يعرض 1 - 10 نتائج من 25 نتيجة بحث عن '"А. В. Султанбаев"', وقت الاستعلام: 1.09s تنقيح النتائج
  1. 1
    دورية أكاديمية

    المساهمون: The work was performed without external funding, Работа выполнена без спонсорской поддержки

    المصدر: Head and Neck Tumors (HNT); Том 13, № 4 (2023); 10-18 ; Опухоли головы и шеи; Том 13, № 4 (2023); 10-18 ; 2411-4634 ; 2222-1468 ; 10.17650/2222-1468-2023-13-4

    وصف الملف: application/pdf

    العلاقة: https://ogsh.abvpress.ru/jour/article/view/932/602Test; Состояние онкологической помощи населению России в 2020 году. Под ред. А.Д. Каприна, В.В. Старинского, А.О. Шахзадовой. М.: МНИОИ им. П.А. Герцена – филиал ФГБУ «НМИЦ радиологии» Минздрава России, 2021. 239 с.; Zanoni D.K., Montero P.H., Migliacci J.C. et al. Survival outcomes after treatment of cancer of the oral cavity (1985–2015). Oral Oncol 2019;90:115–21. DOI:10.1016/j.oraloncology.2019.02.001; National Comprehensive Cancer Network. Head and neck cancers. Version 3. 2021. Available at: https://www.nccn.org/professionals/physician_gls/pdf/head-and-neck.pdfTest.; Клинические рекомендации «Злокачественные новообразования полости рта». 2020 г. Доступно по: https://oncology-association.ru/wp-content/uploads/2020/09/zno_polosti_rta.pdfTest.; Jang J.Y., Choi N., Jeong H.S. Surgical extent for oral cancer: emphasis on a cut-off value for the resection margin status: a narrative literature review. Cancers (Basel) 2022;14(22):5702. DOI:10.3390/cancers14225702; Anderson C.R., Sisson K., Moncrieff M. A meta-analysis of margin size and local recurrence in oral squamous cell carcinoma. Oral Oncol 2015;51(5):464–9. DOI:10.1016/j.oraloncology.2015.01.015; Johnson R.E., Sigman J.D., Funk G.F. et al. Quantification of surgical margin shrinkage in the oral cavity. Head Neck 1997;19(4):281–6. DOI:10.1002/(sici)1097–0347(199707)19:43.0.co;2-x; Mistry R.C., Qureshi S.S., Kumaran C. Post-resection mucosal margin shrinkage in oral cancer: quantification and significance. J Surg Oncol 2005;91(2):131–3. DOI:10.1002/jso.20285; Luryi A.L., Chen M.M., Mehra S. et al. Positive surgical margins in early stage oral cavity cancer: an analysis of 20,602 cases. Otolaryngol Head Neck Surg 2014;151(6):984–90. DOI:10.1177/0194599814551718; Schwam Z.G., Judson B.L. Improved prognosis for patients with oral cavity squamous cell carcinoma: analysis of the National Cancer Database 1998–2006. Oral Oncol 2016;52:45–51. DOI:10.1016/j.oraloncology.2015.10.012; Garg A., Mair M., Singhavi H., Bhati M. et al. Adequacy of surgical margins in oral cancer patients with respect to various types of reconstruction. South Asian J Cancer 2020;9(1):34–7. DOI:10.4103/sajc.sajc_366_18; Sutton D.N., Brown J.S., Rogers S.N. et al. The prognostic implications of the surgical margin in oral squamous cell carcinoma. Int J Oral Maxillofac Surg 2003;32(1):30–4. DOI:10.1054/ijom.2002.0313; Buchakjian M.R., Ginader T., Tasche K.K. et al. Independent predictors of prognosis based on oral cavity squamous cell carcinoma surgical margins. Otolaryngol Head Neck Surg 2018;159(4):675–82. DOI:10.1177/0194599818773070; Fowler J., Campanile Y., Warner A. et al. Surgical margins of the oral cavity: is 5 mm really necessary? J Otolaryngol Head Neck Surg 2022;51(1):38. DOI:10.1186/s40463-022-00584-8; Ellis O.G., David M.C., Park D.J., Batstone M.D. High-volume surgeons deliver larger surgical margins in oral cavity cancer. J Oral Maxillofac Surg 2016;74(7):1466–72. DOI:10.1016/j.joms.2016.01.026; Hanasono M.M., Friel M.T., Klem C. et al. Impact of reconstructive microsurgery in patients with advanced oral cavity cancers. Head Neck 2009;31(10):1289–96. DOI:10.1002/hed.21100; Liao C.T., Wen Y.W., Lee S.R. et al. Сlinical outcomes of taiwanese patients with resected oral cavity squamous cell carcinoma who underwent reconstruction with free versus local flaps. Ann Surg Oncol 2022;29(2):1130–40. DOI:10.1245/s10434-021-10524-x; Hsieh T.Y., Chang K.P., Lee S.S. et al. Free flap reconstruction in patients with advanced oral squamous cell carcinoma: analysis of patient survival and cancer recurrence. Microsurgery 2012;32(8):598–604. DOI:10.1002/micr.22009; Forner D., Phillips T., Rigby M. et al. Submental island flap reconstruction reduces cost in oral cancer reconstruction compared to radial forearm free flap reconstruction: a case series and cost analysis. J Otolaryngol Head Neck Surg 2016;45:11. DOI:10.1186/s40463-016-0124-8; Kubik M.W., Sridharan S., Varvares M.A. et al. Intraoperative margin assessment in head and neck cancer: a case of misuse and abuse? Head Neck Pathol 2020;14(2):291–302. DOI:10.1007/s12105-019-01121-2; Bajwa M.S., Houghton D., Java K. et al. The relevance of surgical margins in clinically early oral squamous cell carcinoma. Oral Oncol 2020;110:104913. DOI:10.1016/j.oraloncology.2020.104913; Zanoni D.K., Migliacci J.C., Xu B. et al. A proposal to redefine close surgical margins in squamous cell carcinoma of the oral tongue. JAMA Otolaryngol Head Neck Surg 2017;143(6):555–60. DOI:10.1001/jamaoto.2016.4238; https://ogsh.abvpress.ru/jour/article/view/932Test

  2. 2
    دورية أكاديمية

    المصدر: Meditsinskiy sovet = Medical Council; № 22 (2023); 130-138 ; Медицинский Совет; № 22 (2023); 130-138 ; 2658-5790 ; 2079-701X

    وصف الملف: application/pdf

    العلاقة: https://www.med-sovet.pro/jour/article/view/7982/7069Test; Каприн АД, Старинский ВВ, Шахзадова АО (ред.). Состояние онкологической помощи населению России в 2021 г. М.: МНИОИ им. П.А. Герцена – филиал ФГБУ «НМИЦ радиологии» Минздрава России; 2022. 239 с. Режим доступа: https://oncology-association.ru/wp-content/uploads/2022/05/sostoyanie-onkologicheskoj-pomoshhi-naseleniyu-rossii-v-2021-godu.pdfTest.; Parise CA, Caggiano V. Breast Cancer Survival Defined by the ER/PR/HER2 Subtypes and a Surrogate Classification according to Tumor Grade and Immunohistochemical Biomarkers. J Cancer Epidemiol. 2014:469251. https://doi.org/10.1155/2014/469251Test.; Hart CD, Migliaccio I, Malorni L, Guarducci C, Biganzoli L, Di Leo A. Challenges in the management of advanced, ER-positive, HER2-negative breast cancer. Nat Rev Clin Oncol. 2015;12(9):541–552. https://doi.org/10.1038/nrclinonc.2015.99Test.; Flaum LE, Gradishar WJ. Advances in Endocrine Therapy for Postmenopausal Metastatic Breast Cancer. In: Gradishar W (ed.). Optimizing Breast Cancer Management. Cancer Treatment and Research. Vol. 173. Springer, Cham; 2018, pp. 141–154. https://doi.org/10.1007/978-3-319-70197-4_9Test.; Hoffmann J, Bohlmann R, Heinrich N, Hofmeister H, Kroll J, Künzer H et al. Characterization of new estrogen receptor destabilizing compounds: effects on estrogen-sensitive and tamoxifen-resistant breast cancer. J Natl Cancer Inst. 2004;96(3):210–218. https://doi.org/10.1093/jnci/djh022Test.; Clark AS, Karasic TB, DeMichele A, Vaughn DJ, O’Hara M, Perini R et al. Palbociclib (PD0332991) – a Selective and Potent Cyclin-Dependent Kinase Inhibitor: A Review of Pharmacodynamics and Clinical Development. JAMA Oncol. 2016;2(2):253–260. https://doi.org/10.1001/jamaoncol.2015.4701Test.; Hamilton E, Infante JR. Targeting CDK4/6 in patients with cancer. Cancer Treat Rev. 2016;45:129–138. https://doi.org/10.1016/j.ctrv.2016.03.002Test.; Corona SP, Generali D. Abemaciclib: a CDK4/6 inhibitor for the treatment of HR+/HER2-advanced breast cancer. Drug Des Devel Ther. 2018;12:321–330. https://doi.org/10.2147/DDDT.S137783Test.; Finn RS, Martin M, Rugo HS, Jones S, Im SA, Gelmon K et al. Palbociclib and Letrozole in Advanced Breast Cancer. N Engl J Med. 2016;375(20):1925–1936. https://doi.org/10.1056/NEJMoa1607303Test.; Hortobagyi GN, Stemmer SM, Burris HA, Yap YS, Sonke GS, Paluch-Shimon S et al. Ribociclib as First-Line Therapy for HR-Positive, Advanced Breast Cancer. N Engl J Med. 2016;375(18):1738–1748. https://doi.org/10.1056/NEJMoa1609709Test.; Goetz MP, Toi M, Campone M, Sohn J, Paluch-Shimon S, Huober J et al. MONARCH 3: Abemaciclib As Initial Therapy for Advanced Breast Cancer. J Clin Oncol. 2017;35(32):3638–3646. https://doi.org/10.1200/JCO.2017.75.6155Test.; Tripathy D, Im SA, Colleoni M, Franke F, Bardia A, Harbeck N et al. Ribociclib plus endocrine therapy for premenopausal women with hormone-receptor-positive, advanced breast cancer (MONALEESA-7): a randomised phase 3 trial. Lancet Oncol. 2018;19(7):904–915. https://doi.org/10.1016/S1470-2045Test(18)30292-4.; Sledge GW Jr, Toi M, Neven P, Sohn J, Inoue K, Pivot X et al. MONARCH 2: Abemaciclib in Combination With Fulvestrant in Women With HR+/HER2-Advanced Breast Cancer Who Had Progressed While Receiving Endocrine Therapy. J Clin Oncol. 2017;35(25):2875–2884. https://doi.org/10.1200/JCO.2017.73.7585Test.; Гольдина ТА, Колбин АС, Белоусов ДЮ, Боровская ВГ. Обзор исследований реальной клинической практики. Качественная клиническая практика. 2021;(1):56–63. https://doi.org/10.37489/2588-0519-2021-1-56-63Test.; Колядина ИВ. Рибоциклиб в лечении больных HR+ HER2-отрицательным распространенным раком молочной железы: обновленные результаты рандомизированных клинических исследований и их роль для клинической практики. Опухоли женской репродуктивной системы. 2021;17(2):58–67. https://doi.org/10.17650/1994-4098-2021-17-2-58-67Test.; Ганьшина ИП, Филоненко ДА, Гордеева ОО, Лубенникова ЕВ, Колядина ИВ, Мещеряков АА. Рибоциклиб в лечении гормонопозитивного HER2-негативного рака молочной железы. Медицинский совет. 2019;(10):72–80. https://doi.org/10.21518/2079-701X-2019-10-72-80Test.; Колядина ИВ. По следам SABCS 2022: TOP-12 исследований по распространенному раку молочной железы, которые могут изменить нашу клиническую практику. Современная онкология. 2023;25(1):46–54. https://doi.org/10.26442/18151434.2023.1.202102Test.; Da Silva SHK, de Oliveira LC, E Silva Lopes MSDM, Wiegert EVM, Motta RST, Ferreira Peres WA. The patient generated-subjective global assessment (PG-SGA) and ECOG performance status are associated with mortality in patients hospitalized with breast cancer. Clin Nutr ESPEN. 2023;53:87–92. https://doi.org/10.1016/j.clnesp.2022.11.019Test.; Llombart-Cussac A, Pérez-García JM, Bellet M, Dalenc F, Gil-Gil M, Ruíz- Borrego M et al. Fulvestrant-Palbociclib vs Letrozole-Palbociclib as Initial Therapy for Endocrine-Sensitive, Hormone Receptor-Positive, ERBB2-Negative Advanced Breast Cancer: A Randomized Clinical Trial. JAMA Oncol. 2021;7(12):1791–1799. https://doi.org/10.1001/jamaoncol.2021.4301Test.; Колядина ИВ, Поддубная ИВ. ESR1-мутация как потенциальный предсказательный маркер для выбора тактики лечения при гормонорезистентном HR+/HER2-негативном раке молочной железы. Медицинский алфавит. 2020;(29):68–73. https://doi.org/10.33667/2078-5631-2020-29-61-73Test.; Sanò MV, Martorana F, Lavenia G, Rossello R, Prestifilippo A, Sava S et al. Ribociclib efficacy in special populations and analysis of patient-reported out-comes in the MONALEESA trials. Expert Rev Anticancer Ther. 2022;22(4):343–351. https://doi.org/10.1080/14737140.2022.2052277Test.; Zhu K, Wu Y, He P, Fan Y, Zhong X, Zheng H, Luo T. PI3K/AKT/mTOR-Targeted Therapy for Breast Cancer. Cells. 2022;11(16):2508. https://doi.org/10.3390/cells11162508Test.; China Anti-cancer Association Tumor Drug Clinical Research Committee; Breast Cancer Expert Committee, National Tumor Quality Control Center; Tumor Pathology Committee of China Anti-cancer Association; Boao Institute of Oncology Innovation. Expert consensus on the clinical application of PI3K/AKT/mTOR inhibitors in the treatment of advanced breast cancer. Zhonghua Zhong Liu Za Zhi. 2022;44(7):673–692. (In Chinese) https://doi.org/10.3760/cma.j.cn112152-20220412-00251Test.; Reinhardt K, Stückrath K, Hartung C, Kaufhold S, Uleer C, Hanf V et al. PIK3CA-mutations in breast cancer. Breast Cancer Res Treat. 2022;196(3):483–493. https://doi.org/10.1007/s10549-022-06637-wTest.; Kim JH, Lee ST. Polyamine Oxidase Expression Is Downregulated by 17β-Estradiol via Estrogen Receptor 2 in Human MCF-7 Breast Cancer Cells. Int J Mol Sci. 2022;23(14):7521. https://doi.org/10.3390/ijms23147521Test.; Nemati Shafaee M, Goutsouliak K, Lin H, Bevers TB, Gutierrez-Barrera A, Bondy M, Arun B. Aromatase inhibitors and contralateral breast cancer in BRCA mutation carriers. Breast Cancer Res Treat. 2022;196(1):143–152. https://doi.org/10.1007/s10549-022-06688-zTest.; Dustin D, Gu G, Fuqua SAW. ESR1 mutations in breast cancer. Cancer. 2019;125(21):3714–3728. https://doi.org/10.1002/cncr.32345Test.; Zhu W, Xu B. Overcoming resistance to endocrine therapy in hormone receptor-positive human epidermal growth factor receptor 2-negative (HR+/HER2-) advanced breast cancer: a meta-analysis and systemic review of randomized clinical trials. Front Med. 2021;15(2):208–220. https://doi.org/10.1007/s11684-020-0795-4Test.; Radhi S. Molecular Changes During Breast Cancer and Mechanisms of Endocrine Therapy Resistance. Prog Mol Biol Transl Sci. 2016;144:539–562. https://doi.org/10.1016/bs.pmbts.2016.09.009Test.; https://www.med-sovet.pro/jour/article/view/7982Test

