يعرض 1 - 10 نتائج من 90,694 نتيجة بحث عن '"zea mays"', وقت الاستعلام: 0.91s تنقيح النتائج
  1. 1
    دورية أكاديمية

    المصدر: Proceedings of the National Academy of Sciences. 121(21)

    الوصف: Reproductive phasiRNAs (phased, small interfering RNAs) are broadly present in angiosperms and play crucial roles in sustaining male fertility. While the premeiotic 21-nt (nucleotides) phasiRNAs and meiotic 24-nt phasiRNA pathways have been extensively studied in maize (Zea mays) and rice (Oryza sativa), a third putative category of reproductive phasiRNAs-named premeiotic 24-nt phasiRNAs-have recently been reported in barley (Hordeum vulgare) and wheat (Triticum aestivum). To determine whether premeiotic 24-nt phasiRNAs are also present in maize and related species and begin to characterize their biogenesis and function, we performed a comparative transcriptome and degradome analysis of premeiotic and meiotic anthers from five maize inbred lines and three teosinte species/subspecies. Our data indicate that a substantial subset of the 24-nt phasiRNA loci in maize and teosinte are already highly expressed at the premeiotic phase. The premeiotic 24-nt phasiRNAs are similar to meiotic 24-nt phasiRNAs in genomic origin and dependence on DCL5 (Dicer-like 5) for biogenesis, however, premeiotic 24-nt phasiRNAs are unique in that they are likely i) not triggered by microRNAs, ii) not loaded by AGO18 proteins, and iii) not capable of mediating PHAS precursor cleavage. In addition, we also observed a group of premeiotic 24-nt phasiRNAs in rice using previously published data. Together, our results indicate that the premeiotic 24-nt phasiRNAs constitute a unique class of reproductive phasiRNAs and are present more broadly in the grass family (Poaceae) than previously known.

    وصف الملف: application/pdf

  2. 2
    دورية أكاديمية

    المصدر: G3: Genes, Genomes, Genetics. 14(5)

    الوصف: Vitamin A deficiency remains prevalent on a global scale, including in regions where maize constitutes a high percentage of human diets. One solution for alleviating this deficiency has been to increase grain concentrations of provitamin A carotenoids in maize (Zea mays ssp. mays L.)-an example of biofortification. The International Maize and Wheat Improvement Center (CIMMYT) developed a Carotenoid Association Mapping panel of 380 inbred lines adapted to tropical and subtropical environments that have varying grain concentrations of provitamin A and other health-beneficial carotenoids. Several major genes have been identified for these traits, 2 of which have particularly been leveraged in marker-assisted selection. This project assesses the predictive ability of several genomic prediction strategies for maize grain carotenoid traits within and between 4 environments in Mexico. Ridge Regression-Best Linear Unbiased Prediction, Elastic Net, and Reproducing Kernel Hilbert Spaces had high predictive abilities for all tested traits (β-carotene, β-cryptoxanthin, provitamin A, lutein, and zeaxanthin) and outperformed Least Absolute Shrinkage and Selection Operator. Furthermore, predictive abilities were higher when using genome-wide markers rather than only the markers proximal to 2 or 13 genes. These findings suggest that genomic prediction models using genome-wide markers (and assuming equal variance of marker effects) are worthwhile for these traits even though key genes have already been identified, especially if breeding for additional grain carotenoid traits alongside β-carotene. Predictive ability was maintained for all traits except lutein in between-environment prediction. The TASSEL (Trait Analysis by aSSociation, Evolution, and Linkage) Genomic Selection plugin performed as well as other more computationally intensive methods for within-environment prediction. The findings observed herein indicate the utility of genomic prediction methods for these traits and could inform their resource-efficient implementation in biofortification breeding programs.

