يعرض 1 - 10 نتائج من 169 نتيجة بحث عن '"residual trapping"', وقت الاستعلام: 1.60s تنقيح النتائج
  1. 1
    دورية أكاديمية

    الوصف: Residual trapping of CO2, typically quantified by residual gas saturation (Sgr), is one of the main trapping mechanisms in geological CO2 storage (GCS). An important additional characteristic parameter is critical gas saturation (Sgc). Sgc determines at what saturation the trapped gas remobilizes again if gas saturation increases due to exsolution from the aqueous phase, rather than from further gas injection. In the present study, a pilot-scale CO2 injection experiment carried out at Heletz, Israel, in 2017, is interpreted by taking critical saturation into account. With regards to this experiment, the delayed second arrival peak of the partitioning tracer could not be captured by means of physical models. In this work, the hysteretic relative permeability functions were modified to account for Sgc. The results showed that accounting for the effect of Sgc during the secondary drainage indeed captured the observed delayed peak. The difference between the values of Sgr and Sgc, influenced both the time and peak height of the tracer arrival. To our knowledge this is first time that critical gas saturation has been considered in field scale analyses related to GCS. Accounting for Sgc is relevant where gas saturation during secondary drainage increases due to gas phase expansion or exsolution from the aqueous phase. This will happen in situations where pressure depletion occurs, e.g. due to gas leakage from fracture zones or wells or possibly because of pressure management activities. The findings also have implications for other applications such as underground gas storage as well as for geothermal reservoir management.

    وصف الملف: application/pdf

  2. 2

    المصدر: Water resources research. 59(6)

    الوصف: Remobilization of residually trapped CO2 can occur under pressure depletion, caused by any sort of leakage, brine extraction for pressure maintenance purposes, or simply by near wellbore pressure dissipation once CO2 injection has ceased. This phenomenon affects the long-term stability of CO2 residual trapping and should therefore be considered for an accurate assessment of CO2 storage security. In this study, pore-network modeling is performed to understand the relevant physics of remobilization. Gas remobilization occurs at a higher gas saturation than the residual saturation, the so-called critical saturation; the difference is called the mobilization saturation, a parameter that is a function of the network properties and the mechanisms involved. Regardless of the network type and properties, Ostwald ripening tends to slightly increase the mobilization saturation, thereby enhancing the security of residual trapping. Moreover, significant hysteresis and reduction in gas relative permeability is observed, implying slow reconnection of the trapped gas clusters. These observations are safety enhancing features, due to which the remobilization of residual CO2 is delayed. The results, consistent with our previous analysis of the field-scale Heletz experiments, have important implications for underground gas and CO2 storage. In the context of CO2 storage, they provide important insights into the fate of residual trapping in both the short and long term.

    وصف الملف: electronic

  3. 3

    المصدر: Advances in Water Resources. 179

    الوصف: A decrease in reservoir pressure can lead to remobilization of residually trapped CO2. In this study, the pore-scale processes related to trapped CO2 remobilization under pressure depletion were investigated with the use of high-resolution 3D X-ray microtomography. The distribution of CO2 in the pore space of Bentheimer sandstone was measured after waterflooding at a fluid pressure of 10 MPa, and then at pressures of 8, 6 and 5 MPa. At each stage CO2 was produced, implying that swelling of the gas phase and exsolution allowed the gas to reconnect and flow. After production, the gas reached a new position of equilibrium where it may be trapped again. At the end of the experiment, we imaged the sample again after 30 hours. Firstly, the results showed that an increase in saturation beyond the residual value was required to remobilize the gas, which is consistent with earlier field-scale results. Additionally, Ostwald ripening and continuing exsolution lead to a significant change in fluid saturation: transport of dissolved gas in the aqueous phase to equilibriate capillary pressure led to reconnection of the gas and its flow upwards under gravity. The implications for CO2 storage are discussed: an increase in saturation beyond the residual value is required to mobilize the gas, but Ostwald ripening can allow local reconnection of hitherto trapped gas, thus enhancing migration and may reduce the amount of CO2 that can be capillary trapped in storage operations.

