يعرض 1 - 10 نتائج من 240 نتيجة بحث عن '"nitrogen partitioning"', وقت الاستعلام: 1.72s تنقيح النتائج
  1. 1
    دورية أكاديمية

    المصدر: Frontiers in Plant Science, Vol 15 (2024)

    الوصف: IntroductionAn appropriate supply of ammonium (NH4+) in addition to nitrate (NO3−) can greatly improve plant growth and promote maize productivity. However, knowledge gaps exist regarding the mechanisms by which different nitrogen (N) fertilizer sources affect the enzymatic activity of nitrogen metabolism and non-structural carbohydrates during the post-anthesis period.MethodsA field experiment across 3-year was carried out to explore the effects of four nitrateammonium ratio (NO3−/NH4+ = 1:0 (N1), 1:1 (N2), 1:3 (N3), and 3:1 (N4)) on postanthesis dry matter (DM) and N accumulation, partitioning, transportation, and grain yield in maize.ResultsNO3-/NH4+ ratio with 3:1 improved the enzymatic activity of N metabolism and non-structural carbohydrate accumulation, which strongly promoted the transfer of DM and N in vegetative organs to reproductive organs and improved the pre-anthesis DM and nitrogen translocation efficiency. The enzymatic activities of nitrate reductase, nitrite reductase, glutamine synthetase, glutamine oxoglutarate aminotransferase, and non-structural carbohydrate accumulation under N4 treatment were increased by 9.30%–32.82%, 13.19%–37.94%, 4.11%–16.00%, 11.19%–30.82%, and 14.89%–31.71% compared with the other treatments. Mixed NO3−-N and NH4+-N increased the total DM accumulation at the anthesis and maturity stages, simultaneously decreasing the DM partitioning of stem, increasing total DM, DM translocation efficiency (DMtE), and contribution of pre-anthesis assimilates to the grain (CAPG) in 2015 and 2017, promoting the transfer of DM from stem to grain. Furthermore, the grain yield increased by 3.31%–9.94% (2015), 68.6%–26.30% (2016), and 8.292%–36.08% (2017) under the N4 treatment compared to the N1, N2, and N3 treatments.ConclusionThe study showed that a NO3−/NH4+ ratio of 3:1 is recommended for high-yield and sustainable maize management strategies in Northwestern China.

    وصف الملف: electronic resource

  2. 2
    دورية أكاديمية

    الوصف: Crop varieties differing in architectural characteristics (AC) vary in their intra-canopy light distribution. To optimize canopy photosynthesis, we hypothesize that varieties with contrasting AC possess different photosynthetic acclimation strategy (PAS) with respect to photosynthetic nitrogen (Np) partitioning. We firstly used in silico experiments to test this hypothesis and suggested a trade-off in Np partitioning between carboxylation and light harvesting to achieve optimal coordination between PAS, AC and growing light environment. Then, two cucumber (Cucumis sativus L.) cultivars, Aramon and SC-50, which were bred under greenhouse vertical single-stem and field creeping multi-branch canopy, were selected for studying their differences in AC and PAS using greenhouse and growth chamber experiments, respectively. In the greenhouse, more horizontal leaves of SC-50 resulted in steeper intra-canopy light gradient and a higher degree of self-shading, especially in the upper canopy layer. In growth chamber experiments, Aramon invested more leaf nitrogen into photosynthesis than SC-50, and the proportion (pNp) increased as light was reduced. In contrast, pNp of SC-50 did not respond to light but SC-50 partitioned its limited Np between carboxylation and light harvesting functions more effectively, showing a strategy particularly advantageous for canopies with a high degree of self-shading. This is further confirmed by additional in silico experiments showing that Np partitioning of SC-50 coped better with the impact of strong light competition caused by low light and by leaf clumping under high planting density. These findings provide a comprehensive perspective of genotypic variation in PAS, canopy architectures and their optimal coordination.