  3. 3
    دورية أكاديمية

    المصدر: Meditsinskiy sovet = Medical Council; № 22 (2023); 50-56 ; Медицинский Совет; № 22 (2023); 50-56 ; 2658-5790 ; 2079-701X

    وصف الملف: application/pdf

    العلاقة: https://www.med-sovet.pro/jour/article/view/7993/7081Test; Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, Bray F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J Clin. 2021;71(3):209–249. https://doi.org/10.3322/caac.21660Test.; Soutter WP, de Barros Lopes A, Fletcher A, Monaghan JM, Duncan ID, Paraskevaidis E, Kitchener HC. Invasive cervical cancer after conservative therapy for cervical intraepithelial neoplasia. Lancet. 1997;349(9057): 978–980. https://doi.org/10.1016/s0140-6736Test(96)08295-5.; Gustafsson L, Pontén J, Bergström R, Adami HO. International incidence rates of invasive cervical cancer before cytological screening. Int J Cancer. 1997;71(2):159–165. Available at: https://pubmed.ncbi.nlm.nih.gov/9139836Test.; Vaisy A, Lotfinejad S, Zhian F. Risk of cancer with combined oral contraceptive use among Iranian women. Asian Pac J Cancer Prev. 2014;15(14):5517–5522. https://doi.org/10.7314/apjcp.2014.15.14.5517Test.; Ferrall L, Lin KY, Roden RBS, Hung CF, Wu TC. Cervical Cancer Immuno-therapy: Facts and Hopes. Clin Cancer Res. 2021;27(18):4953–4973. https://doi.org/10.1158/1078-0432.CCR-20-2833Test.; Siegel RL, Miller KD, Jemal A. Cancer statistics, 2019. CA Cancer J Clin. 2019;69(1):7–34. https://doi.org/10.3322/caac.21551Test.; Petignat P, Roy M. Diagnosis and management of cervical cancer. BMJ. 2007;335(7623):765–768. https://doi.org/10.1136/bmj.39337.615197.80Test.; Šarenac T, Mikov M. Cervical Cancer, Different Treatments and Importance of Bile Acids as Therapeutic Agents in This Disease. Front Pharmacol. 2019;10:484. https://doi.org/10.3389/fphar.2019.00484Test.; Mackay HJ, Wenzel L, Mileshkin L. Nonsurgical management of cervical cancer: locally advanced, recurrent, and metastatic disease, survivorship, and beyond. Am Soc Clin Oncol Educ Book. 2015:e299–309. https://doi.org/10.14694/EdBook_AM.2015.35.e299Test.; Serkies K, Jassem J. Systemic therapy for cervical carcinoma – current status. Chin J Cancer Res. 2018;30(2):209–221 https://doi.org/10.21147/j.issn.1000-9604.2018.02.04Test.; Callahan MK, Flaherty CR, Postow MA. Checkpoint Blockade for the Treatment of Advanced Melanoma. Cancer Treat Res. 2016;167:231–250. https://doi.org/10.1007/978-3-319-22539-5_9Test.; Lyford-Pike S, Peng S, Young GD, Taube JM, Westra WH, Akpeng B et al. Evidence for a role of the PD-1: PD-L1 pathway in immune resistance of HPV-associated head and neck squamous cell carcinoma. Cancer Res. 2013;73(6):1733–1741. https://doi.org/10.1158/0008-5472.CAN-12-2384Test.; Chung HC, Ros W, Delord JP, Perets R, Italiano A, Shapira-Frommer R et al. Efficacy and Safety of Pembrolizumab in Previously Treated Advanced Cervical Cancer: Results From the Phase II KEYNOTE-158 Study. J Clin Oncol. 2019;37(17):1470–1478. https://doi.org/10.1200/JCO.18.01265Test.; Woelber L, Mathey S, Prieske K, Kuerti S, Hillen C, Burandt E et al. Targeted Therapeutic Approaches in Vulvar Squamous Cell Cancer (VSCC): Case Series and Review of the Literature. Oncol Res. 2021;28(6):645–659. https://doi.org/10.3727/096504020X16076861118243Test.; Colombo N, Dubot C, Lorusso D, Caceres MV, Hasegawa K, Shapira- Frommer R et al. Pembrolizumab for Persistent, Recurrent, or Metastatic Cervical Cancer. N Engl J Med. 2021;385(20):1856–1867. https://doi.org/10.1056/NEJMoa2112435Test.; Monk BJ, Colombo N, Tewari KS, Dubot C, Caceres MV, Hasegawa K et al. First-Line Pembrolizumab + Chemotherapy Versus Placebo + Chemotherapy for Persistent, Recurrent, or Metastatic Cervical Cancer: Final Overall Survival Results of KEYNOTE-826. J Clin Oncol. 2023:JCO2300914. https://doi.org/10.1200/JCO.23.00914Test.; Friedman CF, Snyder Charen A, Zhou Q, Carducci MA, Buckley De Meritens A, Corr BR et al. Phase II study of atezolizumab in combination with bevacizumab in patients with advanced cervical cancer. J Immunother Cancer. 2020;8(2):e001126. https://doi.org/10.1136/jitc-2020-001126Test.; O’Malley DM, Oaknin A, Monk BJ, Selle F, Rojas C, Gladieff L et al. Phase II study of the safety and efficacy of the anti-PD-1 antibody balstilimab in patients with recurrent and/or metastatic cervical cancer. Gynecol Oncol. 2021;163(2):274–280. https://doi.org/10.1016/j.ygyno.2021.08.018Test.; Lan C, Shen J, Wang Y, Li J, Liu Z, He M et al. Camrelizumab Plus Apatinib in Patients With Advanced Cervical Cancer (CLAP): A Multicenter, Open-Label, Single-Arm, Phase II Trial. J Clin Oncol. 2020;38(34):4095–4106. https://doi.org/10.1200/JCO.20.01920Test.; Rischin D, Gil-Martin M, González-Martin A, Braña I, Hou JY, Cho D et al. PD-1 blockade in recurrent or metastatic cervical cancer: Data from cemiplimab phase I expansion cohorts and characterization of PD-L1 expression in cervical cancer. Gynecol Oncol. 2020;159(2):322–328. https://doi.org/10.1016/j.ygyno.2020.08.026Test.; Tewari KS, Monk BJ, Vergote I, Miller A, de Melo AC, Kim HS et al. VP4-2021: EMPOWER-Cervical 1/GOG3016/ENGOT-cx9: interim analysis of phase III trial of cemiplimab vs. investigator’s choice (IC) chemotherapy (chemo) in recurrent/metastatic (R/M) cervical carcinoma. Ann Oncol. 2021;32(7):940–941. Available at: https://www.annalsofoncology.org/article/S0923-7534Test(21)01147-9/fulltext.; Naumann RW, Hollebecque A, Meyer T, Devlin MJ, Oaknin A, Kerger J et al. Safety and Efficacy of Nivolumab Monotherapy in Recurrent or Metastatic Cervical, Vaginal, or Vulvar Carcinoma: Results From the Phase I/II CheckMate 358 Trial. J Clin Oncol. 2019;37(31):2825–2834. https://doi.org/10.1200/JCO.19.00739Test.; Naumann RW, Oaknin A, Meyer T, Lopez-Picazo JM, Lao C, Bang Y-J et al. Efficacy and safety of nivolumab (Nivo) plus ipilimumab (Ipi) in patients (pts) with recurrent/metastatic (R/M) cervical cancer: results from CheckMate 358. Ann Oncol. 2019;30(5):898–899. Available at: https://www.annalsofoncology.org/article/S0923-7534Test(19)60419-9/fulltext.; Tamura K, Hasegawa K, Katsumata N, Matsumoto K, Mukai H, Takahashi S et al. Efficacy and safety of nivolumab in Japanese patients with uterine cervical cancer, uterine corpus cancer, or soft tissue sarcoma: Multicenter, open-label phase 2 trial. Cancer Sci. 2019;10(9):2894–2904. https://doi.org/10.1111/cas.14148Test.; Santin AD, Deng W, Frumovitz M, Buza N, Bellone S, Huh W et al. Phase II evaluation of nivolumab in the treatment of persistent or recurrent cervical cancer (NCT02257528/NRG-GY002). Gynecol Oncol. 2020;157(1):161–166. https://doi.org/10.1016/j.ygyno.2019.12.034Test.; Kumar L, Kaushal R, Nandy M, Biswal BM, Kumar S, Kriplani A et al. Chemotherapy followed by radiotherapy versus radiotherapy alone in locally advanced cervical cancer: a randomized study. Gynecol Oncol. 1994;54(3):307–315. https://doi.org/10.1006/gyno.1994.1215Test.; Tabata T, Takeshima N, Nishida H, Hirai Y, Hasumi K. A randomized study of primary bleomycin, vincristine, mitomycin and cisplatin (BOMP) chemotherapy followed by radiotherapy versus radiotherapy alone in stage IIIB and IVA squamous cell carcinoma of the cervix. Anticancer Res. 2003;23(3C):2885–2890. Available at: https://pubmed.ncbi.nlm.nih.gov/12926129Test.; Tattersall MH, Ramirez C, Coppleson M. A randomized trial of adjuvant chemotherapy after radical hysterectomy in stage Ib-IIa cervical cancer patients with pelvic lymph node metastases. Gynecol Oncol. 1992;46(2):176–181. https://doi.org/10.1016/0090-8258Test(92)90251-d.; Tattersall MH, Lorvidhaya V, Vootiprux V, Cheirsilpa A, Wong F, Azhar T et al. Randomized trial of epirubicin and cisplatin chemotherapy followed by pelvic radiation in locally advanced cervical cancer. Cervical Cancer Study Group of the Asian Oceanian Clinical Oncology Association. J Clin Oncol. 1995;13(2):444–451. https://doi.org/10.1200/JCO.1995.13.2.444Test.; Shrivastava S, Mahantshetty U, Engineer R, Chopra S, Hawaldar R, Hande V et al. Cisplatin Chemoradiotherapy vs Radiotherapy in FIGO Stage IIIB Squamous Cell Carcinoma of the Uterine Cervix: A Randomized Clinical Trial. JAMA Oncol. 2018;4(4):506–513. https://doi.org/10.1001/jamaoncol.2017.5179Test.; Zuliani AC, Esteves SC, Teixeira LC, Teixeira JC, de Souza GA, Sarian LO. Concomitant cisplatin plus radiotherapy and high-dose-rate brachytherapy versus radiotherapy alone for stage IIIB epidermoid cervical cancer: a randomized controlled trial. J Clin Oncol. 2014;32(6):542–547. https://doi.org/10.1200/JCO.2013.50.1205Test.; Lorvidhaya V, Chitapanarux I, Sangruchi S, Lertsanguansinchai P, Kongthanarat Y, Tangkaratt S, Visetsiri E. Concurrent mitomycin C, 5-fluorouracil, and radiotherapy in the treatment of locally advanced carcinoma of the cervix: a randomized trial. Int J Radiat Oncol Biol Phys. 2003;55(5):1226–1232. https://doi.org/10.1016/s0360-3016Test(02)04405-x.; Wang S, Zhang DS, Pan T, Liu S, Wang MK. Efficacy of concurrent chemoradiotherapy plus adjuvant chemotherapy on advanced cervical cancer. Chin J Cancer. 2010;29(11):959–963. https://doi.org/10.5732/cjc.010.10186Test.; Chiara S, Bruzzone M, Merlini L, Bruzzi P, Rosso R, Franzone P et al. Randomized study comparing chemotherapy plus radiotherapy versus radiotherapy alone in FIGO stage IIB-III cervical carcinoma. GONO (North-West Oncologic Cooperative Group). Am J Clin Oncol. 1994;17(4):294–297. https://doi.org/10.1097/00000421-199408000-00003Test.; Sardain H, Lavoué V, Foucher F, Levêque J. Curative pelvic exenteration for recurrent cervical carcinoma in the era of concurrent chemotherapy and radiation therapy. A systematic review. J Gynecol Obstet Biol Reprod (Paris). 2016;45(4):315–329. https://doi.org/10.1016/j.jgyn.2016.01.004Test.; Marnitz S, Köhler C, Müller M, Behrens K, Hasenbein K, Schneider A. Indications for primary and secondary exenterations in patients with cervical cancer. Gynecol Oncol. 2006;103(3):1023–1030. https://doi.org/10.1016/j.ygyno.2006.06.027Test.; Brunschwig A. Complete excision of pelvic viscera for advanced carcinoma; a one-stage abdominoperineal operation with end colostomy and bilateral ureteral implantation into the colon above the colostomy. Cancer. 1948;1(2):177–183. Available at: https://pubmed.ncbi.nlm.nih.gov/18875031Test.; Меньшиков КВ, Липатов ОН, Султанбаев АВ, Измайлов АА, Мусин ШИ, Ахметгареева КТ. Клинический случай иммунотерапии метастатического рака шейки матки. Медицинский вестник Башкортостана. 2020;15(6):93–97. Режим доступа: https://www.mvb-bsmu.ru/files/journals/6_2020.pdfTest.; https://www.med-sovet.pro/jour/article/view/7993Test