    وصف الملف: electronic

  4. 4
    دورية أكاديمية

    المؤلفون: Emad A. Al-Khdheeawi

    المصدر: Energies, Vol 17, Iss 3, p 678 (2024)

    الوصف: The performance of carbon geo-sequestration is influenced by several parameters, such as the heterogeneity of the reservoir, the characteristics of the caprock, the wettability of the rock, and the salinity of the aquifer brine. Although many characteristics, like the formation geology, are fixed and cannot be altered, it is feasible to choose and manipulate other parameters in order to design an optimized storage programme such as the implementation of CO2 injection techniques, including continuous injection or water alternating CO2, which can significantly increase storage capacity and guarantee secure containment. Although WAG (water-alternating-gas) technology has been widely applied in several industrial sectors such as enhanced oil recovery (EOR) and CO2 geo-sequestration, the impact of the CO2-to-water ratio on the performance of CO2 geo-sequestration in heterogeneous formations has not been investigated. In this study, we have constructed a 3D heterogeneous reservoir model to simulate the injection of water alternating gas in deep reservoirs. We have tested several CO2-water ratios, specifically the 2:1, 1:1, and 1:2 ratios. Additionally, we have estimated the capacity of CO2 trapping, as well as the mobility and migration of CO2. Our findings indicate that injecting a low ratio of CO2 to water (specifically 1:2) resulted in a much better performance compared to situations with no water injection and high CO2-water ratios. The residual and solubility trappings were notably increased by 11% and 19%, respectively, but the presence of free mobile CO2 was reduced by 27%. Therefore, in the reservoir under investigation, the lower CO2-water ratio is recommended due to its improvement in CO2 storage capacity and containment security.

    وصف الملف: electronic resource

  5. 5

    المؤلفون: Moghadasi, Ramin

    المساهمون: Niemi, Auli, Ringrose, Philip, Professor

    المصدر: Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology.

    الوصف: Geological storage of CO2 in deep saline aquifers is a promising technology in the combat to reduce the atmospheric emissions of CO2. A critical component in this solution is the estimation of aquifer’s in situ capability to store CO2. For this, an in-depth understanding of the underlying processes is required over a wide range of scales, from the pore level where processes occur, to field scale that needs to be controlled and monitored. This Thesis is focused on residual trapping – quantitively characterized by the parameter residual gas saturation (Sgr) – which is one of the key trapping mechanisms. The overall objective is to better understand the relevant in situ phenomena that affect the stability of CO2 residual trapping over a range of scales. Important part of this are the processes controlling the residual gas remobilization that is characterized quantitively by so-called critical gas saturation (Sgc). To this end, first, numerical modelling was implemented at the field-scale to investigate the role of permeability heterogeneity and critical gas saturation in the interpretation of the collected partitioning tracer data from a pilot-scale CO2 injection experiment carried out at Heletz, Israel, 2017. With regards to this experiment, the delayed second arrival peak of the partitioning tracer could not be captured by physical processes included in presently available models, including a stochastic model of within-layer permeability heterogeneity. The results could, however, be explained by accounting for the critical gas saturation that indicates the occurrence of gas-phase remobilization driven by pressure depletion. This is the first ever field observation and demonstration of critical saturation in geological CO2 storage. The relevant fundamental pore-scale characteristics of remobilization are then investigated by means of pore-scale imaging and modeling. The results illustrate that under pressure depletion conditions (which could be caused by e.g., a leaky wellbore or a facture) remobilization of residually trapped CO2 takes place at a higher saturation than residual saturation with the difference depending on various rock and fluid properties. Furthermore, the results provide valuable insights into the pore-scale dynamics of trapped gas remobilization. A very good consistency was found between the pore-scale results and field-scale observations, which provides unique insights into the fate of CO2 residual trapping and remobilization across a wide range of scales.