    وصف الملف: application/pdf

  3. 3
    دورية أكاديمية

    المصدر: G3: Genes, Genomes, Genetics. 14(3)

    الوصف: Root-associated microbiomes in the rhizosphere (rhizobiomes) are increasingly known to play an important role in nutrient acquisition, stress tolerance, and disease resistance of plants. However, it remains largely unclear to what extent these rhizobiomes contribute to trait variation for different genotypes and if their inclusion in the genomic selection protocol can enhance prediction accuracy. To address these questions, we developed a microbiome-enabled genomic selection method that incorporated host SNPs and amplicon sequence variants from plant rhizobiomes in a maize diversity panel under high and low nitrogen (N) field conditions. Our cross-validation results showed that the microbiome-enabled genomic selection model significantly outperformed the conventional genomic selection model for nearly all time-series traits related to plant growth and N responses, with an average relative improvement of 3.7%. The improvement was more pronounced under low N conditions (8.4-40.2% of relative improvement), consistent with the view that some beneficial microbes can enhance N nutrient uptake, particularly in low N fields. However, our study could not definitively rule out the possibility that the observed improvement is partially due to the amplicon sequence variants being influenced by microenvironments. Using a high-dimensional mediation analysis method, our study has also identified microbial mediators that establish a link between plant genotype and phenotype. Some of the detected mediator microbes were previously reported to promote plant growth. The enhanced prediction accuracy of the microbiome-enabled genomic selection models, demonstrated in a single environment, serves as a proof-of-concept for the potential application of microbiome-enabled plant breeding for sustainable agriculture.

    وصف الملف: application/pdf

  4. 4
    دورية أكاديمية

    المصدر: Nature Communications. 15(1)

    مصطلحات موضوعية: Carbon Dioxide, Photosynthesis, Poaceae, Plants, Zea mays

    الوصف: Plants with the C4 photosynthesis pathway typically respond to climate change differently from more common C3-type plants, due to their distinct anatomical and biochemical characteristics. These different responses are expected to drive changes in global C4 and C3 vegetation distributions. However, current C4 vegetation distribution models may not predict this response as they do not capture multiple interacting factors and often lack observational constraints. Here, we used global observations of plant photosynthetic pathways, satellite remote sensing, and photosynthetic optimality theory to produce an observation-constrained global map of C4 vegetation. We find that global C4 vegetation coverage decreased from 17.7% to 17.1% of the land surface during 2001 to 2019. This was the net result of a reduction in C4 natural grass cover due to elevated CO2 favoring C3-type photosynthesis, and an increase in C4 crop cover, mainly from corn (maize) expansion. Using an emergent constraint approach, we estimated that C4 vegetation contributed 19.5% of global photosynthetic carbon assimilation, a value within the range of previous estimates (18-23%) but higher than the ensemble mean of dynamic global vegetation models (14 ± 13%; mean ± one standard deviation). Our study sheds insight on the critical and underappreciated role of C4 plants in the contemporary global carbon cycle.

    وصف الملف: application/pdf

  5. 5
    دورية أكاديمية

    المصدر: Nutrients. 16(1)

    الوصف: (1) Background: Clinical results on the effects of excess sugar consumption on insulin sensitivity are conflicting, possibly due to differences in sugar type and the insulin sensitivity index (ISI) assessed. Therefore, we compared the effects of consuming four different sugars on insulin sensitivity indices derived from oral glucose tolerance tests (OGTT). (2) Methods: Young adults consumed fructose-, glucose-, high-fructose corn syrup (HFCS)-, sucrose-, or aspartame-sweetened beverages (SB) for 2 weeks. Participants underwent OGTT before and at the end of the intervention. Fasting glucose and insulin, Homeostatic Model Assessment-Insulin Resistance (HOMA-IR), glucose and insulin area under the curve, Surrogate Hepatic Insulin Resistance Index, Matsuda ISI, Predicted M ISI, and Stumvoll Index were assessed. Outcomes were analyzed to determine: (1) effects of the five SB; (2) effects of the proportions of fructose and glucose in all SB. (3) Results: Fructose-SB and the fructose component in mixed sugars negatively affected outcomes that assess hepatic insulin sensitivity, while glucose did not. The effects of glucose-SB and the glucose component in mixed sugar on muscle insulin sensitivity were more negative than those of fructose. (4) Conclusion: the effects of consuming sugar-SB on insulin sensitivity varied depending on type of sugar and ISI index because outcomes assessing hepatic insulin sensitivity were negatively affected by fructose, and outcomes assessing muscle insulin sensitivity were more negatively affected by glucose.

