يعرض 1 - 10 نتائج من 9,480 نتيجة بحث عن '"organic Rankine cycle"', وقت الاستعلام: 0.81s تنقيح النتائج
  1. 1
    رسالة جامعية

    المؤلفون: Al-Sayyab, Ali

    المساهمون: University/Department: Universitat Jaume I. Escola de Doctorat

    مرشدي الرسالة: Navarro-Esbrí, Joaquín, Mota-Babiloni, Adrián

    المصدر: TDX (Tesis Doctorals en Xarxa)

    الوصف: Compendi d'articles

    الوصف (مترجم): In this thesis, an innovative compound photovoltaic thermal (PV/T) waste heat–driven ejector heat pump system was developed for simultaneous cooling and heating. The system arrangement combines five promising environmentally friendly technologies: heat pumps, ejectors, PV/T panels, waste heat recovery, and low-global warming potential (GWP) refrigerants. A comparative study of various low-GWP refrigerants was conducted to determine the performance of the proposed system under different conditions and waste heat levels. Initially, the system was combined with different waste heat sources, PV/T systems, milk pasteurisation processes, and data centres, and finally, it was combined with a geothermally actuated organic Rankine cycle to produce a trigeneration system with high performance.
    Programa de Doctorat en Tecnologies Industrials i Materials

    وصف الملف: application/pdf

  2. 2
    رسالة جامعية

    المؤلفون: Jovell Hidalgo, Daniel

    المساهمون: University/Department: Universitat Ramon Llull. Departament d'Enginyeria Química i Ciència de Materials

    مرشدي الرسالة: daniel.jovell@iqs.url.edu, Llovell Ferret, Fèlix Lluís, González Olmos, Rafael, Sempere Cebrian, Julià

    المصدر: TDX (Tesis Doctorals en Xarxa)

    الوصف: El canvi climàtic és un fenomen real, indubtablement causat per l'activitat humana i, més notòriament, per les emissions de CO2 i altres gasos d'efecte hivernacle procedents de la crema de combustibles fòssils. Tot i que les emissions de CO2 representen almenys dos terços de les emissions mundials de gasos d'efecte d'hivernacle, altres compostos, com els gasos fluorats (gasos-F), també contribueixen a l'augment d'aquestes emissions. El cas concret dels gasos-F és especialment alarmant, ja que tenen un potencial d'escalfament global fins a 12.400 vegades superior al del CO2, fet que suposa que fins i tot concentracions atmosfèriques relativament baixes poden influir de manera desproporcionada en el canvi climàtic global. Els hidrofluorocarbonis (HFCs) representen la major part d'aquestes emissions de gasos-F i, el 2020, eren unes 5.700 vegades superiors al valor de 1990 a Europa. A banda de l'evident preocupació ambiental, el problema subjacent relacionat amb aquests gasos és la inexistència d'una tecnologia estandarditzada per al seu tractament. Per tant, s'envien a incinerar amb el corresponent cost ambiental quan acaba el seu cicle de vida. L'objectiu general d'aquesta tesi doctoral és dissenyar mètodes ecotecnològics de recuperació i reciclatge dels HFCs per a donar una solució sostenible a l'actual repte ambiental. La recuperació i reutilització dels gasos-F és una estratègia prometedora que prolonga la seva vida útil, a la vegada que redueix la quantitat de nous gasos-F introduïts al mercat i el seu eventual alliberament a l'atmosfera, impulsant així el mercat cap a una economia circular. Amb aquest propòsit, s'estudia la viabilitat de la recuperació dels HFC mitjançant tècniques d'absorció i dissolvents avançats, com diferents famílies de líquids iònics i dissolvents eutèctics profunds, mitjançant una combinació d'eines de modelatge multiescala que proporcionen diferents nivells de resolució i complexitat per a estudiar aquests sistemes, que van des de càlculs químico-quàntics fins als simuladors de processos comercials i l'anàlisi del cicle de vida. En primer lloc, es van construir models moleculars emprant models coarse-grained relativament senzills per a diversos gasos-F i dissolvents avançats per a realitzar un estudi amb la finalitat de modelar la solubilitat i capacitat de recuperació en aquests dissolvents. Els resultats van guiar dos estudis de simulació de processos amb l'objectiu d'estimar els costos energètics i ambientals aproximats del procés de separació i recuperació de les mescles comercials de HFCs. L'últim pas d'aquest treball comprèn l'estudi d'alternatives als HFC emprats actualment, incloent-hi famílies fluorades prometedores com les hidrofluoroolefines i els hidrofluoroèters en una àmplia gamma d'aplicacions. Una vegada més, es combinen diferents eines computacionals per a conèixer el seu comportament termofísic, mitjançant l'ús de simulacions moleculars, o per adreçar la seva capacitat de substituir als actuals HFC en aplicacions específiques a partir d'una completa anàlisi termodinàmica i energètica mitjançant equacions d'estat SAFT. El propòsit final d'aquesta tesi és oferir una varietat de solucions per a abordar el necessari canvi de model d'una economia lineal a una de circular, així com proporcionar un coneixement bàsic de les alternatives d'acord amb la nova legislació a través d'un enfocament multiescala, contribuint a la sostenibilitat del planeta.

