يعرض 1 - 10 نتائج من 197 نتيجة بحث عن '"А. Г. Чучалин"', وقت الاستعلام: 1.29s تنقيح النتائج
  1. 1
    دورية أكاديمية

    المصدر: PULMONOLOGIYA; Online First; 4305 ; Пульмонология; Online First; 4305 ; 2541-9617 ; 0869-0189 ; undefined

    وصف الملف: application/pdf

    العلاقة: https://journal.pulmonology.ru/pulm/article/view/4305/3594Test; https://journal.pulmonology.ru/pulm/article/downloadSuppFile/4305/2005Test; https://journal.pulmonology.ru/pulm/article/downloadSuppFile/4305/2006Test; https://journal.pulmonology.ru/pulm/article/downloadSuppFile/4305/2049Test; https://journal.pulmonology.ru/pulm/article/downloadSuppFile/4305/2050Test; Ignarro L.J. Nitric Oxide. Reference module in biomedical sciences. Elsevier; 2014. DOI:10.1016/B978-0-12-801238-3.00245-2.; Nikolaidis A., Kramer R., Ostojic S. Nitric Oxide: the missing factor in COVID-19 severity? Med. Sci. (Basel). 2022; 10 (1): 3. DOI:10.3390/medsci10010003.; Kapil V., Khambata R.S., Jones D.A. et al. The noncanonical pathway for in vivo nitric oxide generation: the nitrate-nitrite-nitric oxide pathway. Pharmacol. Rev. 2020; 72 (3): 692–766. DOI:10.1124/pr.120.019240.; Гуманова Н. Оксид азота, его циркулирующие метаболиты NOx и их роль в функционировании человеческого организма и прогнозе риска сердечно-сосудистой смерти (часть I). Профилактическая медицина. 2021; 24 (9): 102–109. DOI:10.17116/profmed202124091102.; Lundberg J., Weitzberg E. Nasal nitric oxide in man. Thorax. 1999; 54 (10): 947–952. DOI:10.1136/thx.54.10.947.; Bryan N.S., Lancaster J.R. Nitric oxide signaling in health and disease. In: Bryan N.S., Loscalzo J., eds. Nitrite and nitrate in human health and disease. Cham: Springer; 2017: 165–178. DOI:10.1007/978-3-319-46189-2_23.; Meng H., Xiong R., He R. et al. CT imaging and clinical course of asymptomatic cases with COVID-19 pneumonia at admission in Wuhan, China. J. Infect. 2020; 81 (1): e33–39. DOI:10.1016/j.jinf.2020.04.004.; Tzotzos S.J., Fischer B., Fischer H., Zeitlinger M. Incidence of ARDS and outcomes in hospitalized patients with COVID-19: a global literature survey. Crit. Care. 2020; 24 (1): 516. DOI:10.1186/s13054-020-03240-7.; Lan J., Ge J., Yu J. et al. Structure of the SARS-CoV-2 spike receptor-binding domain bound to the ACE2 receptor. Nature. 2020; 581 (7807): 215–220. DOI:10.1038/s41586-020-2180-5.; Ackermann M., Verleden S.E., Kuehnel M. et al. Pulmonary vascular endothelialitis, thrombosis, and angiogenesis in Covid-19. N. Engl. J. Med. 2020; 383 (2): 120–128. DOI:10.1056/NEJMoa2015432.; Dominic P., Ahmad J., Bhandari R. et al. Decreased availability of nitric oxide and hydrogen sulfide is a hallmark of COVID-19. Redox Biol. 2021; 43: 101982. DOI:10.1016/j.redox.2021.101982.; Montiel V., Lobysheva I., Gerard L. et al. Oxidative stress-induced endothelial dysfunction and decreased vascular nitric oxide in COVID-19 patients. EBioMedicine. 2022; 77: 103893. DOI:10.1016/j.ebiom.2022.103893.; Yu B., Ichinose F., Bloch D.B., Zapol W.M. Inhaled nitric oxide. Br. J. Pharmacol. 2019; 176 (2): 246–255. DOI:10.1111/bph.14512.; Signori D., Magliocca A., Hayashida K. et al. Inhaled nitric oxide: role in the pathophysiology of cardio-cerebrovascular and respiratory diseases. Intensive Care Med. Exp. 2022; 10 (1): 28. DOI:10.1186/s40635-022-00455-6.; Chen L., Liu P., Gao H. et al. Inhalation of nitric oxide in the treatment of severe acute respiratory syndrome: a rescue trial in Beijing. Clin. Infect. Dis. 2004; 39 (10): 1531–1535. DOI:10.1086/425357.; Keyaerts E., Vijgen L., Chen L. et al. Inhibition of SARS-coronavirus infection in vitro by S-nitroso-N-acetylpenicillamine, a nitric oxide donor compound. Int. J. Infect. Dis. 2004; 8 (4): 223–226. DOI:10.1016/j.ijid.2004.04.012.; Akerström S., Gunalan V., Keng C.T. et al. Dual effect of nitric oxide on SARS-CoV replication: viral RNA production and palmitoylation of the S protein are affected. Virology. 2009; 395 (1): 1–9. DOI:10.1016/j.virol.2009.09.007.; Tandon M., Wu W., Moore K. et al. SARS-CoV-2 accelerated clearance using a novel nitric oxide nasal spray (NONS) treatment: a randomized trial. Lancet Reg. Health Southeast Asia. 2022; 3: 100036. DOI:10.1016/j.lansea.2022.100036.; Fakhr B.S., Di Fenza R., Gianni S. et al. Inhaled high dose nitric oxide is a safe and effective respiratory treatment in spontaneous breathing hospitalized patients with COVID-19 pneumonia. Nitric Oxide. 2021; 116: 7–13. DOI:10.1016/j.niox.2021.08.003.; Parikh R., Wilson C., Weinberg J. et al. Inhaled nitric oxide treatment in spontaneously breathing COVID-19 patients. Ther. Adv. Respir. Dis. 2020; 14: 1753466620933510. DOI:10.1177/1753466620933510.; Valsecchi C., Winterton D., Safaee Fakhr B. et al. High-dose inhaled nitric oxide for the treatment of spontaneously breathing pregnant patients with severe coronavirus disease 2019 (COVID-19) pneumonia. Obstet. Gynecol. 2022; 140 (2): 195–203. DOI:10.1097/AOG.0000000000004847.; Tavazzi G., Pozzi M., Mongodi S. et al. Inhaled nitric oxide in patients admitted to intensive care unit with COVID-19 pneumonia. Crit. Care. 2020; 24 (1): 508. DOI:10.1186/s13054-020-03222-9.; Garfield B., McFadyen C., Briar C. et al. Potential for personalised application of inhaled nitric oxide in COVID-19 pneumonia. Br. J. Anaesth. 2021; 126 (2): e72–75. DOI:10.1016/j.bja.2020.11.006.; Abou-Arab O., Huette P., Debouvries F. et al. Inhaled nitric oxide for critically ill COVID-19 patients: a prospective study. Crit. Care. 2020; 24 (1): 645. DOI:10.1186/s13054-020-03371-x.; Chandel A., Patolia S., Ahmad K. et al. Inhaled nitric oxide via high-flow nasal cannula in patients with acute respiratory failure related to COVID-19. Clin. Med. Insights Circ. Respir. Pulm. Med. 2021; 15: 11795484211047065. DOI:10.1177/11795484211047065.; Herranz L., da Silveira J.G., Trocado L.F.L. et al. Inhaled nitric oxide in patients with severe COVID-19 infection at intensive care unit – a cross sectional study. J. Crit. Care Med. (Targu Mures). 2021; 7 (4): 318–319. DOI:10.2478/jccm-2021-0033.; Robba C., Ball L., Battaglini D. et al. Early effects of ventilatory rescue therapies on systemic and cerebral oxygenation in mechanically ventilated COVID-19 patients with acute respiratory distress syndrome: a prospective observational study. Crit. Care. 2021; 25 (1): 111. DOI:10.1186/s13054-021-03537-1.; Lotz C., Muellenbach R.M., Meybohm P. et al. Effects of inhaled nitric oxide in COVID‐19-induced ARDS – is it worthwhile? Acta Anaesthesiol. Scand. 2021; 65 (5): 629–632. DOI:10.1111/aas.13757.; Fakhr B.S., Wiegand S.B., Pinciroli R. et al. High concentrations of nitric oxide inhalation therapy in pregnant patients with severe coronavirus disease 2019 (COVID-19). Obstet Gynecol. 2020; 136 (6): 1109–1113. DOI:10.1097/AOG.0000000000004128.; Ziehr D.R., Alladina J., Wolf M.E. et al. Respiratory physiology of prone positioning with and without inhaled nitric oxide across the coronavirus disease 2019 acute respiratory distress syndrome severity spectrum. Crit. Care Explor. 2021; 3 (6): e0471. DOI:10.1097/CCE.0000000000000471.; Siddiqi H.K., Mehra M.R. COVID-19 illness in native and immunosuppressed states: a clinical-therapeutic staging proposal. J. Heart Lung Transplant. 2020; 39 (5): 405–407. DOI:10.1016/j.healun.2020.03.012.; Tamminen P.J., Kerimov D.M., Viskari H. et al. Nasal nitric oxide is decreased in acute mild COVID-19 and related to viral load. J. Breath Res. 2022; 16 (4): 046003. DOI:10.1088/1752-7163/ac7d6a.; Farsalinos K., Bagos P.G., Giannouchos T. et al. Smoking prevalence among hospitalized COVID-19 patients and its association with disease severity and mortality: an expanded re-analysis of a recent publication. Harm Reduct. J. 2021; 18 (1): 9. DOI:10.1186/s12954-020-00437-5.; Zamanian R.T., Pollack Jr C.V., Gentile M.A. et al. Outpatient inhaled nitric oxide in a patient with vasoreactive idiopathic pulmonary arterial hypertension and COVID-19 infection. Am. J. Respir. Crit. Care Med. 2020; 202 (1): 130–132. DOI:10.1164/rccm.202004-0937LE.; Ichinose F., Roberts Jr J.D., Zapol W.M. Inhaled nitric oxide: a selective pulmonary vasodilator: current uses and therapeutic potential. Circulation. 2004; 109 (25): 3106–3111. DOI:10.1161/01.CIR.0000134595.80170.62.; Steudel W., Hurford W.E., Zapol W.M. et al. Inhaled nitric oxide: basic biology and clinical applications. Anesthesiology. 1999; 91 (4): 1090–1121. DOI:10.1097/00000542-199910000-00030.; Taylor R.W., Zimmerman J.L., Dellinger R.P. et al. Low-dose inhaled nitric oxide in patients with acute lung injury: a randomized controlled trial. JAMA. 2004; 291 (13): 1603–1609. DOI:10.1001/jama.291.13.1603.; Gebistorf F., Karam O., Wetterslev J., Afshari A. Inhaled nitric oxide for acute respiratory distress syndrome (ARDS) in children and adults. Cochrane Database Syst. Rev. 2016 (6): CD002787. DOI:10.1002/14651858.cd002787.pub3.; Prakash A., Kaur S., Kaur C. et al. Efficacy and safety of inhaled nitric oxide in the treatment of severe/critical COVID-19 patients: a systematic review. Indian J. Pharmacol. 2021; 53 (3): 236–243. DOI:10.4103/ijp.ijp_382_21.; Beitler J.R., Thompson B.T., Baron R.M. et al. Advancing precision medicine for acute respiratory distress syndrome. Lancet Respir. Med. 2021; 10 (1): 107–120. DOI:10.1016/S2213-2600(21)00157-0.; DeGrado J.R., Szumita P.M., Schuler B.R. et al. Evaluation of the efficacy and safety of inhaled epoprostenol and inhaled nitric oxide for refractory hypoxemia in patients with coronavirus disease 2019. Crit. Care Explor. 2020; 2 (10): e0259. DOI:10.1097/CCE.0000000000000259.; Davis H.E., McCorkell L., Vogel J.M. et al. Long COVID: major findings, mechanisms and recommendations. Nat. Rev. Microbiol. 2023; 21 (3): 1–14. DOI:10.1038/s41579-022-00846-2.; World Health Organization. A clinical case definition of post COVID-19 condition by a Delphi consensus, 6 October, 2021. Available at: https://www.who.int/publications/i/item/WHO-2019-nCoV-Post_COVID-19_condition-Clinical_case_definition-2021.1Test [Accessed: May 01, 2023].; Wang J., Mei F., Bai L. et al. Serum nitrite and nitrate: a potential biomarker for post-covid-19 complications? Free Radic. Biol. Med. 2021; 175: 216–225. DOI:10.1016/j.freeradbiomed.2021.08.237.; Muangritdech N., Hamlin M.J., Sawanyawisuth K. et al. Hypoxic training improves blood pressure, nitric oxide and hypoxia-inducible factor-1 alpha in hypertensive patients. Eur. J. Appl. Physiol. 2020; 120 (8): 1815–1826. DOI:10.1007/s00421-020-04410-9.; ClinicalTrials.gov. Hypoxic-hyperoxic training in patients with cardiovascular pathology after COVID-19 infection. Available at: https://classic.clinicaltrials.gov/ct2/show/NCT05379608Test [Accessed: May 01, 2023].; Шейко Г., Исраелян Ю., Белова А. и др. Физиотерапевтические методы в реабилитации пациентов с COVID-19. Вестник физиотерапии и курортологии. 2020; 26 (4): 63–70. Доступно на: https://cyberleninka.ru/article/n/fizioterapevticheskie-metody-v-reabilitatsii-patsientov-s-covid-19?ysclid=ls0ayev7hg948878945Test; Garnacho-Castaño M.V., Sánchez-Nuño S., Molina-Raya L. et al. Circulating nitrate-nitrite reduces oxygen uptake for improving resistance exercise performance after rest time in well-trained CrossFit athletes. Sci. Rep. 2022; 12 (1): 9671. DOI:10.1038/s41598-022-13786-x.; Nelin L.D., Potenziano J.L. Inhaled nitric oxide for neonates with persistent pulmonary hypertension of the newborn in the CINRGI study: time to treatment response. BMC Pediatr. 2019; 19 (1): 17. DOI:10.1186/s12887-018-1368-4.; Roberts Jr J., Polaner D.M., Zapol W. et al. Inhaled nitric oxide in persistent pulmonary hypertension of the newborn. Lancet. 1992; 340 (8823): 818–819. DOI:10.1016/0140-6736(92)92686-a.; Miller C., Miller M., McMullin B. et al. A phase I clinical study of inhaled nitric oxide in healthy adults. J. Cyst. Fibros. 2012; 11 (4): 324–331. DOI:10.1016/j.jcf.2012.01.003.; Каменщиков Н.О., Кузнецов М.С., Дьякова М.Л. и др. Ингаляционная терапия коморбидного пациента с COVID-19 высокими дозами оксида азота: клинический случай. Сибирский журнал клинической и экспериментальной медицины. 2022; 37 (4): 180–187. DOI:10.29001/2073-8552-2022-37-4-180-187.; Gerlach H., Keh D., Semmerow A. et al. Dose-response characteristics during long-term inhalation of nitric oxide in patients with severe acute respiratory distress syndrome: a prospective, randomized, controlled study. Am. J. Respir. Crit. Care Med. 2003; 167 (7): 1008–1015. DOI:10.1164/rccm.2108121.; Kamenshchikov N.O., Berra L., Carroll R.W. Therapeutic effects of inhaled nitric oxide therapy in COVID-19 patients. Biomedicines. 2022; 10 (2): 369. DOI:10.3390/biomedicines10020369.; Pierce C., Peters M., Cohen G. et al. Cost of nitric oxide is exorbitant. BMJ. 2002; 325 (7359): 336. DOI:10.1136/bmj.325.7359.336.; Tzanetos D.R.T., Housley J.J., Barr F.E. et al. Implementation of an inhaled nitric oxide protocol decreases direct cost associated with its use. Respir. Care. 2015; 60 (5): 644–650. DOI:10.4187/respcare.03308.; https://journal.pulmonology.ru/pulm/article/view/4305Test