  4. 4
    دورية أكاديمية

    المصدر: Meditsinskiy sovet = Medical Council; № 22 (2023); 41-48 ; Медицинский Совет; № 22 (2023); 41-48 ; 2658-5790 ; 2079-701X

    وصف الملف: application/pdf

    العلاقة: https://www.med-sovet.pro/jour/article/view/7981/7068Test; Каприн АД, Старинский ВВ, Шахзадова АО. Злокачественные новообра­ зования в России в 2021 году (заболеваемость и смертность). М.: МНИОИ им. П.А. Герцена; 2022. 252 с.; Каприн АД, Старинский ВВ, Шахзадова АО. Состояние онкологической помощи населению России в 2022 году. М.: МНИОИ им. П.А. Герцена; 2022. 239 с.; Llovet JM, Kelley RK, Villanueva A, Singal AG, Pikarsky E, Roayaie S et al. Hepatocellular carcinoma. Nat Rev Dis Primers. 2021;7(1):6. https://doi.org/10.1038/s41572-020-00240-3Test.; Reig M, Forner A, Rimola J, Ferrer-Fàbrega J, Burrel M, Garcia-Criado Á et al. BCLC strategy for prognosis prediction and treatment recommendation: The 2022 update. J Hepatol. 2022;76(3):681–693. https://doi.org/10.1016/j.jhep.2021.11.018Test.; Laface C, Fedele P, Maselli FM, Ambrogio F, Foti C, Molinari P et al. Targeted Therapy for Hepatocellular Carcinoma: Old and New Opportunities. Cancers (Basel). 2022;14(16):4028. https://doi.org/10.3390/cancers14164028Test.; Yau T, Park JW, Finn RS, Cheng AL, Mathurin P, Edeline J et al. Nivolumab versus sorafenib in advanced hepatocellular carcinoma (CheckMate 459): a randomised, multicentre, open-label, phase 3 trial. Lancet Oncol. 2022;23(1):77–90. https://doi.org/10.1016/S1470-2045Test(21)00604-5.; Zhu AX, Finn RS, Edeline J, Cattan S, Ogasawara S, Palmer D et al. KEYNOTE-224 investigators. Pembrolizumab in patients with advanced hepatocellular carcinoma previously treated with sorafenib (KEYNOTE-224): a non-randomised, open-label phase 2 trial. Lancet Oncol. 201819(7):940–952. https://doi.org/10.1016/S1470-2045Test(18)30351-6.; Ang C, Klempner SJ, Ali SM, Madison R, Ross JS, Severson EA et al. Prevalence of established and emerging biomarkers of immune checkpoint inhibitor response in advanced hepatocellular carcinoma. Oncotarget. 2019;10(40):4018–4025. https://doi.org/10.18632/oncotarget.26998Test.; Hegde PS, Wallin JJ, Mancao C. Predictive markers of anti-VEGF and emerging role of angiogenesis inhibitors as immunotherapeutics. Semin Cancer Biol. 2018;52(2):117–124. https://doi.org/10.1016/j.semcancer.2017.12.002Test.; Finn RS, Qin S, Ikeda M, Galle PR, Ducreux M, Kim TY et al. IMbrave150 Investigators. Atezolizumab plus Bevacizumab in Unresectable Hepatocellular Carcinoma. N Engl J Med. 2020;382(20):1894–1905. https://doi.org/10.1056/NEJMoa1915745Test.; Cheng AL, Qin S, Ikeda M, Galle PR, Ducreux M, Kim TY et al. Updated efficacy and safety data from IMbrave150: Atezolizumab plus bevacizumab vs. sorafenib for unresectable hepatocellular carcinoma. J Hepatol. 2022;76(4):862–873. https://doi.org/10.1016/j.jhep.2021.11.030Test.; de Castro T, Jochheim LS, Bathon M, Welland S, Scheiner B, Shmanko K et al. Atezolizumab and bevacizumab in patients with advanced hepatocellular carcinoma with impaired liver function and prior systemic therapy: a real-world experience. Ther Adv Med Oncol. 2022;14:17588359221080298. https://doi.org/10.1177/17588359221080298Test.; Kulkarni AV, Krishna V, Kumar K, Sharma M, Patodiya B, Khan A et al. Safety and Efficacy of Atezolizumab-Bevacizumab in Real World: The First Indian Experience. J Clin Exp Hepatol. 2023;13(4):618–623. https://doi.org/10.1016/j.jceh.2023.02.003Test.; Tada T, Kumada T, Hiraoka A, Hirooka M, Kariyama K, Tani J. Real-life Practice Experts for HCC (RELPEC) Study Group and the Hepatocellular Carcinoma Experts from 48 clinics in Japan (HCC 48) Group. Safety and efficacy of atezolizumab plus bevacizumab in elderly patients with hepatocellular carcinoma: A multicenter analysis. Cancer Med. 2022;11(20):3796–3808. https://doi.org/10.1002/cam4.4763Test.; Бредер ВВ, Базин ИС, Балахнин ПВ, Виршке ЭР, Косырев ВЮ, Ледин ЕВ и др. Практические рекомендации по лекарственному лечению больных злокачественными опухолями печени и желчевыводящей системы. Злокачественные опухоли. 2022;12(3s2-1):467–529. https://doi.org/10.18027/2224-5057-2022-12-3s2-467-529Test.; Джанян ИА, Натрусова МВ, Бредер ВВ. Первые результаты применения комбинированной терапии «атезолизумаб + бевацизумаб» у пациентов с распространенным гепатоцеллюлярным раком. Медицинский совет. 2021;(4S)8–15. https://doi.org/10.21518/2079-701X-2021-4S-8-15Test.; Меньшиков КВ, Султанбаев АВ, Мусин ШИ, Меньшикова ИA, Абдеев РР, Султанбаева НИ и др. Иммунотерапия распространенной гепатоцеллюлярной карциномы: обзор литературы и клинический случай. Медицинский совет. 2022;16(9):31–39. https://doi.org/10.21518/2079-701X-2022-16-9-31-39Test.; Zhang CH, Cheng Y, Zhang S, Fan J, Gao Q. Changing epidemiology of hepatocellular carcinoma in Asia. Liver Int. 2022;42(9):2029–2041. https://doi.org/10.1111/liv.15251Test.; Rimassa L, Personeni N, Czauderna C, Foerster F, Galle P. Systemic treatment of HCC in special populations. J Hepatol. 2021;74(4):931–943. https://doi.org/10.1016/j.jhep.2020.11.026Test.; D’Alessio A, Fulgenzi CAM, Nishida N, Schönlein M, von Felden J, Schulze K et al. Preliminary evidence of safety and tolerability of atezolizumab plus bevacizumab in patients with hepatocellular carcinoma and Child-Pugh A and B cirrhosis: A real-world study. Hepatology. 2022;76(4):1000–1012. https://doi.org/10.1002/hep.32468Test.; Solimando AG, Susca N, Argentiero A, Brunetti O, Leone P, De Re V et al. Second-line treatments for Advanced Hepatocellular Carcinoma: A Systematic Review and Bayesian Network Meta-analysis. Clin Exp Med. 2022;22(1):65–74. https://doi.org/10.1007/s10238-021-00727-7Test.; Chen CT, Feng YH, Yen CJ, Chen SC, Lin YT, Lu LC et al. Prognosis and treatment pattern of advanced hepatocellular carcinoma after failure of first-line atezolizumab and bevacizumab treatment. Hepatol Int. 2022;16(5):1199–1207. https://doi.org/10.1007/s12072-022-10392-xTest.; Bruix J, Qin S, Merle P, Granito A, Huang YH, Bodoky G et al. Regorafenib for patients with hepatocellular carcinoma who progressed on sorafenib treatment (RESORCE): a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet. 2017;389(10064):56–66. https://doi.org/10.1016/S0140-6736Test(16)32453-9.; Abou-Alfa GK, Meyer T, Cheng AL, El-Khoueiry AB, Rimassa L, Ryoo BY et al. Cabozantinib in Patients with Advanced and Progressing Hepatocellular Carcinoma. N Engl J Med. 2018;379(1):54–63. https://doi.org/10.1056/NEJMoa1717002Test.; Finn RS, Ryoo BY, Merle P, Kudo M, Bouattour M, Lim HY et al. Pembrolizumab As Second-Line Therapy in Patients With Advanced Hepatocellular Carcinoma in KEYNOTE-240: A Randomized, Double-Blind, Phase III Trial. J Clin Oncol. 2020;38(3):193–202. https://doi.org/10.1200/JCO.19.01307Test.; https://www.med-sovet.pro/jour/article/view/7981Test

  5. 5
    دورية أكاديمية

    المصدر: Creative surgery and oncology; Том 14, № 1 (2024); 94-100 ; Креативная хирургия и онкология; Том 14, № 1 (2024); 94-100 ; 2076-3093 ; 2307-0501

    وصف الملف: application/pdf

    العلاقة: https://www.surgonco.ru/jour/article/view/921/596Test; Sung H., Ferlay J., Siegel R.L., Laversanne M., Soerjomataram I., Jemal A., et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;71(3):209–49. DOI:10.3322/caac.21660; Padala S.A., Barsouk A., Thandra K.C., Saginala K., Mohammed A., Vakiti A., et al. Epidemiology of renal cell carcinoma. World J Oncol. 2020;11(3):79–87. DOI:10.14740/wjon1279; Jonasch E., Walker C.L., Rathmell W.K. Clear cell renal cell carcinoma ontogeny and mechanisms of lethality. Nat Rev Nephrol. 2021;17(4):245–61. DOI:10.1038/s41581-020-00359-2; Heng D.Y., Xie W., Regan M.M., Harshman L.C., Bjarnason G.A., Vaishampayan U.N., et al. External validation and comparison with other models of the International Metastatic Renal-Cell Carcinoma Database Consortium prognostic model: a population-based study. Lancet Oncol. 2013;14(2):141–8. DOI:10.1016/S1470-2045(12)70559-4; Jacobsen J., Grankvist K., Rasmuson T., Bergh A., Landberg G., Ljungberg B. Expression of vascular endothelial growth factor protein in human renal cell carcinoma. BJU Int. 2004;93(3):297–302. DOI:10.1111/j.1464-410x.2004.04605.x; Rini B.I. Vascular endothelial growth factor-targeted therapy in renal cell carcinoma: current status and future directions. Clin Cancer Res. 2007;13(4):1098–106. DOI:10.1158/1078-0432.CCR-06-1989; Kaelin W.G. Jr. The von Hippel-Lindau tumor suppressor protein and clear cell renal carcinoma. Clin Cancer Res. 2007;13(2 Pt 2):680s–4s. DOI:10.1158/1078-0432.CCR-06-1865; Rassy E., Flippot R., Albiges L. Tyrosine kinase inhibitors and immunotherapy combinations in renal cell carcinoma. Ther Adv Med Oncol. 2020;12:1758835920907504. DOI:10.1177/1758835920907504; Moran M., Nickens D., Adcock K., Bennetts M., Desscan A., Charnley N., et al. Sunitinib for metastatic renal cell carcinoma: a systematic review and meta-analysis of real-world and clinical trials data. Target Oncol. 2019;14(4):405–16. DOI:10.1007/s11523-019-00653-5; Escudier B., Porta C., Schmidinger M., Rioux-Leclercq N., Bex A., Khoo V., et al. Renal cell carcinoma: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up†. Ann Oncol. 2019;30(5):706–20. DOI:10.1093/annonc/mdz056; Suyama K., Iwase H. Lenvatinib: a promising molecular targeted agent for multiple cancers. Cancer Control. 2018;25(1):1073274818789361. DOI:10.1177/1073274818789361; Vecchio S.J.D., Ellis R.J. Cabozantinib for the management of metastatic clear cell renal cell carcinoma. J Kidney Cancer VHL. 2018;5(4):1–5. DOI:10.15586/jkcvhl.2018.109; Bellesoeur A., Carton E., Alexandre J., Goldwasser F., Huillard O. Axitinib in the treatment of renal cell carcinoma: design, development, and place in therapy. Drug Des Devel Ther. 2017;11:2801–11. DOI:10.2147/DDDT.S109640; Garcia J., Hurwitz H.I., Sandler A.B., Miles D., Coleman R.L., Deurloo R., et al. Bevacizumab (Avastin®) in cancer treatment: A review of years of clinical experience and future outlook. Cancer Treat Rev. 2020;86:102017. DOI:10.1016/j.ctrv.2020.102017; Meskawi M., Valdivieso R., Dell’Oglio P., Trudeau V., Larcher A., Karakiewicz P.I. The role of everolimus in renal cell carcinoma. J Kidney Cancer VHL. 2015;2(4):187–94. DOI:10.15586/jkcvhl.2015.43; Brown L.C., Desai K., Zhang T., Ornstein M.C. The Immunotherapy landscape in renal cell carcinoma. BioDrugs. 2020;34(6):733–48. DOI:10.1007/s40259-020-00449-4; Aggen D.H., Drake C.G., Rini B.I. Targeting PD-1 or PD-L1 in metastatic kidney cancer: combination therapy in the first-line setting. Clin Cancer Res. 2020;26(9):2087–95. DOI:10.1158/1078-0432.CCR-19-3323; Motzer R.J., Escudier B., McDermott D.F., George S., Hammers H.J., Srinivas S., et al. Nivolumab versus everolimus in advanced renal-cell carcinoma. N Engl J Med 2015;373(19):1803–13. DOI:10.1056/NEJMoa1510665; McDermott D.F., Huseni M.A., Atkins M.B., Motzer R.J., Rini B.I., Escudier B., et al. Clinical activity and molecular correlates of response to atezolizumab alone or in combination with bevacizumab versus sunitinib in renal cell carcinoma. Nat Med. 2018 Jun;24(6):749–57. DOI:10.1038/s41591-018-0053-3; Motzer R.J., Rini B.I., McDermott D.F., Redman B.G., Kuzel T.M., Harrison M.R., et al. Nivolumab for metastatic renal cell carcinoma: results of a randomized phase II trial. J Clin Oncol. 2015;33(13):1430–7. DOI:10.1200/JCO.2014.59.0703; Motzer R.J., Jonasch E., Boyle S., Carlo M.I., Manley B., Agarwal N., et al. NCCN Guidelines insights: kidney cancer, version 1.2021. J Natl Compr Canc Netw. 2020;18(9):1160–70. DOI:10.6004/jnccn.2020.0043; Tenold M., Ravi P., Kumar M., Bowman A., Hammers H., Choueiri T.K., et al. Current approaches to the treatment of advanced or metastatic renal cell carcinoma. Am Soc Clin Oncol Educ Book. 2020;40:1–10. DOI:10.1200/EDBK_279881; Roland C.L., Lynn K.D., Toombs J.E., Dineen S.P., Udugamasooriya D.G., Brekken R.A. Cytokine levels correlate with immune cell infiltration after anti-VEGF therapy in preclinical mouse models of breast cancer. PLoS One. 2009;4(11):e7669. DOI:10.1371/journal.pone.0007669; Furukawa K., Nagano T., Tachihara M., Yamamoto M., Nishimura Y. Interaction between immunotherapy and antiangiogenic therapy for cancer. Molecules. 2020;25(17):3900. DOI:10.3390/molecules25173900; Lee W.S., Yang H., Chon H.J., Kim C. Combination of anti-angiogenic therapy and immune checkpoint blockade normalizes vascularimmune crosstalk to potentiate cancer immunity. Exp Mol Med. 2020;52(9):1475–85. DOI:10.1038/s12276-020-00500-y; Choueiri T., Powles M., Burotto M., Bourlon M.T., Zurawski B., Oyervides Juárez V.M., et al. 696O_PR Nivolumab + cabozantinib vs sunitinib in first‐line treatment for advanced renal cell carcinoma: First results from the randomized phase III CheckMate 9ER trial. Ann Oncol. 2020;31(suppl_4):S1142–215. DOI:10.1016/j.annonc.2020.08.2257; Motzer R., Tykodi S., Escudier B., Oudard S., Hammers H.J., McDermott D.F., et al. Final analysis of the CheckMate 025 trial comparing nivolumab (NIVO) versus everolimus (EVE) with >5 years of follow‐up in patients with advanced renal cell carcinoma (aRCC). J Clin Oncol. 2020;38 (suppl 6; abstr 617). DOI:10.1200/JCO.2020.38.6_suppl.617; Tsimafeyeu I., Zolotareva T., Varlamov S., Zukov R., Petkau V., Mazhbich M., et al. Five-year survival of patients with metastatic renal cell carcinoma in the Russian Federation: results from the RENSUR5 Registry. Clin Genitourin Cancer. 2017;15(6):e1069–72. DOI:10.1016/j.clgc.2017.07.017; https://www.surgonco.ru/jour/article/view/921Test