  3. 3
    كتاب

    المساهمون: Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Agroclim (AGROCLIM), Cirad Direction Générale (Cirad-DG), Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad), Nicolas Beaudoin, Patrice Lecharpentier, Dominique Ripoche-Wachter, Loïc Strullu, Bruno Mary, Joël Léonard, Marie Launay, Eric Justes

    المصدر: Stics Soil Crop Model. Conceptual framework, equations and uses ; https://hal.inrae.fr/hal-04457264Test ; Nicolas Beaudoin; Patrice Lecharpentier; Dominique Ripoche-Wachter; Loïc Strullu; Bruno Mary; Joël Léonard; Marie Launay; Eric Justes. Stics Soil Crop Model. Conceptual framework, equations and uses, éditions QUAE, pp.131-148, 2023 ; https://www.quae.com/produit/1809/9782759236794/stics-soil-crop-model?affiliate_codeTest=

    الوصف: International audience

    العلاقة: hal-04457264; https://hal.inrae.fr/hal-04457264Test

  4. 4
    دورية أكاديمية

    المصدر: Plant Production Science, Vol 25, Iss 3, Pp 371-383 (2022)

    مصطلحات موضوعية: Grain, nitrogen partitioning, QTL, rice, Plant culture, SB1-1110

    الوصف: Nitrogen (N) partitioning to grain affects productivity and grain quality in rice. The objectives of this study were to clarify the difference between the rice cultivars ‘Momiroman’ (japonica) and ‘Takanari’ (indica) in the relation between the amount of total N in aboveground parts per grain dry weight (TNA/GW) and grain N concentration (GNC), to identify quantitative trait loci (QTLs) associated with the coefficient characterizing this relation by using populations derived from a cross between Momiroman and Takanari, and to verify the effects of the detected QTLs by using near-isogenic lines (NILs). We used 156 F2 plants grown under high N in 2015 and 156 F3 lines grown under high or low N in 2016, and determined N concentrations and contents in grain and aboveground vegetative parts. We found a logarithmic relation between GNC and TNA/GW in Momiroman and Takanari. The regression coefficient (A) was higher in Takanari. Under each N condition, A was calculated for each population and QTL analysis was performed. QTLs for A were detected on chromosomes (Chrs.) 6 and 10 in all conditions; the Takanari alleles of both QTLs increased the value. NILs with the Takanari allele in each region had higher A than NILs with the Momiroman alleles. We conclude that the QTLs for A are associated with N partitioning to grain in rice.Abbreviations: GNA, amount of N in grain; GNC, grain N concentration; GW, grain dry weight; TNA, amount of N in aboveground parts

    وصف الملف: electronic resource

  5. 5
    دورية أكاديمية

    المصدر: Frontiers in Plant Science, Vol 14 (2023)

    الوصف: The continuing decline in water resources under the ever-changing climate compels us to re-orient our focus to a more sustainable practice. This study investigates the performance of Triticum aestivum wheat genotypes viz. HD-2967, HD-3086, HD-3249, DBW-187, and HD-3226 under well- and deficit-watered conditions for their root-traits, biomass and nitrogen accumulation and remobilization, and water use efficiencies, grown in PVC-tubes. The genotypes HD-2967, HD-3086, HD-3249, DBW-187, and HD-3226 under well-watered (WW) resulted in 36, 35, 38, 33, and 42% more grain yield compared to deficit-watered (DW). Among the genotypes, HD-3249 had the highest grain yield under both well- and deficit-watered conditions. Compared to DW, the WW had 28%, 30%, and 28% greater root length, biomass, and root length density at flowering {102 days (d), Z61}, while among the genotypes, HD-3249 had relatively greater root-traits. At flowering (Z61) and maturity (132 d, Z89), genotypes under WW accumulated 30-46% and 30-53%, respectively greater shoot biomass over the DW. Furthermore, the shoot biomass remobilised for HD-2967, HD-3086, HD-3249, DBW-187, and HD-3226 under the WW was 32, 37, 39, 35, and 35% greater than the DW. The nitrogen partitioning to different plant parts at flowering (Z61) and maturity (Z89) was significantly greater with the WW than with DW. The total nitrogen- remobilized and contribution to grain-N under the WW was 55, 58, 52, 53, 58% and 9, 19, 15, 17, 17% greater than the DW for the genotypes HD-2967, HD-3086, HD-3249, DBW-187, and HD-3226. The irrigation water use efficiency (WUE) at flowering (Z61) was more under the deficit-watered, but the biomass and grain total WUE was improved with the well-watered condition. Hence, it is apparent that proper scheduling of irrigation and N applications, along with the adoption of a genotype suited to a particular environment, will result in better WUE and grain yields, along with better utilization of scarce resources.