  2. 2
    دورية أكاديمية

    المصدر: PULMONOLOGIYA; Том 34, № 1 (2024); 42-49 ; Пульмонология; Том 34, № 1 (2024); 42-49 ; 2541-9617 ; 0869-0189

    وصف الملف: application/pdf

    العلاقة: https://journal.pulmonology.ru/pulm/article/view/4402/3598Test; https://journal.pulmonology.ru/pulm/article/downloadSuppFile/4402/2311Test; https://journal.pulmonology.ru/pulm/article/downloadSuppFile/4402/2312Test; https://journal.pulmonology.ru/pulm/article/downloadSuppFile/4402/2313Test; Ванин А.Ф. Оксид азота – регулятор клеточного метаболизма. Соросовский образовательный журнал. 2001; 7 (11): 7–12. Доступно на: https://web.archive.org/web/20061113083427/http://journal.issep.rssi.ru/articles/pdf/0111_007.pdfTest; Yu B., Ichinose F., Bloch D.B., Zapol W.M. Inhaled nitric oxide. Br. J. Pharmacol. 2019; 176 (2): 246–255. DOI:10.1111/bph.14512.; Shei R.J., Baranauskas M.N. More questions than answers for the use of inhaled nitric oxide in COVID-19. Nitric Oxide. 2022; 124: 39–48. DOI:10.1016/j.niox.2022.05.001.; Bentur L., Gur M., Ashkenazi M. et al. Pilot study to test inhaled nitric oxide in cystic fibrosis patients with refractory Mycobacterium abscessus lung infection. J. Cyst. Fibros. 2020; 19 (2): 225–231. DOI:10.1016/j.jcf.2019.05.002.; Signori D., Magliocca A., Hayashida K. et al. Inhaled nitric oxide: role in the pathophysiology of cardio-cerebrovascular and respiratory diseases. Intensive Care Med. Exp. 2022; 10 (1): 28. DOI:10.1186/s40635-022-00455-6.; Талызин А.М., Журавель С.В., Хубутия М.Ш. и др. Оценка эффективности оксида азота при двусторонней трансплантации легких. Трансплантология. 2022; 14 (2):132–141. DOI:10.23873/2074-0506-2022-14-2-132-141.; Ohsawa I., Ishikawa M., Takahashi K. et al. Hydrogen acts as a therapeutic antioxidant by selectively reducing cytotoxic oxygen radicals. Nat. Med. 2007; 13 (6): 688–694. DOI:10.1038/nm1577.; Медведев О.С. Роль водорода и метана микробиома человека и животных в обеспечении антиоксидантной защиты организма. Успехи современной биологии. 2022; 142 (4): 349–364. Доступно на: https://sciencejournals.ru/cgi/getPDF.pl?jid=uspbio&year=2022&vol=142&iss=4&file=UspBio2204007Medvedev.pdfTest; Jin Z., Zhao P., Gong W. et al. Fe-porphyrin: A redox-related biosensor of hydrogen molecule. Nano Res. 2023; 16: 2020–2025. DOI:10.1007/s12274-022-4860-y.; Kamenshchikov N.O., Berra L., Carroll R.W. Therapeutic effects of inhaled nitric oxide therapy in COVID-19 patients. Biomedicines. 2022; 10 (2): 369. DOI:10.3390/biomedicines10020369.; Shinbo T., Kokubo K., Sato Y. et al. Breathing nitric oxide plus hydrogen gas reduces ischemia-reperfusion injury and nitrotyrosine production in murine heart. Am. J. Physiol. Heart Circ. Physiol. 2013; 305 (4): H542–550. DOI:10.1152/ajpheart.00844.2012.; Liu H., Liang X., Wang D. et al. Combination therapy with nitric oxide and molecular hydrogen in a murine model of acute lung injury. Shock. 2015; 43 (5): 504–511. DOI:10.1097/SHK.0000000000000316.; https://journal.pulmonology.ru/pulm/article/view/4402Test

  3. 3
    دورية أكاديمية

    المساهمون: The study had no sponsorship, Спонсорская поддержка отсутствовала

    المصدر: PULMONOLOGIYA; Том 33, № 3 (2023); 420-426 ; Пульмонология; Том 33, № 3 (2023); 420-426 ; 2541-9617 ; 0869-0189

    وصف الملف: application/pdf

    العلاقة: https://journal.pulmonology.ru/pulm/article/view/4187/3537Test; https://journal.pulmonology.ru/pulm/article/downloadSuppFile/4187/1691Test; https://journal.pulmonology.ru/pulm/article/downloadSuppFile/4187/1824Test; https://journal.pulmonology.ru/pulm/article/downloadSuppFile/4187/1825Test; Авдеев С.Н. Нарушения газообмена при хронической обструктивной болезни легких. Русский медицинский журнал. 2013; 21 (7): 353–356. Доступно на: https://www.rmj.ru/articles/bolezni_dykhatelnykh_putey/Narusheniya_gazoobmena_pri_hronicheskoy_obstruktivnoy_bolezni_legkih%20Test/; Авдеев С.Н. Интенсивная терапия в пульмонологии. М: Атмосфера; 2014.; Feller-Kopman D.J., Schwartzstein R.M. Mechanisms, causes, and effects of hypercapnia. UpToDate. 2022. Available at: https://www.uptodate.com/contents/mechanisms-causes-and-effects-of-hypercapnia/printTest [Accessed: October 10, 2022].; Grippi M.A., Tino G. Pulmonary function testing. In: Grippi M.A., Elias J.A., Fishman J.A. et al., eds. Fishman's Pulmonary Diseases and Disorders. 5nd Edn. New York: McGraw-Hill Education; 2015. Available at: https://accessmedicine.mhmedical.com/content.aspx?bookid=1344&sectionid=81187235Test; Авдеев С.Н. Патофизиология обострений хронической обструктивной болезни легких. Вестник анестезиологии и реаниматологии. 2019;16 (2): 75–82. DOI:10.1292/2078-5658-2019-16-2-75-82.; Csoma B., Vulpi M.R., Dragonieri S. et al. Hypercapnia in COPD: causes, consequences, and therapy. J. Clin. Med. 2022; 11 (11): 3180. DOI:10.3390/jcm11113180.; Чучалин А.Г., Авдеев С.Н., Айсанов З.Р. и др. Хроническая обструктивная болезнь легких: Клинические рекомендации. 2021. Доступно на: https://spulmo.ru/upload/kr/HOBL_2021.pdf?ysclid=lggc7bv4zq255617548Test; Feller-Kopman D.J., Schwartzstein R.M. The evaluation, diagnosis, and treatment of the adult patient with acute hypercapnic respiratory failure. UpToDate. 2022. Available at: https://www.uptodate.com/contents/the-evaluation-diagnosis-and-treatment-of-the-adult-patient-with-acute-hypercapnic-respiratory-failureTest [Accessed: October 10, 2022].; Mas A., Masip J. Noninvasive ventilation in acute respiratory failure. Int. J. Chron. Obstruct. Pulmon. Dis. 2014; 9 (1): 837–852. DOI:10.2147/COPD.S42664.; Brandis K. Acid-base physiology. 2006. Available at: https://www.anaesthesiamcq.com/AcidBaseBook/ABindex.phpTest [Accessed: October 12, 2022].; Кассиль В.Л., Лескин Г.С., Выжигина М.А. Респираторная поддержка: искусственная и вспомогательная вентиляция легких в анестезиологии и интенсивной терапии: руководство для врачей. М.: Медицина; 1997.; Fontana V., Santinelli S., Internullo M. et al. Effect of acetazolamide on post-NIV metabolic alkalosis in acute exacerbated COPD patients. Eur. Rev. Med. Pharmacol. Sci. 2016; 20 (1): 37–43. Available at: https://www.europeanreview.org/wp/wp-content/uploads/37-43.pdfTest; Banga A., Khilnani G.C. Post-hypercapnic alkalosis is associated with ventilator dependence and increased ICU stay. COPD. 2009; 6 (6): 437–440. DOI:10.3109/15412550903341448.; Martínez C.S., Macías C.M., Toledo J.S. et al. Alcalosis posthipercápnica en pacientes con enfermedad pulmonar obstructiva crónica exacerbada. Med. Crítica. 2011; 25 (4): 218–225. Available at: https://www.medigraphic.com/pdfs/medcri/ti-2011/ti114f.pdfTest; Emmett M., Szerlip H. Causes of metabolic alkalosis. UpToDate. 2022. Available at: https://pro.uptodatefree.ir/show/2331Test [Accessed: October 10, 2022].; Tinawi M. Pathophysiology, evaluation, and management of metabolic alkalosis. Cureus. 2021; 13 (1): e12841. DOI:10.7759/cureus.12841.; Do C., Vasquez P.C., Soleimani M. Metabolic alkalosis pathogenesis, diagnosis, and treatment: core curriculum 2022. Am. J. Kidney Dis. 2022; 80 (4): 536–551. DOI:10.1053/j.ajkd.2021.12.016.; Engelking L.R. Chapter 89 – metabolic alkalosis. In: Engelking L.R., ed. Textbook of veterinary physiological chemistry. 3rd Edn. Boston: Academic Press; 2014: 576–583. Available at: https://www.elsevier.com/books/textbook-of-veterinary-physiological-chemistry/engelking/978-0-12-391909-0Test; Hall A.M., Bending M.R. Severe hyperlactaemia in the setting of alkalaemia. NDT Plus. 2009; 2 (5): 408–411. DOI:10.1093/ndtplus/sfp065.; Faisy C., Meziani F., Planquette B. et al. Effect of acetazolamide vs placebo on duration of invasive mechanical ventilation among patients with chronic obstructive pulmonary disease: a randomized clinical trial. JAMA. 2016; 315 (5): 480–488. DOI:10.1001/jama.2016.0019.; https://journal.pulmonology.ru/pulm/article/view/4187Test

  4. 4
    دورية أكاديمية

    المساهمون: The study had no sponsorship, Спонсорская поддержка отсутствовала

    المصدر: PULMONOLOGIYA; Том 33, № 3 (2023); 408-413 ; Пульмонология; Том 33, № 3 (2023); 408-413 ; 2541-9617 ; 0869-0189

