармакология; Том 13, № 3 (2016); 259-269 ; 2500-3089 ; 1727-5776

    وصف الملف: application/pdf

    العلاقة: https://www.pedpharma.ru/jour/article/view/1425/798Test; Heinen F, Desloovere K, Schroeder AS, et al. The updated European Consensus 2009 on the use of Botulinum toxin for children with cerebral palsy. Eur J Paediatr Neurol. 2010;14(1): 45–66. doi:10.1016/j.ejpn.2009.09.005.; Molenaers G, Desloovere K, Fabry G, De Cock P. The effects of quantitative gait assessment and botulinum toxin A on musculoskeletal surgery in children with cerebral palsy. J Bone Joint Surg [Am]. 2006;88(1):161–170. doi:10.2106/jbjs.c.01497.; Novak I, McIntyre S, Morgan C, et al. A systematic review of interventions for children with cerebral palsy: state of the evidence. Dev Med Child Neurol. 2013;55(10):885–910. doi:10.1111/ dmcn.12246.; Кенис В.М. Эффективность использования препаратов бутолотоксина при коррекции динамической эквинусной и эквиноварусной деформации стопы у детей с гемипаретической формой церебрального паралича // Журнал неврологии и психиатрии им. С.С. Корсакова. — 2012. — Т. 112. — №7–2. —С. 29–33. [Kenis VM. Efficacy of botulinum toxin in the treatment of dynamic equinus and equinovarus foot deformities in children with hemiplegic cerebral palsy. Zh Nevrol Psikhiatr Im SS Korsakova. 2012;112(7–2):29–33. (In Russ).]; Simpson DM, Gracies JM, Graham HK, et al. Therapeutics and Technology Assessment Subcommittee of the American Academy of Neurology. Assessment: Botulinum neurotoxin for the treatment of spasticity (an evidence-based review): report of the Therapeutics and Technology Assessment Subcommittee of the American Academy of Neurology. Neurology. 2008;70(19):1691–1698. doi:10.1212/ 01.wnl.0000311391.00944.c4.; Delgado MR, Hirtz D, Aisen M, et al. Practice parameter: pharmacologic treatment of spasticity in children and adolescents with cerebral palsy (an evidence-based review): report of the Quality Standards Subcommittee of the American Academy of Neurology and; the Practice Committee of the Child Neurology Society. Neurology. 2010;74(4):336–343. doi:10.1212/wnl.0b013e3181cbcd2f.; Schroeder AS, Berweck S, Lee SH, Heinen F. Botulinum toxin treatment of children with cerebral palsy – a short review of different injection techniques. Neurotox Res. 2006;9(2– 3):189–96. Review. doi:10.1007/bf03033938.; Molenaers G, Van Campenhout A, Fagard K, et al. The use of botulinum toxin A in children with cerebral palsy, with a focus on the lower limb. J Child Orthop. 2010;4(3):183–195. doi:10.1007/ s11832-010-0246-x.; Куренков А.Л., Клочкова О.А., Каримова Х.М., и др. Выбор дозы препарата ботулинического токсина типа А при лечении спастических форм детского церебрального паралича // Журнал неврологии и психиатрии им. С.С. Корсакова. — 2015. — Т. 115. — №5–2. — С. 35—41. [Kurenkov AL, Klochkova OA, Karimova KhM, et al. Selection of a dose of the botulinum toxin A in spastic forms of cerebral palsy. Zh Nevrol Psikhiatr Im SS Korsakova. 2015;115(5–2):35–41. (In Russ).]; Клочкова О.А., Куренков А.Л., Каримова Х.М., и др. Опыт многоуровневых повторных инъекций ботулинического токсина типа А (Abobotulinum toxin A) при спастических формах детского церебрального паралича // Вестник РАМН. — 2014. — Т. 69. — №9–10. — С. 57—63. [Klochkova OA, Kurenkov AL, Karimova KM,et al. Clinical experience of the repeated multilevel injections of the botulinum toxin type A (abobotulinum toxin A) in the spastic forms of Cerebral palsy. Vestn Ross Akad Med Nauk. 2014;69(9–10):57– 63. (In Russ).] doi:10.15690/vramn.v69i9-10.1132.; Strobl W, Theologis T, Brunner R, et al. Best clinical practice in botulinum toxin treatment for children with cerebral palsy. Toxins (Basel). 