    الوصف (مترجم): El cambio climático es un fenómeno real, indudablemente causado por la actividad humana y, más notoriamente, por las emisiones de CO2 y otros gases de efecto invernadero procedentes de la quema de combustibles fósiles. Aunque las emisiones de CO2 representan al menos dos tercios de las emisiones mundiales de gases de efecto invernadero, otros compuestos, como los gases fluorados (gases-F), también contribuyen al aumento de esas emisiones. El caso concreto de los gases-F es especialmente alarmante, ya que tienen un potencial de calentamiento global hasta 12.400 veces superiores al del CO2, lo que significa que incluso concentraciones atmosféricas relativamente bajas pueden influir de forma desproporcionada en el cambio climático global. Los hidrofluorocarbonos (HFCs) representan la mayor parte de estas emisiones de gases-F y, en 2020, eran unas 5.700 veces superiores al valor de 1990 en Europa. Aparte de la evidente preocupación ambiental, el problema subyacente relacionado con estos gases es la inexistencia de una tecnología estandarizada para su tratamiento, enviándose a incinerar con el correspondiente coste ambiental cuando termina su ciclo de vida. El objetivo general de esta tesis doctoral es diseñar métodos ecotecnológicos de recuperación y reciclaje de los HFCs para dar una solución sostenible al actual reto ambiental. La recuperación y reutilización de los gases-F es una estrategia prometedora que prolonga su vida útil, al tiempo que reduce la cantidad de nuevos gases-F introducidos en el mercado y su eventual liberación a la atmósfera, impulsando así el mercado hacia una economía circular. Para ello, se aborda la viabilidad de la recuperación de los HFC mediante técnicas de absorción y disolventes avanzados, como diferentes familias de líquidos iónicos y disolventes eutécticos profundos, mediante una combinación de herramientas de modelado multiescala que proporcionan diferentes niveles de resolución y complejidad para estudiar estos sistemas, que van desde cálculos químico-cuánticos hasta los simuladores de procesos comerciales y la evaluación del ciclo de vida. En primer lugar, se construyeron modelos moleculares empleando modelos coarse-grained relativamente sencillos para varios gases-F y disolventes avanzados para realizar un estudio con el fin de modelar la solubilidad y capacidad de recuperación en estos disolventes. Los resultados guiaron dos estudios de simulación de procesos con el objetivo de estimar los costes energéticos y ambientales aproximados del proceso de separación y recuperación de las mezclas comerciales de HFCs. El último paso de este trabajo comprende el estudio de alternativas a los HFC utilizados actualmente, incluyendo familias fluoradas prometedoras como las hidrofluoroolefinas y los hidrofluoroéteres en una amplia gama de aplicaciones. Una vez más, se combinan diferentes herramientas computacionales para conocer su comportamiento termofísico, mediante el uso de simulaciones moleculares, o para abordar su capacidad de sustituir a los actuales HFC en aplicaciones específicas a partir de un completo análisis termodinámico y energético mediante ecuaciones de estado SAFT. El propósito final de esta tesis es ofrecer una variedad de soluciones para abordar el necesario cambio de modelo de una economía lineal a una circular, así como proporcionar un conocimiento básico de las alternativas de acuerdo con la nueva legislación a través de un enfoque multiescala de técnicas, contribuyendo a la sostenibilidad del planeta.