  6. 6
    دورية أكاديمية

    المساهمون: The research was carried out under the grant of the Russian Science Foundation No 23-25-00392. https://rscf.ru/project/23-25-00392Test/, Исследование выполнено за счет гранта Российского научного фонда No 23-25-00392. https://rscf.ru/project/23-25-00392Test/

    المصدر: Siberian journal of oncology; Том 22, № 4 (2023); 109-117 ; Сибирский онкологический журнал; Том 22, № 4 (2023); 109-117 ; 2312-3168 ; 1814-4861

    وصف الملف: application/pdf

    العلاقة: https://www.siboncoj.ru/jour/article/view/2686/1145Test; Злокачественные новообразования в России в 2021 году (заболеваемость и смертность). Под ред. А.Д. Каприна, В.В. Старинского, А.О. Шахзадовой. М., 2022. 252 с.; Тимофеев И.В. Ниволумаб: 5 лет со дня международной регистрации иммунотерапии метастатического рака почки. Злокачественные опухоли. 2020; 10(4): 21–9. doi:10.18027/2224-5057-2020-10-4-21-29.; Кушлинский Н.Е., Фридман М.В., Морозов А.А., Герштейн Е.С., Кадагидзе З.Г., Матвеев В.Б. Cовременные подходы к иммунотерапии рака почки. Онкоурология. 2018; 14(2): 54–67. doi:10.17650/1726-9776-2018-14-2-54-67.; Матвеев В.Б., Волкова М.И., Ольшанская А.С. Изменение позиций иммунотерапии при распространенном раке почки: ниволумаб в комбинации с ипилимумабом в 1-й линии лечения. Онкоурология. 2019; 15(1): 125–30. doi:10.17650/1726-9776-2019-15-1-125-130.; Саяпина М.С., Савёлов Н.А., Любимова Н.В., Тимофеев Ю.С., Носов Д.А. Потенциальные биомаркеры эффективности терапии ниволумабом при метастатическом почечно-клеточном раке. Онкоурология. 2018; 14(1): 16–27. https://doi.org/10.17650/1726-9776-2018-14-1-16-27Test.; Motzer R.J., Escudier B., McDermott D.F., George S., Hammers H.J., Srinivas S., Tykodi S.S., Sosman J.A., Procopio G., Plimack E.R., Castellano D., Choueiri T.K., Gurney H., Donskov F., Bono P., Wagstaff J., Gauler T.C., Ueda T., Tomita Y., Schutz F.A., Kollmannsberger C., Larkin J., Ravaud A., Simon J.S., Xu L.A., Waxman I.M., Sharma P.; CheckMate 025 Investigators. Nivolumab versus Everolimus in Advanced RenalCell Carcinoma. N Engl J Med. 2015; 373(19): 1803–13. doi:10.1056/NEJMoa1510665.; Motzer R.J., Rini B.I., McDermott D.F., Arén Frontera O., Hammers H.J., Carducci M.A., Salman P., Escudier B., Beuselinck B., Amin A., Porta C., George S., Neiman V., Bracarda S., Tykodi S.S., Barthélémy P., Leibowitz-Amit R., Plimack E.R., Oosting S.F., Redman B., Melichar B., Powles T., Nathan P., Oudard S., Pook D., Choueiri T.K., Donskov F., Grimm M.O., Gurney H., Heng D.Y.C., Kollmannsberger C.K., Harrison M.R., Tomita Y., Duran I., Grünwald V., McHenry M.B., Mekan S., Tannir N.M.; CheckMate 214 investigators. Nivolumab plus ipilimumab versus sunitinib in frst-line treatment for advanced renal cell carcinoma: extended follow-up of efcacy and safety results from a randomised, controlled, phase 3 trial. Lancet Oncol. 2019; 20(10): 1370–85. doi:10.1016/S1470-2045(19)30413-9. Erratum in: Lancet Oncol. 2019; Erratum in: Lancet Oncol. 2020; 21(6). Erratum in: Lancet Oncol. 2020; 21(11).; Rini B.I., Plimack E.R., Stus V., Gafanov R., Hawkins R., Nosov D., Pouliot F., Alekseev B., Soulières D., Melichar B., Vynnychenko I., Kryzhanivska A., Bondarenko I., Azevedo S.J., Borchiellini D., Szczylik C., Markus M., McDermott R.S., Bedke J., Tartas S., Chang Y.H., Tamada S., Shou Q., Perini R.F., Chen M., Atkins M.B., Powles T.; KEYNOTE-426 Investigators. Pembrolizumab plus Axitinib versus Sunitinib for Advanced Renal-Cell Carcinoma. N Engl J Med. 2019; 380(12): 1116–27. doi:10.1056/NEJMoa1816714.; Motzer R.J., Penkov K., Haanen J., Rini B., Albiges L., Campbell M.T., Venugopal B., Kollmannsberger C., Negrier S., Uemura M., Lee J.L., Vasiliev A., Miller W.H., Gurney H., Schmidinger M., Larkin J., Atkins M.B., Bedke J., Alekseev B., Wang J., Mariani M., Robbins P.B., Chudnovsky A., Fowst C., Hariharan S., Huang B., di Pietro A., Choueiri T.K. Avelumab plus Axitinib versus Sunitinib for Advanced Renal-Cell Carcinoma. N Engl J Med. 2019; 380(12): 1103–15. doi:10.1056/NEJMoa1816047.; Khan K.A., Kerbel R.S. Improving immunotherapy outcomes with anti-angiogenic treatments and vice versa. Nat Rev Clin Oncol. 2018; 15(5): 310–24. doi:10.1038/nrclinonc.2018.9.; Conforti F., Pala L., Bagnardi V., De Pas T., Martinetti M., Viale G., Gelber R.D., Goldhirsch A. Cancer immunotherapy efcacy and patients’ sex: a systematic review and meta-analysis. Lancet Oncol. 2018; 19(6): 737–46. doi:10.1016/S1470-2045(18)30261-4.; Polanczyk M.J., Hopke C., Vandenbark A.A., Offner H. Estrogenmediated immunomodulation involves reduced activation of efector T cells, potentiation of Treg cells, and enhanced expression of the PD-1 costimulatory pathway. J Neurosci Res. 2006; 84(2): 370–8. doi:10.1002/jnr.20881.; Polanczyk M.J., Hopke C., Vandenbark A.A., Offner H. Treg suppressive activity involves estrogen-dependent expression of programmed death-1 (PD-1). Int Immunol. 2007; 19(3): 337–43. doi:10.1093/intimm/dxl151.; Chowell D., Krishna C., Pierini F., Makarov V., Rizvi N.A., Kuo F., Morris L.G.T., Riaz N., Lenz T.L., Chan T.A. Evolutionary divergence of HLA class I genotype impacts efcacy of cancer immunotherapy. Nat Med. 2019; 25(11): 1715–20. doi:10.1038/s41591-019-0639-4.; Chowell D., Morris L.G.T., Grigg C.M., Weber J.K., Samstein R.M., Makarov V., Kuo F., Kendall S.M., Requena D., Riaz N., Greenbaum B., Carroll J., Garon E., Hyman D.M., Zehir A., Solit D., Berger M., Zhou R., Rizvi N.A., Chan T.A. Patient HLA class I genotype infuences cancer response to checkpoint blockade immunotherapy. Science. 2018; 359(6375): 582–7. doi:10.1126/science.aao4572.; Jouinot A., Vazeille C., Goldwasser F. Resting energy metabolism and anticancer treatments. Curr Opin Clin Nutr Metab Care. 2018; 21(3): 145–51. doi:10.1097/MCO.0000000000000457.; Soldati L., Di Renzo L., Jirillo E., Ascierto P.A., Marincola F.M., De Lorenzo A. The infuence of diet on anti-cancer immune responsiveness. J Transl Med. 2018; 16(1): 75. doi:10.1186/s12967-018-1448-0.; Schmid D., Leitzmann M.F. Association between physical activity and mortality among breast cancer and colorectal cancer survivors: a systematic review and meta-analysis. Ann Oncol. 2014; 25(7): 1293–311. doi:10.1093/annonc/mdu012.; Cortellini A., Bozzetti F., Palumbo P., Brocco D., Di Marino P., Tinari N., De Tursi M., Agostinelli V., Patruno L., Valdesi C., Mereu M., Verna L., Lanfuti Baldi P., Venditti O., Cannita K., Masciocchi C., Barile A., McQuade J.L., Ficorella C., Porzio G. Weighing the role of skeletal muscle mass and muscle density in cancer patients receiving PD-1/PD-L1 checkpoint inhibitors: a multicenter real-life study. Sci Rep. 2020; 10: 1456. doi:10.1038/s41598-020-58498-2.; Routy B., Le Chatelier E., Derosa L., Duong C.P.M., Alou M.T., Daillère R., Fluckiger A., Messaoudene M., Rauber C., Roberti M.P., Fidelle M., Flament C., Poirier-Colame V., Opolon P., Klein C., Iribarren K., Mondragón L., Jacquelot N., Qu B., Ferrere G., Clémenson C., Mezquita L., Masip J.R., Naltet C., Brosseau S., Kaderbhai C., Richard C., Rizvi H., Levenez F., Galleron N., Quinquis B., Pons N., Ryffel B., Minard-Colin V., Gonin P., Soria J.C., Deutsch E., Loriot Y., Ghiringhelli F., Zalcman G., Goldwasser F., Escudier B., Hellmann M.D., Eggermont A., Raoult D., Albiges L., Kroemer G., Zitvogel L. Gut microbiome infuences efcacy of PD-1-based immunotherapy against epithelial tumors. Science. 2018; 359(6371): 91–7. doi:10.1126/science.aan3706.; Elkrief A., Derosa L., Kroemer G., Zitvogel L., Routy B. The negative impact of antibiotics on outcomes in cancer patients treated with immunotherapy: a new independent prognostic factor? Ann Oncol. 2019; 30(10): 1572–9. doi:10.1093/annonc/mdz206.; Routy B., Gopalakrishnan V., Daillère R., Zitvogel L., Wargo J.A., Kroemer G. The gut microbiota infuences anticancer immunosurveillance and general health. Nat Rev Clin Oncol. 2018; 15(6): 382–96. doi:10.1038/s41571-018-0006-2.; Derosa L., Hellmann M.D., Spaziano M., Halpenny D., Fidelle M., Rizvi H., Long N., Plodkowski A.J., Arbour K.C., Chaft J.E., Rouche J.A., Zitvogel L., Zalcman G., Albiges L., Escudier B., Routy B. Negative association of antibiotics on clinical activity of immune checkpoint inhibitors in patients with advanced renal cell and non-small-cell lung cancer. Ann Oncol. 2018; 29(6): 1437–44. doi:10.1093/annonc/mdy103.; Sanmamed M.F., Chen L. A Paradigm Shift in Cancer Immunotherapy: From Enhancement to Normalization. Cell. 2018; 175(2): 313–26. doi:10.1016/j.cell.2018.09.035. Erratum in: Cell. 2019; 176(3): 677.; Tinsley N., Zhou C., Tan G., Rack S., Lorigan P., Blackhall F., Krebs M., Carter L., Thistlethwaite F., Graham D., Cook N. Cumulative Antibiotic Use Signifcantly Decreases Efcacy of Checkpoint Inhibitors in Patients with Advanced Cancer. Oncologist. 2020; 25(1): 55–63. doi:10.1634/theoncologist.2019-0160.; Mahata B., Zhang X., Kolodziejczyk A.A., Proserpio V., HaimVilmovsky L., Taylor A.E., Hebenstreit D., Dingler F.A., Moignard V., Göttgens B., Arlt W., McKenzie A.N., Teichmann S.A. Single-cell RNA sequencing reveals T helper cells synthesizing steroids de novo to contribute to immune homeostasis. Cell Rep. 2014; 7(4): 1130–42. doi:10.1016/j.celrep.2014.04.011.; Arbour K.C., Mezquita L., Long N., Rizvi H., Auclin E., Ni A., Martínez-Bernal G., Ferrara R., Lai W.V., Hendriks L.E.L., Sabari J.K., Caramella C., Plodkowski A.J., Halpenny D., Chaft J.E., Planchard D., Riely G.J., Besse B., Hellmann M.D. Impact of Baseline Steroids on Effcacy of Programmed Cell Death-1 and Programmed Death-Ligand 1 Blockade in Patients With Non-Small-Cell Lung Cancer. J Clin Oncol. 2018; 36(28): 2872–8. doi:10.1200/JCO.2018.79.0006.; Fucà G., Galli G., Poggi M., Lo Russo G., Proto C., Imbimbo M., Ferrara R., Zilembo N., Ganzinelli M., Sica A., Torri V., Colombo M.P., Vernieri C., Balsari A., de Braud F., Garassino M.C., Signorelli D. Modulation of peripheral blood immune cells by early use of steroids and its association with clinical outcomes in patients with metastatic non-small cell lung cancer treated with immune checkpoint inhibitors. ESMO Open. 2019; 4(1). doi:10.1136/esmoopen-2018-000457.; Gubin M.M., Zhang X., Schuster H., Caron E., Ward J.P., Noguchi T., Ivanova Y., Hundal J., Arthur C.D., Krebber W.J., Mulder G.E., Toebes M., Vesely M.D., Lam S.S., Korman A.J., Allison J.P., Freeman G.J., Sharpe A.H., Pearce E.L., Schumacher T.N., Aebersold R., Rammensee H.G., Melief C.J., Mardis E.R., Gillanders W.E., Artyomov M.N., Schreiber R.D. Checkpoint blockade cancer immunotherapy targets tumour-specifc mutant antigens. Nature. 