2015;7(5):1629–1648. doi:10.3390/toxins7051629.; Куренков А.Л., Клочкова О.А., Бурсагова Б.И., и др. При менение препарата ботулинического токсина типа А (Ботокс) в лечении детского церебрального паралича // Нервно-мышечные болезни. — 2014. — №3. — С. 28—41. [Kurenkov AL, Klochkova OA, Bursagova BI, et al. Use of botulinum toxin type A (Botox) in the treatment of infantile cerebral palsy. Nervnomyshechnye bolezni. 2014;(3):28–41. (In Russ).]; Sakzewski L, Ziviani J, Boyd R. Systematic review and metaanalysis of therapeutic management of upper-limb dysfunction in children with congenital hemiplegia. Pediatrics. 2009;123(6): 1111–1122. doi:10.1542/peds.2008-3335.; Palisano R, Rosenbaum P, Walter S, et al. Development and reliability of a system to classify gross motor function in children with cerebral palsy. Dev Med Child Neurol. 1997;39(4):214–223. doi:10.1111/j.1469-8749.1997.tb07414.x.; Баранов А.А., Намазова-Баранова Л.С., Куренков А.Л., и др. Комплексная оценка двигательных функций у пациентов с детским церебральным параличом. Учебно- методическое пособие. Федеральное государственное бюджетное научное учреждение «Научный центр здоровья детей». — М.: ПедиатрЪ; 2014. 84 с. [Baranov AA, Namazova-Baranova LS, Kurenkov AL, et al. Kompleksnaya otsenka dvigatel’nykh funktsii u patsientov s detskim tserebral’nym paralichom. Uchebno-metodicheskoe posobie.; Federal’noe gosudarstvennoe byudzhetnoe nauchnoe uchrezhdenie «Nauchnyi tsentr zdorov’ya detei». Moscow: Pediatr, 2014. 84 p. (In Russ).]; Fehlings D, Novak I, Berweck S, et al. Botulinum toxin assessment, intervention and follow-up for paediatric upper limb hyperto - nicity: international consensus statement. Eur J Neurol. 2010;17 (Suppl. 2):38-56. doi:10.1111/j.1468-1331.2010.03127.x.; Love SC, Novak I, Kentish M, et al. Botulinum toxin assessment, intervention and after- care for lower limb spasticity in children with cerebral palsy: international consensus statement. Eur J Neurol. 2010;17(Suppl. 2):9-37. doi:10.1111/j.1468-1331.2010.03126.x.; Hoare BJ, Wallen MA, Imms C, et al. Botulinum toxin A as an adjunct to treatment in the management of the upper limb in children with spastic cerebral palsy (UPDATE). Cochrane Database Syst Rev. 2010;(1):CD003469. doi:10.1002/14651858.cd003469.pub4.; Berweck S, Kirschner J, Heinen F. Therapy with botulinum toxin. In: Paediatric Neurology. Theory and practice. Panteliadis CP, Korinthenberg R, editors. Stuttgart, New York: Thieme; 2005. P. 925–951.; Bakheit AM. Botulinum toxin in the management of childhood muscle spasticity: comparison of clinical practice of 17 treatment centers. Eur J Neurol. 2003;10(4):415-419. doi:10.1046/j.1468- 1331.2003.00619.x.; Pascual Pascual SI. Paralisis cerebral infantil: aspestos clinicos, clasificaciones y tratamientos. Madrid: EDICIONES MAYO, S.A.; 2012. 28 p.; Mall V, Heinen F, Siebel A, et al. Treatment of adductor spasticity with BTX-A in children with CP: a randomized, double-blind, placebocontrolled study. Dev Med Child Neurol. 2006;48(1):10-13. doi:10.1017/s0012162206000041.; rosminzdrav.ru [интернет]. Инструкция по медицинскому применению лекарственного препарата Диспорт [доступ от 13.06.2016]. Доступ по ссылке http://grls.rosminzdrav.ru/Grls_View_v2.aspx?idReg=27864&tTest=; https://www.pedpharma.ru/jour/article/view/1425Test