    Climate change is a real phenomenon, undoubtedly caused by human activities and, most notably, by the emissions of CO2 and other greenhouse gases from the combustion of fossil fuels. While CO2 emissions account for at least two-thirds of global greenhouse gas emissions, other compounds, like fluorinated gases (F-gases), also contribute to the increase of those emissions. The specific case of F-gases is particularly alarming since they have a global warming potential up to 12,400 times that of CO2, meaning that even relatively low atmospheric concentrations can disproportionately influence global climate change. Hydrofluorocarbons (HFCs) account for the majority of these F-gas emissions and were, in 2020, about 5,700 times higher than in 1990 in Europe. Apart from the obvious environmental concern, the underlying problem related to these gases is the nonexistence of a standardized technology for their treatment. Therefore, they are sent for incineration with the corresponding environmental cost when their life cycle is over. The overall purpose of this Ph.D. thesis is to design recovery and recycling ecotechnological methods for HFCs in order to provide a sustainable solution to the current environmental challenge. The recovery and reuse of F-gases is a promising strategy that extends their lifespan while reducing the amount of new F-gases brought to the market and their eventual release into the atmosphere, thereby pushing the market toward a circular economy. To that end, the feasibility of recovering HFCs using absorption techniques and advanced solvents, like different families of ionic liquids and deep eutectic solvents, is addressed by means of a combination of multiscale modeling tools to provide different levels of resolution and complexity to study these systems, which range from quantum-based calculations to commercial process simulators and life cycle assessment. First, molecular models were built employing relatively simple coarse-grained models for several F-gases and advanced solvents to perform a conductive study modeling the solubility and the recovery capacity in these solvents. The results obtained guided two process simulation studies performed to estimate the approximate energy and environmental costs of the separation and recovery process from commercial HFC blends. The final step of this work comprises the study of sustainable alternatives to currently used HFCs, including promising fluorinated families like hydrofluoroolefins and hydrofluoroethers in a wide range of applications. Once again, different computational tools are combined to gain insight into their thermophysical behavior through the use of molecular simulations or to address its capacity to substitute current HFCs in specific applications from a complete thermodynamic and energy analysis done using SAFT equations of state. The final purpose of this thesis is to offer a variety of solutions to tackle the necessary change of a model from a linear economy to a circular economy, as well as to provide basic knowledge of future alternatives according to the coming restrictive legislation via a multiscale approach of techniques, contributing to the planet's sustainability.