2014; 515(7528): 577–81. doi:10.1038/nature13988.; Yarchoan M., Hopkins A., Jaffee E.M. Tumor Mutational Burden and Response Rate to PD-1 Inhibition. N Engl J Med. 2017; 377(25): 2500–1. doi:10.1056/NEJMc1713444.; Labriola M.K., Zhu J., Gupta R.T., McCall S., Jackson J., Kong E.F., White J.R., Cerqueira G., Gerding K., Simmons J.K., George D., Zhang T. Characterization of tumor mutation burden, PD-L1 and DNA repair genes to assess relationship to immune checkpoint inhibitors response in metastatic renal cell carcinoma. J Immunother Cancer. 2020; 8(1). doi:10.1136/jitc2019-000319. Erratum in: J Immunother Cancer. 2020; 8(1).; Turajlic S., Litchfeld K., Xu H., Rosenthal R., McGranahan N., Reading J.L., Wong Y.N.S., Rowan A., Kanu N., Al Bakir M., Chambers T., Salgado R., Savas P., Loi S., Birkbak N.J., Sansregret L., Gore M., Larkin J., Quezada S.A., Swanton C. Insertion-and-deletion-derived tumour-specifc neoantigens and the immunogenic phenotype: a pan-cancer analysis. Lancet Oncol. 2017; 18(8): 1009–21. doi:10.1016/S1470-2045(17)30516-8.; Voss M.H., Novik J.B., Hellmann M.D., Ball M., Hakimi A.A., Miao D., Margolis C., Horak C., Wind-Rotolo M., De Velasco G., Tannir N.M., Tamboli P., Appleman L.J., Rathmell K., Hsieh J.J., Allaf M., Choueiri T.K., VanAllen E., Snyder A., Motzer R.J. Correlation of degree of tumor immune infltration and insertion-and-deletion (indel) burden with outcome on programmed death 1 (PD1) therapy in advanced renal cell cancer (RCC). J Clin Oncol 2018; 36(15s): 4518. doi:10.1200/JCO.2018.36.15_suppl.4518.; Kalbasi A., Ribas A. Tumour-intrinsic resistance to immune checkpoint blockade. Nat Rev Immunol. 2020; 20(1): 25–39. doi:10.1038/s41577-019-0218-4.; Platanias L.C. Mechanisms of type-I- and type-II-interferon-mediated signalling. Nat Rev Immunol. 2005; 5(5): 375–86. doi:10.1038/nri1604.; Zaretsky J.M., Garcia-Diaz A., Shin D.S., Escuin-Ordinas H., Hugo W., Hu-Lieskovan S., Torrejon D.Y., Abril-Rodriguez G., Sandoval S., Barthly L., Saco J., Homet Moreno B., Mezzadra R., Chmielowski B., Ruchalski K., Shintaku I.P., Sanchez P.J., Puig-Saus C., Cherry G., Seja E., Kong X., Pang J., Berent-Maoz B., Comin-Anduix B., Graeber T.G., Tumeh P.C., Schumacher T.N., Lo R.S., Ribas A. Mutations associated with acquired resistance to PD-1 blockade in melanoma. N Engl J Med 2016; 375: 819–29. doi:10.1056/NEJMoa1604958.; Spranger S., Bao R., Gajewski T.F. Melanoma-intrinsic β-catenin signalling prevents anti-tumour immunity. Nature. 2015; 523(7559): 231–5. doi:10.1038/nature14404.; Sweis R.F., Spranger S., Bao R., Paner G.P., Stadler W.M., Steinberg G., Gajewski T.F. Molecular Drivers of the Non-T-cell-Infamed Tumor Microenvironment in Urothelial Bladder Cancer. Cancer Immunol Res. 2016; 4(7): 563–8. doi:10.1158/2326-6066.CIR-15-0274.; Seiwert T.Y., Zuo Z., Keck M.K., Khattri A., Pedamallu C.S., Stricker T., Brown C., Pugh T.J., Stojanov P., Cho J., Lawrence M.S., Getz G., Brägelmann J., DeBoer R., Weichselbaum R.R., Langerman A., Portugal L., Blair E., Stenson K., Lingen M.W., Cohen E.E., Vokes E.E., White K.P., Hammerman P.S. Integrative and comparative genomic analysis of HPV-positive and HPV-negative head and neck squamous cell carcinomas. Clin Cancer Res. 2015; 21(3): 632–41. doi:10.1158/1078-0432.CCR-13-3310.; Jiménez-Sánchez A., Memon D., Pourpe S., Veeraraghavan H., Li Y., Vargas H.A., Gill M.B., Park K.J., Zivanovic O., Konner J., Ricca J., Zamarin D., Walther T., Aghajanian C., Wolchok J.D., Sala E., Merghoub T., Snyder A., Miller M.L. Heterogeneous Tumor-Immune Microenvironments among Diferentially Growing Metastases in an Ovarian Cancer Patient. Cell. 2017; 170(5): 927–38. doi:10.1016/j.cell.2017.07.025.; Boni A., Cogdill A.P., Dang P., Udayakumar D., Njauw C.N., Sloss C.M., Ferrone C.R., Flaherty K.T., Lawrence D.P., Fisher D.E., Tsao H., Wargo J.A. Selective BRAFV600E inhibition enhances T-cell recognition of melanoma without afecting lymphocyte function. Cancer Res. 2010; 70(13): 5213–9. doi:10.1158/0008-5472.CAN-10-0118.; Goel S., DeCristo M.J., Watt A.C., BrinJones H., Sceneay J., Li B.B., Khan N., Ubellacker J.M., Xie S., Metzger-Filho O., Hoog J., Ellis M.J., Ma C.X., Ramm S., Krop I.E., Winer E.P., Roberts T.M., Kim H.J., McAllister S.S., Zhao J.J. CDK4/6 inhibition triggers anti-tumour immunity. Nature. 2017; 548(7668): 471–5. doi:10.1038/nature23465.; Jerby-Arnon L., Shah P., Cuoco M.S., Rodman C., Su M.J., Melms J.C., Leeson R., Kanodia A., Mei S., Lin J.R., Wang S., Rabasha B., Liu D., Zhang G., Margolais C., Ashenberg O., Ott P.A., Buchbinder E.I., Haq R., Hodi F.S., Boland G.M., Sullivan R.J., Frederick D.T., Miao B., Moll T., Flaherty K.T., Herlyn M., Jenkins R.W., Thummalapalli R., Kowalczyk M.S., Cañadas I., Schilling B., Cartwright A.N.R., Luoma A.M., Malu S., Hwu P., Bernatchez C., Forget M.A., Barbie D.A., Shalek A.K., Tirosh I., Sorger P.K., Wucherpfennig K., Van Allen E.M., Schadendorf D., Johnson B.E., Rotem A., Rozenblatt-Rosen O., Garraway L.A., Yoon C.H., Izar B., Regev A. A Cancer Cell Program Promotes T Cell Exclusion and Resistance to Checkpoint Blockade. Cell. 2018; 175(4): 984–97. doi:10.1016/j.cell.2018.09.006.; Wang X., Zhang H., Chen X. Drug resistance and combating drug resistance in cancer. Cancer Drug Resist. 2019; 2(2): 141–60. doi:10.20517/cdr.2019.10.; Sade-Feldman M., Jiao Y.J., Chen J.H., Rooney M.S., BarzilyRokni M., Eliane J.P., Bjorgaard S.L., Hammond M.R., Vitzthum H., Blackmon S.M., Frederick D.T., Hazar-Rethinam M., Nadres B.A., Van Seventer E.E., Shukla S.A., Yizhak K., Ray J.P., Rosebrock D., Livitz D., Adalsteinsson V., Getz G., Duncan L.M., Li B., Corcoran R.B., Lawrence D.P., Stemmer-Rachamimov A., Boland G.M., Landau D.A., Flaherty K.T., Sullivan R.J., Hacohen N. Resistance to checkpoint blockade therapy through inactivation of antigen presentation. Nat Commun. 2017; 8(1): 1136. doi:10.1038/s41467-017-01062-w.; Fridman W.H., Pagès F., Sautès-Fridman C., Galon J. The immune contexture in human tumours: impact on clinical outcome. Nat Rev Cancer. 2012; 12(4): 298–306. doi:10.1038/nrc3245.; Becht E., Giraldo N.A., Lacroix L., Buttard B., Elarouci N., Petitprez F., Selves J., Laurent-Puig P., Sautès-Fridman C., Fridman W.H., de Reyniès A. Estimating the population abundance of tissue-infltrating immune and stromal cell populations using gene expression. Genome Biol. 2016; 17(1): 218. doi:10.1186/s13059-016-1070-5. Erratum in: Genome Biol. 2016; 17(1): 249.; Giraldo N.A., Becht E., Pagès F., Skliris G., Verkarre V., Vano Y., Mejean A., Saint-Aubert N., Lacroix L., Natario I., Lupo A., Alifano M., Damotte D., Cazes A., Triebel F., Freeman G.J., Dieu-Nosjean M.C., Oudard S., Fridman W.H., Sautès-Fridman C. Orchestration and Prognostic Signifcance of Immune Checkpoints in the Microenvironment of Primary and Metastatic Renal Cell Cancer. Clin Cancer Res. 2015; 21(13): 3031–40. doi:10.1158/1078-0432.CCR-14-2926.; Helmink B.A., Reddy S.M., Gao J., et al. B cells and tertiary lymphoid structures promote immunotherapy response. Nature. 2020; 577(7791): 549–55. doi:10.1038/s41586-019-1922-8.; Petitprez F., de Reyniès A., Keung E.Z., Chen T.W., Sun C.M., Calderaro J., Jeng Y.M., Hsiao L.P., Lacroix L., Bougoüin A., Moreira M., Lacroix G., Natario I., Adam J., Lucchesi C., Laizet Y.H., Toulmonde M., Burgess M.A., Bolejack V., Reinke D., Wani K.M., Wang W.L., Lazar A.J., Roland C.L., Wargo J.A., Italiano A., Sautès-Fridman C., Tawbi H.A., Fridman W.H. B cells are associated with survival and immunotherapy response in sarcoma. Nature. 2020; 577(7791): 556–60. doi:10.1038/s41586-019-1906-8.; Stubbs M., McSheehy P.M., Griffths J.R., Bashford C.L. Causes and consequences of tumour acidity and implications for treatment. Mol Med Today. 2000; 6(1): 15–9. doi:10.1016/s1357-4310(99)01615-9.; Sormendi S., Wielockx B. Hypoxia Pathway Proteins As Central Mediators of Metabolism in the Tumor Cells and Their Microenvironment. Front Immunol. 2018; 9: 40. doi:10.3389/fmmu.2018.00040.; Garcia-Lora A., Algarra I., Garrido F. MHC class I antigens, immune surveillance, and tumor immune escape. J Cell Physiol. 2003; 195(3): 346–55. doi:10.1002/jcp.10290.; Tatli Dogan H., Kiran M., Bilgin B., Kiliçarslan A., Sendur M.A.N., Yalçin B., Ardiçoglu A., Atmaca A.F., Gumuskaya B. Prognostic signifcance of the programmed death ligand 1 expression in clear cell renal cell carcinoma and correlation with the tumor microenvironment and hypoxia-inducible factor expression. Diagn Pathol. 2018; 13(1): 60. doi:10.1186/s13000-018-0742-8.; Zhang J., Shi Z., Xu X., Yu Z., Mi J. The infuence of microenvironment on tumor immunotherapy. FEBS J. 2019; 286(21): 4160–75. doi:10.1111/febs.15028.; Pan D., Kobayashi A., Jiang P., Ferrari de Andrade L., Tay R.E., Luoma A.M., Tsoucas D., Qiu X., Lim K., Rao P., Long H.W., Yuan G.C., Doench J., Brown M., Liu X.S., Wucherpfennig K.W. A major chromatin regulator determines resistance of tumor cells to T cell-mediated killing. Science. 2018; 359(6377): 770–5. doi:10.1126/science.aao1710.; Varela I., Tarpey P., Raine K., Huang D., Ong C.K., Stephens P., Davies H., Jones D., Lin M.L., Teague J., Bignell G., Butler A., Cho J., Dalgliesh G.L., Galappaththige D., Greenman C., Hardy C., Jia M., Latimer C., Lau K.W., Marshall J., McLaren S., Menzies A., Mudie L., Stebbings L., Largaespada D.A., Wessels L.F., Richard S., Kahnoski R.J., Anema J., Tuveson D.A., Perez-Mancera P.A., Mustonen V., Fischer A., Adams D.J., Rust A., Chan-on W., Subimerb C., Dykema K., Furge K., Campbell P.J., Teh B.T., Stratton M.R., Futreal P.A. Exome sequencing identifes frequent mutation of the SWI/SNF complex gene PBRM1 in renal carcinoma. Nature. 2011; 469(7331): 539–42. doi:10.1038/nature09639. Erratum in: Nature. 2012; 484(7392): 130.; Miao D., Margolis C.A., Gao W., Voss M.H., Li W., Martini D.J., Norton C., Bossé D., Wankowicz S.M., Cullen D., Horak C., Wind-Rotolo M., Tracy A., Giannakis M., Hodi F.S., Drake C.G., Ball M.W., Allaf M.E., Snyder A., Hellmann M.D., Ho T., Motzer R.J., Signoretti S., Kaelin W.G., Choueiri T.K., van Allen E.M. Genomic correlates of response to immune checkpoint therapies in clear cell renal cell carcinoma. Science. 2018; 359(6377): 801–6. doi:10.1126/science.aan5951.; Braun D.A., Ishii Y., Walsh A.M., Van Allen E.M., Wu C.J., Shukla S.A., Choueiri T.K. Clinical Validation of PBRM1 Alterations as a Marker of Immune Checkpoint Inhibitor Response in Renal Cell Carcinoma. JAMA Oncol. 2019; 5(11): 1631–3. doi:10.1001/jamaoncol.2019.3158.; https://www.siboncoj.ru/jour/article/view/2686Test