    وصف الملف: application/pdf

  6. 6
    دورية أكاديمية

    المصدر: Molecular Biology and Evolution. 40(8)

    الوصف: Future breeding is likely to involve the detection and removal of deleterious alleles, which are mutations that negatively affect crop fitness. However, little is known about the prevalence of such mutations and their effects on phenotypic traits in the context of modern crop breeding. To address this, we examined the number and frequency of deleterious mutations in 350 elite maize inbred lines developed over the past few decades in China and the United States. Our findings reveal an accumulation of weakly deleterious mutations and a decrease in strongly deleterious mutations, indicating the dominant effects of genetic drift and purifying selection for the two types of mutations, respectively. We also discovered that slightly deleterious mutations, when at lower frequencies, were more likely to be heterozygous in the developed hybrids. This is consistent with complementation as a potential explanation for heterosis. Subsequently, we found that deleterious mutations accounted for more of the variation in phenotypic traits than nondeleterious mutations with matched minor allele frequencies, especially for traits related to leaf angle and flowering time. Moreover, we detected fewer deleterious mutations in the promoter and gene body regions of differentially expressed genes across breeding eras than in nondifferentially expressed genes. Overall, our results provide a comprehensive assessment of the prevalence and impact of deleterious mutations in modern maize breeding and establish a useful baseline for future maize improvement efforts.

    وصف الملف: application/pdf

  7. 7
    دورية أكاديمية

    المصدر: BMC Plant Biology, Vol 24, Iss 1, Pp 1-16 (2024)

    الوصف: Abstract Arsenic (As) contamination is a major environmental pollutant that adversely affects plant physiological processes and can hinder nutrients and water availability. Such conditions ultimately resulted in stunted growth, low yield, and poor plant health. Using rhizobacteria and composted biochar (ECB) can effectively overcome this problem. Rhizobacteria have the potential to enhance plant growth by promoting nutrient uptake, producing growth hormones, and suppressing diseases. Composted biochar can enhance plant growth by improving aeration, water retention, and nutrient cycling. Its porous structure supports beneficial microorganisms, increasing nutrient uptake and resilience to stressors, ultimately boosting yields while sequestering carbon. Therefore, the current study was conducted to investigate the combined effect of previously isolated Bacillus faecalis (B. faecalis) and ECB as amendments on maize cultivated under different As levels (0, 300, 600 mg As/kg soil). Four treatments (control, 0.5% composted biochar (0.5ECB), B. faecalis, and 0.5ECB + B. faecalis) were applied in four replications following a completely randomized design. Results showed that the 0.5ECB + B. faecalis treatment led to a significant rise in maize plant height (~ 99%), shoot length (~ 55%), root length (~ 82%), shoot fresh (~ 87%), and shoot dry weight (~ 96%), root fresh (~ 97%), and dry weight (~ 91%) over the control under 600As stress. There was a notable increase in maize chlorophyll a (~ 99%), chlorophyll b (~ 81%), total chlorophyll (~ 94%), and shoot N, P, and K concentration compared to control under As stress, also showing the potential of 0.5ECB + B. faecalis treatment. Consequently, the findings suggest that applying 0.5ECB + B. faecalis is a strategy for alleviating As stress in maize plants.

    وصف الملف: electronic resource

  8. 8
    دورية أكاديمية

    المصدر: Plants, People, Planet, Vol 6, Iss 4, Pp 965-978 (2024)