    وصف الملف: application/pdf

  3. 3
    رسالة جامعية

    المؤلفون: Amat Albuixech, Marta

    المساهمون: University/Department: Universitat Jaume I. Escola de Doctorat

    مرشدي الرسالة: Navarro Esbrí, Joaquín, Molés Ribera, Francisco

    المصدر: TDX (Tesis Doctorals en Xarxa)

    الوصف: Esta tesis se centra en encontrar un fluido de bajo potencial calentamiento atmosférico (PCA) capaz de trabajar en instalaciones ORC de pequeña escala y baja temperatura previamente diseñadas para el uso de HFC-245fa. Para ello, además de revisar el estado en el que se encuentra esta tecnología, se realiza un estudio teórico y experimental. El estudio teórico compara el comportamiento del HFC-245fa con el de sus principales alternativas de bajo PCA: HCFO-1224yd(Z), HFO-1336mzz(Z), HCFO-1233zd(E), HFO-1234ze(Z), HFO-1336mzz(E) y R-514-A. Debido a sus similares resultados en cuanto a potencia y eficiencias y a su similar tamaño de expansor, el HCFO-1224yd(Z) destaca como principal candidato. Por ello, el HCFO-1224yd(Z) se prueba experimentalmente en dos instalaciones diferentes. Se obtienen unos resultados muy similares en cuanto a eficiencia neta pero una potencia neta menor a la del fluido de referencia, no obstante, ésta sería susceptible de mejora mediante pequeñas modificaciones en el ciclo.

    الوصف (مترجم): The present thesis proposes finding a low global warming potential fluid suitable to work in small-scale, low-temperature organic Rankine cicles, previously designed for using HFC-245fa. The theoretical study shows how HCFO-1224yd(Z) stands out as the main candidate to substitute the HFC-245fa, due to its similar results in terms of power, efficiencies, and volumetric flow at the expander inlet. The experimental analysis proves the suitability of using HCFO-1224yd(Z) as a direct replacement. Besides offering a net power lower compare with the reference fluid, it offers very similar results in terms of net efficiency. For certain operating points, when the temperature of the heat source is high, the HCFO-1224yd(Z) offers higher net efficiency. In addition, the results obtained could be even improve with small cycle modifications.
    Programa de Doctorat en Tecnologies Industrials i Materials

    وصف الملف: application/pdf

  4. 4
    دورية أكاديمية

    المصدر: Dynamics, Vol 4, Iss 2, Pp 457-474 (2024)

    الوصف: Organic Rankine Cycle (ORC)–based small-scale power plants are becoming a promising instrument in the recent drive to utilize renewable sources and reduce carbon emissions. But the effectiveness of such systems is limited by the low efficiency of gas expanders, which are the main part of an ORC system. Limaçon-based expansion machines with a fast inlet control valve have great prospects as they could potentially offer efficiencies over 50%. However, the lack of a highly reliable and significantly fast control valve is hindering its possible application. In this paper, a push–pull solenoid valve is optimized using a stochastic optimization technique to provide a fast response. The optimization yields about 56–58% improvement in overall valve response. A performance comparison of the initial and optimized valves applied to a limaçon expander thermodynamic model is also presented. Additionally, the sensitivity of the valve towards a changing inlet pressure and expander rotor velocity is analyzed to better understand the effectiveness of the valve and provide clues to overall performance improvement.

    وصف الملف: electronic resource

  5. 5
    دورية أكاديمية

    المصدر: Thermo, Vol 4, Iss 2, Pp 252-272 (2024)

    الوصف: In this work, an artificial neural network (ANN)-based model is proposed to describe the input–output relationships in a Limaçon-To-Circular (L2C) gas expander with an inlet valve. The L2C gas expander is a type of energy converter that has great potential to be used in organic Rankine cycle (ORC)-based small-scale power plants. The proposed model predicts the different performance indices of a limaçon gas expander for different input pressures, rotor velocities, and valve cutoff angles. A network model is constructed and optimized for different model parameters to achieve the best prediction performance compared to the classic mathematical model of the system. An overall normalized mean square error of 0.0014, coefficient of determination (R2) of 0.98, and mean average error of 0.0114 are reported. This implies that the surrogate model can effectively mimic the actual model with high precision. The model performance is also compared to a linear interpolation (LI) method. It is found that the proposed ANN model predictions are about 96.53% accurate for a given error threshold, compared to about 91.46% accuracy of the LI method. Thus the proposed model can effectively predict different output parameters of a limaçon gas expander such as energy, filling factor, isentropic efficiency, and mass flow for different operating conditions. Of note, the model is only trained by a set of input and target values; thus, the performance of the model is not affected by the internal complex mathematical models of the overall valved-expander system. This neural network-based approach is highly suitable for optimization, as the alternative iterative analysis of the complex analytical model is time-consuming and requires higher computational resources. A similar modeling approach with some modifications could also be utilized to design controllers for these types of systems that are difficult to model mathematically.