    وصف الملف: electronic

  6. 6
    دورية أكاديمية

    الوصف: A multi-scale synchrotron-based X-ray microtomographic dataset of residually trapped air after gravity-driven brine imbibition was acquired for three samples with differing pore topologies and morphologies; image volumes were reconstructed with voxel sizes from 4.44 µm down to 0.64 µm. Capillary pressure distributions among the population of trapped ganglia were investigated by calculating interfacial curvature in order to assess the potential for remobilization of residually-trapped non-wetting ganglia due to differences in capillary pressure presented by neighbor ganglia. For each sample, sintered glass beads, Boise sandstone and Fontainebleau sandstone, sub-volumes with different voxel sizes were analyzed to quantify air/brine interfaces and interfacial curvatures and investigate the effect of image resolution on both fluid phase identification and curvature estimates. Results show that the method developed for interfacial curvature estimation leads to reliable capillary pressure estimates for gas ganglia. Higher resolution images increase confidence in curvature calculations, especially for the sandstone samples that display smaller gas-brine interfaces which are then represented by a higher number of voxels when imaged with a micron or sub-micron voxels size. The analysis of sub-volumes from the Boise and Fontainebleau dataset highlights the presence of a residually-trapped gas phase consisting of ganglia located in one or few pores and presenting significantly different capillary pressures, especially in the case of Fontainebleau sandstone. As a result, Ostwald ripening could occur, leading to gas transfer from ganglia with higher capillary pressure to surrounding ganglia with lower capillary pressures. More generally, at the pore-scale, most gas ganglia do present similar capillary pressures and Ostwald ripening would then not represent a major mechanism for residually-trapped gas transfer and remobilization.

    وصف الملف: application/pdf

  7. 7
    دورية أكاديمية

    الوصف: A multi-scale synchrotron-based X-ray microtomographic dataset of residually trapped air after gravity-driven brine imbibition was acquired for three samples with differing pore topologies and morphologies; image volumes were reconstructed with voxel sizes from 4.44 µm down to 0.64 µm. Capillary pressure distributions among the population of trapped ganglia were investigated by calculating interfacial curvature in order to assess the potential for remobilization of residually-trapped non-wetting ganglia due to differences in capillary pressure presented by neighbor ganglia. For each sample, sintered glass beads, Boise sandstone and Fontainebleau sandstone, sub-volumes with different voxel sizes were analyzed to quantify air/brine interfaces and interfacial curvatures and investigate the effect of image resolution on both fluid phase identification and curvature estimates. Results show that the method developed for interfacial curvature estimation leads to reliable capillary pressure estimates for gas ganglia. Higher resolution images increase confidence in curvature calculations, especially for the sandstone samples that display smaller gas-brine interfaces which are then represented by a higher number of voxels when imaged with a micron or sub-micron voxels size. The analysis of sub-volumes from the Boise and Fontainebleau dataset highlights the presence of a residually-trapped gas phase consisting of ganglia located in one or few pores and presenting significantly different capillary pressures, especially in the case of Fontainebleau sandstone. As a result, Ostwald ripening could occur, leading to gas transfer from ganglia with higher capillary pressure to surrounding ganglia with lower capillary pressures. More generally, at the pore-scale, most gas ganglia do present similar capillary pressures and Ostwald ripening would then not represent a major mechanism for residually-trapped gas transfer and remobilization.

    وصف الملف: application/pdf

  8. 8
    دورية أكاديمية

    المصدر: INTERNATIONAL JOURNAL OF GREENHOUSE GAS CONTROL ; ISSN: 1750-5836 ; ISSN: 1878-0148

    الوصف: The injection of CO2 into underground reservoirs provides a long term solution for anthropogenic emissions. A variable injection method (such as ramping the flow rate up or down) provides flexibility to injection sites, and could increase trapping at the pore-scale. However, the impact of a variable injection method on the connectivity of the gas, and subsequent trapping has not been explored at the pore-scale. Here, we conduct pore-scale imaging in a continuum-scale sample to observe the role of a variable flow rate on residual trapping. We show that the injection method influences how much of the pore space is accessible to the gas, even when total volumes injected, and total flow rates remain constant. Starting at a low flow rate led to a lower gas saturation at breakthrough. Once a pathway was established across the sample, increasing the flow rate did not improve gas saturation significantly, as the increase in flux was accommodated by the connected pathway across the sample. Starting at a high flow rate led to a higher pore space utilization, which is optimal for CO2 storage. Overall the high to low injection scenario led to more residual trapping.

