يعرض 1 - 3 نتائج من 3 نتيجة بحث عن '"fshd"', وقت الاستعلام: 0.67s تنقيح النتائج
  1. 1
    دورية أكاديمية

    المصدر: Medical Genetics; Том 20, № 3 (2021); 47-56 ; Медицинская генетика; Том 20, № 3 (2021); 47-56 ; 2073-7998

    وصف الملف: application/pdf

    العلاقة: https://www.medgen-journal.ru/jour/article/view/1883/1480Test; Mostacciuolo, M.L., et al., Facioscapulohumeral muscular dystrophy: epidemiological and molecular study in a north-east Italian population sample. Clin Genet, 2009. 75(6): p. 550-5.; Geng, L.N., et al., DUX4 activates germline genes, retroelements, and immune mediators: implications for facioscapulohumeral dystrophy. Dev Cell, 2012. 22(1): p. 38-51.; Vanderplanck, C., et al., The FSHD atrophic myotube phenotype is caused by DUX4 expression. PLoS One, 2011. 6(10): p. e26820.; Snider, L., et al., Facioscapulohumeral Dystrophy: Incomplete Suppression of a Retrotransposed Gene. Plos Genetics, 2010. 6(10).; Lemmers, R.J., et al., Digenic inheritance of an SMCHD1 mutation and an FSHD-permissive D4Z4 allele causes facioscapulohumeral muscular dystrophy type 2. Nat Genet, 2012. 44(12): p. 1370-4.; Wang, L.H. and R. Tawil, Facioscapulohumeral Dystrophy. Current Neurology and Neuroscience Reports, 2016. 16(7).; Chen, J.C.J., et al., Morpholino-mediated Knockdown of DUX4 Toward Facioscapulohumeral Muscular Dystrophy Therapeutics. Molecular Therapy, 2016. 24(8): p. 1405-1411.; Sacconi, S., et al., The FSHD2 Gene SMCHD1 Is a Modifier of Disease Severity in Families Affected by FSHD1. American Journal of Human Genetics, 2013. 93(4): p. 744-751.; van der Maarel, S.M., et al., De novo facioscapulohumeral muscular dystrophy: Frequent somatic mosaicism, sex-dependent phenotype, and the role of mitotic transchromosomal repeat interaction between chromosomes 4 and 10. American Journal of Human Genetics, 2000. 66(1): p. 26-35.; Statland, J., et al., Results for a dose-escalation phase 2 study to evaluate ACE-083, a local muscle therapeutic, in patients with facioscapulohumeral muscular dystrophy. Neuromuscular Disorders, 2018. 28: p. S140-S140.; Pearsall, R., et al., ACE-083, a locally-acting TGF-beta; superfamily ligand trap, increases muscle mass and strength in a mouse model of Duchenne muscular dystrophy. Neuromuscular Disorders, 2016. 26: p. S129-S129.; LoRusso, S., et al., Clinical trial readiness to solve barriers to drug development in FSHD (ReSolve): protocol of a large, multi-center prospective study. Neuromuscular Disorders, 2019. 29: p. S54-S54.; Passerieux, E., et al., Effects of vitamin C, vitamin E, zinc gluconate, and selenomethionine supplementation on muscle function and oxidative stress biomarkers in patients with facioscapulohumeral dystrophy: A double-blind randomized controlled clinical trial. Free Radical Biology and Medicine, 2015. 81: p. 158-169.; Demirhan, M., et al., Scapulothoracic Arthrodesis in Facioscapulohumeral Dystrophy with Multifilament Cable. Clinical Orthopaedics and Related Research, 2009. 467(8): p. 2090-2097.; Giannini, S., et al., Fixation of winged scapula in facioscapulohumeral muscular dystrophy. Clin Med Res, 2007. 5(3): p. 155-62.; Anne-Charlotte Marsollier, L.C., Virginie Mariot, Linda and T.V. Popplewell, George Dickson and Julie Dumonceaux, Antisense targeting of 30 end elements involved in DUX4 mRNA processing is an efficient therapeutic strategy for facioscapulohumeral dystrophy: a new gene-silencing approach. Human Molecular Genetics, 2016. 25(8): p. 1468-1478.; Wallace, L.M., et al., Pre-clinical Safety and Off-Target Studies to Support Translation of AAV-Mediated RNAi Therapy for FSHD. Molecular Therapy-Methods & Clinical Development, 2018. 8: p. 121-130.; Charis L Himeda, T.I.J.a.P.L.J., CRISPR/dCas9-mediated Transcriptional Inhibition Ameliorates the Epigenetic Dysregulation at D4Z4 and Represses DUX4-fl in FSH Muscular Dystrophy. Molecular Therapy, 2016. 24(3): p. 527-535.; Pandey, S.N., et al., Morpholino treatment improves muscle function and pathology of Pitx1 transgenic mice. Mol Ther, 2014. 22(2): p. 390-396.; Bortolanza, S., et al., AAV6-mediated systemic shRNA delivery reverses disease in a mouse model of facioscapulohumeral muscular dystrophy. Mol Ther, 2011. 19(11): p. 2055-64.; Lim, J.W., et al., DICER/AGO-dependent epigenetic silencing of D4Z4 repeats enhanced by exogenous siRNA suggests mechanisms and therapies for FSHD. Hum Mol Genet, 2015. 24(17): p. 4817-28.; Mamchaoui, K., et al., Immortalized pathological human myoblasts: towards a universal tool for the study of neuromuscular disorders. Skelet Muscle, 2011. 1: p. 34.; Zhu, C.H., et al., Cellular senescence in human myoblasts is overcome by human telomerase reverse transcriptase and cyclin-dependent kinase 4: consequences in aging muscle and therapeutic strategies for muscular dystrophies. Aging Cell, 2007. 6(4): p. 515-23.; Tsumagari, K., et al., Gene expression during normal and FSHD myogenesis. BMC Med Genomics, 2011. 4: p. 67.; Lagana, A., et al., Computational design of artificial RNA molecules for gene regulation. Methods Mol Biol, 2015. 1269: p. 393-412.; Alam, M.R., et al., Mitochondrial Ca2+ uptake 1 (MICU1) and mitochondrial ca2+ uniporter (MCU) contribute to metabolism-secretion coupling in clonal pancreatic beta-cells. J Biol Chem, 2012. 287(41): p. 34445-54.; Chomczynski, P. and N. Sacchi, Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem, 1987. 162(1): p. 156-9.; Krivosheeva, I.A., et al., Analysis of candidate genes expected to be essential for melanoma surviving. Cancer Cell Int, 2020. 20: p. 488.; Barro, M., et al., Myoblasts from affected and non-affected FSHD muscles exhibit morphological differentiation defects. J Cell Mol Med, 2010. 14(1-2): p. 275-89.; Vanderplanck, C., et al., Overexpression of the double homeodomain protein DUX4c interferes with myofibrillogenesis and induces clustering of myonuclei. Skelet Muscle, 2018. 8(1): p. 2.; Tassin, A., et al., DUX4 expression in FSHD muscle cells: how could such a rare protein cause a myopathy? J Cell Mol Med, 2013. 17(1): p. 76-89.; Sparber, P., et al., Various haploinsufficiency mechanisms in Pitt-Hopkins syndrome. Eur J Med Genet, 2020. 63(12): p. 104088.; Fan, M., et al., Optimizations of siRNA design for the activation of gene transcription by targeting the TATA-box motif. PLoS One, 2014. 9(9): p. e108253.; https://www.medgen-journal.ru/jour/article/view/1883Test

  2. 2
    دورية أكاديمية
  3. 3