  7. 7
    دورية أكاديمية

    المصدر: Pediatric pharmacology; Том 12, № 4 (2015); 398-406 ; Педиатрическая фармакология; Том 12, № 4 (2015); 398-406 ; 2500-3089 ; 1727-5776

    العلاقة: Bax M., Goldstein M., Rosenbaum P., Leviton A., Paneth N., Dan B., Jacobsson B., Damiano D. Proposed definition and classifi ca tion of cerebral palsy. Dev Med Child Neurol. 2005; 47 (8): 571–576.; Johnson H., Scott A. Saliva Management. In Dysphagia: Foundation, Theory and Practice. Eds. Cichero J. A. Y., Murdoch B. F. Chichester: J Wiley & Sons, Ltd. 2006. 126 р.; Левицкий Г. Н., Алёхин А. В., Сердюк А. В., Моргунова М. С., Коне ва О. Н., Скворцова В. И. Возможности медикаментозной терапии слюнотечения при болезни двигательного нейрона. Журнал неврологии и психиатрии им. C. C. Корсакова. 2005; 105 (3): 19–22.; Blasco P. A., Allaire J. H. Drooling in the developmentally disabled: management practices and recommendations. Consortium on Drooling. Dev Med Child Neurol. 1992; 34 (10): 849–862.; Бер М., Фротшер М. Топический диагноз в неврологии по Петеру Дуусу: анатомия, физиология, клиника. Пер. с англ. Под ред. З. А. Суслиной. 4-е изд. М.: Практическая медицина. 2009. С. 163–164.; Scully C., Limeres J., Gleeson M., Tomas I., Diz P. Drooling. J Oral Pathol Med. 2009; 38 (4): 321–327.; Erasmus C. E., Van Hulst K., Rotteveel L. J., Jongerius P. H., Van Den Hoogen F. J., Roeleveld N., Rotteveel J. J. Drooling in cerebral palsy: hypersalivation or dysfunctional oral motor control? Dev Med Child Neurol. 2009; 51 (6): 454–459.; Tahmassebi J. F., Curzon M. E. The cause of drooling in children with cerebral palsy hypersalivation or swallowing defect? Int J Paediatr Dent. 2003; 13 (2): 106–111.; Dodds W. J. Physiology of swallowing. Dysphagia. 1989; 3: 171–178.; Senner J. E., Logemann J., Zecker S., Gaebler-Spira D. Drooling, saliva production, and swallowing in cerebral palsy. Dev Med Child Neurol. 2004; 46 (12): 801–806.; Tahmassebi J. F., Curzon M. E. Prevalence of drooling in children with cerebral palsy attending special schools. Dev Med Child Neurol. 2003; 45 (9): 613–617.; Parkes J., Hill N., Platt M. J., Donnelly C. Oromotor dysfunction and communication impairments in children with cerebral palsy: a register study. Dev Med Child Neurol. 2010; 52 (12): 1113–1119.; Lin Y. C., Shieh J. Y., Cheng M. L., Yang P. Y. Botulinum toxin type A for control of drooling in Asian patients with cerebral palsy. Neurology. 2008; 70 (4): 316–318.; Lakraj A. A., Moghimi N., Jabbari B. Sialorrhea: anatomy, pathophysiology and treatment with emphasis on the role of botulinum toxins. Toxins (Basel). 2013; 5 (5): 1010–1031.; Fairhurst C. B., Cockerill H. Management of drooling in children. Arch Dis Child Educ. Pract Ed. 2011; 96 (1): 25–30.; Клочкова О. А., Куренков А. Л., Намазова-Баранова Л. С., Мамедъяров А. М. Паттерны спастичности мышц верхних конечностей и применение ботулинотерапии у пациентов с детским церебральным параличом с поражением рук. Педиатрическая фармакология. 2013; 10 (5): 31–39.; Reddihough D., Erasmus C. E., Johnson H., McKellar G. M., Jon gerius P. H. Cereral Palsy Institute. Botulinum toxin assessment, intervention and aftercare for paediatric and adult drooling: international consensus statement. Eur J Neurol. 2010; 17 (Suppl. 2): 109–121.; Naumann M., So Y., Argoff C. E., Childers M. K., Dykstra D. D., Gronseth G. S., Jabbari B., Kaufmann H. C., Schurch B., Silber stein S. D., Simpson D. M. Botulinum neurotoxin in the treatment of autonomic disorders and pain (an evidence based review): report of the Therapeutics and Technology Assessment Subcommittee of the American Academy of Neurology. Neurology. 2008; 70 (19): 1707–1714.; Rodwell K., Edwards P., Ware R. S., Boyd R. Salivary gland botulinum toxin injections for drooling in children with cerebral palsy and neurodevelopmental disability: a systematic review. Dev Med Child Neurol. 2012; 54 (11): 977–987.; Naumann M., Dressler D., Hallett M., Jankovic J., Schiavo G., Segal K. R., Truong D. Evidence based review and assessment of botulinum neurotoxin for the treatment of secretory disorders. Toxicon. 2013; 67: 141–152.; Walshe M., Smith M., Pennington L. Interventions for drooling in children with cerebral palsy. Cochrane Database Syst Rev. 2012; 2: CD008624. Doi:10.1002/14651858.CD008624.pub2.; Носко А. С., Зыков В. П., Комарова И. Б. Коррекция сиалореи в нейропедиатрии. Фокус на препаратах ботулинического токсина типа А как метод первого ряда выбора. Детская и подростковая реабилитация. 2013; 2 (21): 33–38.; Palisano R., Rosenbaum P. L., Walter S., Russell D., Wood E., Galuppi B. Development and reliability of a system to classify gross motor function in children with cerebral palsy. Dev Med Child Neurol. 1997; 39 (4): 214–223.; Reid S. M., Johnson H. M., Reddihough D. S. The Drooling Impact Scale: a measure of the impact of drooling in children with developmental disabilities. Dev Med Child Neurol. 2010; 52 (2): 23–28.; Reid S. M., Johnstone B. R., Westbury C., Rawicki B., Reddihough D. S. Randomized trial of botulinum toxin injections into the salivary glands to reduce drooling in children with neurological disorders. Dev Med Child Neurol. 2008; 50 (2):123–128.; Banerjee K. J., Glasson C., O’Flaherty S. J. Parotid and submandibular botulinum toxin A injections for sialorrhoea in children with cerebral palsy. Dev Med Child Neurol. 2006; 48 (11): 883–887.; Savarese R., Diamond M., Elovic E., Millis S. R. Intraparotid injection of botulinum toxin A as a treatment to control sialorrhea in children with cerebral palsy. Am J Phys Med Rehabil. 2004; 83 (4): 304–311.; Alrefai A. H., Aburahma S. K., Khader Y. S. Treatment of sialorrhea in children with cerebral palsy: a double blind placebo controlled trial. Clin Neurol Neurosurg. 2009; 111 (1): 79–82.; Lagalla G., Millevolte M., Capecci M., Provinciali L., Cera volo M. G. Botulinum toxin type A for drooling in Parkinson’s disease: a double blind, randomized, placebo controlled study. Mov Disord. 2006; 21 (5): 704–707.; Kalf J. G., Smit A. M., Bloem B. R., Zwarts M. J., Mulleners W. M., Munneke M. Botulinum toxin A for drooling in Parkinson’s disease: a pilot study to compare submandibular to parotid gland injections. Parkinsonism Relat Disord. 2007; 13 (8): 532–534.; Jongerius P. H., van den Hoogen F. J., van Limbeek J., Gabreels F. J., van Hulst K., Rotteveel J. J. Effect of botulinum toxin in the treatment of drooling: a controlled clinical trial. Pediatrics. 2004; 114 (3): 620–627.; Harris S. R., Purdy A. H. Drooling and its management in cerebral palsy. Dev Med Child Neurol. 1987; 29 (6): 807–811.; Erasmus C. E., Scheffer A. R., van Hulst K., van Limbeek J., van den Hoogen F. J., Rotteveel J. J., Jongerius P. H. Does motor perfor mance matter in botulinum toxin efficacy for drooling? Pediatr Neurol. 2011; 45 (2): 95–99.; https://www.pedpharma.ru/jour/article/view/508Test