    وصف الملف: application/pdf

  9. 9
    دورية أكاديمية

    المصدر: Frontiers in Water, Vol 3 (2022)

    الوصف: Direct numerical simulation and pore-network modeling are common approaches to study the physics of two-phase flow through natural rocks. For assessment of the long-term performance of geological sequestration of CO2, it is important to model the full drainage-imbibition cycle to provide an accurate estimate of the trapped CO2. While direct numerical simulation using pore geometry from micro-CT rock images accurately models two-phase flow physics, it is computationally prohibitive for large rock volumes. On the other hand, pore-network modeling on networks extracted from micro-CT rock images is computationally efficient but utilizes simplified physics in idealized geometric pore elements. This study uses the lattice-Boltzmann method for direct numerical simulation of CO2-brine flow in idealized pore elements to develop a new set of pore-level flow models for the pore-body filling and snap-off events in pore-network modeling of imbibition. Lattice-Boltzmann simulations are conducted on typical idealized pore-network configurations, and the interface evolution and local capillary pressure are evaluated to develop modified equations of local threshold capillary pressure of pore elements as a function of shape factor and other geometrical parameters. The modified equations are then incorporated into a quasi-static pore-network flow solver. The modified model is applied on extracted pore-network of sandstone samples, and saturation of residual trapped CO2 is computed for a drainage-imbibition cycle. The modified model yields different statistics of pore-level events compared with the original model; in particular, the occurrence of snap-off in pore-throats is reduced resulting in a more frontal displacement pattern along the main injection direction. Compared to the original model, the modified model is in closer agreement with the residual trapped CO2 obtained from core flow experiments and direct numerical simulation.

    وصف الملف: electronic resource

  10. 10

    المؤلفون: Joodaki, Saba

    المساهمون: Niemi, Auli, Prof, Yang, Zhibing, Dr, Ennis-King, Jonathan, Dr

    المصدر: Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology.

    الوصف: Geological storage of CO2 in deep saline aquifers is one of the methods to mitigate the release of this greenhouse gas into the atmosphere. The efficiency of this solution can be improved by better understanding of the relevant trapping processes, as well as by improving available injection techniques and developing tools for more accurate site characterization.  This Thesis has implemented numerical simulations to investigate the processes that affect the capillary trapping of the injected CO2 in a saline aquifer with the focus on two field experiments carried out in Heletz, Israel. The two experiments, applying different test sequences and characterization techniques, were carried out with the focus on determining the parameter of the maximum residual gas saturation. The collected data and a detailed description of the injection site and operational procedures are presented in Paper I. In Paper II, numerical modeling is used to interpret the pressure and temperature data recorded during the first residual trapping experiment (RTE I). The second residual trapping experiment (RTE II) and the corresponding numerical modelling for interpretation of hydraulic and partitioning tracer tests is presented in Paper III. Overall, the data analysis and the results from numerical simulations for both experiments were in agreement and suggested that push-pull hydraulic test is a robust technique that can provide useful information to estimate the parameter of residual gas saturation in situ with reasonable costs. Both thermal and tracer tests can provide valuable data to further characterize the formation however the operational difficulties can be limiting factors.   In Paper IV, the effect of different parameters to increase the efficiency of the Water alternating Gas (WAG) technique are investigated. For this study numerical simulation was used to model a heterogeneous formation based on parameters obtained from the Heletz site. For the formation used in this study, it was shown that higher water injection rate has a stronger effect on dissolution trapping than CO2 injection rate. The most important design parameter was, however, the WAG ratio. It was also concluded that the design parameters of WAG technique are site-specific and application of this method requires extensive site characterization.

    وصف الملف: electronic