  7. 7
    دورية أكاديمية

    المصدر: Meditsinskiy sovet = Medical Council; № 11 (2023); 65-74 ; Медицинский Совет; № 11 (2023); 65-74 ; 2658-5790 ; 2079-701X

    وصف الملف: application/pdf

    العلاقة: https://www.med-sovet.pro/jour/article/view/7681/6815Test; Feyer P., Jordan K. Update and new trends in antiemetic therapy: the continuing need for novel therapies. Ann Oncol. 2011;22(1):30–38. https://doi.org/10.1093/annonc/mdq600Test.; Jordan K., Chan A., Gralla R.J., Jahn F., Rapoport B., Warr D., Hesketh P.J. 2016 Updated MASCC/ESMO consensus recommendations: Emetic risk classification and evaluation of the emetogenicity of antineoplastic agents. Support Care Cancer. 2017;25(1):271–275. https://doi.org/10.1007/s00520-016-3332-xTest.; Howlader N., Noone A.M., Krapcho M., Garshell J., Neyman N., Altekruse S.F. et al. (eds.). SEER Cancer Statistics Review, 1975–2010. Bethesda, MD: National Cancer Institute; 2013. Available at: https://seer.cancer.gov/archive/csr/1975_2010Test/.; Navari R.M., Aapro M. Antiemetic Prophylaxis for Chemotherapy-Induced Nausea and Vomiting. N Engl J Med. 2016;374(14):1356–1367. https://doi.org/10.1056/NEJMra1515442Test.; Tageja N., Groninger H. Chemotherapy-induced nausea and vomiting: an overview and comparison of three consensus guidelines. Postgrad Med J. 2016;92(1083):34–40. https://doi.org/10.1136/postgradmedj-2014-132969Test.; Di Mattei V.E., Carnelli L., Carrara L., Bernardi M., Crespi G., Rancoita P.M.V. et al. Chemotherapy-Induced Nausea and Vomiting in Women With Gynecological Cancer: A Preliminary Single-Center Study Investigating Medical and Psychosocial Risk Factors. Cancer Nurs. 2016;39(6):E52–E59. https://doi.org/10.1097/NCC.0000000000000342Test.; Dranitsaris G., Molassiotis A., Clemons M., Roeland E., Schwartzberg L., Dielenseger P. et al. The development of a prediction tool to identify cancer patients at high risk for chemotherapy-induced nausea and vomiting. Ann Oncol. 2017;28(6):1260–1267. https://doi.org/10.1093/annonc/mdx100Test.; Furukawa N., Akasaka J., Shigemitsu A., Sasaki Y., Nagai A., Kawaguchi R., Kobayashi H. Evaluation of the relation between patient characteristics and the state of chemotherapy-induced nausea and vomiting in patients with gynecologic cancer receiving paclitaxel and carboplatin. Arch Gynecol Obstet. 2014;289(4):859–864. https://doi.org/10.1007/s00404-013-3058-7Test.; Hu Z., Liang W., Yang Y., Keefe D., Ma Y., Zhao Y. et al. Personalized Estimate of Chemotherapy-Induced Nausea and Vomiting: Development and External Validation of a Nomogram in Cancer Patients Receiving Highly/ Moderately Emetogenic Chemotherapy. Medicine (Baltimore). 2016;95(2):e2476. https://doi.org/10.1097/MD.0000000000002476Test.; Warr D. Prognostic factors for chemotherapy induced nausea and vomiting. Eur J Pharmacol. 2014;722:192–196. https://doi.org/10.1016/j.ejphar.2013.10.015Test.; Hesketh P.J., Aapro M., Street J.C., Carides A.D. Evaluation of risk factors predictive of nausea and vomiting with current standard-of-care antiemetic treatment: analysis of two phase III trials of aprepitant in patients receiving cisplatin-based chemotherapy. Support Care Cancer. 2010;18(9):1171–1177. https://doi.org/10.1007/s00520-009-0737-9Test.; Viale P.H., Grande C., Moore S. Efficacy and cost: avoiding undertreatment of chemotherapy-induced nausea and vomiting. Clin J Oncol Nurs. 2012;16(4):E133–141. https://doi.org/10.1188/12.CJON.E133-E141Test.; Wozniak A.J., Crowley J.J., Balcerzak S.P., Weiss G.R., Spiridonidis C.H., Baker L.H. et al. Randomized trial comparing cisplatin with cisplatin plus vinorelbine in the treatment of advanced non-small-cell lung cancer: a Southwest Oncology Group study. J Clin Oncol. 1998;16(7):2459–2465. https://doi.org/10.1200/JCO.1998.16.7.2459Test.; Basch E., Prestrud A.A., Hesketh P.J., Kris M.G., Somerfield M.R., Lyman G.H. Antiemetic Use in Oncology: Updated Guideline Recommendations from ASCO. Am Soc Clin Oncol Educ Book. 2012:32:532–540. https://doi.org/10.14694/EdBook_AM.2012.32.230Test.; Roila F., Molassiotis A., Herrstedt J., Aapro M., Gralla R.J., Bruera E. et al. 2016 MASCC and ESMO guideline update for the prevention of chemotherapy- and radiotherapy-induced nausea and vomiting and of nausea and vomiting in advanced cancer patients. Ann Oncol. 2016;27(Suppl. 5): v119–v133. https://doi.org/10.1093/annonc/mdw270Test.; Hesketh P.J., Bohlke K., Lyman G.H., Basch E., Chesney M., Clark-Snow R.A. et al. Antiemetics: American Society of Clinical Oncology Focused Guideline Update. J Clin Oncol. 2016;34(4):381–386. https://doi.org/10.1200/JCO.2015.64.3635Test.; Shimokawa M., Haratake N., Takada K., Toyokawa G., Takamori S., Mizuki F. et al. Combination Antiemetic Therapy for Chemotherapy-Induced Nausea and Vomiting in Patients with NSCLC Receiving Carboplatin-Based Chemotherapy. Cancer Manag Res. 2022;14:2673–2680. https://doi.org/10.2147/CMAR.S370961Test.; Siddiqui M.A., Scott L.J. Palonosetron. Drugs. 2004;64(10):1125–1132. https://doi.org/10.2165/00003495-200464100-00006Test.; Yang L.P., Scott L.J. Palonosetron: in the prevention of nausea and vomiting. Drugs. 2009;69(16):2257–2278. https://doi.org/10.2165/11200980-000000000-00000Test.; Popovic M., Warr D.G., Deangelis C., Tsao M., Chan K.K., Poon M. et al. Efficacy and safety of palonosetron for the prophylaxis of chemotherapy-induced nausea and vomiting (CINV): a systematic review and meta-analysis of randomized controlled trials. Support Care Cancer. 2014;22(6):1685–1697. https://doi.org/10.1007/s00520-014-2175-6Test.; Hashimoto H., Yamanaka T., Shimada Y., Arata K., Matsui R., Goto K. et al. Palonosetron (PALO) versus granisetron (GRA) in the triplet regimen with dexamethasone (DEX) and aprepitant (APR) for preventing chemotherapyinduced nausea and vomiting (CINV) in patients (pts) receiving highly emetogenic chemotherapy (HEC) with cisplatin (CDDP): A randomized, double-blind, phase III trial. J Clin Oncol. 2013;31(Suppl. 15):9621–9621. https://doi.org/10.1200/jco.2013.31.15_suppl.9621Test.; Navari R.M., Gray S.E., Kerr A.C. Olanzapine versus aprepitant for the prevention of chemotherapy-induced nausea and vomiting: a randomized phase III trial. J Support Oncol. 2011;9(5):188–195. https://doi.org/10.1016/j.suponc.2011.05.002Test.; Hesketh P.J., Rossi G., Rizzi G., Palmas M., Alyasova A., Bondarenko I. et al. Efficacy and safety of NEPA, an oral combination of netupitant and palonosetron, for prevention of chemotherapy-induced nausea and vomiting following highly emetogenic chemotherapy: a randomized dose-ranging pivotal study. Ann Oncol. 2014;25(7):1340–1346. https://doi.org/10.1093/annonc/mdu110Test.; Roila F., Ruggeri B., Ballatori E., Fatigoni S., Caserta C., Licitra L. et al. Aprepitant versus metoclopramide, both combined with dexamethasone, for the prevention of cisplatin-induced delayed emesis: a randomized, double-blind study. Ann Oncol. 2015;26(6):1248–1253. https://doi.org/10.1093/annonc/mdv132Test.; Aapro M., Rugo H., Rossi G., Rizzi G., Borroni M.E., Bondarenko I. et al. A randomized phase III study evaluating the efficacy and safety of NEPA, a fixed-dose combination of netupitant and palonosetron, for prevention of chemotherapyinduced nausea and vomiting following moderately emetogenic chemotherapy. Ann Oncol. 2014;25(7):1328–1333. https://doi.org/10.1093/annonc/mdu101Test.; Roila F., Ruggeri B., Ballatori E., Del Favero A., Tonato M. Aprepitant versus dexamethasone for preventing chemotherapy-induced delayed emesis in patients with breast cancer: a randomized double-blind study. J Clin Oncol. 2014;32(2):101–106. https://doi.org/10.1200/JCO.2013.51.4547Test.; Matsumoto K., Takahashi M., Sato K., Osaki A., Takano T., Naito Y. et al. A doubleblind, randomized, multicenter phase 3 study of palonosetron vs granisetron combined with dexamethasone and fosaprepitant to prevent chemotherapyinduced nausea and vomiting in patients with breast cancer receiving anthracycline and cyclophosphamide. Cancer Med. 2020;9(10):3319–3327. https://doi.org/10.1002/cam4.2979Test.; Aapro M., Fabi A., Nolè F., Medici M., Steger G., Bachmann C. et al. Doubleblind, randomised, controlled study of the efficacy and tolerability of palonosetron plus dexamethasone for 1 day with or without dexamethasone on days 2 and 3 in the prevention of nausea and vomiting induced by moderately emetogenic chemotherapy. Ann Oncol. 2010;21(5):1083–1088. https://doi.org/10.1093/annonc/mdp584Test.; Celio L., Frustaci S., Denaro A., Buonadonna A., Ardizzoia A., Piazza E. et al. Palonosetron in combination with 1-day versus 3-day dexamethasone for prevention of nausea and vomiting following moderately emetogenic chemotherapy: a randomized, multicenter, phase III trial. Support Care Cancer. 2011;19(8):1217–1225. https://doi.org/10.1007/s00520-010-0941-7Test.; Komatsu Y., Okita K., Yuki S., Furuhata T., Fukushima H., Masuko H. et al. Openlabel, randomized, comparative, phase III study on effects of reducing steroid use in combination with Palonosetron. Cancer Sci. 2015;106(7):891–895. https://doi.org/10.1111/cas.12675Test.; Celio L., Niger M., Ricchini F., Agustoni F. Palonosetron in the prevention of chemotherapy-induced nausea and vomiting: an evidence-based review of safety, efficacy, and place in therapy. Core Evid. 2015;10:75–87. https://doi.org/10.2147/CE.S65555Test.; Wenzell C.M., Berger M.J., Blazer M.A., Crawford B.S., Griffith N.L., Wesolowski R. et al. Pilot study on the efficacy of an ondansetron- versus palonosetron-containing antiemetic regimen prior to highly emetogenic chemotherapy. Support Care Cancer. 2013;21(10):2845–2851. https://doi.org/10.1007/s00520-013-1865-9Test.; Roila F., Herrstedt J., Aapro M., Gralla R.J., Einhorn L.H., Ballatori E. et al. Guideline update for MASCC and ESMO in the prevention of chemotherapy- and radiotherapy-induced nausea and vomiting: results of the Perugia consensus conference. Ann Oncol. 2010;21(Suppl. 5):v232–243. https://doi.org/10.1093/annonc/mdq194Test.; Hesketh P.J., Kris M.G., Basch E., Bohlke K., Barbour S.Y., Clark-Snow R.A. et al. Antiemetics: American Society of Clinical Oncology Clinical Practice Guideline Update. J Clin Oncol. 2017;35(28):3240–3261. https://doi.org/10.1200/JCO.2017.74.4789Test.; Navari R.M. Management of chemotherapy-induced nausea and vomiting: focus on newer agents and new uses for older agents. Drugs. 2013;73(3):249–262. https://doi.org/10.1007/s40265-013-0019-1Test.; Saito M., Aogi K., Sekine I., Yoshizawa H., Yanagita Y., Sakai H. et al. Palonosetron plus dexamethasone versus granisetron plus dexamethasone for prevention of nausea and vomiting during chemotherapy: a doubleblind, double-dummy, randomised, comparative phase III trial. Lancet Oncol. 2009;10(2):115–124. https://doi.org/10.1016/S1470-2045Test(08)70313-9.; Rojas C., Stathis M., Thomas A.G., Massuda E.B., Alt J., Zhang J. et al. Palonosetron exhibits unique molecular interactions with the 5-HT3 receptor. Anesth Analg. 2008;107(2):469–478. https://doi.org/10.1213/ane.0b013e318172fa74Test.; Rojas C., Thomas A.G., Alt J., Stathis M., Zhang J., Rubenstein E.B. et al. Palonosetron triggers 5-HT(3) receptor internalization and causes prolonged inhibition of receptor function. Eur J Pharmacol. 2010;626(2-3):193–199. https://doi.org/10.1016/j.ejphar.2009.10.002Test.; Rojas C., Li Y., Zhang J., Stathis M., Alt J., Thomas A.G. et al. The antiemetic 5-HT3 receptor antagonist Palonosetron inhibits substance P-mediated responses in vitro and in vivo. J Pharmacol Exp Ther. 2010;335(2):362–368. https://doi.org/10.1124/jpet.110.166181Test.; Schwartzberg L. Addressing the value of novel therapies in chemotherapyinduced nausea and vomiting. Expert Rev Pharmacoecon Outcomes Res. 2014;14(6):825–834. https://doi.org/10.1586/14737167.2014.957683Test.; Curigliano G., Burstein H.J., Winer E.P., Gnant M., Dubsky P., Loibl S. et al. De-escalating and escalating treatments for early-stage breast cancer: the St. Gallen International Expert Consensus Conference on the Primary Therapy of Early Breast Cancer 2017. Ann Oncol. 2017;28(8):1700–1712. https://doi.org/10.1093/annonc/mdx308Test.; Allevi G., Strina C., Andreis D., Zanoni V., Bazzola L., Bonardi S. et al. Increased pathological complete response rate after a long-term neoadjuvant letrozole treatment in postmenopausal oestrogen and/or progesterone receptor-positive breast cancer. Br J Cancer. 2013;108(8):1587–1592. https://doi.org/10.1038/bjc.2013.151Test.; Schneeweiss A., Chia S., Hickish T., Harvey V., Eniu A., Hegg R. et al. Pertuzumab plus trastuzumab in combination with standard neoadjuvant anthracycline-containing and anthracycline-free chemotherapy regimens in patients with HER2-positive early breast cancer: a randomized phase II cardiac safety study (TRYPHAENA). Ann Oncol. 2013;24(9):2278–2284. https://doi.org/10.1093/annonc/mdt182Test.; Hussain N., Said A.S.A., Khan Z. Safety Assessment of Neoadjuvant Pertuzumab Combined with Trastuzumab in Nonmetastatic HER2-Positive Breast Cancer in Postmenopausal Elderly Women of South Asia. Int J Breast Cancer. 2018:6106041. https://doi.org/10.1155/2018/6106041Test.; Lorusso D., Bria E., Costantini A., Di Maio M., Rosti G., Mancuso A. Patients’ perception of chemotherapy side effects: Expectations, doctor-patient communication and impact on quality of life – An Italian survey. Eur J Cancer Care (Engl). 2017;26(2). https://doi.org/10.1111/ecc.12618Test.; Grunberg S.M., Deuson R.R., Mavros P., Geling O., Hansen M., Cruciani G. et al. Incidence of chemotherapy-induced nausea and emesis after modern antiemetics. Cancer. 2004;100(10):2261–2268. https://doi.org/10.1002/cncr.20230Test.; Aapro M., Ruffo P., Panteri R., Costa S., Piovesana V. Oncologist perspectives on chemotherapy-induced nausea and vomiting (CINV) management and outcomes: A quantitative market research-based survey. Cancer Rep (Hoboken). 2018;1(4):e1127. https://doi.org/10.1002/cnr2.1127Test.; https://www.med-sovet.pro/jour/article/view/7681Test