    الوصف: Societal Impact Statement Bhutan is an ancient kingdom in the Himalayan range and one of the most rugged, geodiverse, and mountainous agricultural countries in the world. Historically secluded and geographically isolated, Bhutan is a hotspot for Himalayan agrobiodiversity where small‐scale agriculture supports the livelihoods of a large share of the resident population. Here, Bhutanese maize agrobiodiversity is explored to unlock its adaptation potential using genomics and participatory variety selection in combination with climate research. We show that Bhutanese traditional farmers maintain a wealth of diversity that may support the sustainable intensification of maize cropping in the Himalayas and beyond. Summary Bhutan, an ancient kingdom enshrouded in the Himalayas, hosts largely untapped agrobiodiversity that may harness genetic variation useful for adaptation to local climates and user needs. Here, we genotyped‐by‐sequencing 351 pooled samples of local maize (Zea mays L.) landraces, the entire collection of the Bhutan National Gene Bank, comparing their genomic diversity with maize from other countries in the Himalayan range. We reconstructed the adaptation of Bhutanese maize to historical and projected climates, identifying areas of future maladaptation. We then run a common garden experiment involving local smallholder farmers in a participatory evaluation of landraces' performance, aiming at the identification of quantitative trait nucleotides (QTNs) contributing to adaptation, performance, and farmers' choice. We found that Bhutanese maize agrobiodiversity is unique in the Himalayan range, and a locus on Chromosome 5 supports the differentiation of three distinct genetic clusters. We found that a portion of current genomic diversity can be associated with the Bhutanese landscape and that maize cultivation in the southwest of the country may be negatively impacted by projected climates. We also found that Bhutanese maize agrobiodiversity is large and may contribute to adaptation and improvement. A genome‐wide association study identified 117 QTNs for climatic adaptation, agronomic performance, and farmers' preferences. Our results show that Bhutanese maize landraces are a unique source of genetic agrobiodiversity for local adaptation. We found that the integration of genomics, climate science, and participatory methods can speed up the identification of genetic factors contributing to the sustainable intensification of maize cultivation in the Himalayas and beyond.

    وصف الملف: electronic resource

  9. 9
    دورية أكاديمية

    المصدر: AgriEngineering, Vol 6, Iss 2, Pp 1847-1858 (2024)

    الوصف: This study assesses the impact of defoliation applied to three developmental stages across three cropping seasons from 2021 to 2023 on growth, yield and forage quality in maize. The experimental design included three treatments: defoliation of three expanded leaves at the 3rd–4th leaf stage (DF1), the 5th–6th expanded leaves by leaf punch (DF2) and expanding leaves with the DF2 treatment (DF3) at the 6th–7th leaf stages, compared with no defoliation (control). Over three years, the most significant decrease in dry matter (DM) yield occurred in DF1 during spring sowing, while in summer sowing, the largest reduction was in DF3, both of which were correlated with changes in the number of grains per ear. The DM yields at harvest were positively correlated with plant leaf areas at the silking stage. The digestibility of forage in in vitro DM decreased concomitantly with an increase in acid detergent fiber content, indicating a decrease in forage quality. Given the frequent severe damage observed in summer sown maize and the detrimental effects of early growth stage leaf feeding on quality and quantity of spring sown maize, the application of registered insecticides is advised to reduce pest damage to maize crops.

    وصف الملف: electronic resource

  10. 10
    دورية أكاديمية

    المصدر: Journal of Stress Physiology & Biochemistry, Vol 20, Iss 2, Pp 99-106 (2024)

    الوصف: Under model conditions, the effect of potassium humate on some indicators in corn seedlings obtained from gamma-irradiated seeds was determined. A physicochemical analysis of potassium humate obtained from pine wood waste was carried out. In field and laboratory experiments, we studied the effect of potassium humate solutions on the morphological and biochemical parameters of corn seedlings obtained from irradiated seeds at doses of 50 and 100 Gy. In all experiments, solutions of potassium humate had a positive effect on the dynamics of growth and development of corn plants grown from irradiated seeds. The effect of potassium humate solutions on chlorophyll and carotenoid pigments, and on the photosynthetic activity (maximum quantum yield of PSII) of plants was studied. It has been established that the treatment of seeds with a 0.1% solution of potassium humate before irradiation reduces the amount of malondialdehyde, a product of lipid peroxidation. Seed treatment with 0.1% and 0.01% solutions of potassium humate before irradiation caused a significant reduction in the harmful effects of ionizing radiation on seedlings of corn plants.

    وصف الملف: electronic resource