  8. 8
    دورية أكاديمية

    المصدر: Neuromuscular Diseases; № 2 (2013); 6-19 ; Нервно-мышечные болезни; № 2 (2013); 6-19 ; 2413-0443 ; 2222-8721 ; 10.17650/2222-8721-2013-0-2

    وصف الملف: application/pdf

    العلاقة: https://nmb.abvpress.ru/jour/article/view/44/40Test; Бухарин О.В., Литвин В.Ю. Патогенные бактерии в природных экосистемах. Екатеринбург, 1997. 128 с.; Руководство по инфекционным болезням. Под ред. Ю.В. Лобзина. СПб., 2000. 932 с.; Антонов Н.С. Химическое оружие на рубеже двух столетий. М., 1994. 174 с.; Никифоров В.Н., Никифоров В.В. Ботулизм. Л., 1985. 200 с.; Супотницкий М.В. Микроорганизмы, токсины и эпидемии. М., 2000. 376 с.; Покровский В.И., Авербах М.М., Литвинов В.И. Приобретенный иммунитет и инфекционный процесс. М.: Медицина, 1979. 280 с.; Александров В.Н., Емельянов В.И. Отравляющие вещества. М.: Воениздат, 1990. 271 с.; Chalk C., Benstead T.J., Keezer M. Medical treatment for botulism. Cochrane Database Syst Rev 2011;(3):CD008123. doi:10.1002/14651858. CD008123.pub 2. Review; Dolly J.O., Lawrence G.W., Meng J. et al. Neuro-exocytosis: botulinum toxins as inhibitory probes and versatile therapeutics. Curr Opin Pharmacol 2009;9:326–35.; Montal M. Botulinum neurotoxin: a marvel of protein design. Annu Rev Biochem 2010;79:591–617.; Lacy D.B., Tepp W., Cohen A.C. et al. Crystal structure of botulinum neurotoxin type A and implications for toxicity. Nat Struct Biol 1998;5(10):898–902.; Stenmark P., Dupuy J., Imamura A. et al. Crystal structure of botulinum neurotoxin type A in complex with the cell surface co-receptor GT1b-insight into the toxin-neuron interaction. PLoS Pathog 2008;4(8):e1000129.; Arnon S.S., Schechter R., Inglesby T.V. et al. Working Group on Civilian Biodefense. Botulinum toxin as a biological weapon. Medical and public health management. [Consensus statement] JAMA 2001;285(8):1059–70.; Aoki K.R., Smith L.A., Atassi M.Z. Mode of action of botulinum neurotoxins: current vaccination strategies and molecular immune recognition. Crit Rev Immunol 2010;30(2):167–87.; Lobet Y., Cieplak W.Jr., Smith S.G., Keith J.M. Effects of mutations on enzyme activity and immunoreactivity of the S1 subunit of pertussis toxin. Infect Immun 1989;57(11):3660–2.; Dong M., Yeh F., Tepp W.H. et al. SV2 is the protein receptor for botulinum neurotoxin A. Science 2006;312(5773):540–1.; Dong M., Richards D.A., Goodnough M.C. et al. Synaptotagmins I and II mediate entry of botulinum neurotoxin B into cells. J Cell Biol 2003;162:1293–303.; Stenmark P., Dong M., Dupuy J. et al. Crystal structure of the botulinum neurotoxin type G binding domain: insight into cell surface binding. J Mol Biol2010;397:1287–97.; Zhang P., Ray R., Singh B.R. et al. An efficient drug delivery vehicle for botulism countermeasure. BMC Pharmacology 2009;9:12.; Sutton R.B., Fasshauer D., Jahn R., Brunger A.T. Crystal structure of a SNARE complex involved in synaptic exocytosis at 2.4 A resolution. Nature 1998;395:347–53.; Dolly J.O., Black J., Williams R.S., Melling J. Acceptors for botulinum neurotoxin reside on motor nerve erminals and mediate its internalization. Nature 1984; 307:457–60.; Meng J., Ovsepian S.V., Wang J. et al. Activation of TRPV1 mediates calcitonin generelated peptide release, which excites trigeminal sensory neurons and is attenuated by a retargeted botulinum toxin with anti-nociceptive potential. J Neurosci 2009;29:4981–92.; Kumaran D., Eswaramoorthy S., Furey W. et al. Domain organization in Clostridium botulinum neurotoxin type E is unique: its implication in faster translocation. J Mol Biol 2009;386:233–45.; De Paiva A., Meunier F.A., Molgo J. et al. Functional repair of motor endplates after botulinum neurotoxin type A poisoning. Proc Natl Acad Sci USA 1999;96(6):3200–5.; Aoki K.R., Guyer B. Botulinum toxin type A and other botulinum toxin serotypes: a comparative review of biochemical and pharmacological actions. Eur J Neurol 2001;8(Suppl 5):21–9.; Aoki K.R. Botulinum toxin: a successful therapeutic protein. Curr Med Chem 2004;11:3085–92.; Filippi G.M., Errico P., Santarelli R. et al. Botulinum A toxin effects on rat jaw muscle spindles. Acta Otolaryngol 1993;113:400–4.; Urban P.P., Rolke R. Effects of botulinum toxin type A on vibration induced facilitation of motor evoked potentials in spasmodic torticollis. J Neurol Neurosurg Psychiatry 2004;75:1541–6.; Welch M.J., Purkiss J.R., Foster K.A. Sensitivity of embryonic rat dorsal root ganglia neurons to Clostridium botulinum neurotoxins. Toxicon 2000; 38:245–58.; Antonucci F., Rossi C., Gianfranceschi L. et al. Long-distance retrograde effects of botulinum neurotoxin A. J Neurosci 2008;28(14):3689–96.; Allam N., Fonte-Boa P.M., Tomaz C.A., Brasil-Neto J.P. Lack of effect of botulinum toxin on cortical excitability in patients with cranial dystonia. Clin Neuropharmacol 2005;28:1–5.; Bockowski L., Okurowska-Zawada B., Sobaniec W. et al. Cortical somatosensory evoked potentials and spasticity assessment after botulinum toxin type A injection in children with cerebral palsy. Adv Med Sci 2007;52(Suppl 1):171–5.; Blood A.J., Tuch D.S., Makris N. et al. White matter abnormalities in dystonia normalize after botulinum toxin treatment. Neuroreport 2006;17:1251–5.; Dressler D., Benecke R. Autonomic side effects of botulinum toxin