  8. 8
    دورية أكاديمية

    المصدر: Meditsinskiy sovet = Medical Council; № 11 (2023); 178-182 ; Медицинский Совет; № 11 (2023); 178-182 ; 2658-5790 ; 2079-701X

    وصف الملف: application/pdf

    العلاقة: https://www.med-sovet.pro/jour/article/view/7703/6835Test; Mickisch G.H. Chemoresistance of renal cell carcinoma: 1986–1994. World J Urol. 1994;12(4):214–223. https://doi.org/10.1007/BF00185677Test.; Fosså S.D., Droz J.P., Pavone-Macaluso M.M., Debruyne F.J., Vermeylen K., Sylvester R. Vinblastine in metastatic renal cell carcinoma: EORTC phase II trial 30882. The EORTC Genitourinary Group. Eur J Cancer. 1992;28(4–5):878–880. https://doi.org/10.1016/0959-8049Test(92)90139-s; Stadler W.M., Huo D., George C., Yang X., Ryan C.W., Karrison T. et al. Prognostic factors for survival with gemcitabine plus 5-fluorouracil based regimens for metastatic renal cancer. J Urol. 2003;170(4):1141–1145. https://doi.org/10.1097/01.ju.0000086829.74971.4aTest.; Bennouna J., Delva R., Gomez F., Lesimple T., Geoffrois L., Linassier C. et al. A phase II study with 5-fluorouracil, folinic acid and oxaliplatin (FOLFOX-4 regimen) in patients with metastatic renal cell carcinoma. Oncology. 2003;64(1):25–27. https://doi.org/10.1159/000066518Test.; Oevermann K., Buer J., Hoffmann R., Franzke A., Schrader A., Patzelt T. et al. Capecitabine in the treatment of metastatic renal cell carcinoma. Br J Сancer. 2000;83(5):583–587. https://doi.org/10.1054/bjoc.2000.1340Test.; Dickerson E.C., Davenport M.S., Liu P.S. Spontaneous regression of primary renal cell carcinoma following image-guided percutaneous biopsy. Clin Imaging. 2015;39(3):520–524. https://doi.org/10.1016/j.clinimag.2014.08.002Test.; Makhov P., Joshi S., Ghatalia P., Kutikov A., Uzzo R.G., Kolenko V.M. Resistance to Systemic Therapies in Clear Cell Renal Cell Carcinoma: Mechanisms and Management Strategies. Mol Сancer Тher. 2018;17(7):1355–1364. https://doi.org/10.1158/1535-7163.MCT-17-1299Test.; Doehn C., Kausch I., Melz S., Behm A., Jocham D. Cytokine and vaccine therapy of kidney cancer. Expert Rev Anticancer Тher. 2004;4(6):1097–1111. https://doi.org/10.1586/14737140.4.6.1097Test.; Mendel D.B., Laird A.D., Xin X., Louie S.G., Christensen J.G., Li G. et al. In vivo antitumor activity of SU11248, a novel tyrosine kinase inhibitor targeting vascular endothelial growth factor and platelet-derived growth factor receptors: determination of a pharmacokinetic/pharmacodynamic relationship. Clin Сancer Res. 2003;9(1):327–337. Available at: https://pubmed.ncbi.nlm.nih.gov/12538485Test.; Gnarra J.R., Tory K., Weng Y., Schmidt L., Wei M.H., Li H. et al. Mutations of the VHL tumour suppressor gene in renal carcinoma. Nat Genet. 1994;7(1):85–90. https://doi.org/10.1038/ng0594-85Test.; Меньшиков К.В., Султанбаев А.В., Мусин Ш.И., Измайлов А.А., Чалов В.С., Меньшикова И.А. и др. Метастатический почечно-клеточный рак, возможности таргетной терапии. Медицинский совет. 2021;(20):138–144. https://doi.org/10.21518/2079-701X-2021-20-138-144Test.; Jonasch E., Walker C.L., Rathmell W.K. Clear cell renal cell carcinoma ontogeny and mechanisms of lethality. Nat Rev Nephrol. 2021;17(4):245–261. https://doi.org/10.1038/s41581-020-00359-2Test.; Choueiri T.K., Kaelin W.G.Jr. Targeting the HIF2-VEGF axis in renal cell carcinoma. Nat Med. 2020;26(10):1519–1530. https://doi.org/10.1038/s41591-020-1093-zTest.; Калпинский А.С., Алексеев Б.Я. Эффективность сунитиниба в таргетной терапии метастатического рака почки. Онкоурология. 2009;5(3):63–67. Режим доступа: https://oncourology.abvpress.ru/oncur/article/view/272Test.; Motzer R.J., Hutson T.E., Tomczak P., Michaelson M.D., Bukowski R.M., Rixe O. et al. Sunitinib versus interferon alfa in metastatic renal-cell carcinoma. New Engl J Med. 2007;356(2):115–124. https://doi.org/10.1056/NEJMoa065044Test.; Motzer R.J., Hutson T.E., Cella D., Reeves J., Hawkins R., Guo J. et al. Pazopanib versus sunitinib in metastatic renal-cell carcinoma. New Engl J Med. 2013;369(8):722–731. https://doi.org/10.1056/NEJMoa1303989Test.; Knox J.J., Barrios C.H., Kim T.M., Cosgriff T., Srimuninnimit V., Pittman K. et al. Final overall survival analysis for the phase II RECORD-3 study of first-line everolimus followed by sunitinib versus first-line sunitinib followed by everolimus in metastatic RCC. Ann Oncol. 2017;28(6):1339–1345. https://doi.org/10.1093/annonc/mdx075Test.; Heng D.Y., Xie W., Regan M.M., Warren M.A., Golshayan A.R., Sahi C. et al. Prognostic factors for overall survival in patients with metastatic renal cell carcinoma treated with vascular endothelial growth factor-targeted agents: results from a large, multicenter study. J Clin Oncol. 2009;27(34):5794–5799. https://doi.org/10.1200/JCO.2008.21.4809Test.; Алексеев Б.Я., Шевчук И.М. Новая комбинация ленватиниба с пембролизумабом при метастатическом почечно-клеточном раке в 1-й линии лекарственного лечения: сравнительная эффективность и безопасность. Онкоурология. 2022;18(3):51–59. https://doi.org/10.17650/1726-9776-2022-18-3-51-59Test.; Rini B.I., Plimack E.R., Stus V., Gafanov R., Hawkins R., Nosov D. et al. Pembrolizumab plus Axitinib versus Sunitinib for Advanced Renal-Cell Carcinoma. New Engl J Med. 2019;380(12):1116–1127. https://doi.org/10.1056/NEJMoa1816714Test.; Powles T., Plimack E.R., Soulières D., Waddell T., Stus V., Gafanov R. et al. Pembrolizumab plus axitinib versus sunitinib monotherapy as first-line treatment of advanced renal cell carcinoma (KEYNOTE-426): extended follow-up from a randomised, open-label, phase 3 trial. Lancet Oncol. 2020;21(12):1563–1573. https://doi.org/10.1016/S1470-2045Test(20)30436-8.; George D.J., Lee C.H., Heng D. New approaches to first-line treatment of advanced renal cell carcinoma. Ther Adv Med Oncol. 2021;13:17588359211034708. https://doi.org/10.1177/17588359211034708Test.; Motzer R.J., Tannir N.M., McDermott D.F., Arén Frontera O., Melichar B., Choueiri T.K. et al. Nivolumab plus Ipilimumab versus Sunitinib in Advanced Renal-Cell Carcinoma. New Engl J Med. 2018;378(14):1277–1290. https://doi.org/10.1056/NEJMoa1712126Test.; Меньшиков К.В., Султанбаев А.В., Мусин Ш.И., Измайлов А.А., Меньшикова И.А., Насретдинов А.Ф. и др. Опыт применения тирозинкиназного ингибитора кабозантиниба в Республике Башкортостан. Поволжский онкологический вестник. 2022;13(2):7–20. Режим доступа: http://oncovestnik.ru/archive/zhurnaly-za-2022-god/tom-13-nomer-2-2022-g/opyt-primeneniyatirozinkinaznogo-ingibitora-kabozantiniba-v-respublike-bashkortostanTest.; https://www.med-sovet.pro/jour/article/view/7703Test