    وصف الملف: electronic resource

  6. 6
    دورية أكاديمية

    المصدر: Scientia Agricola. January 2022 79(2)

    الوصف: There is limited information regarding both nitrogen (N) and energy partitioning of dairy cows grazing well–managed tropical pastures. The objective of this study was to investigate the N and energy partitioning of mid–lactation dairy cows on rotationally grazed elephant grass using two pre–grazing targets: 95 % or maximum canopy light interception (LI95% or LIMax) during regrowth. The study used 26 Holstein × Jersey dairy cows arranged in a randomized complete block design with three 40–day periods of sampling. Grazing at LI95% increased organic matter and crude protein intake by 20 % (p ≤ 0.05) which resulted in a 9 % increase in fat corrected milk yield (p ≤ 0.05) relative to LIMax. Cows grazing at LI95% had greater concentration of total volatile fatty acids, butyrate and valerate (p ≤ 0.05), and smaller acetate (p ≤ 0.05) than those grazing at LIMax. Intake of net energy for lactation (NEL) and NEL secreted in milk were greater (p ≤ 0.05), while partitioning of NEL towards maintenance tended to be greater (p = 0.07) for cows grazing at LI95% than those grazing at LIMax. Milk urea nitrogen and both urine and fecal N excretion were greater for cows grazing at LI95% (p ≤ 0.05), but N excretion intensity was lower than in cows grazing at LIMax (p ≤ 0.05). Strategic grazing management using the LI95% pre–grazing target increases N losses through both urine and feces; however, it reduces N excretion intensity of dairy cows by 9 %.

    وصف الملف: text/html

  7. 7
    دورية أكاديمية

    الوصف: Crop varieties differing in architectural characteristics (AC) vary in their intra-canopy light distribution. To optimize canopy photosynthesis, we hypothesize that varieties with contrasting AC possess different photosynthetic acclimation strategy (PAS) with respect to photosynthetic nitrogen (Np) partitioning. We firstly used in silico experiments to test this hypothesis and suggested a trade-off in Np partitioning between carboxylation and light harvesting to achieve optimal coordination between PAS, AC and growing light environment. Then, two cucumber (Cucumis sativus L.) cultivars, Aramon and SC-50, which were bred under greenhouse vertical single-stem and field creeping multi-branch canopy, were selected for studying their differences in AC and PAS using greenhouse and growth chamber experiments, respectively. In the greenhouse, more horizontal leaves of SC-50 resulted in steeper intra-canopy light gradient and a higher degree of self-shading, especially in the upper canopy layer. In growth chamber ...

  8. 8
    دورية أكاديمية

    المصدر: Crop and Environment 2 (2023) 1 ; ISSN: 2773-126X

    الوصف: While optimising leaf chlorophyll content ([CHL]) has been proposed as a relevant means to manipulate canopy light penetration and canopy photosynthesis, effects of modifying [CHL] on leaf photosynthesis are yet to be investigated thoroughly. A greenhouse experiment and a field experiment were conducted involving rice genotypes of different genetic backgrounds and their leaf-colour variants. Leaf photosynthesis was more influenced by alteration to yellow-leaf than to stay-green cases. Higher specific leaf area and stomatal conductance were observed in two yellow-leaf variants, while only one yellow-leaf variant showed significantly increased Rubisco carboxylation capacity (Vcmax), maximum electron transport rate (Jmax), and photosynthetic nitrogen-use efficiency (PNUE). Model analysis indicated that reducing leaf [CHL] decreased the energy loss via non-photochemical quenching, but improving Vcmax, Jmax, and PNUE would require an improved nitrogen distribution pattern within the leaf. Label-free quantitative proteomics confirmed that an increased investment of nitrogen in Cyt b6/f and Rubisco was observed in the yellow-leaf variant of the genetic background with improved Vcmax, Jmax, and PNUE, but not in the other background. Our results suggest that reducing [CHL] can improve leaf photosynthesis only if the saved nitrogen is optimally distributed to proteins that are more rate-limiting to photosynthesis.

