يعرض 1 - 5 نتائج من 5 نتيجة بحث عن '"Hamid Hadi"', وقت الاستعلام: 0.91s تنقيح النتائج
  1. 1

    المصدر: Journal of the Iranian Chemical Society. 10:907-914

    الوصف: Prolyl hydroxylase domain 2 containing protein (PHD2) is a central protein in regulation of cellular response to hypoxia. This protein controls the responses of cell to oxygen level via the regulation of hypoxia inducible factor (HIF) stability. HIF induces the expression of many genes, especially ones orchestrate angiogenesis. There are some reports that mentioned in some tumor types the level of HIF is high in spite of the presence of wild-type PHD2 and normoxic environment. Therefore, the possibility of PHD2 misfolding in some cancer cells arises. Studying such important protein unfolding pathway is insightful for possible therapeutic approaches. In this study, the unfolding pathway of PHD2 illustrates utilizing molecular dynamics simulation of protein thermal denaturation. Based on current study results, we represent the possible mechanisms of PHD2 unfolding in detail. The possible intermediates of PHD2 thermal unfolding are characterized, and the most venomous state of its unfolding pathway is introduced.

  2. 2

    المصدر: Cell Biology International. 36:403-408

    الوصف: Arsenical compounds exhibit a differential toxicity to cancer cells. Microtubules are a primary target of a number of anticancer drugs, such as arsenical compounds. The interaction of 1-NAA (1-naphthylarsonic acid) has been investigated on microtubule polymerization under in vitro and cellular conditions. Microtubules were extracted from sheep brain. Transmission electron microscopy was used to show microtubule structure in the presence of 1-NAA. Computational docking method was applied for the discovery of ligand-binding sites on the microtubular proteins. Proliferation of HeLa cells and HF2 (human foreskin fibroblasts) was measured by the MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide] assay method following their incubation with 1-NAA. Fluorescence microscopic labelling was done with the help of α-tubulin monoclonal antibody and Tunel kit was used to investigate the apoptotic effects of 1-NAA on the HeLa cells. 1-NAA inhibits the tubulin polymerization by the formation of abnormal polymers having high affinity to the inner cell wall.

  3. 3

    المصدر: Journal of biomolecular structuredynamics. 32(8)

    الوصف: Ca(2+) is an essential second messenger, playing a fundamental role in maintaining cell viability and neuronal activity. Two specific endoplasmic reticulum calcium channels, ryanodine receptors (RyRs) and inositol 1,4,5-trisphosphate receptors (IP3Rs) play an important role in Ca(2+) regulation. In the present study, we provided a 3D structure of RyR and IP3R by homology modeling, and we predicted their interactions with a known neuroprotective compound, 3-thiomethyl-5,6-(dimethoxyphenyl)-1,2,4-triazine (TDMT), as well as two inhibitors, dantrolene and 2-aminoethoxydiphenyl borate (2-APB). Interestingly, we found that dantrolene and 2-APB can bind to the IP3-binding domain of IP3R and RyR, while TDMT may directly block both channels by interacting with the putative resident domains in the pore. Cell culture experiments showed that these compounds could protect PC12 cells against H2O2-induced apoptosis and activate autophagic pathways. Collectively, our computational (in silico) and cell culture studies suggest that RyR and IP3R are novel and promising targets to be used against neurodegenerative diseases.

  4. 4

    المصدر: PLoS ONE, Vol 7, Iss 10, p e47061 (2012)
    PLoS ONE

    الوصف: Prolyl hydroxylase domain 2 containing protein (PHD2) is a key protein in regulation of angiogenesis and metastasis. In normoxic condition, PHD2 triggers the degradation of hypoxia-inducible factor 1 (HIF-1α) that induces the expression of hypoxia response genes. Therefore the correct function of PHD2 would inhibit angiogenesis and consequent metastasis of tumor cells in normoxic condition. PHD2 mutations were reported in some common cancers. However, high levels of HIF-1α protein were observed even in normoxic metastatic tumors with normal expression of wild type PHD2. PHD2 malfunctions due to protein misfolding may be the underlying reason of metastasis and invasion in such cases. In this study, we scrutinize the unfolding pathways of the PHD2 catalytic domain’s possible species and demonstrate the properties of their unfolding states by computational approaches. Our study introduces the possibility of aggregation disaster for the prominent species of PHD2 during its partial unfolding. This may justify PHD2 inability to regulate HIF-1α level in some normoxic tumor types.

  5. 5

    المصدر: PLoS ONE
    PLoS ONE, Vol 6, Iss 3, p e16778 (2011)

    الوصف: While various approaches exist to study protein localization, it is still a challenge to predict where proteins localize. Here, we consider a mechanistic viewpoint for membrane localization. Taking into account the steps for the folding pathway of α-helical membrane proteins and relating biophysical parameters to each of these steps, we create a score capable of predicting the propensity for membrane localization and call it FP(3)mem. This score is driven from the principal component analysis (PCA) of the biophysical parameters related to membrane localization. FP(3)mem allows us to rationalize the colocalization of a number of channel proteins with the Cav1.2 channel by their fewer propensities for membrane localization.