  9. 9
    دورية أكاديمية

    المصدر: Malignant tumours; Том 13, № 4 (2023); 84-92 ; Злокачественные опухоли; Том 13, № 4 (2023); 84-92 ; 2587-6813 ; 2224-5057

    وصف الملف: application/pdf

    العلاقة: https://www.malignanttumors.org/jour/article/view/1142/798Test; https://www.malignanttumors.org/jour/article/view/1142/910Test; Lord, C. J.; Ashworth, A. The DNA damage response and cancer therapy. Nature 2012, 481, 287–294.; Valerie, K.; Povirk, L. F. Regulation and mechanisms of mammalian double-strand break repair. Oncogene 2003, 22, 5792–5812.; Jaco, I.; Muñoz, P.; Goytisolo, F.; Wesoly, J.; Bailey, S.; Taccioli, G.; Blasco, M. A. Role of mammalian Rad54 in telomere length maintenance. Mol. Cell Biol. 2003, 23, 5572–5580.; Salzano, A.; Kochiashvili, N.; Nergadze, S. G.; Khoriauli, L.; Smirnova, A.; Ruiz-Herrera, A.; Mondello, C.; Giulotto, E. Enhanced gene amplification in human cells knocked down for DNA-Kcs. DNA Repair 2009, 8, 19–28.; Khouriauli, L.; Giulotto, E. Gene amplification in human cells knocked down for RAD54. Genome Integr. 2011, 2, doi:10.1186/2041-9414-2-5.; Keeney, S.; Giroux, C. N.; Kleckner, N. Meiosis-specific DNA double-strand breaks are catalyzed by Spo11, a member of a widely conserved protein family. Cell 1997, 88, 375–384.; Roeder, G. S. Meiotic chromosomes : It takes two to tango. Genes Dev. 1997, 11, 2600–2621.; Moens, P. B.; Kolas, N. K.; Tarsounas, M.; Marcon, E.; Cohen, P. E.; Spyropoulos, B. The time course and chromosomal localization of recombination-related proteins at meiosis in the mouse are compatible with models that can resolve the early DNA-DNA interactions without reciprocal recombination. J. Cell Sci. 2002, 115, 1611–1622.; Baker, S. M.; Plug, A. W.; Prolla, T. A.; Bronner, C. E.; Harris, A. C.; Yao, X.; Christie, D. M.; Monell, C.; Arnheim, N.; Bradley, A.; et al. Involvement of mouse Mlh1 in DNA mismatch repair and meiotic crossing over. Nat. Genet. 1996, 13, 336–342.; Turner, J. M.; Aprelikova, O.; Xu, X.; Wang, R.; Kim, S.; Chandramouli, G. V.; Barrett, J. C.; Burgoyne, P. S.; Deng, C. X. BRCA1, histone H2AX phosphorylation, and male meiotic sex chromosome inactivation. Curr. Biol. 2004, 14, 2135–2142.; Wallace, W. H.; Thomson, A. B.; Kelsey, T. W. The radiosensitivity of the human oocyte. Hum. Reprod. 2003, 18, 117–121.; Saran, F.; Kelsey, T. W. Predicting age of ovarian failure after radiation to a field that includes the ovaries. Int. J. Radiat. Oncol. Biol. Phys. 2005, 62, 738–744.; Hodgson DC : Late effects in the era of modern therapy for Hodgkin lymphoma. Hematology Am Soc Hematol Educ Program 2011, 2011 : 323–329.; Ng AK : Review of the cardiac long-term effects of therapy for Hodgkin lymphoma. Br J Haematol 2011, 154 (1) : 23–31.; Elkin EB, Klem ML, Gonzales AM, et al : Characteristics and outcomes of breast cancer in women with and without a history of radiation for Hodgkin’s lymphoma : a multi-institutional, matched cohort study. J Clin Oncol 2011, 29 (18) : 2466–2473.; Baker, T. G. Comparative aspects of the effects of radiation during oogenesis. Mutat. Res. 1971, 11, 9±22.; Donin N, Filson C, Drakaski A, et al. Risk of second primary malignancies among cancer survivors in the United States, 1992 through 2008. Cancer 2016; 122 : 3075–3086.; Saletta F, Seng M and Lau L. Advances in pediatric cancer treatment. Transl Pediatr 3 (2) : 156–82. 4. Ward E, DeSantis C, Robbins A, et al. Childhood and adolescent cancer statistics, 2014. CA Cancer J Clin 2014; 64 : 83–103.; Institute NC. Childhood Cancer by site incidence, survival and mortality 2019, April, https://seer.cancer.gov/csr/1975_2016/results_merged/sect_28_childhood_cancer.pdfTest.; Armstrong GT, Liu Q, Yasui Y, et al. Late mortality among 5-year survivors of childhood cancer : a summary from the childhood cancer survivor study. J Clin Oncol 2009; 27 : 2328–2338.; Lee JS, Dubois SG, Coccia PF, et al. Increased risk of second malignant neoplasms in adolescents and young adults with cancer. Cancer 2016; 122 : 116–123.; Howlader N, Noone AM, Krapcho M, et al, eds. SEER Cancer Statistics Review, 1975–2012. Bethesda, MD : National Cancer Institute; 2015.; Travis LB, Gospodarowicz M, Curtis RE, et al. Lung cancer following chemotherapy and radiotherapy for Hodgkin’s disease. J Natl Cancer Inst. 2002; 94 : 182–192.; Travis LB, Curtis RE, Boice JD Jr, Hankey BF, Fraumeni JF Jr. Second cancers following non-Hodgkin’s lymphoma. Cancer. 1991; 67 : 2002–2009.; Curtis RE, Freedman DM, Ron E, et al. New Malignancies Among Cancer Survivors : SEER Cancer Registries, 1973–2000. Bethesda, MD : National Cancer Institute; 2006. NIH Pub. No. 05–5302.; Важенин А. В., Шаназаров Н. А., Шунько Е. Л. Некоторые закономерности развития радиоиндуцированных метахронных опухолей. Вестник рентгенологии и радиологии № 6, 2015. С 30–35.; Bertin F, Deluche E, Tricard J, Piccardo A, Denes E. First case of sternum replacement with a bioceramic prosthesis after radio-induced sarcoma. Curr Oncol. 2018 Aug; 25 (4) : e351-e353. doi:10.3747/co.25.4020. Epub 2018 Aug 14. PMID : 30111981; PMCID : PMC6092061.; Majdoubi A, Serji B, Harroudi TE. Angiosarcome mammaire radio-induit : à propos d’un cas [Radiation-induced breast angiosarcoma : about a case]. Pan Afr Med J. 2020 May 21; 36 : 29. French. doi:10.11604/pamj.2020.36.29.21599. PMID : 32774606; PMCID : PMC7388625.; Меньшиков К. В., Пушкарев А. В., Султанбаев А. В., Пушкарев В. А., Шарифгалиев И. А. Радиоиндуцированная ангиосаркома влагалища : клинический случай. Креативная хирургия и онкология. 2020; 10 (2) : 143–148. https://doi.org/10.24060/2076-3093-2020-10-2-143-148Test.; Dores GM, Metayer C, Curtis RE, et al. Second malignant neoplasms among long-term survivors of Hodgkin’s disease : a population-based evaluation over 25 years. J Clin Oncol. 2002; 20 : 3484–94. DOI:10.1200/JCO. 2002.09.038.; Огнерубов Н. А., Антипова Т. С. Радиационно-индуцированная саркома мягких тканей шеи после лучевой терапии лимфомы Ходжкина. Клиническое наблюдение. Современная Онкология. 2022; 24 (3) : 325–330. DOI:10.26442/18151434.2022.3.201904.; van Eggermond AM, Schaapveld M, Lugtenburg PJ. Risk of multiple primary malignancies following treatment of Hodgkin lymphoma. Blood. 2014; 124 (3) : 319–27. DOI:10.1182/blood-2013-10-532184.; Ng AK, Mauch PM. Late effects of Hodgkin’s disease and its treatment. Cancer J. 2009; 15 : 164–8. DOI:10.1097/PPO.0b013e31819e30d7.; Carde P, Burgers JM, Henry-Amar M, et al. Clinical stages I and II Hodgkin’s disease : a specifically tailored therapy according to prognostic factors. J Clin Oncol. 1988; 6 (2) : 239–252.; Eghbali H, Raemaekers J, Carde P; EORTC Lymphoma Group. The EORTC strategy in the treatment of Hodgkin’s lymphoma. Eur J Haematol Suppl. 2005; (66) : 135–140.; Raemaekers J, Kluin-Nelemans H, Teodorovic I, et al; European Organisation for Research and Treatment of Cancer. The achievements of the EORTC Lymphoma Group. Eur J Cancer. 2002; 38 (suppl 4) : S107-S113.; Somers R, Tubiana M, Henry-Amar M. EORTC Lymphoma Cooperative Group studies in clinical stage I–II Hodgkin’s disease 1963–1987. Recent Results Cancer Res. 1989; 117 : 175–181.; Tubiana M, Henry-Amar M, Carde P, et al. Toward comprehensive management tailored to prognostic factors of patients with clinical stages I and II in Hodgkin’s disease. The EORTC Lymphoma Group controlled clinical trials : 1964–1987. Blood. 1989; 73 (1) : 47–56.; van Eggermond AM, Schaapveld M, Lugtenburg PJ, Krol AD, de Boer JP, Zijlstra JM, Raemaekers JM, Kremer LC, Roesink JM, Louwman MW, Aleman BM, van Leeuwen FE. Risk of multiple primary malignancies following treatment of Hodgkin lymphoma. Blood. 2014 Jul 17; 124 (3) : 319–27; quiz 466. doi:10.1182/blood-2013-10-532184. Epub 2014 Apr 16. PMID : 24740811.; Cahan WG, Woodard HQ, Higinbotham NL, et al. Sarcoma in irradiated bone. Report of eleven cases. Cancer. 1948 : 3–29. DOI:10.1002/1097-0142(194805) 1 : 13.0. CO; 2–7.; Hall EJ, Wuu CS. Radiation-induced second cancers : the impact of 3D-CRT and IMRT. Int J Radiat Oncol Biol Phys. 2003; 56 : 83–8. DOI:10.1016/S0360–3016 (03) 00073–7.; https://www.malignanttumors.org/jour/article/view/1142Test

  10. 10
    دورية أكاديمية

    المصدر: Malignant tumours; Том 13, № 3s1 (2023); 97-99 ; Злокачественные опухоли; Том 13, № 3s1 (2023); 97-99 ; 2587-6813 ; 2224-5057

    وصف الملف: application/pdf

    العلاقة: https://www.malignanttumors.org/jour/article/view/1191/828Test; Агафонова Ю.А., Федяев Д.В., Снеговой А. В., Омельяновский В. В. Организация лекарственного обеспечения пациентов с онкологическими заболеваниями // Материалы VIII Петербургского Международного онкологического форума «Белые ночи 2022». С. 291–292.; Тельнова Е.А. О государственном регулировании на российском фармацевтическом рынке и проблемах лекарственного обеспечения / Е.А. Тельнова, А.А. Загоруйченко // Современная организация лекарственного обеспечения. – 2020. – No 3. – С. 11–20. Doi:10.25742/NRIPH.2021.02.009.; Денисова М.Н., Утемова А.С. Лекарственное обеспечение онкологических больных в Российской Федерации. Перспективы внедрения инновационных технологий в медицине и фармации // Сборник материалов VI Всероссийской научно-практической конференции с международным участием – 2019 – Т. 2. – С. 65–68.; Чернобровкина А.Е. Особенности и преимущества организации кабинета централизованного разведения цитостатиков в многопрофильном стационаре // medline.ru – 2018 - Т. 19. - С. 1245–1253.; Сагындыков Г.А. Особенности и преимущества централизованного разведения цитостатиков // Онкология и радиология Казахстана – 2013. – 30 (4) - C. 44–45.; Каримова А.А., Чусовитина А.О., Петкау В.В. Возможности оптимизации затрат на лекарственное обеспечение пациентов за счет централизованного разведения противоопухолевых лекарственных препаратов // Медико-фармацевтический журнал Пульс. 2023. Т. 25. № 7. С. 26–32. URL: https://cyberleninka.ru/article/n/vozmozhnosti-optimizatsii-zatrat-na-lekarstvennoe-obespechenie-patsientov-za-schet-tsentralizovannogo-razvedeniya-protivoopuholevyh?ysclid=lpckxidvba792173141Test.; Д.В. Литвинов, Н.В. Мякова, Ю.А. Шифрин, О.В. Пименова. Техника разведения и применения противоопухолевых или иммунобиологических препаратов // Российский журнал детской гематологии и онкологии-2019 - Т. 3 .– Vol. 6 - С. 83–84. doi:10.21682/2311-1267-2019-6-3-83-84.; Федеральный закон от 10. 01. 2002 N 7-ФЗ (ред. от 26. 03. 2022) “Об охране окружающей среды” (с изм. и доп., вступ. в силу с 01. 09. 2022).; СанПиН 2.1.3684–21 “Санитарно-эпидемиологические требования к содержанию территорий городских и сельских поселений, к водным объектам, питьевой воде и питьевому водоснабжению, атмосферному воздуху, почвам, жилым помещениям, эксплуатации производственных, общественных помещений, организации и проведению санитарно-противоэпидемических (профилактических) мероприятий”.; Cost variation and savings opportunities in the Oncology Care Model . – J.Baumgarddner, A.Shahabi, C.Zacker et al. // Am J Manag Care . – 2018 . – Vol. 24. – P. 618–623.; Poppe LB, Savage SW, Eckel SF : Assessment of final product dosing accuracy when using volumetric technique in the preparation of chemotherapy // J Oncol Pharm Pract. – 2016. - Vol. 22 .– P. 3–9. doi:10.1177/1078155214549489.; https://www.malignanttumors.org/jour/article/view/1191Test