    وصف الملف: electronic resource

  6. 6
    دورية أكاديمية

    المؤلفون: Shiqi Wang, Zhongyuan Yuan, Nanyang Yu

    المصدر: Energy and Built Environment, Vol 5, Iss 5, Pp 665-682 (2024)

    الوصف: Organic Rankine cycle (ORC) has been considered as one of the most promising technologies in industrial waste heat utilization and power generation. During the actual operation of ORC system, due to the fluctuation of cooling and heat sources, the system operates under off-design conditions in most cases. In this paper, thermodynamic model, heat transfer process description and power equipment model are established to evaluate the operating parameters of ORC for the off-design conditions. Evaporation temperature and condensation temperature are taken as independent parameters for the operation of ORC system. Genetic algorithm is adopted to optimize the independent parameters under the maximum net output power. The results show that the effect of optimizing independent parameters is to make the working fluid at the outlet of the preheater as close as possible to a saturated liquid state, and the working fluid at the inlet of the screw expander should be in a saturated gas state. With the optimal power output increasing by 19.1% for every 5 °C increase in hot water inlet temperature, 9.2% for every 20 kg/s increase in hot water mass flow rate, and 3.9% for every 1 °C decrease in cooling water temperature. The optimization method of off-design operating conditions has good system performance and good engineering application prospects.

    وصف الملف: electronic resource

  7. 7
    دورية أكاديمية

    المصدر: Problems of the Regional Energetics, Vol 62, Iss 2, Pp 75-85 (2024)

    الوصف: The purpose of the work is to develop and analyze the operation of a thermal circuit based on the organic Rankine cycle (ORC) using low-boiling working substances of the fluorocarbon class when operating at high initial cycle parameters. This goal is achieved by energy analysis of single- and multi-stage thermal circuits of power plants with a turbine circuit operating on low-boiling fluorocarbon working substances, such as octafluoropropane C3F8 and decafluorobutane C4F10. It is proposed to integrate the ORC thermal circuit as an extension to a small-capacity gas turbine power plant (GTU), operating on synthesis gas after a biomass gasifier. The most im-portant results of the work are the possibility of implementing a cycle with a low condensation temperature of the medium, which allows, when using low-boiling working fluids, to significant-ly reduce the temperature of the heat removal process and, consequently, increase the efficiency of the cycle. The possibility of using the listed working substances in power plants with a turbine circuit, which until now have been used mainly as refrigerants for refrigeration and heat pump systems, has been shown. The significance of the results of the work lies in the fact that, based on the analysis of the energy complex, a circuit solution has been proposed and justified that can increase the energy efficiency of the power supply complex, increasing the volume of gen-erated electrical power and providing a number of technological and environmental advantages.

    وصف الملف: electronic resource

  8. 8
    دورية أكاديمية

    المصدر: Energy Science & Engineering, Vol 12, Iss 4, Pp 1614-1637 (2024)

    الوصف: Abstract Combination of different power cycle scenarios is of prime importance in achieving maximum energy utilization from solar‐driven multigeneration systems. To fulfill such objective, the present article proposes a novel energy distribution system, leveraging a combination of direct‐fed organic Rankine cycle (ORC) and a bottom‐cycled arrangement of Kalina cycle system (KCS) and double‐effect absorption refrigeration cycle (DEARC) within a parabolic trough solar collector powered trigeneration system. The study explores three different ORC configurations: simple ORC; ORC equipped with internal heat exchanger (ORC‐IHE) and regenerative ORC (RORC). It is shown that although higher efficiencies are achievable from a larger portion of PTSC energy absorbed by the ORC, the ORC energy absorption is limited by ORC evaporator temperature differences, and there is unused energy that can be recovered by the KCS, based on the proposed energy system. The results indicate that the addition of bottoming KCS leads to a considerable increase in the exergy efficiency of ORC, ORC‐IHE and RORC‐based systems by 11.7%, 30.7% and 32.6%, respectively. The impact of different ORC configurations, key ORC parameters and various organic working fluids on the energetic/exergetic efficiencies is also examined to find the optimal configuration. In terms of overall energetic/exergetic efficiencies, the highest performance belongs to ORC (78.4%/30.4%) while the lowest energetic and exergetic efficiencies belong to ORC‐IHE and RORC, respectively (56.3% and 25.65%). On the basis of a comparative study with the available literature, these values are higher than what is already reported for similar solar‐driven multigeneration systems. Appropriate thermal match and lower exergy destruction in the KCS, and bottoming cycle arrangement of the DEARC are the main reasons for such enhanced performance. This research not only contributes valuable insights into efficient solar‐driven systems but also sets a new benchmark for performance metrics in the existing literature.