    وصف الملف: application/pdf

    العلاقة: https://journal.pulmonology.ru/pulm/article/view/4180/3535Test; https://journal.pulmonology.ru/pulm/article/downloadSuppFile/4180/1638Test; https://journal.pulmonology.ru/pulm/article/downloadSuppFile/4180/1639Test; https://journal.pulmonology.ru/pulm/article/downloadSuppFile/4180/1820Test; https://journal.pulmonology.ru/pulm/article/downloadSuppFile/4180/1821Test; https://journal.pulmonology.ru/pulm/article/downloadSuppFile/4180/1850Test; Министерство здравоохранение Российской Федерации. Закрытая травма грудной клетки: Рубрикатор клинических рекомендаций. Доступно на: https://cr.minzdrav.gov.ru/recomend/728_1Test; Ранения и травмы груди. В кн. Гуманенко Е.К., Самохвалов И.М., ред. Военно-полевая хирургия локальных войн и вооруженных конфликтов: руководство для врачей. М.: ГЭОТАРМедиа; 2011: 360–396. Доступно на: https://www.rosmedlib.ru/book/ISBN9785970419014.htmlTest; Ермолов А.С., Галанкина И.Е., Соколов В.А. и др. Структура госпитальной летальности при сочетанной травме и пути ее снижения. Хирургия. 2006; (9): 16–20.; Марченков Ю.В., Мороз В.В. Неинвазивная вентиляция легких у больных с тяжелой осложненной торакальной травмой. Пульмонология. 2011; (2): 54–59. DOI:10.18093/0869-0189-2011-0-2-54-59.; Самохвалов И.М., Гаврилин С.В., Мешаков Д.П. и др. Роль ушиба легких в патогенезе дыхательных расстройств при тяжелой сочетанной травме груди. Вестник анестезиологии и реаниматологии. 2011; (5): 11–16.; Крюков Е.В., Чуприна А.П., Зайцев А.А. Травма груди. В кн.: Чучалин А.Г., ред. Респираторная медицина: руководство. М.: Литтерра; 2017. Т. 3: 174–181. Доступно на: https://enc-medica.ru/wp-content/uploads/%D0%A0%D0%B5%D1%81%D0%BF%D0%B8%D1%80%D0%B0%D1%82%D0%BE%D1%80%D0%BD%D0%B0%D1%8F-%D0%BC%D0%B5%D0%B4%D0%B8%D1%86%D0%B8%D0%BD%D0%B0-%D0%A2.3.pdfTest; Савушкина О.И., Зайцев А.А., Малашенко М.М. и др. Функциональные нарушения системы дыхания у пациентов с проникающими ранениями легких: дизайн проспективного исследования. Consilium Medicum. 2022; 24 (3): 199–204. Доступно на: https://cyberleninka.ru/article/n/funktsionalnye-narusheniya-sistemy-dyhaniya-u-patsientov-s-pronikayuschimi-raneniyami-legkih-dizayn-prospektivnogo-issledovaniyaTest; Савушкина О.И., Фокин А.В., Комолова Л.Ю., Зайцев А.А. Роль функциональных методов исследования в диагностике пареза диафрагмы. Клиническая медицина. 2022; 100 (6): 310–313. DOI:10.30629/0023-2149-2022-100-6-310-313.; https://journal.pulmonology.ru/pulm/article/view/4180Test

  5. 5
    دورية أكاديمية

    المساهمون: This study was not sponsored, Исследование проводилось без участия спонсоров

    المصدر: PULMONOLOGIYA; Том 33, № 2 (2023); 279-286 ; Пульмонология; Том 33, № 2 (2023); 279-286 ; 2541-9617 ; 0869-0189

    وصف الملف: application/pdf

    العلاقة: https://journal.pulmonology.ru/pulm/article/view/4279/3521Test; https://journal.pulmonology.ru/pulm/article/downloadSuppFile/4279/1891Test; https://journal.pulmonology.ru/pulm/article/downloadSuppFile/4279/1892Test; https://journal.pulmonology.ru/pulm/article/downloadSuppFile/4279/1893Test; https://journal.pulmonology.ru/pulm/article/downloadSuppFile/4279/1894Test; https://journal.pulmonology.ru/pulm/article/downloadSuppFile/4279/1895Test; de Winter J.M., Ottenheijm C.A.C. Sarcomere dysfunction in ne-maline myopathy. J. Neuromuscul. Dis. 2017; 4 (2): 99-113. DOI:10.3233/JND-160200.; Laitila J., Wallgren-Pettersson C. Recent advances in nemaline myopathy. Neuromuscul. Disord. 2021; 31 (10): 955-967. DOI:10.1016/j.nmd.2021.07.012.; Yuen M., Ottenheijm C.A.C. Nebulin: big protein with big responsibilities. J. Muscle Res. Cell Motil. 2020; 41 (1): 103-124. DOI:10.1007/s10974-019-09565-3.; Sewry C.A., Laitila J.M., Wallgren-Pettersson C. Nemaline myopathies: a current view. J. Muscle Res. Cell Motil. 2019; 40 (2): 111-126. DOI:10.1007/s10974-019-09519-9.; Gurgel-Giannetti J., Bang M.L., Reed U. et al. Lack of the C-terminal domain of nebulin in a patient with nemaline myopathy. Muscle Nerve. 2002; 25 (5): 747-752. DOI:10.1002/mus.10097.; Li F., Barton E.R., Granzier H. Deleting nebulin’s C-terminus reveals its importance to sarcomeric structure and function and is sufficient to invoke nemaline myopathy. Hum. Mol. Genet. 2019; 28 (10): 1709-1725. DOI:10.1093/hmg/ddz016.; Mizuno Y., Mori-Yoshimura M., Oya Y. et al. [Two cases of nemaline myopathy presenting with hypertrophy of distal limbs with prominent asymmetry]. Rinsho Shinkeigaku. 2017; 57 (11): 691-697. DOI:10.5692/dinicalneurol.cn-001024 (in Japanese).; Calakos N., Patel V.D., Gottron M. et al. Functional evidence implicating a novel TOR1A mutation in idiopathic, late-onset focal dystonia. J. Med. Genet. 2010; 47 (9): 646-650. DOI:10.1136/jmg.2009.072082.; Чучалин А.Г., ред. Респираторная медицина: руководство. М.: Литтерра; 2017. Т. 3.; Epstein S.K. Respiratory muscle weakness due to neuromuscular disease: Clinical manifestations and evaluation. UpToDate. 2023. Available at: https://www.uptodate.com/contents/respiratory-muscle-weakness-due-to-neuromuscular-disease-clinical-manifestations-and-evaluationTest; Amburgey K., Acker M., Saeed S. et al. A cross-sectional study of nemaline myopathy. Neurology. 2021; 96 (10): e1425—1436. DOI:10.1212/WNL.0000000000011458.; https://journal.pulmonology.ru/pulm/article/view/4279Test

  6. 6
    دورية أكاديمية

    المساهمون: The work was carried out according to the state assignment No.0063-2019-0003 “Mathematical methods for data analysis and forecasting” at the Research Equipment Sharing Center “High-Performance Computing and Big Data”, Federal Research Center “Computer Science and Control” of the Russian Academy of Sciences (Moscow), Работа выполнялась по государственному заданию № 0063-2019-0003 «Математические методы анализа данных и прогнозирования» с использованием инфраструктуры Центра коллективного пользования «Высокопроизводительные вычисления и большие данные» Федерального государственного учреждения «Федеральный исследовательский центр «Информатика и управление» Российской академии наук (Москва)

    المصدر: PULMONOLOGIYA; Том 33, № 1 (2023); 65-75 ; Пульмонология; Том 33, № 1 (2023); 65-75 ; 2541-9617 ; 0869-0189