    وصف الملف: application/pdf

  9. 9
    دورية أكاديمية

    الوصف: This is the final version. Available on open access from Wiley via the DOI in this record. ; Data availability statement: Data are available from the Dryad Digital Repository: https:// doi.org/10.5061/dryad.j0zpc86j6 (Friggens et al. 2022). ; Nitrogen (N), acquired by roots and mycorrhizal fungi and supplied to plant foliage, is a growth-limiting nutrient at the subarctic treeline. Due to this limitation, interspecific competition and acquisition of N is an important control on plant community composition and distribution. The ability of trees and shrubs to access N shapes community dynamics at this ecotone undergoing species range shifts and changes in primary productivity driven by climate change. Using 15N soil labelling we investigate the fate of soil inorganic N, and spatial distances over which trees and understorey shrubs access soil N, in a treeline forest. 15N was injected into soil rooting zones in discrete 1 m2 patches and foliar samples were collected from trees between 1 and 50 m away, and understorey shrubs between 0.5 and 11 m away from labelled soil. The 15N label was found in mountain birch trees up to 5 m, and in understorey shrubs up to 2 m, away from labelled soil. We estimate that 1.27% of pulse-derived N was found in foliage of birch trees, compared to 1.16% in the understorey. However, mountain birch trees contributed only 31% of ecosystem leaf area index (LAI), thus there was a disproportionate allocation of added label to the birch canopy compared with its contribution to ecosystem LAI. The difference in root and mycorrhizal exploration distances and community N partitioning between mountain birch trees and understorey shrubs may confer competitive advantage to trees with respect to nitrogen and nutrient patches, which may alter plant community structures within these forests. This is particularly important considering predicted climate-driven tree and tall shrub expansion in subarctic regions, with likely consequences for ecosystem N and carbon (C) cycling, as well as for community ...

    العلاقة: https://doi.org/10.5061/dryad.j0zpc86j6Test; orcid:0000-0002-9183-6617 (Hartley, Iain P); Published online 22 December 2022; https://doi.org/10.1111/oik.09567Test; 730938; NE/P002722/1; NE/P002722/2; LSMSF CEH_L_113_05_2018; http://hdl.handle.net/10871/132145Test; Oikos

  10. 10
    دورية أكاديمية

    المصدر: Water; Volume 14; Issue 18; Pages: 2828

    جغرافية الموضوع: agris

    الوصف: Climate change will impact all plant physiological processes including water transport, photosynthesis, and nutrient assimilation. How these processes are coordinated in response to climate change is not fully understood. Here we tested how these processes will respond to elevated CO2 concentration ([CO2]) and temperatures for two herbaceous species (an invasive and a native Eupatorium species in East Asia; family Asteraceae) and whether these processes are coordinated using a controlled experiment. We also investigated the differences between these two species, and the structural basis for changes in physiology. Leaf photosynthetic capacity (Amax, measured under ambient conditions) increased significantly in the native species, while that of the invasive species did not change under elevated [CO2] and temperatures. The leaf hydraulic conductance (Kleaf) of both species tended to increase under elevated temperatures and [CO2], with that of the native species increasing to a greater extent. Changes in Kleaf and Amax were coordinated, and Kleaf was closely associated with leaf minor vein density across treatments. The increased photosynthetic capacity of the native species was probably related to an increased N investment in photosynthesis; its leaf N decreased but chlorophyll concentration increased inviting detailed studies in N partitioning. No coordination between water use (water transport, stomatal conductance, and water use efficiency) and leaf tissue nutrient (N, P) concentrations was found, probably owing to the active control in nutrient uptake. Thus, photosynthesis is coordinated with water transport in response to climate change, while the coordination between water use and nutrient accumulation can be absent due to active control. Our results also suggest that global climate change will not necessarily fuel more positive responses in invasive plants than native plants.

    وصف الملف: application/pdf

    العلاقة: Water and Climate Change; https://dx.doi.org/10.3390/w14182828Test