type B treatment of cervical dystonia and hyperhidrosis. Eur Neurol 2003;49:34–8.; Caleo M., Schiavo G. General effects of tetanus and botulinum neurotoxins. Toxicon 2009;54:593–9.; Moreno-Lopez B., de la Cruz R.R., Pastor A.M., Delgado-Garcia J.M. Botulinum neurotoxin alters the discharge characteristics of abducens motorneurons in the alert cat. J Neurophysiol 1994;72(4):2041–4.; Moreno-Lopez B., de la Cruz R.R., Pastor A.M., Delgado-Garcia J.M. Effects of botulinum neurotoxin type A on abducens motorneurons in the cat: alterations of the discharge pattern. Neuroscience 1997;81(2):437–55.; Restani L., Giribaldi F., Manich M. et al. Botulinum neurotoxins a and e undergo retrograde axonal transport in primary motor neurons. PLoS Pathog 2012;8(12):e1003087.; Akaike N., Shin M.C., Wakita M. et al. Transynaptic inhibition of spinal transmission by A2 botulinum toxin. J Physiol 2013;591(Pt 4):1031–43.; Byrnes M.L., Thickbroom G.W., Wilson S.A. et al. The corticomotor representation of upper limb muscles in writer's cramp and changes following botulinum toxin injection. Brain 1998;12 (Pt 5):977–88.; Gilio F., Curra A., Lorenzano C. et al. Effects of botulinum toxin A on intracortical inhibition in patients with dystonia. Ann Neurol 2000;48:20–6.; Shin M.C., Wakita M., Xie D.J. et al. Inhibition of membrane Na+ channels by A type botulinum toxin at femtomolar concentrations in central and peripheral neurons. J Pharmacol Sci 2012;118(1):33–42.; Marinelli S., Vacca V., Ricordy R. et al. The analgesic effect on neuropathic pain of retrogradely transported botulinum neurotoxin A involves Schwann cells and astrocytes. PLoS One 2012;7(10):e47977.; Dolimbek B.Z., Steward L.E., Aoki K.R., Atassi M.Z. Immune recogntion of botulinum neurotoxin B: antibity-binding regions of the heavy chain of the toxin. Mol Immunol 2008;45:910–24.; Dressler D. Clinical presentation and management of antibody-induced failure of botulinum toxin therapy. Mov Disord 2004;19(Suppl 8):92–100.; Dressler D., Hallett M. Immunological aspects of Botox, Dysport and Myobloc/ NeuroBloc. Eur J Neurol 2006;13(Suppl 1):11–5.; Jankovic J., Vuong K.D., Ashan J. Comparison of efficacy of immunogenicity of original versus current botulinum toxin in cervical dystonia. Neurology 2003;60:1186–8.; Yablon S.A., Brashear A., Gordon M.F. et al. Formation of neutralizing antibodies in patients receiving botulinum toxin type A for treatment of poststroke spasticity: a pooleddata analysis of three clinical trials. Clin Ther 2007;29(4):683–90.; Jankovic J., Hunter C., Dolimbek B.Z. et al. Clinico-immunologic aspects of botulinum toxin type B treatment of cervical dystonia. Neurology 2006;67:2233–5.; Atassi M.Z., Dolimbeck B.Z., Jankovic J. et al. Molecular recognition of botulinum neurotoxin B heavy chain by human antibodies from cervical dystonia patients that develop immunoresistance to toxin treatment. Mol Immunol 2008;45:3878–88.; Brin M.F., Comella C.L., Jankovic J. et al. Long-term treatment with botulinum toxin type A in cervical dystonia has low immunogenicity by mouse protection assay. Mov Disord 2008;23:1353–60.; Wang J., Meng J., Lawrence G.W. et al. Novel chimeras of botulinum neurotoxins A and E unveil contributions from the binding, translocation, and protease domains to their functional characteristics. J Biol Chem 2008;283:16993–7002.; Band P.A., Blair S., Neubert T.A. et al. Recombinant derivatives of botulism neurotoxin A engineered for trafficking studies and neuronal delivery. Protein Expr Purif 2010;71:62–73.; Muraro L., Tosatto S., Motterlini L. et al. The N-terminal half of the receptor domain of botulinum neurotoxin A binds to microdomains of the plasma membrane. Biochem Biophys Res Commun 2009;380:76–80.; Chen S., Barbieri J.T. Engineering botulinum neurotoxin to extend therapeutic intervention. Proc Natl Acad Sci USA 2009;106:9180–4.; Meng J., Wang J., Lawrence G., Dolly J.O. Synaptobrevin I mediates exocytosis of CGRP from sensory neurons and inhibition by botulinum toxins reflects their anti-nociceptive potential. J Cell Sci 2007;120:2864–74.; Pier C.L., Tepp W.H., Bradshaw M. et al. Recombinant holotoxoid vaccine against botulism. Infect Immun 2008;76(1):437–42.; Lai H., Feng M., Roxas-Duncan V. et al. Quinolinol and peptide inhibitors of zinc protease in botulinum neurotoxin A: effects of zinc ion and peptides on inhibition. Arch Biochem Biophys 2009;491:75–84.; Roxas-Duncan V., Enyedy I., Montgomery V.A. et al. Identification and biochemical characterization of smallmolecule inhibitors of Clostridium botulinum neurotoxin serotype A. Antimicrob Agents Chemother 2009;53:3478–86.; Webb R.P., Smith T.J., Wright P. et al. Production of catalytically inactive BoNT/ A1 holoprotein and comparison with BoNT/ A1 subunit vaccines against toxin subtypes A1, A2, and A3. Vaccine 2009;27:4490–7.; Smith L.A. Botulism and vaccines for its prevention. Vaccine 2009;27(Suppl 4):D33–D39.; Далин М.В., Фиш Н.Г. Токсины микроорганизмов. М., 1977. 104 с.; Езепчук Ю.В. Патогенность как функция биомолекул. М.: Медицина, 1985. 240 с.; Koshy J.C., Sharabi S.E., Feldman E.M. et al. Effect of dietary zinc and phytase supplementation on botulinum toxin treatments. J Drugs Dermatol 2012;11(4):507–12.; https://nmb.abvpress.ru/jour/article/view/44Test