    وصف الملف: application/pdf

    العلاقة: https://journal.pulmonology.ru/pulm/article/view/2356/3496Test; https://journal.pulmonology.ru/pulm/article/downloadSuppFile/2356/1320Test; https://journal.pulmonology.ru/pulm/article/downloadSuppFile/2356/1321Test; Singh A.K., Khunti K. Assessment of risk, severity, mortality, glycemic control and antidiabetic agents in patients with diabetes and COVID-19: A narrative review. Diabetes Res. Clin. Pract. 2020; 165: 108266. DOI:10.1016/j.diabres.2020.108266.; Торшин И.Ю., Громова О.А. 25 мгновений молекулярной фармакологии. О развитии клинико-фармакологического мышления. Иваново: А-Гриф; 2012.; Лиманова О.А., Торшин И.Ю., Сардарян И.С. и др. Обеспеченность микронутриентами и женское здоровье: интеллектуальный анализ клинико-эпидемиологических данных. Вопросы гинекологии, акушерства и перинатологии. 2014; 13 (2): 5–15. Доступно на: https://elibrary.ru/item.asp?id=21859412Test; Торшин И.Ю., Лиманова О.А., Громова О.А. и др. Метрический анализ данных по взаимосвязям между показателями микронутриентной обеспеченности и состоянием здоровья женщин 18–45 лет. Медицинский алфавит. 2018; 2 (21): 6–19. Доступно на: https://www.med-alphabet.com/jour/article/view/736/736Test; Торшин И.Ю., Громова О.А., Лиманова О. и др. Роль обеспеченности микронутриентами в поддержании здоровья детей и подростков: анализ крупномасштабной выборки пациентов посредством интеллектуального анализа данных. Педиатрия. Журнал имени Г.Н.Сперанского. 2015; 94 (6): 68–78. Доступно на: https://pediatriajournal.ru/archive?show=349&section=4476Test; Surman S.L., Penkert R.R., Jones B.G. et al. Vitamin supplementation at the time of immunization with a gold-adapted influenza virus vaccine corrects poor mucosal antibody responses in mice deficient for vitamins A and D. Clin. Vaccine Immunol. 2016; 23 (3): 219–227. DOI:10.1128/cvi.00739-15.; Penkert R.R., Rowe H.M., Surman S.L. et al. Influences of vitamin A on vaccine immunogenicity and efficacy. Front. Immunol. 2019; 10: 1576. DOI:10.3389/fimmu.2019.01576.; Raahati Z., Bakhshi B., Najar-Peerayeh S. Selenium nanoparticles induce potent protective immune responses against vibrio cholerae WC vaccine in a mouse model. J. Immunol. Res. 2020; 2020: 8874288. DOI:10.1155/2020/8874288.; Behzadi M., Vakili B., Ebrahiminezhad A., Nezafat N. Iron nanoparticles as novel vaccine adjuvants. Eur. J. Pharm. Sci. 2021; 159: 105718. DOI:10.1016/j.ejps.2021.105718.; Patel S., Akalkotkar A., Bivona J.J. 3rd et al. Vitamin A or E and a catechin synergize as vaccine adjuvant to enhance immune responses in mice by induction of early interleukin-15 but not interleukin-1β responses. Immunology. 2016; 148 (4): 352–362. DOI:10.1111/imm.12614.; Торшин И.Ю., Громова О.А. Микронутриенты против коронавирусов. М.: ГЭОТАР-Медиа; 2020.; Торшин И.Ю., Громова О.А., Чучалин А.Г., Журавлев Ю.И. Хемореактомный скрининг воздействия фармакологических препаратов на SARS-CoV-2 и виром человека как информационная основа для принятия решений по фармакотерапии COVID-19. Фармакоэкономика. Современная фармакоэкономика и фармакоэпидемиология. 2021; 14 (2): 191–211. DOI:10.17749/2070-4909/farmakoekonomika.2021.078.; Dring J.C., Forma A., Chilimoniuk Z. et al. Essentiality of trace elements in pregnancy, fertility, and gynecologic cancers-A state-of-theart review. Nutrients. 2021; 14 (1): 185. DOI:10.3390/nu14010185.; Barbagallo M., Veronese N., Dominguez L.J. Magnesium in aging, health and diseases. Nutrients. 2021; 13 (2): 463. DOI:10.3390/nu13020463.; Abi Zeid Daou C., Natout M.A., El Hadi N. Biphasic anaphylaxis after exposure to the first dose of Pfizer-BioNTech COVID-19 mRNA vaccine. J. Med. Virol. 2021; 93 (10): 6027–6029. DOI:10.1002/jmv.27109.; Farinazzo E., Ponis G., Zelin E. et al. Cutaneous adverse reactions after m-RNA COVID-19 vaccine: early reports from North-East Italy. J. Eur. Acad Dermatol. Venereol. 2021; 35 (9): e548–551. DOI:10.1111/jdv.17343.; Wyller T.B., Kittang B.R., Ranhoff A.H. et al. Nursing home deaths after COVID-19 vaccination. Tidsskr. Nor. Laegeforen. 2021; 141. DOI:10.4045/tidsskr.21.0383.; Khubchandani J., Macias Y. COVID-19 vaccination hesitancy in Hispanics and African-Americans: a review and recommendations for practice. Brain Behav. Immun. Health. 2021; 15: 100277. DOI:10.1016/j.bbih.2021.100277.; Qunaibi E.A., Helmy M., Basheti I., Sultan I. A high rate of COVID-19 vaccine hesitancy in a large-scale survey on Arabs. Elife. 2021; 10: e68038. DOI:10.7554/eLife.68038.; Torshin I.Y., Rudakov K.V. On the theoretical basis of the metric analysis of poorly formalized problems of recognition and classification. Pattern Recognition and Image Analysis. 2015; 25 (4): 577–587. DOI:10.1134/S1054661815040252.; Torshin I.Y., Rudakov K.V. On the procedures of generation of numerical features over partitions of sets of objects in the problem of predicting numerical target variables. Pattern Recognit. Image Anal. 2019; 29 (4): 654–667. DOI:10.1134/S1054661819040175.; Torshin I.Y., Rudakov K.V. Topological data analysis in materials science: the case of high-temperature cuprate superconductors. Pattern Recognit. Image Anal. 2020; 30 (2): 262–274. DOI:10.1134/S1054661820020157.; Торшин И.Ю., Громова О.А., Стаховская Л.В. и др. Анализ 19,9 млн публикаций базы данных PubMed/MEDLINE методами искусственного интеллекта: подходы к обобщению накопленных данных и феномен “fake news”. Фармакоэкономика. Современная фармакоэкономика и фармакоэпидемиология. 2020; 13 (2): 146–163. DOI:10.17749/2070-4909/farmakoekonomika.2020.021.; Громова О.А., Торшин И.Ю., Тетруашвили Н.К. и др. Витамин А в акушерстве: фундаментальные и клинические исследования. Медицинский алфавит. 2019; 1 (1): 59–69. DOI:10.33667/2078-5631-2019-1-1(376)-59-69.; Penkert R.R., Cortez V., Karlsson E.A. et al. Vitamin A corrects tissue deficits in diet-Induced obese mice and reduces influenza infection after vaccination and challenge. Obesity (Silver Spring). 2020; 28 (9): 1631–1636. DOI:10.1002/oby.22929.; Surman S.L., Jones B.G., Sealy R.E. et al. Oral retinyl palmitate or retinoic acid corrects mucosal IgA responses toward an intranasal influenza virus vaccine in vitamin A deficient mice. Vaccine. 2014; 32 (22): 2521–2524. DOI:10.1016/j.vaccine.2014.03.025.; McGill J.L., Kelly S.M., Guerra-Maupome M. et al. Vitamin A deficiency impairs the immune response to intranasal vaccination and RSV infection in neonatal calves. Sci. Rep. 2019; 9 (1): 15157. DOI:10.1038/s41598-019-51684-x.; Kaufman D.R., De Calisto J., Simmons N.L. et al. Vitamin A deficiency impairs vaccine-elicited gastrointestinal immunity. J. Immunol. 2011; 187 (4): 1877–1883. DOI:10.4049/jimmunol.1101248.; Kandasamy S., Chattha K.S., Vlasova A.N., Saif L.J. Prenatal vitamin A deficiency impairs adaptive immune responses to pentavalent rotavirus vaccine (RotaTeq®) in a neonatal gnotobiotic pig model. Vaccine. 2014; 32 (7): 816–824. DOI:10.1016/j.vaccine.2013.12.039.; Chattha K.S., Kandasamy S., Vlasova A.N., Saif LJ. Vitamin A deficiency impairs adaptive B and T cell responses to a prototype monovalent attenuated human rotavirus vaccine and virulent human rotavirus challenge in a gnotobiotic piglet model. PLoS One. 2013; 8 (12): e82966. DOI:10.1371/journal.pone.0082966.; Jee J., Hoet A.E., Azevedo M.P. et al. Effects of dietary vitamin A content on antibody responses of feedlot calves inoculated intramuscularly with an inactivated bovine coronavirus vaccine. Am. J. Vet. Res. 2013; 74 (10): 1353–1362. DOI:10.2460/ajvr.74.10.1353.; Penkert R.R., Iverson A., Rosch J.W., Hurwitz J.L. Prevnar-13 vaccine failure in a mouse model for vitamin A deficiency. Vaccine. 2017; 35 (46): 6264–6268. DOI:10.1016/j.vaccine.2017.09.069.; Ahmad S.M., Alam M.J., Khanam A. et al. Vitamin A supplementation during pregnancy enhances pandemic H1N1 vaccine response in mothers, but enhancement of transplacental antibody transfer may depend on when mothers are vaccinated during pregnancy. J. Nutr. 2018; 148 (12): 1968–1975. DOI:10.1093/jn/nxy228.; Ma A.Q., Wang Z.X., Sun Z.Q. et al. [Interventional effect of vitamin A supplementation on re-vaccination to hepatitis B virus among rural infants and young children in China]. Zhonghua Yu Fang Yi Xue Za Zhi. 2011; 45 (3): 259–262. DOI:10.3760/CMA.J.ISSN.0253-9624.2011.03.014 (in Chinese).; Zheng Y., Li X.G., Wang Q.Z. et al. Enhancement of vitamin A combined vitamin D supplementation on immune response to Bacille Calmette-Guérin vaccine revaccinated in Chinese infants. Asian Pac. J. Trop. Med. 2014; 7 (2): 130–135. DOI:10.1016/S19957645(14)60008-0.; Newton S., Owusu-Agyei S., Filteau S. et al. Vitamin A supplements are well tolerated with the pentavalent vaccine. Vaccine. 2008; 26 (51): 6608–6613. DOI:10.1016/j.vaccine.2008.09.037.; Bahl R., Bhandari N., Kant S. et al. Effect of vitamin A administered at Expanded Program on immunization contacts on antibody response to oral polio vaccine. Eur. J. Clin. Nutr. 2002; 56 (4): 321–325. DOI:10.1038/sj.ejcn.1601325.; Rahman M.M., Mahalanabis D., Hossain S. et al. Simultaneous vitamin A administration at routine immunization contact enhances antibody response to diphtheria vaccine in infants younger than six months. J. Nutr. 1999; 129 (12): 2192–2195. DOI:10.1093/jn/129.12.2192.; Sudfeld C.R., Navar A.M., Halsey N.A. Effectiveness of measles vaccination and vitamin A treatment. Int. J. Epidemiol. 2010; 39 (Suppl. 1): i48–55. DOI:10.1093/ije/dyq021.; Alonso N., Zelzer S., Eibinger G., Herrmann M. Vitamin D metabolites: analytical challenges and clinical relevance. Calcif. Tissue Int. 2022: 1–20. DOI:10.1007/s00223-022-00961-5.; Kashi D.S., Oliver S.J., Wentz L.M. et al. Vitamin D and the hepatitis B vaccine response: a prospective cohort study and a randomized, placebo-controlled oral vitamin D(3) and simulated sunlight supplementation trial in healthy adults. Eur. J. Nutr. 2021; 60 (1): 475–491. DOI:10.1007/s00394-020-02261-w.; Patel N., Penkert R.R., Jones B.G. et al. Baseline serum vitamin A and D levels determine benefit of oral vitamin A and D supplements to humoral immune responses following pediatric influenza vaccination. Viruses. 2019; 11 (10): 907. DOI:10.3390/v11100907.; Lee M.D., Lin C.H., Lei W.T. et al. Does vitamin D deficiency affect the immunogenic responses to influenza vaccination? A systematic review and meta-analysis. Nutrients. 2018; 10 (4): 409. DOI:10.3390/nu10040409.; Mohta A., Kushwaha R.K., Gautam U. et al. A comparative study of the efficacy and safety of intralesional measles, mumps, and rubella vaccine versus intralesional vitamin D3 for the treatment of warts in children. Pediatr. Dermatol. 2020; 37 (5): 853–859. DOI:10.1111/pde.14280.; Zhao X., Pang X., Wang F. et al. Maternal folic acid supplementation and antibody persistence 5 years after hepatitis B vaccination among infants. Hum. Vaccin. Immunother. 2018; 14 (10): 2478–2484. DOI:10.1080/21645515.2018.1482168.; Siddiqua T.J., Ahmad S.M., Ahsan K.B. et al. Vitamin B12 supplementation during pregnancy and postpartum improves B12 status of both mothers and infants but vaccine response in mothers only: a randomized clinical trial in Bangladesh. Eur. J. Nutr. 2016; 55 (1): 281–293. DOI:10.1007/s00394-015-0845-x.; Kumari D., Garg S., Bhawrani P. Zinc homeostasis in immunity and its association with preterm births. Scand. J. Immunol. 2022; 95 (4): e13142. DOI:10.1111/sji.13142.; Read S.A., Obeid S., Ahlenstiel C., Ahlenstiel G. The role of zinc in antiviral immunity. Adv. Nutr. 2019; 10 (4): 696–710. DOI:10.1093/advances/nmz013.; Singh M., Das R.R. Zinc for the common cold. Cochrane Database Syst. Rev. 2013; (6): CD001364. DOI:10.1002/14651858.cd001364.pub4.; Zhao N., Wang X., Zhang Y. et al. Gestational zinc deficiency impairs humoral and cellular immune responses to hepatitis B vaccination in offspring mice. PLoS One. 2013; 8 (9): e73461. DOI:10.1371/journal.pone.0073461.; Shi L., Zhang L., Li C. et al. Dietary zinc deficiency impairs humoral and cellular immune responses to BCG and ESAT-6/CFP-10 vaccination in offspring and adult rats. Tuberculosis (Edinb.). 2016; 97: 86–96. DOI:10.1016/j.tube.2016.01.002.; Ozgenc F., Aksu G., Kirkpinar F. et al. The influence of marginal zinc deficient diet on post-vaccination immune response against hepatitis B in rats. Hepatol. Res. 2006; 35 (1): 26–30. DOI:10.1016/j.hepres.2006.01.012.; Das R., Jobayer Chisti M., Ahshanul Haque M. et al. Evaluating association of vaccine response to low serum zinc and vitamin D levels in children of a birth cohort study in Dhaka. Vaccine. 2021; 39 (1): 59–67. DOI:10.1016/j.vaccine.2020.10.048.; Lazarus R.P., John J., Shanmugasundaram E. et al. The effect of probiotics and zinc supplementation on the immune response to oral rotavirus vaccine: a randomized, factorial design, placebo-controlled study among Indian infants. Vaccine. 2018; 36 (2): 273–279. DOI:10.1016/j.vaccine.2017.07.116.; Lin Y., He F., Lian S. et al. Selenium status in patients with chronic liver disease: a systematic review and meta-analysis. Nutrients. 2022; 14 (5): 952. DOI:10.3390/nu14050952.; Shojadoost B., Taha-Abdelaziz K., Alkie T.N. et al. Supplemental dietary selenium enhances immune responses conferred by a vaccine against low pathogenicity avian influenza virus. Vet. Immunol. Immunopathol. 2020; 227: 110089. DOI:10.1016/j.vetimm.2020.110089.; Ivory K., Prieto E., Spinks C. et al. Selenium supplementation has beneficial and detrimental effects on immunity to influenza vaccine in older adults. Clin. Nutr. 2017; 36 (2): 407–415. DOI:10.1016/j.clnu.2015.12.003.; Janbakhsh A., Mansouri F., Vaziri S. et al. Effect of selenium on immune response against hepatitis B vaccine with accelerated method in insulin-dependent diabetes mellitus patients. Caspian J. Intern. Med. 2013; 4 (1): 603–606. Available at: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3762230Test/; Yathapu S.R., Kondapalli N.B., Srivalliputturu S.B. et al. Effect of lead exposure and nutritional iron-deficiency on immune response: a vaccine challenge study in rats. J. Immunotoxicol. 2020; 17 (1): 144–152. DOI:10.1080/1547691X.2020.1773973.; Stoffel N.U., Uyoga M.A., Mutuku F.M. et al. Iron deficiency anemia at time of vaccination predicts decreased vaccine response and iron supplementation at time of vaccination increases humoral vaccine response: a birth cohort study and a randomized trial follow-up study in Kenyan infants. Front. Immunol. 2020; 11: 1313. DOI:10.3389/fimmu.2020.01313.; Burin Junior A.M., Fernandes N.L.M., Snak A. et al. Arginine and manganese supplementation on the immune competence of broilers immune stimulated with vaccine against Salmonella Enteritidis. Poult. Sci. 2019; 98 (5): 2160–2168. DOI:10.3382/ps/pey570.; Furuhjelm C., Jenmalm M.C., Fälth-Magnusson K., Duchén K. Th1 and Th2 chemokines, vaccine-induced immunity, and allergic disease in infants after maternal ω-3 fatty acid supplementation during pregnancy and lactation. Pediatr. Res. 2011; 69 (3): 259–264. DOI:10.1203/PDR.0b013e3182072229.; https://journal.pulmonology.ru/pulm/article/view/2356Test

  7. 7
    دورية أكاديمية

    المساهمون: The study was not sponsored. The article was published with the support of NPO Petrovax Pharm, LLC, Спонсорская поддержка исследования отсутствовала. Статья размещена при поддержке ООО «НПО Петровакс Фарм»

    المصدر: PULMONOLOGIYA; Том 33, № 1 (2023); 52-63 ; Пульмонология; Том 33, № 1 (2023); 52-63 ; 2541-9617 ; 0869-0189