    وصف الملف: electronic resource

  9. 9
    دورية أكاديمية

    المؤلفون: Mehrdad Naderihagh, Abolfazl Ahmadi

    المصدر: Energy Science & Engineering, Vol 12, Iss 3, Pp 1004-1027 (2024)

    الوصف: Abstract This research entails the simulation and thermodynamic evaluation of a combined solar‐powered system that is intended to achieve the energy necessary to construct factories in areas where other sources of energy are not available. The system comprises five major circuits: (1) a parabolic trough that collects solar energy and passes it to downstream circuits via an evaporator, (2) an organic Rankine cycle that generates electricity for devices and factories, (3) a proton exchange membrane electrolysis unit that produces hydrogen from pure water, (4) a methanation unit that produces gas by combining hydrogen and carbon dioxide, and (5) a reverse osmosis (RO) unit that purges seawater to produce freshwater. This investigation studies the efficiency of energy and exergy, the destruction rate of exergy, and the economic value of system components as a whole. The system is represented by the technical equation solver, and the results are obtained as a result. This research employs the genetic algorithm and Technique for Order of Preference by Similarity to Ideal Solution method to locate the most effective point. The achieved outcomes include a maximum total system efficiency of 54.935% and a minimum total cost of 2.578 $/GJ. Dated to the optimal point, the power generated is 305.5 kW, the required power of a single‐cell electrolyzer is 293.8 W, the mass flow rate of methane and hydrogen production is 448.92 kg/hr and 225.64 kg/h, respectively. The water volume generated by RO is 35.25 m3/h, and the total cost of the investment is 85.57 $/h.

    وصف الملف: electronic resource

  10. 10
    دورية أكاديمية

    المصدر: Energy Reports, Vol 9, Iss , Pp 4437-4455 (2023)

    الوصف: The following research compared some energy, exergetic and thermo-economic indicators of a supercritical CO2 simple Brayton cycle integrated with a simple organic Rankine cycle (SORC), and a regenerative organic Rankine cycle (RORC). A thermodynamic model was developed to determine the net power, thermal efficiency, the fuel consumption, and the exergy destruction of all the components of the system. Also, a thermo-economic model was developed to determine some economic indicators such as the levelized cost of energy (LCOE), the payback period (PBP) and specific investment cost (SIC). A sensitivity analysis was carried out to study the influence of the primary turbine inlet temperature (TIT), the high-pressure in the compressor (PHigh), the evaporator pinch point temperature difference (PPT), and the pressure ratio (Pr) on the indicators performance. Three different working fluids were selected in this study: acetone, toluene and cyclohexane. The results showed that cyclohexane had the best energy performance giving an efficiency of 48.02% for the RORC system. Besides, it presented the best thermo-economic results for the LCOE (0.26 USD/kWh), SIC (2626.75 USD/kWh), and a PBP (11.2 years). Finally, a multi-objective optimization was developed based on energy, exergy and thermo-economic performance parameters as objective functions to obtain a technical and economic feasible solution able to implement them in industrial applications.

    وصف الملف: electronic resource