  9. 9
    دورية أكاديمية

    المصدر: Neuromuscular Diseases; № 1 (2014); 54-61 ; Нервно-мышечные болезни; № 1 (2014); 54-61 ; 2413-0443 ; 2222-8721 ; 10.17650/2222-8721-2014-0-1

    وصف الملف: application/pdf

    العلاقة: https://nmb.abvpress.ru/jour/article/view/12/8Test; Толстова В.Д., Капранов Н.И. Муковисцидоз: современные аспекты диагностики и лечения. Педиатр фармакол 2006;3(4):50–5.; Толстова В.Д., Каширская Н.Ю., Капранов Н.И. Массовый скрининг новорожденных на муковисцидоз в России. Фарматека 2008;1:38–44.; Красовский С.А., Самойленко В.А., Амелина Е.Л. Муковисцидоз: диагностика, клиника, основные принципы терапии. Атмосфера. Пульмонол и аллергол 2013;1: 42–6.; Петров А., Лаудж Д., Васецкий Е. Генетика и эпигенетика лице-лопаточно-бедренной прогрессирующей мышечной дистрофии Ландузи–Дежерина. Генетика 2003;39(2):202–206 .; Кириллова Л.Г., Шевченко А.А., Яковлева С.М. и др. Лице-лопаточно-плечевая миодистрофия Ландузи–Дежерина в клинике нейропедиатрии. Здоровье ребенка 2011;1:124–8.; Morton N.E., Chung C.S. Formal genetics of muscular dystrophy. Am J Hum Genet 1959;11:360–79.; Landouzy L., Dejerine J. De la myopathie atrophique progressiove (myopathie hereditaire debutant dans l'enfance par la face, sans alteration des systèmes nerveux. CR Acad Sei 1884;98:53–5.; Duchenne G.-B. Album de photographies pathologiques complementaire de liver initule de l'electrisation localisee. Paris: J.-B. Bailliere (pub.), 1862.; Руденко Д.И. Взаимосвязь лице-плечевой и лице-лопаточно-перонеальной мышечных дистрофий, сцепленных с хромосомой 4q35 (история, клиника, генетика и дифференциальная диагностика): автореф. дис. . д-ра мед. наук. СПб., 2009. 42 с.; Zeng W., de Greef J.C., Chen Y.-Y. et al. Specific loss of histone H3 lysine 9 trimethylation and HP1-gamma/cohesin binding at D4Z4 repeats is associated with facioscapulohumeral dystrophy (FSHD). PLoS Genet. 5: e1000559, 2009.; Mostacciuolo M.L., Pastorello E., Vazza G. et al. Facioscapulohumeral muscular dystrophy: epidemiological and molecular study in a north-east Italian population sample. Clin Genet 2009;75:550–5.; Zatz M., Marie S.K., Passos-Bueno M.R. et al. High proportion of new mutations and possible anticipation in Brazilian facioscapulohumeral muscular dystrophy families. Am J Hum Genet 1995;56:99–105.; Pou A., Munoz J.A., Cano A. et al. Phenotype-genotype correlations studies in facioscapulohumeral muscular dystrophy. Acta Myol 1999;III:95.; Lunt P.W., Jardine P.E., Koch M. et al. Phenotype-genotype correlation will assist genetic counseling in 4q35-facioscapulohumeral muscular dystrophy. Muscle Nerve 1995a; Suppl 2:103–9.; Tawil R., Forrester J., Griggs R.C. et al. Evidence for anticipation and association of deletion size with severity in facioscapulohumeral muscular dystrophy. Ann Neurol 1996;39:744–8.; Ricci E., Galuzzi G., Deidda G. et al. Progress in the molecular diagnosis of facioscapulohumeral muscular dystrophy and correlation between the number of Kpnl repeats at the 4q35 locus and clinical phenotype. Ann Neurol 1999;45:751–7.; Tonini M.M.O., Pavanello R.C.M., Gurgel-Giannetti J. et al. Homozygosity for autosomal dominant facioscapulohumeral muscular dystrophy (FSHD) does not result in a more severe phe-notype. J Med Genet 2004; 41:17.; Sposito Rt., Pasquali L., Galluzzi F. et al. Facioscapulohumeral muscular dystrophy type 1A in northwestern Tuscany: a molecular genetics based epidemiological and genotypephenotype study. Genet Test 2005;9:30–6.; van der Maarel S.M., Deidda G., Lemmers R.J.L.F. De novo facioscapulohumeral muscular dystrophy: frequent somatic mosaicism, sex-dependent phenotype, and the role of mitotic transchromosomal repeat interaction between chromosomes 4 and 10. Am J