    وصف الملف: application/pdf

    العلاقة: https://journal.pulmonology.ru/pulm/article/view/4262/3495Test; Guidotti E. A worldwide epidemiological database for COVID-19 at fine-grained spatial resolution. Sci. Data. 2022; 9 (1): 1–7. DOI:10.1038/s41597-022-01245-1.; World Health Organization. A clinical case definition of post COVID-19 condition by a Delphi consensus reference number, October 6, 2021. Available at: https://www.who.int/publications/i/item/WHO-2019-nCoV-Post_COVID-19_condition-Clinical_case_definition-2021.1Test; NIPH. Flatby A.F., Himmels J.P.W., Brurberg K.G., Gravningen K.M. COVID-19: Post COVID-19 condition-a rapid review (New edition). Oslo: Norwegian Institute of Public Health; 2022. Available at: https://www.fhi.no/globalassets/dokumenterfiler/rapporter/2022/covid-19-post-covid-19-condition-new-edition.pdfTest; Munblit D., Bobkova P., Spiridonova E. et al. Incidence and risk factors for persistent symptoms in adults previously hospitalized for COVID-19. Clin. Exp. Allergy. 2021; 51 (9): 1107–1120. DOI:10.1111/cea.13997.; Korell F., Giannitsis E., Merle U., Kihm LP. Analysis of symptoms of COVID-19 positive patients and potential effects on initial assessment. Open Access Emerg. Med. 2020; 12: 451–457. DOI:10.2147/oaem.s275983.; Islam N., Jdanov D.A., Shkolnikov V.M. et al. Effects of COVID-19 pandemic on life expectancy and premature mortality in 2020: time series analysis in 37 countries. BMJ. 2021; 375: e066768. DOI:10.1136/bmj-2021-066768.; Torres-Castro R., Vasconcello-Castillo L., Alsina-Restoy X. et al. Respiratory function in patients post-infection by COVID-19: a systematic review and meta-analysis. Pulmonology. 2021; 27 (4): 328–337. DOI:10.1016/j.pulmoe.2020.10.013.; Salem A.M., Al Khathlan N., Alharbi A.F. et al. The long-term impact of COVID-19 pneumonia on the pulmonary function of survivors. Int. J. Gen. Med. 2021; 14: 3271–3280. DOI:10.2147/ijgm.s319436.; Lauer M.E., Dweik R.A., Garantziotis S., Aronica M.A. The rise and fall of hyaluronan in respiratory diseases. Int. J. Cell Biol. 2015; 2015: 712507. DOI:10.1155/2015/712507.; Bai K.J., Spicer A.P., Mascarenhas M.M. The role of hyaluronan synthase 3 in ventilator-induced lung injury. Am. J. Respir. Crit. Care Med. 2005; 172 (1): 92–98. DOI:10.1164/rccm.200405-652oc.; Lazrak A., Lazrak A., Creighton J. et al. Hyaluronan mediates airway hyperresponsiveness in oxidative lung injury. Am. J. Physiol. Lung Cell Mol. Physiol. 2015; 308 (9): L891–903. DOI:10.1152/ajplung.00377.2014.; Collum S.D., Molina J.G., Hanmandlu A. et al. Adenosine and hyaluronan promote lung fibrosis and pulmonary hypertension in combined pulmonary fibrosis and emphysema. Dis. Model. Mech. 2019; 12 (5): dmm038711. DOI:10.1242/dmm.038711.; Tesar B.M., Jiang D., Liang J. et al. The role of hyaluronan degradation products as innate alloimmune agonists. Am. J. Transplant. 2006; 6 (11): 2622–2635. DOI:10.1111/j.1600-6143.2006.01537.x.; Yuan S., Hollinger M., Lachowicz-Scroggins M.E. et al. Oxidation increases mucin polymer cross-links to stiffen airway mucus gels. Sci. Transl. Med. 2015; 7 (276): 276ra27. DOI:10.1126/scitranslmed.3010525.; Ontong P., Prachayasittikul V. Unraveled roles of hyaluronan in severe COVID-19. EXCLI J. 2021; 20: 117–125. DOI:10.17179/excli2020-3215.; Yang S., Ling Y., Zhao F. et al. Hymecromone: a clinical prescription hyaluronan inhibitor for efficiently blocking COVID-19 progression. Signal Transduct. Target. Ther. 2022; 7 (1): 91. DOI:10.1038/s41392022-00952-w.; Li W., Yang S., Xu P. et al. SARS-COV-2 RNA elements share human sequence identity and upregulate hyaluronan via namirna-enhancer network. eBioMedicine. 2022; 76: 103861. DOI:10.1016/j.ebiom.2022.103861.; Некрасов А.В., Иванова А.С., Пучкова Н.Г. и др. Препарат для лечения патологических состояний соединительной ткани. Патент РФ № 97103034/14А от 06.10.1998. Бюллетень. 1998 (24). Доступно на: https://yandex.ru/patents/doc/RU2112542C1_19980610Test; Новикова Л. Н., Захарова А. С., Дзадзуа Д. В. и др. Результаты применения Лонгидазы. у больных идиопатическим фиброзирующим альвеолитом. Доктор.РУ. 2011; (6): 50–54. Доступно на: https://cyberleninka.ru/article/n/rezultaty-primeneniya-longidazy-u-bolnyh-idiopaticheskim-fibroziruyuschim-alveolitom/viewerTest; Laszlo G. Standardisation of lung function testing: Helpful guidance from the ATS/ERS task force. Thorax. 2006; 61 (9): 744–746. DOI:10.1136/thx.2006.061648.; Hsu K.Y., Lin J.R., Lin M.S. et al. The modified Medical Research Council dyspnoea scale is a good indicator of health-related quality of life in patients with chronic obstructive pulmonary disease. Singapore Med. J. 2013; 54 (6): 321–327. DOI:10.11622/smedj.2013125.; Rajala K., Lehto J.T., Sutinen E. et al. mMRC dyspnoea scale indicates impaired quality of life and increased pain in patients with idiopathic pulmonary fibrosis. ERJ Open Res. 2017; 3 (4): 00084-2017. DOI:10.1183/23120541.00084-2017.; Siddiq M.A., Rathore F.A., Clegg D., Rasker J.J. Pulmonary rehabilitation in COVID-19 patients: a scoping review of current practice and its application during the pandemic. Turk. J. Phys. Med. Rehabil. 2020; 66 (4): 480–494. DOI:10.5606/tftrd.2020.6889.; Jiang D., Liang J., Noble P.W. Hyaluronan as an immune regulator in human diseases. Physiol. Rev. 2011; 91 (1): 221–264. DOI:10.1152/physrev.00052.2009.; Evanko S.P., Potter-Perigo S., Bollyky P.L. et al. Hyaluronan and versican in the control of human T-lymphocyte adhesion and migration. Matrix Biol. 2012; 31 (2): 90–100. DOI:10.1016/j.matbio.2011.10.004.; Dicker K.T., Gurski L.A., Pradhan-Bhatt S. et al. Hyaluronan: a simple polysaccharide with diverse biological functions. Acta Biomater. 2014; 10 (4): 1558–1570. DOI:10.1016/j.actbio.2013.12.019.; Cowman M.K., Schmidt T.A., Raghavan P., Stecco A. Viscoelastic properties of hyaluronan in physiological conditions. F1000Res. 2015; 4: 622. DOI:10.12688/f1000research.6885.1.; Nettelbladt O., Tengblad A., Hällgren R. Lung accumulation of hyaluronan parallels pulmonary edema in experimental alveolitis. Am. J. Physiol. 1989; 257 (6, Pt 1): L379–384. DOI:10.1152/ajplung.1989.257.6.l379.; Hellman U., Karlsson M.G., Engstrom-Laurent A. et al. Presence of hyaluronan in lung alveoli in severe COVID-19: an opening for new treatment options? J. Biol. Chem. 2020; 295 (45): 15418–15422. DOI:10.1074/jbc.ac120.015967.; Cui X., Chen W., Zhou H. et al. Pulmonary edema in COVID-19 patients: mechanisms and treatment potential. Front. Pharmacology. 2021; 12: 664349. DOI:10.3389/fphar.2021.664349.; Vaz de Paula C.B., Nagashima S., Liberalesso V. et al. COVID-19: Immunohistochemical analysis of TGF-P signaling pathways in pulmonary fibrosis. Int. J. Mol. Scie. 2021; 23 (1): 168. DOI:10.3390/ijms23010168.; Solomon J.J., Heyman B., Ko J.P. CT of post-acute lung complications of COVID-19. Radiology. 2021; 301 (2): E383–395. DOI:10.1148/radiol.2021211396.; Fumagalli A., Misuraca C., Bianchi A. et al. Pulmonary function in patients surviving to COVID-19 pneumonia. Infection. 2020; 49 (1): 153–157. DOI:10.1007/s15010-020-01474-9.; https://journal.pulmonology.ru/pulm/article/view/4262Test

  8. 8
    دورية أكاديمية

    المساهمون: This work was supported by the grant of the Russian Science Foundation (No. 23-21-00154 “Development of methods for predicting the properties of pharmacological preparations by their molecular structure using the theory of topological analysis of chemographs”), Federal Research Center “Informatics and Management”, RAS., Работа выполнена при поддержке гранта Российского научного фонда (проект № 23-21-00154 «Разработка методов прогноза свойств фармакологических препаратов по их молекулярной структуре с помощью теории топологического анализа хемографов»), ФИЦ «Информатика и управление» РАН.

    المصدر: FARMAKOEKONOMIKA. Modern Pharmacoeconomics and Pharmacoepidemiology; Vol 16, No 1 (2023); 105-124 ; ФАРМАКОЭКОНОМИКА. Современная фармакоэкономика и фармакоэпидемиология; Vol 16, No 1 (2023); 105-124 ; 2070-4933 ; 2070-4909