Hum Genet 2000;66:26–35.; Lemmers R.J.L.F., van der Wielen M.J.R., Bakker E. et al. Somatic mosaicism in FSHD often goes undetected. Ann Neurol 2004;55:845–50.; Slipetz D.M., Aprille J.R., Goodyer P.R., Rozen R. Deficiency of complex III of the mitochondrial respiratory chain in a patient with facioscapulohumeral disease. Am J Hum Genet 1991;48:502–10.; Reed P., Porter N. C., Strong J. et al. Sarcolemmal reorganization in facioscapulohumeral muscular dystrophy. Ann Neurol 2006;59:289–97.; Awerbuch G.I., Nigro M.A., Wishnow R. Beevor's sign and facioscapulohumeral dystrophy. Arch Neurol 1990;47:1208–9.; Wohlgemuth M., de Swart B.J.M., Kalf J.G. et al. Dysphagia in facioscapulohumeral muscular dystrophy. Neurology 2006;66:1926–8.; Justin-Besancon L., Pequignot H., Contamin F. et al. Myopathie du type Landouzy- Dejerine. Rapport d'une observation historique. Sem Hop. Paris, 1964;40:2990–9.; Yamanaka G., Goto K., Matsumura T. et al. Tongue atrophy in facioscapulohumeral muscular dystrophy. Neurology 2001;57:733–5.; Reardon W., Temple I.K., Harwood G., Baraitser M. Atypical facio-scapulo-humeral muscular dystrophy – a counselling dilemma. Clin Genet 1991;39:172–7.; Small R.G. Coats' disease and muscular dystrophy. Trans Am Acad Ophthal Otolaryng 1968;72:225–31.; Meyerson M.D., Lewis E., Ill K. Facioscapulohumeral muscular dystrophy and accompanying hearing loss. Arch Otolaryng 1984;110:261–6.; Fitzsimons R.B., Gurwin E.B., Bird A.C. Retinal vascular abnormalities in facioscapulohumeral muscular dystrophy: a general association with genetic and therapeutic implications. Brain 1987;110:631–48.; Voit T., Lamprecht A., Lenard H.G., Goebel H. H. Hearing loss in facioscapulohumeral dystrophy. Europ J Pediat 1986;145:280–5.; Brouwer O.F., Padberg G.W., Ruys C.J.M. et al. Hearing loss in facioscapulohumeral muscular dystrophy. Neurology 1991;41:1878–81.; Padberg G.W., Brouwer O.F., de Keizer R.J.W. et al. Retinal vascular disease and sensorineural deafness are part of facioscapulohumeral muscular dystrophy (abstr). Am J Hum Genet 1992;51 (suppl):104.; Shields C.L., Zahler J., Falk N. et al. Neovascular glaucoma from advanced Coats disease as the initial manifestation of facioscapulohumeral dystrophy in a 2-year-old child. Arch Ophthal 2007;125:840–2.; Matsuzaka T., Sakuragawa N., Terasawa K., Kuwabara H. Facioscapulohumeral dystrophy associated with mental retardation, hearing loss, and tortuosity of retinal arterioles. J Child Neurol 1986;1:218–23.; Shen E.N., Madsen T. Facioscapulohumeral muscular dystrophy and recurrent pacemaker lead dislodgment. Am Heart J 1991;122:1167–9.; Miura K., Kumagai T., Matsumoto A. et al. Two cases of chromosome 4q35-linked early onset facioscapulohumeral muscular dystrophy with mental retardation and epilepsy. Neuropediatrics 1998;29:239–41.; Zatz M., Marie S.K., Cerqueira A. et al. The facioscapulohumeral muscular dystrophy (FSHD1) gene affects males more severely and more frequently than females. Am J Med Genet 1998;77:155–61.; Krasnianski M., Eger K., Neudecker S. et al. Atypical phenotypes in patients with facioscapulohumeral muscular dystrophy 4q35 deletion. Arch Neurol 2003;60:1421–5.; Tupler R., Barbierato L., Memmi M. et al. Identical de novo mutation at the D4F104S1 locus in monozygotic male twins affected by facioscapulohumeral muscular dystrophy (FSHD) with different clinical expression. J Med Genet 1998;35:778–83.; Bodensteiner J.B., Schochet S.S. Facioscapulohumeral muscular dystrophy: the choice of a biopsy site. Muscle Nerve 1986;9:544–7.; Richards M., Coppee F., Thomas N. et al. Facioscapulohumeral muscular dystrophy (FSHD): an enigma unravelled? Hum Genet 2012;131:325–40.; https://nmb.abvpress.ru/jour/article/view/12Test

  10. 10
    دورية أكاديمية

    المصدر: Neuromuscular Diseases; № 4 (2013); 24-29 ; Нервно-мышечные болезни; № 4 (2013); 24-29 ; 2413-0443 ; 2222-8721 ; 10.17650/2222-8721-2013-0-4

    وصف الملف: application/pdf

    العلاقة: https://nmb.abvpress.ru/jour/article/view/64/60Test; Van Meir N., De Smet L. Carpal tunnel syndrome in children. J Pediatr Orthop B 2005;14(1):42–5.; Кузенкова Л.М., Подклетнова Т.В. Неврологические аспекты мукополисахаридозов. Труды II Национального конгресса «Неотложные состояния в неврологии» (под. ред. З.А. Суслиной, М.А. Пирадова). Москва, 2011. С. 158–163.; Yuen A., Dowling G., Johnstone B. et al. Carpal tunnel syndrome in children with mucopolysaccaridoses. J Child Neurol 2007; 2(3):260–3.; Haddad F.S., Jones D.H., Vellodi A. et al. Carpal tunnel syndrome in the mucopolysaccharidoses and mucolipidoses. J. Bone Joint Surg. Br. 1997;79(4):576–582.; Van Heest A.E., House J., Krivit W., Walker K. Surgical treatment of carpal tunnel syndrome and trigger digits in children with mucopolysaccharide storage disorders. J Hand Surg Am 1998;23(2):236–43.; Katirji B. Electromyography in clinical practice. Philadelphia: MOSBY Elsevier, 2007. 417 p.; Meyer-Marcotty M.V., Kollewe K., Dengler R. et al. Carpal tunnel syndrome in children with mucopolysaccharidosis type 1H: diagnosis and therapy in an interdisciplinary centre. Handchir Mikrochir Plast Chir 2012;44(1):23–8.; White K., Kim T., Neufeld J.A. Clinical assessment and treatment of carpal tunnel syndrome in the mucopolysaccharidoses. J Pediatr Rehabil Med 2010;3(1):57–62.; Muenzer J., Beck M., Eng C.M. et al. Multidisciplinary management of Hunter syndrome. Pediatrics 2009;124(6): e1228–39.; Kimura J. Electrodiagnosis in Diseases of Nerve and Muscle: Principles and Practice. New York: Oxford University Press, 2013. 1146 p.; Van Meir N., De Smet L. Carpal tunnel syndrome in children. Acta Orthop Belg 2003;69(5):387–95.; Kwon J.Y., Ko K., Sohn Y.B. et al. High prevalence of carpal tunnel syndrome in children with mucopolysaccharidosis type II (Hunter syndrome). Am J Med Genet A 2011;155A(6):1329–35.; Norman-Taylor F., Fixsen J.A., Sharrard W.J. Hunter's syndrome as a cause of childhood carpal tunnel syndrome: a report of three cases. J Pediatr Orthop B 1995;4(1): 106–9.; Daube J.R. Nerve conduction studies. In book: Electrodiagnosis in Clinical Neurology (ed. M.J. Aminoff). Philadelphia: Churchill Livingstone Elsevier, 2005. P. 285–320.; https://nmb.abvpress.ru/jour/article/view/64Test