    وصف الملف: application/pdf

    العلاقة: https://www.pharmacoeconomics.ru/jour/article/view/778/454Test; https://www.pharmacoeconomics.ru/jour/article/view/778/456Test; Торшин И.Ю., Громова О.А. Микронутриенты против коронавирусов. М.: ГЭОТАР-Медиа; 2020: 112 с.; Торшин И.Ю., Громова О.А., Чучалин А.Г., Журавлев Ю.И. Хемореактомный скрининг воздействия фармакологических препаратов на SARS-CoV-2 и виром человека как информационная основа для принятия решений по фармакотерапии COVID-19. ФАРМАКОЭКОНОМИКА. Современная фармакоэкономика и фармакоэпидемиология. 2021; 14 (2): 191–211. https://doi.org/10.17749/2070-4909/farmakoekonomika.2021.078Test.; Торшин И.Ю., Громова О.А., Стаховская Л.В. и др. Анализ 19,9 млн публикаций базы данных PubMed/MEDLINE методами искусственного интеллекта: подходы к обобщению накопленных данных и феномен “fake news”. ФАРМАКОЭКОНОМИКА. Современная фармакоэкономика и фармакоэпидемиология. 2020; 13 (2): 146–63. https://doi.org/10.17749/2070-4909/farmakoekonomika.2020.021Test.; Sudre C.H., Murray B., Varsavsky T., et al. Attributes and predictors of long COVID. Nat Med. 2021; 27 (4): 626–31. https://doi.org/.1038/s41591-021-01292-yTest.; Bao M., Ma Y., Liang M., et al. Research progress on pharmacological effects and new dosage forms of baicalin. Vet Med Sci. 2022; 8 (6): 2773–84. https://doi.org/10.1002/vms3.960Test.; Yang J., Yang X., Li M. Baicalin, a natural compound, promotes regulatory T cell differentiation. BMC Complement Altern Med. 2012; 12: 64. https://doi.org/10.1186/1472-6882-12-64Test.; An H.J., Lee J.Y., Park W. Baicalin modulates inflammatory response of macrophages activated by LPS via calcium-CHOP pathway. Cells. 2022; 11 (19): 3076. https://doi.org/10.3390/cells11193076Test.; Kim S.J., Lee S.M. Effect of baicalin on toll-like receptor 4-mediated ischemia/reperfusion inflammatory responses in alcoholic fatty liver condition. Toxicol Appl Pharmacol. 2012; 258 (1): 43–50. https://doi.org/10.1016/j.taap.2011.10.005Test.; He C.X., Yu W.J., Yang M., et al. Baicalin inhibits LPS/IFN-γ-induced inflammation via TREM2/TLR4/NF-κB pathway in BV2 cells. Zhongguo Zhong Yao Za Zhi. 2022; 47 (6): 1603–10 (на кит. яз.). https://doi.org/10.19540/j.cnki.cjcmm.20211103.401Test.; Yang S., Zhang J., Chen D., et al. Quercetin supplement to aspirin attenuates lipopolysaccharide-induced pre-eclampsia-like impairments in rats through the NLRP3 inflammasome. Drugs R D. 2022; 22 (4): 271–9. https://doi.org/10.1007/s40268-022-00402-6Test.; Zhang M., Lin J.M., Li X.S., Li J. Quercetin ameliorates LPS-induced inflammation in human peripheral blood mononuclear cells by inhibition of the TLR2-NF-κB pathway. Genet Mol Res. 2016; 15 (2). https://doi.org/10.4238/gmr.15028297Test.; Haidari F., Heybar H., Jalali M.T., et al. Hesperidin supplementation modulates inflammatory responses following myocardial infarction. J Am Coll Nutr. 2015; 34 (3): 205–11. https://doi.org/10.1080/07315724.2014.891269Test.; Kadasa N.M., Abdallah H., Afifi M., Gowayed S. Hepatoprotective effects of curcumin against diethyl nitrosamine induced hepatotoxicity in albino rats. Asian Pac J Cancer Prev. 2015; 16 (1): 103–8. https://doi.org/10.7314/apjcp.2015.16.1.103Test.; Tabrizi R., Vakili S., Akbari M., et al. The effects of curcumin-containing supplements on biomarkers of inflammation and oxidative stress: a systematic review and meta-analysis of randomized controlled trials. Phytother Res. 2019; 33 (2): 253–62. https://doi.org/10.1002/ptr.6226Test.; Bao S., Cao Y., Fan C., et al. Epigallocatechin gallate improves insulin signaling by decreasing toll-like receptor 4 (TLR4) activity in adipose tissues of high-fat diet rats. Mol Nutr Food Res. 2014; 58 (4): 677–86. https://doi.org/10.1002/mnfr.201300335Test.; Dong S.J., Zhong Y.Q., Lu W.T., et al. Baicalin inhibits lipopolysaccharide-induced inflammation through signaling NF-κB pathway in HBE16 airway epithelial cells. Inflammation. 2015; 38 (4): 1493–501. https://doi.org/10.1007/s10753-015-0124-2Test.; Hao D., Li Y., Shi J., Jiang J. Baicalin alleviates chronic obstructive pulmonary disease through regulation of HSP72-mediated JNK pathway. Mol Med. 2021; 27 (1): 53. https://doi.org/10.1186/s10020-021-00309-zTest.; Chen W., Padilla M.T., Xu X., et al. Quercetin inhibits multiple pathways involved in interleukin 6 secretion from human lung fibroblasts and activity in bronchial epithelial cell transformation induced by benzo[a]pyrene diol epoxide. Mol Carcinog. 2016; 55 (11): 1858–66. https://doi.org/10.1002/mc.22434Test.; Huang R., Zhong T., Wu H. Quercetin protects against lipopolysaccharide-induced acute lung injury in rats through suppression of inflammation and oxidative stress. Arch Med Sci. 2015; 11 (2): 427–32. https://doi.org/10.5114/aoms.2015.50975Test.; Sordillo P.P., Helson L. Curcumin suppression of cytokine release and cytokine storm. A potential therapy for patients with Ebola and other severe viral infections. In Vivo. 2015; 29 (1): 1–4.; Avasarala S., Zhang F., Liu G., et al. Curcumin modulates the inflammatory response and inhibits subsequent fibrosis in a mouse model of viral-induced acute respiratory distress syndrome. PLoS One. 2013; 8 (2): e57285. https://doi.org/10.1371/journal.pone.0057285Test.; Feng H., Zhang K., Zhang K., et al. Antiviral activity and underlying mechanisms of baicalin against avian infectious bronchitis virus in vitro. Avian Pathol. 2022; 51 (6): 574–89. https://doi.org/10.1080/03079457.2022.2109453Test.; Li X., Liu Y., Wu T., et al. The antiviral effect of baicalin on enterovirus 71 in vitro. Viruses. 2015; 7 (8): 4756–71. https://doi.org/10.3390/v7082841Test.; Rahman M.A., Shorobi F.M., Uddin M.N., et al. Quercetin attenuates viral infections by interacting with target proteins and linked genes in chemicobiological models. In Silico Pharmacol. 2022; 10 (1): 17. https://doi.org/10.1007/s40203-022-00132-2Test.; Ruansit W., Charerntantanakul W. Oral supplementation of quercetin in PRRSV-1 modified-live virus vaccinated pigs in response to HP-PRRSV-2 challenge. Vaccine. 2020; 38 (19): 3570–81. https://doi.org/10.1016/j.vaccine.2020.03.019Test.; Veckenstedt A., Pusztai R. Mechanism of antiviral action of quercetin against cardiovirus infection in mice. Antiviral Res. 1981; 1 (4): 249–61. https://doi.org/10.1016/0166-3542Test(81)90015-2.; Suebsaard P., Charerntantanakul W. Rutin, α-tocopherol, and l-ascorbic acid up-regulate type I interferon-regulated gene and type I and II interferon expressions in monocyte-derived macrophages infected with highly pathogenic porcine virus. Vet Immunol Immunopathol. 2021; 235: 110231. https://doi.org/10.1016/j.vetimm.2021.110231Test.; Šudomová M., Hassan S.T.S. Nutraceutical curcumin with promising protection against herpesvirus infections and their associated inflammation: mechanisms and pathways. Microorganisms. 2021; 9 (2): 292. https://doi.org/10.3390/microorganisms9020292Test.; Li H., Li Y., Hu J., et al. Epigallocatechin-3-gallate inhibits EBV lytic replication via targeting LMP1-mediated MAPK. Oncol Res. 2021; 28 (7): 763–78. https://doi.org/10.3727/096504021X16135618512563Test.; Isaacs C.E., Wen G.Y., Xu W., et al. Epigallocatechin gallate inactivates clinical isolates of herpes simplex virus. Antimicrob Agents Chemother. 2008; 52 (3): 962–70. https://doi.org/10.1128/AAC.00825-07Test.; Ho H.Y., Cheng M.L., Weng S.F., et al. Antiviral effect of epigallocatechin gallate on enterovirus 71. J Agric Food Chem. 2009; 57 (14): 6140–7. https://doi.org/10.1021/jf901128uTest.; Reshamwala D., Shroff S., Sheik Amamuddy O., et al. Polyphenols epigallocatechin gallate and resveratrol, and polyphenol-functionalized nanoparticles prevent enterovirus infection. Pharmaceutics. 2021; 13 (8): 1182. https://doi.org/10.3390/pharmaceutics13081182Test.; Geng P., Zhu H., Zhou W., et al. Baicalin inhibits influenza a virus infection via promotion of M1 macrophage polarization. Front Pharmacol. 2020; 11: 01298. https://doi.org/10.3389/fphar.2020.01298Test.; Shi H., Ren K., Lv B., et al. Baicalin from Scutellaria baicalensis blocks respiratory syncytial virus (RSV) infection and reduces inflammatory cell infiltration and lung injury in mice. Sci Rep. 2016; 6: 35851. https://doi.org/10.1038/srep35851Test.; Qin S., Huang X., Qu S. Baicalin induces a potent innate immune response to inhibit RSV replication via regulating viral non-structural 1 and matrix RNA. Front Immunol. 2022; 13: 907047. https://doi.org/10.3389/fimmu.2022.907047Test.; Saha R.K., Takahashi T., Suzuki T. Glucosyl hesperidin prevents influenza a virus replication in vitro by inhibition of viral sialidase. Biol Pharm Bull. 2009; 32 (7): 1188–92. https://doi.org/10.1248/bpb.32.1188Test.; Zhao X., Tang Z., Yue C., et al. hesperidin regulates Jagged1/Notch1 pathway to promote macrophage polarization and alleviate lung injury in mice with bronchiolitis. Zhongguo Yi Xue Ke Xue Yuan Xue Bao. 2022; 44 (5): 777–84 (на кит. яз.). https://doi.org/10.3881/j.issn.1000-503X.14888Test.; Ding Z., Sun G., Zhu Z. Hesperidin attenuates influenza A virus (H1N1) induced lung injury in rats through its anti-inflammatory effect. Antivir Ther. 2018; 23 (7): 611–5. https://doi.org/10.3851/IMP3235Test.; Wu W., Li R., Li X., et al. Quercetin as an antiviral agent inhibits influenza A virus (IAV) entry. Viruses. 2015; 8 (1): 6. https://doi.org/10.3390/v8010006Test.; Tiboc-Schnell C.N., Filip G.A., Man S.C., et al. Quercetin attenuates naso-sinusal inflammation and inflammatory response in lungs and brain on an experimental model of acute rhinosinusitis in rats. J Physiol Pharmacol. 2020; 71 (4). https://doi.org/10.26402/jpp.2020.4.03Test.; Singh A., Mishra A. Leucoefdin a potential inhibitor against SARS CoV-2 Mpro. J Biomol Struct Dyn. 2021; 39 (12): 4427–32. https://doi.org/10.1080/07391102.2020.1777903Test.; George T.K., Joy A., Divya K., Jisha M.S. In vitro and in silico docking studies of antibacterial compounds derived from endophytic Penicillium setosum. Microb Pathog. 2019; 131: 87–97. https://doi.org/10.1016/j.micpath.2019.03.033Test.; da Silva-Júnior E.F., Silva L.R. Multi-target approaches of epigallocatechin-3-O-gallate (EGCG) and its derivatives against influenza viruses. Curr Top Med Chem. 2022; 22 (18): 1485–500. https://doi.org/10.2174/1568026622666220127112056Test.; Matsuura R., Kawamura A., Matsumoto Y., et al. Epigallocatechin gallate stabilized by cyclodextrin inactivates influenza virus and human coronavirus 229E. Microorganisms. 2022; 10 (9): 1796. https://doi.org/10.3390/microorganisms10091796Test.; Obata K., Kojima T., Masaki T., et al. Curcumin prevents replication of respiratory syncytial virus and the epithelial responses to it in human nasal epithelial cells. PLoS One. 2013; 8 (9): e70225. https://doi.org/10.1371/journal.pone.0070225Test.; Han S., Xu J., Guo X., Huang M. Curcumin ameliorates severe influenza pneumonia via attenuating lung injury and regulating macrophage cytokines production. Clin Exp Pharmacol Physiol. 2018; 45 (1): 84–93. https://doi.org/10.1111/1440-1681.12848Test.; Samadizadeh S., Arabi M.S., Yasaghi M., et al. Anti-inflammatory effects of curcumin-loaded niosomes on respiratory syncytial virus infection in a mice model. J Med Microbiol. 2022; 71 (4). https://doi.org/10.1099/jmm.0.001525Test.; Gordon D.E., Jang G.M., Bouhaddou M., et al. A SARS-CoV-2 protein interaction map reveals targets for drug repurposing. Nature. 2020; 583 (7816): 459–68. https://doi.org/10.1038/s41586-020-2286-9Test.; Hong S., Seo S.H., Woo S.J., et al. Epigallocatechin gallate inhibits the uridylate-specific endoribonuclease Nsp15 and efficiently neutralizes the SARS-CoV-2 strain. J Agric Food Chem. 2021; 69 (21): 5948–54. https://doi.org/10.1021/acs.jafc.1c02050Test.; Zandi K., Musall K., Oo A., et al. Baicalein and baicalin inhibit SARS-CoV-2 RNA-dependent-RNA polymerase. Microorganisms. 2021; 9 (5): 893. https://doi.org/10.3390/microorganisms9050893Test.; Rizzuti B., Grande F., Conforti F., et al. Rutin is a low micromolar inhibitor of SARS-CoV-2 main protease 3CLpro: implications for drug design of quercetin analogs. Biomedicines. 2021; 9 (4): 375. https://doi.org/10.3390/biomedicines9040375Test.; Manjunath S.H., Thimmulappa R.K. Antiviral, immunomodulatory, and anticoagulant effects of quercetin and its derivatives: potential role in prevention and management of COVID-19. J Pharm Anal. 2022; 12 (1): 29–34. https://doi.org/10.1016/j.jpha.2021.09.009Test.; Gasmi A., Mujawdiya P.K., Lysiuk R., et al. Quercetin in the prevention and treatment of coronavirus infections: a focus on SARS-CoV-2. Pharmaceuticals (Basel). 2022; 15 (9): 1049. https://doi.org/10.3390/ph15091049Test.; Di Pierro F., Iqtadar S., Khan A., et al. Potential clinical benefits of quercetin in the early stage of COVID-19: results of a second, pilot, randomized, controlled and open-label clinical trial. Int J Gen Med. 2021; 14: 2807–16. https://doi.org/10.2147/IJGM.S318949Test.; Di Pierro F., Derosa G., Maffioli P., et al. Possible therapeutic effects of adjuvant quercetin supplementation against early-stage COVID-19 infection: a prospective, randomized, controlled, and open-label study. Int J Gen Med. 2021; 14: 2359–66. https://doi.org/10.2147/IJGM.S318720Test.; Shohan M., Nashibi R., Mahmoudian-Sani M.R., et al. The therapeutic efficacy of quercetin in combination with antiviral drugs in hospitalized COVID-19 patients: a randomized controlled trial. Eur J Pharmacol. 2022; 914: 174615. https://doi.org/10.1016/j.ejphar.2021.174615Test.; Dupuis J., Laurin P., Tardif J.C., et al. Fourteen-day evolution of COVID-19 symptoms during the third wave in nonvaccinated subjects and effects of hesperidin therapy: a randomized, double-blinded, placebo-controlled study. Evid Based Complement Alternat Med. 2022; 2022: 3125662. https://doi.org/10.1155/2022/3125662Test.; Mokra D., Adamcakova J., Mokry J. Green tea polyphenol (-)-epigallocatechin-3-gallate (EGCG): a time for a new player in the treatment of respiratory diseases? Antioxidants (Basel). 2022; 11 (8): 1566. https://doi.org/10.3390/antiox11081566Test.; Park R., Jang M., Park Y.I., et al. Epigallocatechin gallate (EGCG), a green tea polyphenol, reduces coronavirus replication in a mouse model. Viruses. 2021; 13 (12): 2533. https://doi.org/10.3390/v13122533Test.; Saeedi-Boroujeni A., Mahmoudian-Sani M.R., Bahadoram M., Alghasi A. COVID-19: a case for inhibiting NLRP3 inflammasome, suppression of inflammation with curcumin? Basic Clin Pharmacol Toxicol. 2021; 128 (1): 37–45. https://doi.org/10.1111/bcpt.13503Test.; Marín-Palma D., Tabares-Guevara J.H., Zapata-Cardona M.I., et al. Curcumin inhibits in vitro SARS-CoV-2 infection in vero E6 cells through multiple antiviral mechanisms. Molecules. 2021; 26 (22): 6900. https://doi.org/10.3390/molecules26226900Test.; Vahedian-Azimi A., Abbasifard M., Rahimi-Bashar F., et al. Effectiveness of curcumin on outcomes of hospitalized COVID-19 patients: a systematic review of clinical trials. Nutrients. 2022; 14 (2): 256. https://doi.org/10.3390/nu14020256Test.; Громова О.А., Торшин И.Ю., Тетруашвили Н.К. Систематический обзор экспериментальных и клинических исследований по фармакологии глицирризина и его производных. Акушерство и гинекология. 2022; 4: 34–46. https://dx.doi.org/10.18565/aig.2022.4.34-46Test.; Zhang N., Lv H., Shi B.H., et al. Inhibition of IL-6 and IL-8 production in LPS-stimulated human gingival fibroblasts by glycyrrhizin via activating LXRα. Microb Pathog. 2017; 110: 135–9. https://doi.org/10.1016/j.micpath.2017.06.021Test.; van de Sand L., Bormann M., Alt M., et al. Glycyrrhizin effectively inhibits SARS-CoV-2 replication by inhibiting the viral main protease. Viruses. 2021; 13 (4): 609. https://doi.org/10.3390/v13040609Test.; Gomaa A.A., Mohamed H.S., Abd-Ellatief R.B., et al. Advancing combination treatment with glycyrrhizin and boswellic acids for hospitalized patients with moderate COVID-19 infection: a randomized clinical trial. Inflammopharmacology. 2022; 30 (2): 477–86. https://doi.org/10.1007/s10787-022-00939-7Test.; Askari G., Sahebkar A., Soleimani D., et al. The efficacy of curcumin-piperine co-supplementation on clinical symptoms, duration, severity, and inflammatory factors in COVID-19 outpatients: a randomized double-blind, placebo-controlled trial. Trials. 2022; 23 (1): 472. https://doi.org/10.1186/s13063-022-06375-wTest.; Pawar K.S., Mastud R.N., Pawar S.K., Pet al. Oral curcumin with piperine as adjuvant therapy for the treatment of COVID-19: a randomized clinical trial. Front Pharmacol. 2021; 12: 669362. https://doi.org/10.3389/fphar.2021.669362Test.; Khan A., Iqtadar S., Mumtaz S.U., et al. Oral co-supplementation of curcumin, quercetin, and vitamin D3 as an adjuvant therapy for mild to moderate symptoms of COVID-19 – results from a pilot open-label, randomized controlled trial. Front Pharmacol. 2022; 13: 898062. https://doi.org/10.3389/fphar.2022.898062Test.; Zhao F.Q., Wang G.F., Xu D., et al. Glycyrrhizin mediated liver-targeted alginate nanogels delivers quercetin to relieve acute liver failure. Int J Biol Macromol. 2021; 168: 93–104. https://doi.org/10.1016/j.ijbiomac.2020.11.204Test.; https://www.pharmacoeconomics.ru/jour/article/view/778Test

  9. 9
    دورية أكاديمية

    المساهمون: The authors declare that they did not receive any external funding for the study and preparation of the publication. The authors express their gratitude to the residents of the Department of Hospital Therapy of the Pediatric Faculty of the Federal State Autonomous Educational Institution of Higher Education “N.I.Pirogov Russian National Research Medical University” of the Ministry of Health of the Russian Federation for their assistance in calculating the density of the capillary network and preparing a list of references, Авторы заявляют об отсутствии внешнего финансирования при проведении исследования и подготовке публикации. Авторы выражают благодарность ординаторам кафедры госпитальной терапии педиатрического факультета Федерального государственного автономного образовательного учреждения высшего образования «Российский национальный исследовательский медицинский университет имени Н.И. Пирогова» Министерства здравоохранения Российской Федерации за помощь в вычислении плотности капиллярной сети и подготовке списка литературы

    المصدر: PULMONOLOGIYA; Том 33, № 6 (2023); 760-771 ; Пульмонология; Том 33, № 6 (2023); 760-771 ; 2541-9617 ; 0869-0189

    وصف الملف: application/pdf

    العلاقة: https://journal.pulmonology.ru/pulm/article/view/4332/3580Test; https://journal.pulmonology.ru/pulm/article/downloadSuppFile/4332/2093Test; https://journal.pulmonology.ru/pulm/article/downloadSuppFile/4332/2094Test; https://journal.pulmonology.ru/pulm/article/downloadSuppFile/4332/2250Test; https://journal.pulmonology.ru/pulm/article/downloadSuppFile/4332/2251Test; https://journal.pulmonology.ru/pulm/article/downloadSuppFile/4332/2252Test; https://journal.pulmonology.ru/pulm/article/downloadSuppFile/4332/2253Test; https://journal.pulmonology.ru/pulm/article/downloadSuppFile/4332/2254Test; https://journal.pulmonology.ru/pulm/article/downloadSuppFile/4332/2255Test; https://journal.pulmonology.ru/pulm/article/downloadSuppFile/4332/2256Test; https://journal.pulmonology.ru/pulm/article/downloadSuppFile/4332/2257Test; https://journal.pulmonology.ru/pulm/article/downloadSuppFile/4332/2258Test; https://journal.pulmonology.ru/pulm/article/downloadSuppFile/4332/2259Test; https://journal.pulmonology.ru/pulm/article/downloadSuppFile/4332/2260Test; Chen C., Haupert S.R., Zimmermann L. et al. Global prevalence of post-Coronavirus disease 2019 (COVID-19) condition or long COVID: a meta-analysis and systematic review. J. Infect. Dis. 2022; 226 (9): 1593–1607. DOI:10.1093/infdis/jiac136.; World Health Organization. A clinical case definition of post COVID-19 condition by a Delphi consensus, 6 October 2021. Available at: https://www.who.int/publications/i/item/WHO-2019-nCoV-Post_COVID-19_condition-Clinical_case_definition-2021.1Test [Accessed: July 01, 2023].; ATS Committee on Proficiency Standards for Clinical Pulmonary Function Laboratories. ATS statement: guidelines for the six-minute walk test. Am. J. Respir. Crit. Care Med. 2002; 166 (1): 111–117. DOI:10.1164/ajrccm.166.1.at1102.; Pimenta S.P., Rocha R.B., Baldi B.G. et al. Desaturation – distance ratio: a new concept for a functional assessment of interstitial lung diseases. Clinics (Sao Paulo). 2010; 65 (9): 841–846. DOI:10.1590/s1807-59322010000900005.; Ora J., Calzetta L., Pezzuto G. et al. A 6MWT index to predict O2 flow correcting exercise induced SpO2 desaturation in ILD. Respir. Med. 2013; 107 (12): 2014–2021. DOI:10.1016/j.rmed.2013.10.002.; Lachant D., Kennedy E., Derenze B. et al. Cardiac effort to compare clinic and remote 6-minute walk testing in pulmonary arterial hypertension. Chest. 2022; 162 (6): 1340–1348. DOI:10.1016/j.chest.2022.06.025.; Cheng C., Daskalakis C., Falkner B. Non-invasive assessment of microvascular and endothelial function. J. Vis. Exp. 2013; (71): e50008. DOI:10.3791/50008.; Пахтусов Н.Н., Юсупова А.О., Привалова Е.В. и др. Эндотелиальная дисфункция и воспаление у пациентов с ишемической болезнью сердца и необструктивным поражением коронарных артерий. Кардиология. 2021; 61 (1): 52–58. DOI:10.18087/cardio.2021.1.n1423.; Богатырева Ф.М., Каплунова В.Ю., Кожевникова М.В. и др. Оценка структурного и функционального состояния сосудов у пациентов с гипертрофической кардиомиопатией. Кардиология. 2021; 61 (12): 16–21. DOI:10.18087/cardio.2021.12.n1718.; Tello B.G., Ramos E., Simeón-Aznar C.P. et al. Pos0256 automated capillary detection and image analysis software in capillaroscopy: capillary.io. Ann. Rheum. Dis. 2021; 80 (Suppl. 1): 350–351. DOI:10.1136/annrheumdis-2021-eular.4022.; Smith V., Herrick A.L., Ingegnoli F. et al. Standardisation of nailfold capillaroscopy for the assessment of patients with Raynaud's phenomenon and systemic sclerosis. Autoimmun. Rev. 2020; 19 (3): 102458. DOI:10.1016/j.autrev.2020.102458.; Bernardino V., Rodrigues A., Lladó A. et al. The impact of nailfold capillaroscopy in the approach of microcirculation. Vascular Biology. 2019. DOI:10.5772/intechopen.90525.; Carlucci A., Paneroni M., Carotenuto M. et al. Prevalence of exercise-induced oxygen desaturation after recovery from SARS-CoV-2 pneumonia and use of lung ultrasound to predict need for pulmonary rehabilitation. Pulmonology. 2021: S2531-0437(21)00117-3. DOI:10.1016/j.pulmoe.2021.05.008.; Fernández-de-Las-Peñas C., Palacios-Ceña D., Gómez-Mayordomo V. et al. Prevalence of post-COVID-19 symptoms in hospitalized and non-hospitalized COVID-19 survivors: a systematic review and meta-analysis. Eur. J. Intern. Med. 2021; 92: 55–70. DOI:10.1016/j.ejim.2021.06.009.; Daher A., Balfanz P., Cornelissen C. et al. Follow up of patients with severe coronavirus disease 2019 (COVID-19): pulmonary and extrapulmonary disease sequelae. Respir. Med. 2020; 174: 106197. DOI:10.1016/j.rmed.2020.106197.; Lam G.Y., Befus A.D., Damant R.W. et al. Exertional intolerance and dyspnea with preserved lung function: an emerging long COVID phenotype? Respir. Res. 2021; 22 (1): 222. DOI:10.1186/s12931-021-01814-9.; Lee J.H., Yim J.J., Park J. Pulmonary function and chest computed tomography abnormalities 6–12 months after recovery from COVID-19: a systematic review and meta-analysis. Respir. Res. 2022; 23 (1): 233. DOI:10.1186/s12931-022-02163-x.; Wen H., Huapaya J.A., Kanth S.M. et al. Quantitative CT metrics associated with variability in the diffusion capacity of the lung of post-COVID-19 patients with minimal residual lung lesions. J. Imaging. 2023; 9 (8): 150. DOI:10.3390/jimaging9080150.; Price L.C., Garfield B., Bloom C. et al. Persistent isolated impairment of gas transfer following COVID-19 pneumonitis relates to perfusion defects on dual-energy computed tomography. ERJ Open Res. 2022; 8 (4): 00224. DOI:10.1183/23120541.00224-2022.; Grist J.T., Chen M., Collier G.J. et al. Hyperpolarized 129Xe MRI abnormalities in Dyspneic patients 3 months after COVID-19 pneumonia: preliminary results. Radiology. 2021; 301 (1): E353–360. DOI:10.1148/radiol.2021210033.; Yu J.Z., Granberg T., Shams R. et al. Lung perfusion disturbances in nonhospitalized post‐COVID with dyspnea – a magnetic resonance imaging feasibility study. J. Intern. Med. 2022; 292 (6): 941–956. DOI:10.1111/joim.13558.; Zhou I.Y., Mascia M., Alba G.A. et al. Dynamic contrast-enhanced MRI demonstrates pulmonary microvascular abnormalities months after SARS-CoV-2 infection. Am. J. Respir. Crit. Care Med. 2023; 207 (12): 1636–1639. DOI:10.1164/rccm.202210-1884LE.; Østergaard L. SARS CoV-2 related microvascular damage and symptoms during and after COVID-19: Consequences of capillary transit-time changes, tissue hypoxia and inflammation. Physiol. Rep. 2021; 9 (3): e14726. DOI:10.14814/phy2.14726.; Mondini L., Confalonieri P., Pozzan R. et al. Microvascular alteration in COVID-19 documented by nailfold capillaroscopy. Diagnostics (Basel). 2023; 13 (11): 1905. DOI:10.3390/diagnostics13111905.; Natalello G., De Luca G., Gigante L. et al. Nailfold capillaroscopy findings in patients with coronavirus disease 2019: Broadening the spectrum of COVID-19 microvascular involvement. Microvasc. Res. 2021; 133: 104071. DOI:10.1016/j.mvr.2020.104071.; Hansen-Smith F.M. Capillary network patterning during angiogenesis. Clin. Exp. Pharmacol. Physiol. 2000; 27 (10): 830–835. DOI:10.1046/j.1440-1681.2000.03341.x.; Ackermann M., Verleden S.E., Kuehnel M. et al. Pulmonary vascular endothelialitis, thrombosis, and angiogenesis in COVID-19. N. Engl. J. Med. 2020; 383 (2): 120–128. DOI:10.1056/NEJMoa2015432.; Pries A.R., Höpfner M., le Noble F. et al. The shunt problem: control of functional shunting in normal and tumour vasculature. Nat. Rev. Cancer. 2010; 10 (8): 587–593. DOI:10.1038/nrc2895.; Baratto C., Caravita S., Faini A. et al. Impact of COVID-19 on exercise pathophysiology: a combined cardiopulmonary and echocardiographic exercise study. J. Appl. Physiol. (1985). 2021; 130 (5): 1470–1478. DOI:10.1152/japplphysiol.00710.2020.; Ijiri N., Kanazawa H., Yoshikawa T., Hirata K. Application of a new parameter in the 6-minute walk test for manifold analysis of exercise capacity in patients with COPD. Int. J. Chron. Obstruct. Pulmon. Dis. 2014; 9 (1): 1235–1240. DOI:10.2147/copd.s71383.; Ambrosino P., Calcaterra I., Molino A. et al. Persistent endothelial dysfunction in post-acute COVID-19 syndrome: a case-control study. Biomedicines. 2021; 9 (8): 957. DOI:10.3390/biomedicines9080957.; Willems L., Nagy M., ten Cate H. et al. Sustained inflammation, coagulation activation and elevated endothelin-1 levels without macrovascular dysfunction at 3 months after COVID-19. Thromb. Res. 2022; 209: 106–114. DOI:10.1016/j.thromres.2021.11.027.; von Meijenfeldt F.A., Havervall S., Adelmeijer J. et al. Persistent endotheliopathy in the pathogenesis of long COVID syndrome: comment from von Meijenfeldt et al. J. Thromb. Haemost. 2022; 20 (1): 267–269. DOI:10.1111/jth.15580.; Prasannan N., Heightman M., Hillman T. et al. Impaired exercise capacity in post-COVID-19 syndrome: the role of VWF-ADAMTS13 axis. Blood Adv. 2022; 6 (13): 4041–4048. DOI:10.1182/bloodadvances.2021006944.; https://journal.pulmonology.ru/pulm/article/view/4332Test

  10. 10
    دورية أكاديمية

    المصدر: FARMAKOEKONOMIKA. Modern Pharmacoeconomics and Pharmacoepidemiology; Vol 16, No 4 (2023); 681-699 ; ФАРМАКОЭКОНОМИКА. Современная фармакоэкономика и фармакоэпидемиология; Vol 16, No 4 (2023); 681-699 ; 2070-4933 ; 2070-4909

    وصف الملف: application/pdf

    العلاقة: https://www.pharmacoeconomics.ru/jour/article/view/953/516Test; Mellai M., Casalone C., Corona C., et al. Chondroitin sulphate proteoglycans in the tumour microenvironment. Adv Exp Med Biol. 2020; 1272: 73–92. https://doi.org/10.1007/978-3-030-48457-6_5Test.; Торшин И.Ю., Лила А.М., Загородний Н.В. и др. Разработка верифицированной шкалы риска остеоартрита на основе кросс-секционного исследования клинико-анамнестических параметров и фармакологического анамнеза пациентов. ФАРМАКОЭКОНОМИКА. Современная фармакоэкономика и фармакоэпидемиология. 2023; 16 (1): 70–9. https://doi.org/10.17749/2070-4909/farmakoekonomika.2023.158Test.; Громова О.А., Торшин И.Ю., Лила А.М., Громов А.Н. Молекулярные механизмы глюкозамина сульфата при лечении дегенеративно-дистрофических заболеваний суставов и позвоночника: результаты протеомного анализа. Неврология, нейропсихиатрия, психосоматика. 2018; 10 (2): 38–44. https://doi.org/10.14412/2074-2711-2018-2-38-44Test.; Quastel J., Cantero A. Inhibition of tumour growth by D-glucosamine. Nature. 1953; 171 (4345): 252–4. https://doi.org/10.1038/171252a0Test.; Sorkin E., Fjelde A. The effect of D-glucosamine and related products on human cancer cells in tissue culture. G Ital Chemioter. 1956; 3 (3–4): 355–61.; Luhrs W. A contribution to the question glucosamine on the growth retardation of tumours. Acta Unio Int Contra Cancrum. 1957; 13 (3): 480–1.; Громова О.А., Торшин И.Ю., Лила А.М. и др. Дифференциальный хемореактомный анализ глюкозамина сульфата и нестероидных противовоспалительных препаратов: перспективные синергичные комбинации. Современная ревматология. 2018; 12 (2): 36–43. https://doi.org/10.14412/1996-7012-2018-2-36-43Test.; Торшин И.Ю., Громова О.А., Лила А.М. и др. Результаты постгеномного анализа молекулы глюкозамина сульфата указывают на перспективы лечения коморбидных заболеваний. Современная ревматология. 2018; 12 (4): 129–36. https://doi.org/10.14412/1996-7012-2018-4-129-136Test.; Kantor E.D., O'Connell K., Liang P.S., et al. Glucosamine use and risk of colorectal cancer: results from UK biobank. Cancer Epidemiol Biomarkers Prev. 2022; 31 (3): 647–53. https://doi.org/10.1158/1055-9965.EPI-21-1171Test.; Liu B., Yang W., Zhang K. Role of glucosamine and chondroitin in the prevention of cancer: a meta-analysis. Nutr Cancer. 2023; 75 (3): 785–94. https://doi.org/10.1080/01635581.2023.2173258Test.; Громова О.А., Торшин И.Ю., Лила А.М., Шавловская О.А. О перспективах использования неденатурированного коллагена II типа в терапии остеоартрита и других заболеваний суставов. Современная ревматология. 2022; 16 (4): 111–6. https://doi.org/10.14412/1996-7012-2022-4-111-116Test.; Torshin I.Yu., Rudakov K.V. Combinatorial analysis of the solvability properties of the problems of recognition and completeness of algorithmic models. Part 2: Metric approach within the framework of the theory of classification of feature values. Pattern Recognit Imag Anal. 2017; 27 (2): 184–99. https://doi.org/10.1134/S1054661817020110Test.; Рудаков К.В., Торшин И.Ю. Об отборе информативных значений признаков на базе критериев разрешимости в задаче распознавания вторичной структуры белка. Доклады Академии наук. 2011; 441 (1): 24–8.; Torshin I.Y., Rudakov K.V. Combinatorial analysis of the solvability properties of the problems of recognition and completeness of algorithmic models. Part 1: Factorization approach. Pattern Recog Image Anal. 2017; 27 (1): 16–28. https://doi.org/10.1134/S1054661817010151Test.; Торшин И.Ю., Громова О.А. 25 мгновений молекулярной фармакологии. О развитии клинико-фармакологического мышления. Иваново: А-Гриф; 2012: 684 с.; Wu R., Shang N., Gui M., et al. Sturgeon (acipenser)-derived chondroitin sulfate suppresses human colon cancer HCT-116 both in vitro and in vivo by inhibiting proliferation and inducing apoptosis. Nutrients. 2020; 12 (4): 1130. https://doi.org/10.3390/nu12041130Test.; Wang J., Zhao W., Chen H., et al. Anti-tumor study of chondroitin sulfate-methotrexate nanogels. Nanoscale Res Lett. 2017; 12 (1): 572. https://doi.org/10.1186/s11671-017-2324-1Test.; Shi X., Yang X., Liu M., et al. Chondroitin sulfate-based nanoparticles for enhanced chemo-photodynamic therapy overcoming multidrug resistance and lung metastasis of breast cancer. Carbohydr Polym. 2021; 254: 117459. https://doi.org/10.1016/j.carbpol.2020.117459Test.; Rivlin M., Navon G. Glucosamine and N-acetyl glucosamine as new CEST MRI agents for molecular imaging of tumors. Sci Rep. 2016; 6: 32648. https://doi.org/10.1038/srep32648Test.; Rivlin M., Anaby D., Nissan N., et al. Breast cancer imaging with glucosamine CEST (chemical exchange saturation transfer) MRI: first human experience. Eur Radiol. 2022; 32 (11): 7365–73. https://doi.org/10.1007/s00330-022-08772-wTest.; Rani A., Baruah R., Goyal A. Prebiotic chondroitin sulfate disaccharide isolated from chicken keel bone exhibiting anticancer potential against human colon cancer cells. Nutr Cancer. 2019; 71 (5): 825–39. https://doi.org/10.1080/01635581.2018.1521446Test.; Ferro M., Giuberti G., Zappavigna S., et al. Chondroitin sulphate enhances the antitumor activity of gemcitabine and mitomycin-C in bladder cancer cells with different mechanisms. Oncol Rep. 2012; 27 (2): 409–15. https://doi.org/10.3892/or.2011.1526Test.; Masuda S., Azuma K., Kurozumi S., et al. Anti-tumor properties of orally administered glucosamine and N-acetyl-D-glucosamine oligomers in a mouse model. Carbohydr Polym. 2014; 111: 783–7. https://doi.org/10.1016/j.carbpol.2014.04.102Test.; Wu R., Li P., Wang Y., et al. Structural analysis and anti-cancer activity of low-molecular-weight chondroitin sulfate from hybrid sturgeon cartilage. Carbohydr Polym. 2022; 275: 118700. https://doi.org/10.1016/j.carbpol.2021.118700Test.; Chou W.Y., Chuang K.H., Sun D., et al. Inhibition of PKC-induced COX-2 and IL-8 expression in human breast cancer cells by glucosamine. J Cell Physiol. 2015; 230 (9): 2240–51. https://doi.org/10.1002/jcp.24955Test.; Tsai C.Y., Lee T.S., Kou Y.R., Wu Y.L. Glucosamine inhibits IL-1betamediated IL-8 production in prostate cancer cells by MAPK attenuation. J Cell Biochem. 2009; 108 (2): 489–98. https://doi.org/10.1002/jcb.22278Test.; Chesnokov V., Gong B., Sun C., Itakura K. Anti-cancer activity of glucosamine through inhibition of N-linked glycosylation. Cancer Cell Int. 2014; 14: 45. https://doi.org/10.1186/1475-2867-14-45Test.; Hosea R., Hardiany N.S., Ohneda O., Wanandi S.I. Glucosamine decreases the stemness of human ALDH(+) breast cancer stem cells by inactivating STAT3. Oncol Lett. 2018; 16 (4): 4737–44. https://doi.org/10.3892/ol.2018.9222Test.; Yu Z., Ju Y., Liu H. Antilung cancer effect of glucosamine by suppressing the phosphorylation of FOXO. Mol Med Rep. 2017; 16 (3): 3395–400. https://doi.org/10.3892/mmr.2017.6976Test.; Friedman S.J., Kimball T., Trotter C.D., Skehan P.J. The inhibition of thymidine kinase in glial tumor cells by an amino sugar, D-glucosamine. Cancer Res. 1977; 37 (4): 1068–74.; Cocchiola R., Lopreiato M., Guazzo R., et al. The induction of Maspin expression by a glucosamine-derivative has an antiproliferative activity in prostate cancer cell lines. Chem Biol Interact. 2019; 300: 63–72. https://doi.org/10.1016/j.cbi.2019.01.014Test.; Liu B.Q., Meng X., Li C., et al. Glucosamine induces cell death via proteasome inhibition in human ALVA41 prostate cancer cell. Exp Mol Med. 2011; 43 (9): 487–93. https://doi.org/10.3858/emm.2011.43.9.055Test.; Guo J., Hu J., Cao R., et al. Androgen receptor is inactivated and degraded in bladder cancer cells by phenyl glucosamine via miR-449a restoration. Med Sci Monit. 2018; 24: 2294–301. https://doi.org/10.12659/MSM.906836Test.; Oh H.J., Lee J.S., Song D.K., et al. D-glucosamine inhibits proliferation of human cancer cells through inhibition of p70S6K. Biochem Biophys Res Commun. 2007; 360 (4): 840–5. https://doi.org/10.1016/j.bbrc.2007.06.137Test.; Liang Y., Xu W., Liu S., et al. N-acetyl-glucosamine sensitizes nonsmall cell lung cancer cells to TRAIL-induced apoptosis by activating death receptor 5. Cell Physiol Biochem. 2018; 45 (5): 2054–70. https://doi.org/10.1159/000488042Test.; Wang L.S., Chen S.J., Zhang J.F., et al. Anti-proliferative potential of glucosamine in renal cancer cells via inducing cell cycle arrest at G0/G1 phase. BMC Urol. 2017; 17 (1): 38. https://doi.org/10.1186/s12894-017-0221-7Test.; Zhou Y., Li X., Morita Y., et al. Identification of the effects of chondroitin sulfate on inhibiting CDKs in colorectal cancer based on bioinformatic analysis and experimental validation. Front Oncol. 2021; 11: 705939. https://doi.org/10.3389/fonc.2021.705939Test.; Hwang M.S., Baek W.K. Glucosamine induces autophagic cell death through the stimulation of ER stress in human glioma cancer cells. Biochem Biophys Res Commun. 2010; 399 (1): 111–6. https://doi.org/10.1016/j.bbrc.2010.07.050Test.; Liu X., Liu Y., Hao J., et al. In vivo anti-cancer mechanism of lowmolecular-weight fucosylated chondroitin sulfate (LFCS) from sea cucumber Cucumaria frondosa. Molecules. 2016; 21 (5): 625. https://doi.org/10.3390/molecules21050625Test.; Prinz R.D., Willis C.M., Viloria-Petit A., Kluppel M. Elimination of breast tumor-associated chondroitin sulfate promotes metastasis. Genet Mol Res. 2011; 10 (4): 3901–13. https://doi.org/10.4238/2011.December.8.9Test.; Silver D.J., Siebzehnrubl F.A., Schildts M.J., et al. Chondroitin sulfate proteoglycans potently inhibit invasion and serve as a central organizer of the brain tumor microenvironment. J Neurosci. 2013; 33 (39): 15603–17. https://doi.org/10.1523/JNEUROSCI.3004-12.2013Test.; Pudelko A., Wisowski G., Olczyk K., Kozma E.M. The dual role of the glycosaminoglycan chondroitin-6-sulfate in the development, progression and metastasis of cancer. FEBS J. 2019; 286 (10): 1815–37. https://doi.org/10.1111/febs.14748Test.; Willis C.M., Kluppel M. Chondroitin sulfate-E is a negative regulator of a pro-tumorigenic Wnt/beta-catenin-Collagen 1 axis in breast cancer cells. PLoS One. 2014; 9 (8): e103966. https://doi.org/10.1371/journal.pone.0103966Test.; Торшин И.Ю., Громова О.А., Лила А.М. и др. Таргетное действие глюкозамина сульфата при сочетании остеоартрита и опухолевой патологии. Русский медицинский журнал. 2019; 6: 23–30.; Wu R., Shen Q., Li G., et al. The regulatory network of sturgeon chondroitin sulfate on colorectal cancer inhibition by transcriptomic and proteomic analysis. Int J Mol Sci. 2021; 22 (17): 9395. https://doi.org/10.3390/ijms22179395Test.; Wu R., Shen Q., Li P., Shang N. Sturgeon chondroitin sulfate restores the balance of gut microbiota in colorectal cancer bearing mice. Int J Mol Sci. 2022; 23 (7): 3723. https://doi.org/10.3390/ijms23073723Test.; Громова О.А., Торшин И.Ю., Наумов А.В., Максимов В.А. Хемомикробиомный анализ глюкозамина сульфата, пребиотиков и нестероидных противовоспалительных препаратов. ФАРМАКОЭКОНОМИКА. Современная фармакоэкономика и фармакоэпидемиология. 2020; 13 (3): 270–82. https://doi.org/10.17749/2070-4909/farmakoekonomika.2020.049Test.; Kantor E.D., Newton C.C., Giovannucci E.L., et al. Glucosamine use and risk of colorectal cancer: results from the Cancer Prevention Study II Nutrition Cohort. Cancer Causes Control. 2018; 29 (3): 389–97. https://doi.org/10.1007/s10552-018-1003-6Test.; Li G., Zhang X., Liu Y., et al. Relationship between glucosamine use and the risk of lung cancer: data from a nationwide prospective cohort study. Eur Respir J. 2022; 59 (3): 2101399. https://doi.org/10.1183/13993003.01399-2021Test.; Kantor E.D., Zhang X., Wu K., et al. Use of glucosamine and chondroitin supplements in relation to risk of colorectal cancer: results from the Nurses' Health Study and Health Professionals follow-up study. Int J Cancer. 2016; 139 (9): 1949–57. https://doi.org/10.1002/ijc.30250Test.; Zhou J., Wu Z., Lin Z., et al. Association between glucosamine use and cancer mortality: a large prospective cohort study. Front Nutr. 2022; 9: 947818. https://doi.org/10.3389/fnut.2022.947818Test.; Yoshinari O., Marone P.A., Moriyama H., et al. Safety and toxicological evaluation of a novel, water-soluble undenatured type II collagen. Toxicol Mech Methods. 2013; 23 (7): 491–9. https://doi.org/10.3109/15376516.2013.781255Test.; Seo M.C., Kim S., Kim S.H., et al. Discoidin domain receptor 1 mediates collagen-induced inflammatory activation of microglia in culture. J Neurosci Res. 2008; 86 (5): 1087–95. https://doi.org/10.1002/jnr.21552Test.; Sahin K., Kucuk O., Orhan C., et al. Niacinamide and undenatured type II collagen modulates the inflammatory response in rats with monoiodoacetate-induced osteoarthritis. Sci Rep. 2021; 11 (1): 14724. https://doi.org/10.1038/s41598-021-94142-3Test; https://www.pharmacoeconomics.ru/jour/article/view/953Test